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a b s t r a c t 

This paper presents a series of control problems in prioritizing building energy retrofit and maintenance 

plans through a review of recent studies. The building energy retrofits can be strategically performed 

on policy level, management level, system level and unit level. Based on existing research effort s, this 

study casts the optimal building maintenance planning problem into a general control system frame- 

work. Unlike traditional control applications, this study argues that the control system framework is also 

applicable to the building energy management level, which will significantly improve the sustainability 

of realized energy savings and cost-effectiveness of building energy retrofits. In a general control frame- 

work, a number of research problems in the control systems are formulated, namely 1) control system 

decay dynamics modeling; 2) control system inputs and model uncertainties; 3) control system outputs; 

4) control system uncertainties and disturbances; 5) control system algorithms; and 6) grouping and 

modeling. The proposed control problems bring out the intrinsic relationship of reliability engineering, 

maintenance engineering and control engineering in the broad directions of energy efficiency and opti- 

mization. Investigations into the proposed control problems will contribute to further improvements in 

the building energy retrofit and maintenance plans than the currently prevailing engineering practice. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Developments of building energy efficiency technologies enable

various optional energy conservation measures (ECMs) to improve

the building energy performance. However selection of prioritized

ECMs for a building retrofit plan is very challenging due to tech-

nical barriers and financial barriers. The building energy retrofits

can be strategically performed on policy, management, system and

unit levels with different aspects of addressing a spectrum of fi-

nancial and technical barriers. Technically, building energy retrofit

is a lengthy process that includes energy audit, baseline develop-

ment, retrofit planning, implementation and commission, opera-

tions and maintenance (O&M), and measurement and verification

(M&V). The complexity of an effective building energy retrofit de-

mands a non-trivial amount of information and expert knowledge

about building construction, operation, and energy consumption

before and after the retrofit. Financially, cost-effectiveness is usu-

ally the first concern of a building energy retrofit plan. The achiev-
� A semi-plenary was presented at 10th IFAC Symposium on Nonlinear Control 

Systems, Monterey, USA, 23–25 August 2016 based on a preliminary version of the 

paper. 
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1367-5788/© 2017 Elsevier Ltd. All rights reserved. 
ble energy and cost savings are the primary attractions to the

uilding retrofit investors and building owners. In buildings, such

nergy and cost savings can be achieved from many components

r subsystems. As a complex system, there are many components

hat pertain to power generation, building materials and envelope,

lectricity appliances, water consuming appliances, etc. One or sev-

ral of such components can comprise a subsystem that provides

dditional and enhanced functionality to the building. In the build-

ng context, many such subsystems can be identified to present

nergy efficiency opportunities. These energy efficiency opportu-

ities are roughly categorized into four technical functional layers,

amely the power electronics layer, smart appliance layer, energy

ow layer and planning layer. The power electronics layer involves

nergy optimization that focus on the maintaining and improving

he power quality ( Abo-Al-Ez, Elaiw, & Xia, 2014; Esmaeli, 2016;

iu, Zhang, Wang, & Wang, 2014; Mokgonyana, Zhang, Zhang, &

ia, 2016; Nikkhajoei & Lasseter, 2009; Sao & Lehn, 2005; Wilson,

obinett, Weaver, Byrne, & Young, 2016; Yu, Khambadkone, Wang,

 Terence, 2010 ), which is essential to guarantee the performances

f all electricity consuming components in the building. The smart

ppliance layer improves the building energy efficiency by bring-

ng in energy efficiency intelligence to the appliances in addition

http://dx.doi.org/10.1016/j.arcontrol.2017.04.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/arcontrol
http://crossmark.crossref.org/dialog/?doi=10.1016/j.arcontrol.2017.04.003&domain=pdf
mailto:xxia@up.ac.za
http://dx.doi.org/10.1016/j.arcontrol.2017.04.003
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u  
o the built-in control logic ( Arens, Federspiel, Wang, & Huizenga,

005; Bijker, Xia, & Zhang, 2009; Catherine, Wheeler, Wilkinson, &

e Jager, 2012; Mei, Zhu, & Xia, 2015a; 2015b; Portmess & Tower,

015; Setlhaolo & Xia, 2015; 2016; Setlhaolo, Xia, & Zhang, 2014;

tavropoulos et al., 2015; Stavropoulos, Koutitas, Vrakas, Kontopou-

os, & Vlahavas, 2016; Wang, Zhang, & Xia, 2013 ). The energy flow

ayer focuses on the energy efficiency opportunities from balanc-

ng different energy sources ( Elaiw, Xia, & Shehata, 2012; 2013;

tsaluba, Zhu, & Xia, 2016; Nwulu & Xia, 2015a; 2015b; 2015c;

017; Sichilalu, Tazvinga, & Xia, 2016; Sichilalu & Xia, 2015a;

015b; Tazvinga, Xia, & Zhang, 2013; Tazvinga, Zhu, & Xia, 2014;

015; Wu, Tazvinga, & Xia, 2015a; Xia & Elaiw, 2010; Xia, Zhang, &

laiw, 2009; 2011; Zhang & Xia, 2011; Zhu, Tazvinga, & Xia, 2015 ).

he planning level actually contributes a series of investment de-

isions and budget competitions at the building energy manage-

ent level to improve the overall cost effectiveness, or overcoming

he financial barrier of an energy efficiency project, e.g., a retrofit

roject ( Malatji, Zhang, & Xia, 2013; Wang, Xia, & Zhang, 2014;

u, Wang, & Xia, 2016; Wu, Xia, & Wang, 2015b ). Although huge

mount of studies have been conducted at the first three layers,

n particular, in the framework of a control system ( Xia & Zhang,

010; 2011; 2015; Xia, Zhang, & Cass, 2012; Xia & Zhang, 2016 ),

here lacks a systematic method to model, evaluate and optimize

he building retrofit plans at the management level. Furthermore,

erceived uncertainty in realized energy savings and the risk of

nderachieving the projected savings prevent investors and build-

ng owners from pursuing a building retrofit. At the current stage,

he building energy guideline ( USDOE, 2011 ) indicates that the en-

rgy savings of the building energy retrofit actions are quantified

y the M&V process. But the verified energy savings usually couple

ith uncertainties from measurement, sampling and modeling ef-

orts during the M&V process ( Carstens, Xia, Zhang, & Ye, 2013; Xia

 Zhang, 2013; Ye & Xia, 2014; 2016; Ye, Xia, & Zhang, 2013; 2014 ).

In order to facilitate the building energy retrofit, a number

f energy efficiency (EE) incentive programmes and policies have

een implemented to address both the technical and financial bar-

iers, such as clean development mechanism (CDM) ( Michaelowa

 Jotzo, 2005 ), tradable white certificate (TWC) scheme ( Bertoldi &

ezessy, 2008; Mundaca, 2007 ), demand side management (DSM)

rogrammes ( Eskom, 2011 ), and performance contracting ( Mozzo,

999 ). Taking advantage of the EE programme incentives usually

mproves the building energy retrofit projects’ cost-effectiveness

hen regulations of the EE programmes are properly followed.

n general, accuracy and persistency of the achieved energy sav-

ngs are the major concerns in these EE programmes’ crediting

eriod. However, the energy savings from most building retrofit

rojects are often not sustainable given that the retrofitted EE

evices will fail over time. On identification of the device failures,

ome existing EE programme guidelines apply a penalty factor

uring the energy savings accounting process instead of requir-

ng direct maintenance activities to correct the devices failures.

or instance, the CDM guidelines ( UNFCCC, 2007; 2010 ) apply

 penalty factor, which is called lamp failure rate (LFR) to the

nergy savings calculation and further restrict that no project

ebates will be issued to the implemented projects when 50%

f the initial population is failed during the project crediting

eriod. Under these rules, the lighting projects are only considered

ustainable when the survived lighting population is equal to or

reater than 50% of their initial population by proper maintenance.

ome latest designed lighting project guidelines UNFCCC (2011 ;

012) request to perform continuous replacements of all the failed

amps. Practically, the following barriers hold the investors and

uilding owners back from performing such a full maintenance

olicy. Firstly, the full maintenance is not easily implementable

ue to the demand of continuously monitoring and sampling the

ighting devices’ working conditions. Secondly, the maintenance
ctivities also require additional investments for the procurement

nd installation of the new lighting devices. The extra investments

ometimes contribute to a tighter project budget. 

Since neither the “no maintenance” nor the “full maintenance”

olicy is preferable to the investors and building owners, it is thus

nteresting to design an optimal maintenance plan to the whole

uilding energy retrofit process to improve its cost-effectiveness.

he optimal maintenance planning (OMP) problem can be aptly

ormulated under the control system framework as a control

roblem. The control system framework is applicable for this

urpose since the population decay dynamics of the retrofitted EE

evices are characterized and modeled as state space equations.

he population decay dynamics are taken as the plant of the

ontrol system. In order to achieve sustainable energy savings

nd maximum project profits, it is recommended to optimally

ontrol/replace a number of failed EE devices during each main-

enance interval. The number of failed items to be replaced is

aken as the control variable of the control system. As different

E technologies have different population decay dynamics and

ifferent rebate tariffs, the control inputs can be optimally decided

ased on the investors and building owners’ budget availability. 

Formulating the OMP problem into control problems exhibits

ollowing advantages. Firstly, under the control system framework,

lassic control theories and methodologies can be applied to im-

rove the designed maintenance strategy. Secondly, applying the

ontrol system approach to solve the OMP problem on the building

nergy management level significantly improve the sustainability

f realized energy savings and cost-effectiveness of building energy

etrofits when comparing to traditional control applications in the

uilding energy retrofit areas. Thirdly, the proposed control system

pproach also brings out the intrinsic relationship of reliability

ngineering and control engineering. One major issue to design

he optimal maintenance plan is to characterize the population

ecay and performance deterioration dynamics of the building EE

evices, where some deterministic or stochastic models of energy

evice reliability can be found in the existing reliability engineer-

ng studies. For instance, a series of common failure distributions,

eliability and hazard rate functions for EE devices with various

eliability characteristics are provided by O’Connor and Kleyner

2011) , according to which the population degradation of various

ypes of retrofitted items, e.g., the non-repairable products and the

epairable products, can be characterized. In addition, the new ap-

lications of maintenance activities for EE purposes by the control

ystem approach also bring new developments in the reliability

ngineering field, such as investigations and model developments

n the population decay or performance degradation of various

E building appliances. The relevant research progress in the

eliability engineering area will facilitate the control applications

n improving the building EE managements, and vice versa. 

Based on existing research efforts in the literature, this study

asts the optimal building maintenance planing problem into a

eneral control system framework. From the general control for-

ulation, a number of research problems in the control systems

re systematically discovered, namely 1) control system decay

ynamics modeling; 2) control system inputs and model uncer-

ainties; 3) control system outputs; 4) control system uncertainties

nd disturbances; 5) control objective function formulation; 6)

ontrol system algorithms; and 7) grouping and modeling. Further-

ore, a case study is given to illustrate the application of control

ystem framework in practical OMP problems. Detailed research

roposals will be given in next section. 

. Control problems in building energy retrofit and 

aintenance 

In this section, the OMP problem is mathematically formulated

nder the control system framework. Thereafter, the control prob-
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Fig. 1. Optimal maintenance strategy of a lighting retrofit project. 
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lems that related to the OMP problems are identified systemati-

cally, which are introduced in detail in the following subsections. 

2.1. Beginning of the story 

The idea to use control approach to solve the building energy

retrofit and maintenance problem starts with a large-scale lighting

retrofit project. To keep the story simple but interesting, only part

of the whole project is introduced below. A lighting retrofit project

that aims to reduce the lighting load in a fleet of commercial

buildings is going to be implemented. A number of 207 693 energy

efficient LEDs will be installed to replace existing inefficient halo-

gen downlighters (HDLs). The LEDs must have very high quality

with a rated life of equal to or more than 6 years. As an energy ef-

ficient project with new technologies, project developers (PDs) will

receive a rebate of R 

1 0.55 per kWh savings realized from the im-

plementation of this project. More project details from the energy

audit of this project are found in Ye, Xia, Zhang, and Zhu (2015) . 

Scope of this project sounds easy, however PDs must comply

with following general project regulation policies in order to

receive their project rebates. 

1. PDs will have implement the project at their own cost. 

2. The crediting period of this project is 10 years during which

PDs can receive their rebate on annual basis. All newly installed

EE devices must be properly maintained. If more than 50% of

the LEDs is malfunctioned, the rebate will be ceased. 

3. The performance of the project will be reported once a year

by a third-party M&V inspection company. This M&V company

verifies the number of survived lamps by sampling and sur-

veys. Once device failures are observed, PDs’ are allowed to

replace some (or all) of the failed EE devices at the end of each

crediting year. 

The first item on the programme policy makes the project a

risky project since the PDs have to deposit a big amount initial

investment. According to intensive project performance evaluation

experience, professional M&V practitioners help the PDs design

an optimal maintenance plan to replace a number of failed lamps

at end of each year. The replacements keep the project rebate

sustainable and ensure the savings’ persistency of this project. At

end of the project, PDs receive their maximum profits and the

project produces its maximum energy savings. The M&V practi-

tioner’s strategy is illustrated in Fig. 1 , in which the circled stems

(in Red) denotes the number of replacement of failed LEDs at end

of each year. The solid step lines (in Blue) represents the survived
1 South African Rand 

e  

p  

r  
EDs with replacements. The dash-dotted lines (in Black) show the

urvived LEDs would have been observed without replacements of

ailed ones. When looking at this figure, the PDs realize that they

ay only be able to claim rebates on project savings over the first

 years due to unattended LED failures. The replacements of the

ailed lamps save the life of this project but necessary cost will

e incurred for the rescue. To make final decisions on the project

nvestments, the PDs asked the following immediate questions: 

1. How many lamps have to be replaced? How do they cost, and

when to replace? 

2. If the replacements are helpful to generate more energy savings

and rebates, then shall all the failed LEDs to be replaced at

end of each year to produce the maximum benefits in terms of

both energy savings and financial rebates? 

3. If the M&V professional’s maintenance plan helps with this

lighting retrofit project, could more maintenance plans to

be designed for other building energy retrofit projects with

water heating devices, HVAC systems, plug-loads, and building

envelopes? 

.2. General control system framework 

Formulation of the general framework is introduced as follows.

et a large-scale building energy retrofit project to be imple-

ented in a fleet of buildings, this project aims to replace N

nits of inefficient building appliances by energy efficient ones.

he project is financially supported by local government through

n incentive EEDSM programme, which awards an energy saving

rediting period of 10 years for each implemented project. The

rogramme regulations further request that the survived project

opulation needs to be carefully maintained to guarantee the

ustainability of the projected energy savings. Let t 0 and t f denote

he beginning and end of the project crediting period, respectively.

 denoted the number of homogenous groups of the lighting

opulation. x i (0) denotes the quantity of the initial installation of

he EE devices in the i th group. Generally, the OMP problem is to

nd the optimal control sequences u = [ u 1 , u 2 , . . . , u I ] 
T within the

roject crediting period. Here u i is the control system input, which

epresents the number of replacements of the failed EE devices

uring each maintenance interval in the i th group. Then the OMP

roblem under the control system framework is formulated as: 

˙ x i = f i ( x , u ) + d i , 
y j = h j ( x ) + ω j , 

(1)

here x denotes the state variable that corresponds to the num-

er of survival EE devices for each maintenance interval. The

ontrol system output y j can be expressed by the sampling and

easurement result of x . f i ( ·) denotes the function to characterize

he project population decay dynamics. In addition, d i and ω j 

enote the modeling uncertainties and measurement disturbances,

espectively. In the following subsections, each component in

q. (1) will be discussed and relevant control problems will be

dentified for future research. 

.3. Control system decay dynamics modeling 

In order to solve the OMP problem by a control system ap-

roach, the population decay dynamics model f ( x , u ) in Eq.

1) needs to be characterized. This links to the classic control

ystem dynamics modeling problem, but in a new engineering

eld. Desired research efforts in this area can be summarized as

o develop and validate a series of population decay dynamics and

nergy performance degradation models for various building ap-

liances. Generally, building energy appliance are categorized into

eparable and non-reparable ones. A repairable appliance can have
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ultiple minor failures and be repaired before becoming salvaged.

ir conditioners, heat pumps or printers are repairable appliances.

 non-repairable item can only experience one catastrophic failure

efore the salvage. A replacement is required to remove such

ailure. CFLs or motion sensors are non-repairable appliances.

he failure rates of the repairable and non-repairable items are

sually different. The repairable and non-repairable classification is

nvestigated at the current stage, and it is believed that there are

any other available classifications in different scenarios, which

emain uninvestigated. Consequently, two types of models can

e developed to characterize the control system decay dynamics,

amely population decay models for non-reparable failures and

nergy performance degradation models for reparable failures. The

opulation decay dynamics models investigated here are merely a

mall part of a broad field of the reliability engineering. There are

any other available models, corresponding to different categories

f EE devices. It is expected that the research progress in the

eliability engineering area will facilitate the advance of building

nergy optimization studies, and vice versa. 

In our studies, we have come across non-reparable population

ecay models, such as the clean development mechanism (CDM)

inear lamp population decay model ( UNFCCC, 2010 ), CFL popu-

ation decay model from the PELP study ( Navigant, 1999 ), as well

s reparable population decay models, such as the solar panel

erformance degradation model ( Fan & Xia, 2015; 2017 ) and the

xponential population decay model ( Wang & Xia, 2015b ), and pos-

ibly hybrid models such as the population decay models including

nteractive energy systems ( Wang & Xia, 2015a ) and a multi-stage

erformance degradation model ( Wang, Wu, & Xia, 2017 ). 

A linear lamp population decay model is proposed in the

MS-II.J ( UNFCCC, 2010 ) as given in Eq. (2) 

f (t) = 

{
t × H × 100 −Y 

100 ×L 
, if t × H < L, 

100% , if t × H ≥ L, 
(2) 

here f ( t ) denotes the percentage of lamps that fails to work in

he t -th year since installation, H is the annual average operating

ours, L is the rated life span (in hours), and when t × H ≥ L ,

f (t) = 100% , all lamps are deemed to be failed. 

In Fan and Xia (2015) , a function E ( t ) is applied to characterize

he solar panel linear output degradation over years, where 

(t) = −0 . 007(t − 1) + 0 . 98 . (3)

An exponential degradation model is investigated to model the

epairable failures in O’Connor and Kleyner (2011) and applied in

he studies ( Wang & Xia, 2014; 2015b ), as shown in Eq. (4) , 

 (k ) = x (0) e −ζi k . (4)

he state space form of Eq. (4) is 

 (k + 1) = x (k )(1 − ζi ) , (5)

r in continuous time, 

˙ 
 = −ζi x, 

here θ i denotes the Mean Time between Failures (MTBF) of the

E items, and ζ i is calculated by: 

i = (θi ) 
−1 . (6) 

Although widely used, the models (2) –(5) are not accurate

nough to characterize the lamp population decay dynamics due

o unrevealed model uncertainties. For instance, the model (2) as-

umes a constant failure of the lighting devices, which turned out

o be inaccurate from the PELP study report ( Navigant, 1999 ). The

odel (3) assumes a constant performance degradation rate of

he solar panels given that model does not consider the actual

nstallation position and weather conditions of the solar panels.

s commented in Carstens et al. (2013) and Carstens, Xia, and Ye
2014) , the model (5) is also inappropriate to assume a constant

azard rate of the EE lighting devices. 

In order to improve the model accuracy of the population decay

ynamics of the EE devices, studies Carstens et al. (2013) , Carstens

t al. (2014) offer informative reviews on the existing lamp popu-

ation decay dynamics models ( Navigant, 1999 ), and also proposed

 general form of the population decay dynamics model by re-

alibrating existing models established from biological population

ynamics study or from reliability engineering experiments. The

eneral form of the model is provided in Eq. (7) . 

 (t) = 

1 

c + ae bt 
, (7) 

here s ( t ) is the percentage of survived devices at time t for a

ighting project, t is counted from the implementation of a lighting

etrofit project. a = e −L and L is the rated average life span of a

ertain model of the EE devices. The rated average life span is

eclared by the manufacturer or responsible vendor as being the

xpected time at which 50% of any large number of EE devices

each the end of their individual lives ( UNFCCC, 2010 ). b is the

lope of decay and c is the initial percentage lamp survival at

 = 0 . Thus, with a given L, b and c can be obtained by solving the

ollowing equations: 

s (0) = 1 , 

s (L ) = 0 . 5 . 
(8) 

The model (7) is more advantageous than the models (2) –(5) as

t has a validated model uncertainty quantified by R 2 = 0.996. The

odel (7) has acceptable accuracy level to describe the population

ecay dynamics due to non-reparable failures. An equivalent

iological population dynamic model was proposed in Carstens

t al. (2014 , 2013) as the following: 

d s (t) 

d t 
= −bs (t)(1 − cs (t)) , (9)

r in its discrete-time form, 

 (k + 1) = bc(s (k )) 2 �t − bs (k )�t + s (k ) . (10)

In practice, energy performance of some EE devices does

ot simply drop from a good condition to a sudden failure.

ailure mechanisms of the EE devices may experience a series

f performance degradation process in real cases. For instance,

nergy performance of EE devices may have multiple functional

tages such as good status, average status, bad status, and failed

tatus. In addition, proper maintenance actions have to ability

o restore the degraded performance into a better condition if

aken before the salvage. In order to characterize the performance

egradation process of the EE devices, the study ( Wang et al.,

017 ) employs a state-transition model of items from homoge-

ous groups, as shown in Eq. (11) . Eq. (11) and Fig. 2 depict a

ollowing state transition mechanism. Given a series of discrete

ime instants t k , k = 1 , 2 , . . . , the working state of an EE device

as a possibility to jump to another state over interval [ t k , t k +1 ) .

n Fig. 2 , P l, i ( t k ), i ∈ [1, M l ] denotes the probability that this item

orks under state i at instant t k . λ
l 
i,i −1 

(t k ) indicates the state-

ransition from state i to state i − 1 over the interval [ t k , t k +1 ) .

he circle F denotes the malfunctioning state and P l, F ( t k ) the

robability of this item being malfunctioning. λl 
i,F 

(t k ) indicates

he state-transition from state i to malfunctioning. As shown

n Fig. 2 , P l, i ( t k ) increases due to transition λl 
i +1 ,i 

(t k ) , decreases

ue to transition λl 
i,i −1 

(t k ) and transition λl 
i,F 

(t k ) simultaneously.

 l,M l 
(t k ) continuously decreases and P l, F ( t k ) continuously increases

ithout maintenance. An early study on the production and

aintenance control for manufacturing systems ( Boukas & Liu,

001 ) formulates such state-transition as a partially observable

arkov decision process (POMDP), with a hypothesis that the



82 X. Xia / Annual Reviews in Control 44 (2017) 78–88 

Fig. 2. The state transition of an item with M l working states ( Wang et al., 2017 ). 

Fig. 3. Control system inputs. 
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transition rate to the next state depends on the current state. In

Wang et al. (2017) , it is assumed that for a homogeneous group l

of such devices, the population dynamics of group l is commensu-

rate with the individual item state-transition. Taking advantage of

the POMDP formulation in Boukas and Liu (2001) , the population

changes � x l, i ( t k ) with i = 1 , 2 , . . . , M l in group l are formulated in

(11) , where f l 
i,i −1 

(x l,i (t k )) denotes the population change from sub-

set i to subset i − 1 that is resulted from the transition λl 
i,i −1 

(t k ) . ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

� x l,M l 
(t k ) = − f l M l ,M l −1 (x l,M l 

(t k )) − f l M l ,F 
(

� x l,M l −1 (t k ) = f l M l ,M l −1 (x l,M l 
(t k )) − f l M l −1

� x l, 2 (t k ) = f l 3 , 2 (x l, 3 (t k )) − f l 2 , 1 (x l, 2 (t k )) 

� x l, 1 (t k ) = f l 2 , 1 (x l, 2 (t k )) − f l 1 ,F (x l, 1 (t k )) 

The introduced system decay dynamics models (2) –(11) are

capable of characterizing the population decay or energy per-

formance degradation dynamics for homogeneous group of EE

devices, despite that there are modeling uncertainties involved

in these models. In practice, interactive effects are sometimes

observed across different EE device groups. For instance, existing

study ( Ahn, Jang, Leigh, Yoo, & Jeong, 2014 ) shows that heat gain

from lights can significantly influence the energy consumptions

of the air conditioning system. In this case, the population dy-

namics of the lighting group can pose significant impact on the

energy performances of the air conditioners. The impact of such

interaction is worthy taking into account in the control system

dynamics formulation. As introduced in Wang and Xia (2015a) , the
(t k )) + 

M l −1 ∑ 

i =1 

u 

l 
i (t k ) + u 

l 
C (t k ) , 

 

(x l,M l −1 (t k )) − f l M l −1 ,F (x l,M l −1 (t k )) − u 

l 
M l −1 (t k ) , 

. . . 

F (x l, 2 (t k )) − u 

l 
2 (t k ) , 

 ,M l 
(t k ) , 

(11)

opulation decay dynamics of interacting energy systems such as

ighting and HVAC systems are formulated as 

˙ x L = 

ˆ f 1 (x L ) + u L , 

˙ x AC = 

ˆ f 2 (x L , x AC ) + u AC , 
(12)

here x L and x AC are the state variables representing the survived

ighting and HVAC systems, respectively. ˆ f 1 (x L ) denotes the lamp

opulation decay dynamics and 

ˆ f 2 (x L , x AC ) denotes the HVAC sys-

em decay dynamics with the interaction of heating and cooling

oad from the lighting systems. An assumption is made in Eq.

12) that the HVAC systems have minimum impact to the lighting

ystems’ life span. More details of the formulation and parameter

dentification in Eq. (12) can be found in Wang and Xia (2015a) .

esides the lighting and HVAC system interactions, there are also

ther interactive effects observed to influence the reliability per-

ormance and modeling accuracy of the system decay dynamics.

or instance, interactive reliability performance can be observed

or a group of EE devices including both the newly retrofitted EE

evices and old ones. 

.4. Control system inputs 

The OMP problem is indeed an optimal control system input

esign problem. In the OMP scenario, the control inputs refer

o the maintenance actions, which are described by the mainte-

ance intensity and maintenance instant. The term ‘maintenance

ntensity’ describes the count of the restored items from one

tem group at a specific instant. Such instant is referred to as the

maintenance instant’, i.e., a time point at which the maintenance

ctions are scheduled to take place. The collection of maintenance

nstants comprise the maintenance time schedule. The mainte-

ance intensity and time schedule are both promising optimization

ariables to improve the energy efficiency and cost-effectiveness

f a retrofitting project. 

According to the reliability engineering, there are several

ypes of maintenances, corresponding to different purposes and

trategies. At the current stage, a maintenance action classification

rom BSI (1984) is employed, where maintenance actions are

rouped into several categories. As a fact to accommodate various

E devices’ failure characteristics and mechanisms, this study
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Fig. 4. Optimal maintenance intensities of PM and CM ( Wang et al., 2017 ). 
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roposes four types of control inputs that are commensurate with

he maintenance categories, denoted as u p ( t ), u c ( t ), u 0 ( t ), and

 d ( t ) as shown in Fig. 3 ( BSI, 1984 ). Apparently, one may also

ake other classifications for the maintenance actions, which may

esult in more than 4 types of control inputs but also applicable

or the development of an optimal maintenance plan. In addition,

ther possible control inputs can also be identified rather than

aintenance in the building energy retrofit practice. 

In Fig. 3 , there are unplanned maintenance and planned main-

enance. The unplanned maintenance is denoted by u d ( t ) that

efers to the emergency maintenance action, which usually has

o be carried out as an unplanned event after the failure. As a

esult, the maintenance time schedule are ignored for unplanned

aintenance, and it might be beneficial to simply take u d ( t ) as

nput disturbances. Under the planned maintenance category,

here are corrective maintenance and preventive maintenance. The

lanned corrective maintenance (CM) is only conducted after the

ccurrence of a failure, in order to restore the system into a spe-

ific working condition. The CM is denoted by u c ( t ). The planned

M is deferrable should the failure not affect the whole production

rocess, i.e., the CM is carried out according to the prescribed time

chedule, rather than immediately after the failure. Therefore, the

lanned corrective maintenance is also called deferred corrective

aintenance. Unlike the CM, the preventive maintenance (PM) is

arried out before the occurrence of a failure in order to reduce the

robability of failure or restore the system from a degraded state

o a better working condition. The PM includes both the scheduled

aintenance and condition-based maintenance, which are denoted

y u p ( t ) and u 0 ( t ), respectively. The main difference between u p ( t )

nd u 0 ( t ) is that u 0 ( t ) must be performed at prescribed time inter-

als or under pre-set conditions to some fatally important systems,

hile the u p ( t ) can be deferred or scheduled. t specifies the time

nstant when a maintenance action takes place. Mathematically, a

ey problem related to the optimal control inputs for the building

nergy retrofit is to identify the value of u (t) , which is a set

f { u p ( t ), u c ( t ), u 0 ( t ), u d ( t )} that tells the intensity, maintenance

ype and schedule of the required maintenance. In fact, as u p ( t )

nd u c ( t ) are subject to the prescribed maintenance plan, their

ntensity and schedules can be optimized simultaneously. How-

ver, u c ( t ) and u d ( t ) must be performed either at prescribed time

ntervals or on occurrence of emergency failures. In the literature,

elected research activities to design building OMP by the control

ystem approaches are briefly introduced below. 

In studies Wang and Xia (2014; 2015b) , optimized corrective

aintenance activities are designed of for a broad category of

ailed EE devices in buildings at pre-decided maintenance time

chedule. As illustrated by the case study in Wang and Xia (2015b) ,

aintenance plays an important role to the sustainability of the

E device group population. Comparing the optimal maintenance

trategy to the full maintenance strategy, the maintenance cost

s reduced up to 30.7% with a loss of 1.5% of the energy savings

chieved by applying the optimal maintenance. 

As discussed in Section 2.3 , the functional conditions of an EE

evice may range from a number of transition stages from perfect

o failure. in Wang et al. (2017) , homogeneous group population

ynamics and the aggregate performance dynamics under the

mpacts of multi-state deteriorations and maintenances are formu-

ated as a control system model. In this way, both the corrective

aintenance and preventive maintenance are introduced into the

MP problem. Fig. 4 depicts a maintenance plan involving both

aintenance actions ( Wang et al., 2017 ). The dashed line (in Blue)

ndicates the CM actions and the dash-dotted lines (in Red) the

M actions. These maintenance actions are subject to pre-decided

aintenance time schedule, and the optimization variables are

he CM and PM intensities. In the case study from Wang et al.

2017) , when comparing to the maintenance plan without preven-
ive maintenance, the optimal maintenance strategy exhibits 5%

dditional energy savings and 7.5% improvements on the internal

ate of return (IRR). 

Apart from the maintenance type and intensities, the mainte-

ance time scheduling is another major concern for an OMP prob-

em. Based on the proposed multi-state based performance degra-

ation models in Wang et al. (2017) , a maintenance planning tak-

ng into account both the maintenance intensities and instants op-

imization is investigated in Wang, Wu, Zhu, and Xia (2015) . Fig. 5

epicts the optimal maintenance intensities under both the sched-

led and fixed maintenance intervals according to the case study

n Wang et al. (2015) . When comparing to the fixed maintenance

chedule, the building energy retrofit project can achieve up to

1.7% additional energy savings and 5.7% of improvement on the

RR with the optimal maintenance plan if sufficient budget is pro-

ided. 

To address the interactions among various building energy sys-

ems, the study ( Wang & Xia, 2015a ) further improves the previous

eveloped maintenance plans. With the considerations of both the

nergy consumption and reliability interactions between building

nergy systems, the study ( Wang & Xia, 2015a ) finds that the opti-

al maintenance plan is able to provide 8.9% more energy savings

nd 9.6% improvements on the IRR when comparing to the mainte-

ance activities without considering the interactive effects among

uilding energy systems. The population decay dynamics and the

aintenance intensities for the interactive lighting and HVAC sys-

ems are provided in Fig. 6 . 

.5. Control system outputs 

The control system outputs are related to the components y j 
nd h j ( ·) in Eq. (1) . For the building energy retrofits, research

fforts required for the output y j may refer to the measurement

nd sampling of the quantity of survived lamp population, or

he M&V of the energy savings, carbon emission reductions, or

ost savings of a specific building energy retrofit project. The

unction h j ( ·) can be as simple as a sampling or measurement

eading of the state variable x , or a sampling approach, a set of

etering instruments to observe y j , or a performance evaluation

rocess like M&V to determine the energy or cost savings of the

uilding energy retrofit project. In this category, one key research

roblem is to identify y j accurately with minimum measurement

nd sampling efforts, as accurate readings of y j will contribute to

educe the control system disturbance of d i and ω j . More details

re elaborated in the next subsection. 
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Fig. 5. Optimal maintenance intensities under scheduled and fixed maintenance intervals ( Wang et al., 2015 ). 

Fig. 6. Optimal maintenance intensities for interactive building energy systems 

( Wang & Xia, 2015a ). 
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2.6. Control system uncertainties and disturbances 

The control system uncertainties and disturbances are de-

noted by ω j and d i respectively in Eq. (1) . The ASHRAE guide-

line ( ASHRAE, 2002 ) introduces that quantifiable uncertainties

of energy savings are categorized as modeling uncertainties,

measurement uncertainties and sampling uncertainties. Such

classifications are also applicable to the control systems as the

modeling uncertainties delivers significant impacts to the control

system performances. At the current stage, disturbances ω j and d i 
are introduced as simplified interpretations of such impact. These

disturbances hereby refer to modeling mismatch of the system

dynamics, which are due to the improper mathematical function

form, inclusion of the irrelevant variables or exclusion of relevant

variables. The measurement and sampling uncertainties are usu-

ally observed from the identification of the system outputs. The
easurement uncertainties usually come from the inappropriate

alibration of the measurement equipment, inexact measure-

ent, or improper meter selection, installation or operation. The

ampling uncertainties are resulted from inappropriate sampling

pproaches or insufficient sample sizes. 

In the field of building energy retrofit, uncertainties can deliver

urther impacts, rather than merely to the control system per-

ormances. The relevant research activities focus on cost-effective

pproach to handle the three independent uncertainties that

revent M&V professionals from precisely evaluating the perfor-

ances of EE device groups. Existing studies not only address

he three uncertainties separately but also in combination. For

nstance, optimal sampling plans have been designed in Ye and

ia (2016) ; Ye et al. (2013; 2014 ) to accurately measure the daily

nergy consumptions of lighting systems with minimum sample

izes and cost. In Carstens and Xia (2015) , the relative contribution

f measurement uncertainty to combined measurement and sam-

ling uncertainty is investigated in the context of M&V projects

here the whole population is not metered. The study ( Olinga,

015 ) presents an M&V cost minimization model to handle M&V

ampling and modelling uncertainties cost-effectively. The pro-

osed models provide flexibility in designing optimal and easily

mplementable M&V plans, which either apply more accurate

aseline models and fewer sample sizes or less accurate baseline

odels and greater sample sizes to achieve the same level of

&V accuracy. The research outcomes in the energy field can

lso be borrowed in the control field, for the purpose of reducing

he control system disturbances and uncertainties, which further

mproves the accuracy and robustness of the control system. 

.7. Objective functions 

In the aforementioned OMP problems, the decision maker

ften takes into account several contradictory considerations that

eads to conflicting objectives ( Evins, 2013 ), i.e., the OMP problems

re often multi-objective optimizations. The involved objectives

sually include maximizing energy savings, minimizing capital

osts or maximizing financial paybacks, subject to a series of

onstraints, e.g., the targeted energy saving limit, budget limit,

ayback period limit, etc. In order to apply the control system

ramework in the OMP problems, a weighted sum approach is

mployed in the aforementioned studies to formulate the objec-
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Table 1 

Characteristics of retrofitted EE devices. 

Retrofits Quantities Unit Price Unit Energy Unit Cost Preventive Corrective 

($) Saving (kWh) Saving ($) Cost ($) Cost ($) 

15W retrofit CFL 338 14 105.6 11.9 N/A 14 

New fan coil units 3 42 380 4320 486.65 N/A 175 

New fan coil units 2 0 380 3542.3 397.95 52 N/A 

New fan coil units 1 0 380 2651.75 278.35 70 N/A 
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ive function, where the multi-objective optimization problem is

ranslated into a minimization problem, i.e., a weighted sum of

he objectives associated with a non-stationary penalty function. A

eneral form of the objective function formulation is indicated in

he following equation: 

 = −λ1 f e (x , u ) − λ2 f r (x , u ) + ω 

k ∑ 

n =1 

max (0 , P n ) , (13)

here λ1 and λ2 denote the weighting factors. f e ( x, u ) denotes

he energy performance indicator, e.g., the overall energy savings

uring the crediting period. f r ( x, u ) denotes the economic per-

ormance indicator, e.g., the net present value (NPV) or internal

ate of return (IRR). P n with n = 1 , 2 , . . . , k denotes the penalty

unctions and ω is a large positive constant that emphasize the

ffects of the penalty functions. It a constraint is violated, P n >

. For example, assuming that the targeted energy saving limit,

udget limit and payback period limit is involved in an OMP

roblem. P n are accordingly defined as following: 

 n = 

{ 

α − ES| all , n = 1 , 

h | all − β, n = 2 , 

T p − T ′ , n = 3 

(14) 

here α denotes the targeted energy saving amount and ES | all 

he overall energy savings. β denotes the maintenance budget

imit and h | all the overall maintenance costs. T p denotes the actual

ayback period and T ′ the payback period limit. According to Eq.

14) , 
∑ k 

n =1 max (0 , P n ) > 0 if a constraint is violated. 

.8. Control system algorithms 

A great advantage to formulate the OMP problem under the

ontrol system framework is the applicability of various control

ystem algorithms in finding the optimal controllers with tolerance

f a certain level of control system uncertainties and disturbances.

or instance, the results obtained by the MPC approach in Ye et al.

2015) , Wang and Xia (2015b) , Wang et al. (2017) exhibits better

conomic benefits and energy savings than those obtained by the

pen loop control approach in response to the added uncertainties

n the control system state variables. 

Due to different complexity of the control problems, other

ontrol system algorithms may also be used to solve the OMP

roblems. For instance, generic algorithm (GA) has been applied

n Malatji et al. (2013) to identify the optimal building energy

etrofit proposal, while the differential evolution (DE) approach

s used in a series of articles ( Wang & Xia, 2015a; Wang et al.,

014 ) to solve different types of OMP problems under the control

ystem framework. In addition, neighbourhood field optimization

NFO) algorithm is adopted in Wang and Xia (2015b) to solve an

ulti-objective building energy retrofit and maintenance planning

roblem. 

.9. Grouping and modeling 

Ideally, working status of each EE device over the crediting

eriod would be continuously monitored to enable an opportunity

f an immediate replacement on occurrence of a device failure. If
he failure dynamics of each involved EE devcie can be monitored

nd observed, then a control system can be formulated based

n the failure dynamics of an individual device. In this case, an

 -dimensional control system can be developed that has N failure

ynamics models for each device and a number of N control

ystem inputs to record the replacement actions of the EE devices.

n addition, the failure dynamics of each EE device involved in the

roject must also be observed to ensure the operation of the con-

rol system. The N -dimensional control system accurately reflects

he device population dynamics since all the N units of the EE de-

ices are continuously monitored. Consequently, the optimal main-

enance strategy can also be designed and easily implementable

o ensure sustainable project savings. However in practice, it is

ot feasible to continuously monitor the entire project population

ver 10 years, especially when the project population is large and

ecentralized. Worse still, the N dimension control system also

rings computational burdens in finding the optimal solution. 

In order to reduce the modeling cost and complexity of the

nit-based control system, it is proposed develop a group-based

ontrol system. For each lighting retrofit project, it is recom-

ended to find homogeneous lighting groups according to the

evices’ technical specification (i.e., model, make, rated power, life

pan, etc.), energy consumption patterns, and working conditions.

or instance, there may be I types of EE devices involved in one

uilding energy retrofit project, and each type of EE device exhibits

he same specifications and energy usage patterns, which results in

he same lamp population decay dynamics. Then the N lamps can

e classified into I lighting groups, and I ≤ N . Each of such a group

onsists of devices that are considered to be homogeneous ones,

.e., with the same inherent energy and reliability performances,

he same operating schedules and similar operational environment.

The grouping method raises a new question that how different

roupings influence the optimization results. Obviously, grouping

s an inherently subjective approach. Different decision makers

an have different opinions on how to implement groupings. For

xample, a collection of lamps can be categorized into two groups

ccording to the geographic information or three groups according

o the operating schedules. There are many possible relationships

etween different groupings. For two different groupings corre-

ponding to the same collection of items, there can be overlap,

ontainment or separation among the categorized groups. The

umber of groups can also be different. As a result of the common

tilization of grouping methods in the aforementioned studies, a

uestion is thereby asked: How will different groupings influence

he results of the OMP problems? A preliminary theoretical anal-

sis as to the performance robustness of the grouping method

s proposed in Wang and Xia (2016) . The concept ‘performance

obustness’ is hereby introduced to facilitate the evaluation of the

mpacts from applying different grouping. For the OMP problems,

erformance robustness refers to the ability that the control sys-

em output sustains when an alternative grouping is applied. More

pecifically, given a set of same retrofitted items and two different

roups, if the results (performances) of an arbitrary maintenance

lan based on one grouping remain accessible when the other

rouping is applied, the performance robustness is satisfied, and

he two groupings are considered equivalent. The satisfaction
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Table 2 

Maintenance plan performances with optimal and full maintenance strategies. 

Cases Energy Percentage IRR Payback NPV Maintenance Total 

savings (kWh) saved period (years) ($) cost ($) investment ($) 

Optimal maintenance 1395785.8 133.92% 30.95% 2.57 47724.70483 41984 70676 

Full maintenance 1306983.15 125.40% 30.74% 2.58 44152.68 41959 70651 

Fig. 7. The population and cash flows from the optimal maintenance and full maintenance strategies. 

Fig. 8. The timely energy savings over the crediting period. 
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t  
of the performance robustness provides the decision makers a

method to evaluate alternative groupings. In Wang and Xia (2016) ,

a mathematical description of the grouping as well as the grouping

based control system formulation is proposed, and a theoretical

characterization of grouping robustness is given. Taking advantage

of the control system framework of the OMP problems, a distance

is defined to evaluate the impacts from applying the grouping

method, and a set of alternative groupings can be compared to

identify the equivalence between each of them. 

Moreover, there might exist an optimal I as the best grouping

criterion. More research efforts are expected to find the optimal

grouping criterion to minimize the modeling complexity but also

ensure the accuracy of the population decay dynamics models. 
. Further discussions 

Unlike most of the research articles, this paper formulates

he optimal building energy retrofit and maintenance planning

roblems under the control system framework. Instead of giving

ore detailed answers to the building energy retrofit planning,

his study identifies a number of control system problems that are

orthy of future research and investigations. Major contribution

f this study is to cast the optimal building maintenance planing

roblem into a general control system framework. From the gen-

ral control formulation, the following major research problems in

he control systems are discovered, namely 

• Control system decay dynamics modeling; 

• Control system inputs and model uncertainties; 

• Control system outputs; 

• Control system uncertainties and disturbances; 

• Control system algorithm; 

• Grouping and modeling. 

The discovered control problems for the building energy

etrofit and maintenance planning have been introduced sepa-

ately in Section 2 . However, intrinsic linkages are also observed

mong these control problems. Given a building energy retrofit

roject with massive EE devices involved, the grouping criteria to

ategorize the population into different homogeneous subgroups

ill influence most of the key factors in the control system for-

ulation. For instance, the homogeneity of each subgroup does

nfluence the system dynamics and will further affect the system

tate variable selection and system dynamics modeling accuracy.

owever, quantification of the impacts (i.e., complexity, accuracy)

o the control system from different grouping criteria remains
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n unsolved problem. In addition, the grouping of the project

opulation also decides the measurement and sampling plans to

onitoring the projects’ energy and financial performance. 

.1. A case study 

A case study is given in this section to illustrate the control

ystem framework in practical OMP problems. The case study is

elected from a practical building energy retrofit project. There

re two groups of retrofitted EE devices. One group consists of

 set of compact fluorescent lamps (CFLs) that manifest binary

orking state. The CFLs are non-repairable items. The other group

onsists of the air conditioner fan coil units, where three working

tates are involved. The air conditioners are repairable items. As

 result, the multi-state system model introduced in Wang et al.

2017) is employed to characterize the population decay. Due to

he space limit, the detailed formulations of the population decay

re excluded in this paper and can be found in Wang et al. (2017) .

oth the planned corrective and preventive maintenance are

nvolved as the control inputs, where the maintenance intensities

re the control variables. In this case study, maintenance instants

re prescribed by fixed maintenance time schedule. 

The specifications and some performance characteristics of the

nvolved retrofitted items are illustrated in Table 1 . The new fan

oil unit 3, 2 and 1 denote the three working states that corre-

pond with different savings and maintenance costs. The energy

aving and cost saving are the annual average value obtained from

he energy auditing. The preventive cost indicates the costs of

estoring a fan coil unit from working state 2 or 1 to the best

orking state 3. The corrective cost indicates the costs of restoring

ne item from failure to normal working. 

The crediting period is 10 years. An inspection is performed

very month over the crediting period. From the inspection, the

he targeted energy saving is 1,042,237.44 kWh. The initial cost is

28,692. The discount rate for NPV calculation is 11% per year, and

he payback period limit is 3 years. The employed budget limit in

his case study is $42,0 0 0, which is insufficient for full mainte-

ance strategy. There are 19 preventive maintenance instants and

 corrective maintenance instants, and the fixed preventive and

orrective time schedules Q p = { 0 . 5 , 1 , 1 . 5 , 2 , . . . , 9 . 5 } and Q c =
 1 , 2 , 3 , . . . , 9 } . The unit of the maintenance instants is year. Ac-

ording to the time schedule, the maintenance instants are evenly

istributed over the sustainability period. The weighted sum of

wo objectives: overall energy savings and IRR is employed to be

he objective function. The adopted weight factors are λ1 = 0 . 5 and

2 = 0 . 5 , implying that the two objectives are equally considered.

ore detailed formulations can be found in Wang et al. (2017) . 

A model predictive control (MPC) controller is designed to

olve the OMP problem in the case study. A DE algorithm based

umerical solver is employed for the MPC controller. The solutions

re illustrated in Table 2 . The full maintenance strategy is the

omparative baseline. In this case study, the full maintenance will

estore all degraded devices to the normal working states until the

ll budget is consumed. The following performances are selected

n Table 2 : the overall energy savings during the crediting period

given in kWh), the percentage savings that indicate the ratios

gainst the targeted energy savings, the IRR, the payback period

given in years), the NPV, the total maintenance cost and the over-

ll investment (given in USD). According to Table 2 , the optimal

aintenance achieves much higher energy savings than the full

aintenance strategy. The economic performances from optimal

aintenance are also better. This implies that the full maintenance

trategy cannot make the best use of the budget. The optimal

aintenance provides further opportunities to achieve energy effi-

iency and cost effectiveness to decision makers. Fig. 7 depicts the

opulation dynamics and cash flows over the crediting period from
he two maintenance strategies. Fig. 8 depicts their timely energy

avings. Generally, the difference between the two strategies is

esulted from their maintenance actions with the air conditioners

an coil units. Due to their high savings and high maintenance

osts, the optimal strategy devotes more budget to maintain the

orking state of the fan coil units. The optimal maintenance strat-

gy appears to be ‘smarter’ to figure out more efficient options. 

. Conclusions 

The ongoing and near future research in the building energy

etrofit and maintenance planning by the control system approach

re planned as follows: 1) to improved the modeling accuracy of

he population decay and energy performance degradation dy-

amics of various EE devices; 2) to expand the existing population

ecay and/or energy performance degradation dynamics models

or different types of EE devices in the same boundary whose

nergy usage pattern are interactive and coupling with each other,

here decoupling control approaches must be used for the opti-

al maintenance planning; 3) to investigate the existence of an

ptimal grouping criterion, which results in minimal dimensions

f the control system state variables and maximum control system

erformance; 4) to design optimal maintenance plans for building

nvelope retrofits; 5) to develop a software platform that designs

ptimal building retrofit and maintenance plans for different types

f building blocks, for the purpose of maximizing energy savings

nd minimizing initial investment and payback periods. 
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a b s t r a c t

South Africa is a semi-arid developing country facing water and energy insecurity. There are colossal
challenges in reliably providing these resources amid growing population, increased urbanization and
improved living standards causing increased demand for these resources. Development of new supply
centralized systems comes at an exorbitant cost, whereas decentralized systems are touted as an
attractive alternative. Grey water recycling and rain water harvesting at buildings level is such an
alternative that can provide water for non-potable uses. However, there are technological challenges of
optimally operating such systems while ensuring efficient use of associated energy. This paper introduces
two control strategies; open loop optimal control and closed-loop model predictive control (MPC)
strategies aimed at ensuring safe and reliable operation of the grey water recycling and rain water
harvesting system while efficiently using associated energy. From the case study, the proposed system
with either control strategy can save the cost of water and waste water by up to 32.3% and 29.5%
respectively, while leading to 35.7% in energy cost savings and 31.5% in total operational cost savings in a
month. Adoption of these systems would have a huge environmental effect in reducing demand for
sewerage services, conservation of water hence reducing demand for potable water as well as increasing
the energy efficiency. Furthermore, the system would increase the reliability and security of water
supply. Despite the benefits, the system does not pay within its lifetime and therefore, government
intervention is required so as to make it economically attractive. High cost of implementation coupled
with low potable and waste water tariffs harbour adoption of these systems. Appropriate regulations,
policies, incentives and public education are necessary to support such novel technologies in ensuring
resource conservation, efficiency and security are achieved.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Most developing nations are struggling to provide water and
energy, two resources that are greatly connected, hence the name
energy-water nexus Wanjiru et al. (2017a). In South Africa, various
factors such as economic growth, improved standards of living,
population increase, rural-urban migration, frequent droughts,
greater connectivity, insufficient and seasonal rainfall have
increased the insecurity of the two resources Odhiambo (2009);
Cobbinah et al. (2015). The country suffered from serious power
shortages in 2008 that necessitated authorities to come up with
various initiatives to improve the situation. According to Xia and
Zhang (2016), supply side initiatives such as building of new coal
.

power plants were not only harmful to the environment but they
also came at exorbitant cost. On the other hand, demand side
management (DSM) initiatives that bridge the gap between supply
and demand were more desirable, encironmentally friendly and
cheaper to implement. Consequently, energy DSM research across
various sectors has successfully been carried out. In commercial
and industrial sectors, energy DSM initiatives include energy effi-
ciency in coal plants through optimal sizing and operation of
pumps studied by Zhang et al. (2014), while Badenhorst et al. (2011)
looked at scheduling of deep mine rock winders, Numbi and Xia
(2016) analysed optimal energy control of coal crushers and
Chatterjee et al. (2015) looked into optimally operating of ventila-
tion systems with the aim of managing energy consumption.
Others like Mathaba and Xia (2015) explored energy management
of conveyor belts, water pumping stations Zhang et al. (2012),
including those with multiple pumps Zhuan and Xia (2013).
Optimal dynamic power dispatch by utilities has been studied by
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Nomenclature

A1
t ;A

2
t ;A

3
t Cross-sectional area of potable, grey and holding
water tank (m2) respectively

Dgrey;Dpot Potable and grey water demand (m3) respectively
h1;h2;h3 Height of water in potable, grey and holding tank

(m) respectively
pe Price of electricity using TOU tariff (currency=kWh)
Pm1 ; Pm3 Potable and grey water pump's motor rating (kW)

respectively
s1; s3 Auxiliary variable for potable and grey water pump

respectively
Sgrey; SrainCollected untreated grey and rainwater respectively

(m3)
TOU Time-of-use tariff
tsand j Sampling period (h) and jth sampling interval
u1, u2 Potable water pump's switch and valve respectively
u3, u4 Grey water pump's switch and drainage valve

respectively
Q1;Q3 Flow rate of water across potable and grey water

pump (m3=h) respectively
Q2;Q4 Flow rate of water across potable and drainage valve

(m3=h) respectively
V1;V2;V3 Volume of water in respective tanks (m3)
Rand (R) South African currency (1 Rand ¼ 0.076 USD, as at

17 Aug. 2017)
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Elaiw et al. (2012) with the aim of limiting emissions, while Chou
and Xia (2007) investigated on efficient and optimal operation of
heavy haul trains. Application of renewable energy as a suitable
alternative source of clean energy has also been examined. A
minimum cost solution model for photovoltaic-diesel-battery po-
wer systems was designed by Tazvinga et al. (2013) to provide
optimal power flow for remote customers, and later extended to
cater for distributed energy systems Tazvinga et al. (2015). Further,
Tazvinga et al. (2014) have proposed an energy dispatch strategy for
photovoltaic-wind-diesel-battery power system. In residential
buildings, Malatji et al. (2013) examined an optimal energy-
efficient building retrofitting decision model whereas Wang et al.
(2014) considered life cycle cost analysis and retrofitting planning
in their model and Fan and Xia (2017) developed an optimization
model for building envelope retrofitting planning. Setlhaolo and
Xia (2015) have delved in demand response research involving
optimal scheduling of household appliances. Energy management
in hot water supply has been studied by Ntsaluba et al. (2016) who
looked into optimal operation of a solar water heating systems,
whilst Sichilalu et al. (2017) examined suitability of heat pump
water heaters powered by remote hybrid energy systems as well as
grid-tied systems Sichilalu and Xia (2015).

South Africa has a constant water stress of about 40%e60%
resulting from low amount of rainfall averaging at about 500 mm
per annum Roy and Rouault (2013), and high evaporation of about
1700mm per annum Adewumi et al. (2010). Just like energy, water
management can be carried out on supply or demand side. With
extraction of fresh water sources nearing yield point, development
of new centralized water supply and sewage disposal systems
comes at astronomical costs, negative environmental impact and is
also incompatible with modern complex requirements, especially
in developing cities. The solution has been in development of
cheaper decentralized systems that minimize the amount of
pollution generated and discharged through using and reusing
water very near to the point of origin. Decentralized systems, as
pointed out by Wanjiru and Xia (2017), have further been sup-
ported by technological advancement in water treatment technol-
ogies, change of attitude and awareness on the importance of water
conservation. Water insecurity is forcing municipalities to explore
alternative means of supplying and managing water consumption.
They include water restrictions, pressure management Hoy (2009),
monitoring water consumption pattern, management of meters,
installation and retrofitting with efficient devices, planting of water
efficient vegetation Adewumi et al. (2010), communication and
education Bohensky (2006), and promotion of waste water reuse
Lam et al. (2015). Evidently, as Brandoni and Bo�snjakovi�c (2017)
elaborate, most DSM initiatives have exclusively focused on either
energy or water despite them being heavily intertwined both in
production and consumption levels. In fact, decisions made on one
resource have been shown to have undesired effect on the other
since decision makers have little understanding on scientific or
policy complexities of one resource on the other Stillwell et al.
(2010). It is therefore important to consider energy-water nexus
DSM in order to bridge the gap between supply and demand
through conservation and efficient utilisation of both resources.
This nexus has been appreciated well in developed countries, while
developing countries are still catching up, with South Africa leading
in the research in Africa. A number of energy-water DSM research
in residential buildings in the country have been carried out.
Wanjiru et al. (2016a) developed an open-loop optimal controller to
operate heat pump water heaters and instantaneous heaters
powered using integrated renewable energy systems for off-grid
and later expanded for grid tied application in Wanjiru et al.
(2017c), as well as control using closed-loop model predictive
control (MPC) in Wanjiru et al. (2017b). The studies sought maxi-
mize the use of renewable energy while minimizing the amount of
cold water wasted at end uses. In another study, Wanjiru and Xia
(2015) explored harvesting rooftop rain water and optimizing the
operation of autonomous lawn irrigation. For buildings with
intermittent or insufficient water supply that rely on pump-storage
systems, Wanjiru et al. (2016b) examined the optimal operation of
the system using both open-loop optimal and MPC controllers.
Further, the two controllers have been designed for grey water
recycling system by Wanjiru and Xia (2017) suitable for urban
residential buildings with the aim of minimizing the amount of
pumping energy used as well as ensure conservation of potable
water takes place.

Grey water is the waste water generated from households that
has no faecal matter, for instance, water from washing machines,
shower, baths and dishwasher. This water is easier to treat as it
contains fewer pathogens, to be reused on-site for non-potable uses
such as lawn irrigation and toilet flushing. Domestic grey water
recycling and rain water harvesting systems not only have envi-
ronmental benefits but also economic benefits to end users and the
country at large. Most research has mainly focused on separate rain
water harvesting systems. For instance, Kahinda and Taigbenu
(2011) highlight the challenges and opportunities of rain water
harvesting in South Africa while Morales-Pinz�on et al. (2015)
looked at their economic and environmental benefits. Al-Jayyousi
(2003) reviewed the suitability of grey water recycling systems to
achieve sustainable water management. However, Kim et al. (2007)
argued that combined grey and rain water recycling systems could
have more benefits than exclusive water recycling systems, though,
the analysis done by Stec et al. (2017) shows that financial efficiency
onwater and energy savings would vary with the size of the system
and region. Ghisi and de Oliveira (2007) looked into the potential of
grey water recycling and rain water harvesting system in Brazil.
First, the performance and payback period of the grey water and
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rain water harvesting systems was analysed separately, and later,
the combined grey and rain water system's performance was ana-
lysed. It was found out that though the three systems have huge
potential in conserving water, they had a high payback period of
more than 20 years. Another study in Beijing by Zhang et al. (2009)
revealed that grey water recycling is more suitable in the area than
rain water harvesting due to severe pollution in the city that could
reduce the quality of rainwater. A localizedwater recycling and rain
water harvesting scheme was designed by Rozos et al. (2009) and
the analysis showed that although both rain water harvesting and
grey water recycling lead to water conservation, schemes based on
recycling grey water are less susceptible to climatic changes, while
those based on rain water harvesting are more susceptible to
changes. Therefore, a combined grey water recycling and rainwater
harvesting is suitable for a country like South Africa with low
rainfall, in order to achieve maximum benefits and reliability. Three
land uses, that is, single-family house, apartment cluster andmixed
use site, were analysed for viability of use of grey water recycling
and rainwater harvesting systems as an alternative source of water
supply for non-potable uses. Though water is conserved in all the
three uses, the largest impediment to their adoption is cost. In fact,
Loux et al. (2012) assert that the cost is much higher for single-
family house, while the discrepancy between cost and savings
levels out at higher densities. Despite the important benefits that
such systems have on the environment and utilities, there are still
technological challenges on their optimal operation so as to ensure
both water and energy efficiency are achieved. In existing systems,
some operations have to be carried out manually by home owners.
Solutions to these challenges must be provided in consideration of
energy-water nexus so as to maximize the combined results from
the system.

Previous research has focused on designing grey and rain water
systems, with little attention being given to optimal, reliable and
autonomous operation of such systems. Various control strategies
can be used to operate as well as minimize the system's depen-
dence on human operator. Classical control techniques such as
proportional-integral-derivative (PID) controllers use a trial and
error process where various methods are iteratively used to
determine design variables of an acceptable system. PID controllers,
according to Koz�ak (2016), are suitable for single-input-single-
output (SISO) applications and have low accuracy in non-linear
processes, or those with a large time delay. Constrained direct
inversion (CDI) controllers are superior to conventional control
strategies with feedback loop as they can handle disturbances,
constraints, dead time and non-linearity. Optimal control, whether
open-loop or closed-loop model predictive control (MPC), seeks to
determine the control actions that will operate a process within
physical and operational constraints while simultaneously mini-
mizing or maximizing a given performance criteria online Kirk
(2012). Though CDI uses an analytical approach while optimal
control uses numeric optimization, they at times offer similar re-
sults. This makes CDI to be more computationally efficient than
MPC hence suitable for simple control systems. Optimal controllers,
on the other hand, perform better in reaching optimality as CDI's
rule is not designed to be optimal T�oth et al. (2012). Optimal con-
trollers can effectively, robustly and accurately handle multi-
variable dynamic systems through minimizing the cost function
Mayne et al. (2000). The aim of this research, therefore, is to
develop suitable optimal controllers that can reliably, autono-
mously and robustly control the water recycling system while
considering energy-water nexus to maximize the benefits.

This paper introduces the first attempt to design novel,
economical and advanced optimal controllers to operate the grey
and rain water recycling system for residential areas. Open-loop
optimal control and closed-loop MPC systems are designed to
meet hourly potable and non-potable water demand for a house
leading to water conservation and energy efficiency. The control
strategies are designed to cater for different application re-
quirements. Although open-loop control is more cost effective and
easy to implement, it is suitable where water demand is known to
be relatively uniform. However, in cases where it is difficult to
accurately predict water demand and the system is susceptible to
external disturbances that significantly affect the demand pattern,
the closed-loop MPC should be adopted. It, however, requires
installation of additional monitoring devices to the system such as
level monitoring of the tanks thereby increasing the cost and
complexity of the control system. The proposed system, if widely
adopted, would reduce the demand for potable water, energy and
sewage services from the utilities and municipalities, leading to
lower cost of potable and waste water which corresponds to lower
bills paid by the end user associated to both resources. However, it
is important for subsidies and rebates to be offered by the gov-
ernment to lower the cost of implementing such systems in indi-
vidual houses.

This paper is outlined as follows: Section 2 shows how the
model for the proposed grey water recycling and rain water har-
vesting is developed. Section 3 discusses the design of the con-
trollers, Section 4 provides information about the case used to test
the control systems and other information necessary for imple-
menting the proposed strategy. Section 5 discusses the results
while Section 6 gives the conclusion and recommendations.

2. System development

2.1. Schematic layout

A typical grey and rain water water recycling system for a stand
alone house is shown in Fig. 1.

Two scenarios motivated by the water situation in South Africa
are considered. Firstly, the house is considered to have reliable
municipal water supply such that pumping and storage is not
required as water flows to various end uses in the house and
through valve u2 when necessary. Secondly, water supply is unre-
liable, either because of low water pressure or water rationing
taking place in the area. Therefore, water pumping and storage is
necessary to improve the reliability and convenience of potable
water supply to the house occupants. A fixed speed potable water
pump whose state is represented as u1 pumps water to the potable
storage water tank from where it flows by gravity to various end
uses in the house. Some end uses such as shower and washing
machine produce grey water that can easily be treated for non-
potable end uses such as toilet and garden irrigation. Further, rain
water can also be harvested from the roof and used for the same
non-potable end uses. Recycling grey water and harvesting rain
water would lead to water conservation as well as reducing de-
mand for potable water and sewage services in both scenarios. Both
grey and rain water pass through a filter to remove particles and
then flows to the holding tank for temporary storage. This tank
must be emptied, through the drainage valve represented as u4,
every 24-h to prevent formation of bacteria responsible for pro-
ducing foul smell. Collected grey water is then pumped through an
ultraviolet (UV) water purifier and stored in a rooftop grey water
tank, from where it flows by gravity to non-potable end uses. In
instances where grey water tank has insufficient treated water,
potable water is allowed to flow through potable water valve u2 to
assist in meeting the demand. Finally, black water, which cannot
easily be recycled, is allowed to flow to the drainage. Therefore, the
aim is to control pumps and valves to ensure convenient and reli-
able water supply that ensures both energy-water efficiency and



Fig. 1. Schematic of grey and rain water water recycling system.
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conservation are achieved.

2.2. Potable water tank

In the scenariowheremunicipal water supply is reliable, potable
water tank is not required. On the contrary, if municipal water
supply is unreliable, water has to be pumped by potable water
pump into the potable water tank for storage, where it flows by
gravity to various end uses. Assuming that all tanks in this study
have uniform cross-sectional area, the volume of water in this tank,
V1 ðm3Þ, can be modelled as,

_V1 ¼ At
1
_h1 ¼ Q1u1 � Q2u2 � _Dpot ; (1)

where At
1 is the cross-sectional area of the tank (m2) while h1 is the

height of water in the tank (m). Dpot is the potable water demand

(m3) in the house while Q1 and Q2 are the flow rates (m3=h) of
potable water pump and solenoid valve respectively. Differential
Equation (1) can be expressed in discrete-time domain by a first
order difference equation as follows;

h1ðjþ 1Þ ¼ h1ðjÞ þ
1
At
1

�
tsQ1u1ðjÞ � tsQ2u2ðjÞ � DpotðjÞ

�
; (2)

where j the sampling interval and ts is the sampling period during a
full operating cycle of 24-h. Level sensors are economical and easy
to use in measuring the volume of water in tanks with uniform
cross-sectional area Lipt�ak (2005). Therefore, Equation (2) can be
modelled in terms of the water level in a sampling interval, h1ðjÞ,
which the controller would use to convert to volume. Through
recurrence manipulation, the equation becomes,

h1ðjÞ ¼ h1ð0Þ þ
ts
At
1

Xj

i¼1

�
Q1u1ðiÞ � Q2u2ðiÞ

�� 1
At
1

Xj

i¼1

DpotðiÞ

1 � j � N; (3)

where N is the total number of cycles during the full 24-h operating
cycle, obtained as N ¼ 24

ts
.

2.3. Grey water tank

Treated grey water is stored in this tank for future use by non-
potable water end uses. If the tank has no water, potable water is
allowed into this tank through valve u2 and then flows to meet the
required demand. Therefore, volume, V2 (m3), of water in this tank
is,

_V2 ¼ At
2
_h2 ¼ Q2u2 þ Q3u3 � _Dgrey; (4)

where At
2 is the cross-sectional area (m2) of the tank, h2 is the

height of water (m) in the tank, Dgrey is the grey water demand (m3)
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while Q3 is the water flow rate (m3=h) through the grey water
pump. Expressing Equation (4) in discrete-time domain yields,

h2ðjþ 1Þ ¼ h2ðjÞ þ
1
At
2

�
tsQ2u2ðjÞ þ tsQ3u3ðjÞ � DgreyðjÞ

�
; (5)

which can further be expressed as

h2ðjÞ¼h2ð0Þþ
ts
At
2

Xj

i¼1

½Q2u2ðiÞþQ3u3ðiÞ��
1
At
2

Xj

i¼1

DgreyðiÞ 1� j�N:

(6)

2.4. Holding tank

Untreated grey and rain water flows through filters to remove
physical impurities to temporary storage in the holding tank.
Whenever treated grey water is required in the grey water tank, the
collected water is pumped by grey water pump through the UV
purifier. It is important to empty the holding tank every 24 h to
prevent formation of bacteria that cause foul smell. Consequently,
the volume, V3 (m3), of water in this tank can be modelled as,

_V3 ¼ At
3
_h3 ¼ _Sgrey þ _Srain � Q3u3 � Q4u4; (7)

where At
3 is the cross-sectional area (m2) of the tank, h3 is the

height (m) of water in the tank. Sgrey and Srain are the volume (m3)
of water supplied from the recyclable potable water end uses and
rain water harvesting respectively, while Q4 is the flow rate (m3=h)
of untreated grey water through the drainage valve. Expressing
Equation (7) in discrete-time domain leads to,

h3ðjþ 1Þ ¼ h3ðjÞ þ
1
At
3

�
SgreyðjÞ þ SrainðjÞ � tsQ3u3ðjÞ � tsQ4u4ðjÞ

�
;

(8)

which transforms to,

h3ðjÞ ¼ h3ð0Þ þ
1
At
3

Xj

i¼1

�
SgreyðiÞ þ SrainðiÞ

�� ts
At
3

Xj

i¼1

½Q3u3ðiÞ

þ Q4u4ðiÞ� 1 � j � N:

(9)

Dynamic Equations (3), (6) And (9) are used in designing the two
controllers that optimally operate the proposed grey and rainwater
recycling system.

3. Controller design

In this study, two model based controllers that use advanced
optimal control concept are designed. The controllers seek to
minimize cost of pumping energy of potable and collected grey
water, minimize consumption of potable water in the house and
finally maximize the life of these pumps through minimizing the
maintenance cost normally represented as the number of times a
pump is switched on and off during the operating cycle.

3.1. Open-loop optimal controller

The open-loop optimal controller uses the feed forward prin-
ciple in that hourly water demand in the house is measured prior to
running the controller. This demand pattern is used by the
controller to predict the future behaviour of the system throughout
the full operating cycle. As previously stated, the open-loop
controller seeks to minimize the cost of pumping energy, con-
sumption of potable water in the house andmaximize the life of the
pumps. These performance indicators can be modelled to form the
following objective function,

J¼
XN
j¼1

�
a1tspeðjÞPm1 u1ðjÞþa2tsQ2u2ðjÞþa3tspeðjÞPm3 u3ðjÞ

�

þa4
XN
j¼1

½s1ðjÞþ s3ðjÞ�; (10)

where Pm1 (kW) and Pm3 (kW) are potable and grey water power
pump's power consumption respectively, while pe and ts are cost of
electricity using the TOU tariff during the jth sampling interval and
the sampling time respectively. s1ðjÞ and s3ðjÞ are auxiliary variables
used to minimize the switching frequency of potable and grey
water pumps respectively. Mathaba et al. (2014) show that each
auxiliary variable is represented by a value 1 whenever a pump's
state changes from off to on. Weights a1 to a4 are used to tune the
controller according to user's preference. First and third terms in
Equation (10) minimize the cost of energy consumed by the pumps,
the second term minimizes the consumption of potable water by
grey water end uses while the fourth term is responsible for
minimizing the switching frequency the two pumps.

Every system functions within certain physical and operational
constraints for safe and reliable operation. Constraints present in
this system are mathematically modelled as follows;

hmin
1 � h1ðjÞ � hmax

1 ; (11)

hmin
2 � h2ðjÞ � hmax

2 ; (12)

hmin
3 � h3ðjÞ � hmax

3 ; (13)

h3ðNÞ ¼ hf3; (14)

u1ð1Þ � s1ð1Þ � 0; (15)

u1ðjÞ � u1ðj� 1Þ � s1ðjÞ � 0; (16)

u3ð1Þ � s3ð1Þ � 0; (17)

u3ðjÞ � u3ðj� 1Þ � s3ðjÞ � 0; (18)

umðjÞ2f0;1gwhere m ¼ 1;2;3;4; (19)

s1ðjÞ; s3ðjÞ2f0;1g: (20)

Various tank capacities are the physical constraints while
emptying of the holding tank and switching frequency of the
pumps are the main operational constraints affecting the system.
Therefore, the tanks are modelled in inequalities (11), (12) and (13)
to have the level of water maintained between set minimum and
maximum levels. Potable and grey water tanks should never be
emptied whereas the holding tank must be emptied within the 24-

h operating cycle. This is given by Equation (14), where hf3 is the
final water level in the tank. Inequalities (15) and (17) initialize the
auxiliary variables as the initial state of the respective u while in-
equalities (16) and (18) favour the control that involves less
switching frequency of the respective pumps. Finally Equations (19)
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And (20) are bounds for the control variables that is, the status of
the pumps and switches as well as the auxiliary variables
respectively.
3.1.1. Open-loop control algorithm
The objective function and constraints are solved using the ca-

nonical form presented by Numbi and Xia (2015);

min f TX (21)

subject to
8<
:

AX � bðlinear inequality constraintÞ;
AeqX ¼ beqðlinear equality constraintÞ;
LB � X � UBðlower and upper boundsÞ:

(22)

Here, vector X consists of all the control variables in the opti-
mization problem, that is,

X¼½u1ð1Þ;…;u1ðNÞ;u2ð1Þ…;u2ðNÞ;u3ð1Þ;…;u3ðNÞ;u4ð1Þ;…;u4ðNÞ;
s1ð1Þ;…;s1ðNÞ;s3ð1Þ;…;s3ðNÞ�T6N�1; (23)

while elements of vector f T are obtained from objective function
(10) as,
A2 ¼

2
664
0 … 0 �Q2ts 0 … 0 �Q3ts 0 … 0 0 … … 0
0 … 0 �Q2ts �Q2ts … 0 �Q3ts �Q3ts … 0 0 … … 0
« 1 « « « 1 « « « 1 « « 1 1 «
0 … 0 �Q2ts �Q2ts … �Q2ts �Q3ts �Q3ts … �Q3ts 0 … … 0

3
775; (30)
f T¼�
a1tsP

m
1 peð1Þ;…;a1tsP

m
1 peðNÞ;a2tsQ2…;a2tsQ2;a3tsP

m
3 peð1Þ;

…;a3tsP
m
3 peðNÞ;0;…;0;a4;…;a4;a4;…;a4

�
1�6N :

(24)

Since there are several linear inequalities, each is modelled
separately and later combined into the canonical linear inequality
form (AX�b). First, linear inequality constraint (11) is modelled to,

A1X � b1;
�A1X � b2;

(25)

where

A1¼

2
664
�Q1ts 0 … 0 Q2ts 0 … 0 0 … … 0
�Q1ts �Q1ts … 0 Q2ts Q2ts … 0 0 … … 0

« « 1 « « « 1 « « 1 1 «
�Q1ts �Q1ts … �Q1ts Q2ts Q2ts … Q2ts 0 … … 0

3
775
N�6N

;

(26)
A3 ¼

2
664
0 … … 0 Q3ts 0 … 0 Q4ts 0 … 0
0 … … 0 Q3ts Q3ts … 0 Q4ts Q4ts … 0
« 1 1 « « « 1 « « « 1 «
0 … … 0 Q3ts Q3ts … Q3ts Q4ts Q4ts … Q4ts
b1 ¼

2
6664

�Dpotð1Þ � At
1

n
hmin
1 � h1ð0Þ

o
��

Dpotð1Þ þ Dpotð2Þ
�� At

1

n
hmin
1 � h1ð0Þ

o
«

��
Dpotð1Þ þ…þ DpotðNÞ

�� At
1

n
hmin
1 � h1ð0Þ

o

3
7775
N�1

(27)

and

b2 ¼

2
664

Dpotð1Þ þ At
1
�
hmax
1 � h1ð0Þ

�
�
Dpotð1Þ þ Dpotð2Þ

�þ At
1
�
hmax
1 � h1ð0Þ

�
«�

Dpotð1Þ þ…þ DpotðNÞ
�þ At

1
�
hmax
1 � h1ð0Þ

�

3
775
N�1

:

(28)

Then, inequality constraint (12) becomes,

A2X � b3;

�A2X � b4;
(29)

where
b3 ¼

2
6664

�Dgreyð1Þ � At
2

n
hmin
2 � h2ð0Þ

o
��

Dgreyð1Þ þ Dgreyð2Þ
�� At

2

n
hmin
2 � h2ð0Þ

o
«

��
Dgreyð1Þ þ…þ DgreyðNÞ

�� At
2

n
hmin
2 � h2ð0Þ

o

3
7775

(31)

and

b4 ¼

2
664

Dgreyð1Þ þ At
2
�
hmax
2 � h2ð0Þ

�
�
Dgreyð1Þ þ Dgreyð2Þ

�þ At
2
�
hmax
2 � h2ð0Þ

�
«�

Dgreyð1Þ þ…þ DgreyðNÞ
�þ At

2
�
hmax
2 � h2ð0Þ

�

3
775; (32)

while inequality (13) can be remodelled to,

A3X � b5;

�A3X � b6;
(33)

where
0 … … 0
0 … … 0
« 1 1 «
0 … … 0

3
775; (34)



b5 ¼

2
6664

Sgreyð1Þ þ Srainð1Þ � At
3

n
hmin
3 � h3ð0Þ

o
�
Sgreyð1Þ þ Sgreyð2Þ þ Srainð1Þ þ Srainð2Þ

�� At
3

n
hmin
3 � h3ð0Þ

o
«�

Sgreyð1Þ þ…þ SgreyðNÞ þ Srainð1Þ þ…þ SrainðNÞ
�� At

3

n
hmin
3 � h3ð0Þ

o

3
7775 (35)

and

b6 ¼

2
664

��
Sgreyð1Þ þ Srainð1Þ

�þ At
3
�
hmax
3 � h3ð0Þ

�
��

Sgreyð1Þ þ Sgreyð2Þ þ Srainð1Þ þ Srainð2Þ
�þ At

3
�
hmax
3 � h3ð0Þ

�
«

��
Sgreyð1Þ þ…þ SgreyðNÞ þ Srainð1Þ þ…þ SrainðNÞ

�þ At
3
�
hmax
3 � h3ð0Þ

�

3
775: (36)

E. Wanjiru, X. Xia / Journal of Cleaner Production 170 (2018) 1151e1166 1157
Lastly, auxiliary variables in inequalities (15)e(18) are remod-
elled as

A4X � b7; (37)

where

(38)

and

b7 ¼ ½0 … 0 �T : (39)

Matrices A1 to A4 have ðN � 6NÞ dimension while vectors b1 to
b7 have a dimension of ðN � 1Þ. Therefore, linear inequality in the
canonical form (22) becomes,

A ¼

2
666666664

A1
�A1
A2
�A2
A3
�A3
A4

3
777777775
7N�6N

b ¼

2
666666664

b1
b2
b3
b4
b5
b6
b7

3
777777775
7N�1

: (40)

In the same degree, linear equality constraint (14) becomes,

AeqX ¼ beq; (41)

where

(42)

and
beq ¼

2
664

0
«
0

At
3

n
h3ð0Þ � hf3

o
þ �

Sgreyð1Þ þ…þ SgreyðNÞ þ Srainð1Þ þ…þ
while the bounds given in equations (19) and (20) become,

LB ¼ ½0 … 0 �T6N�1 and UB ¼ ½1 … 1 �T6N�1: (44)

This binary integer optimization problem is solved using the
SCIP solver in OPTI toolbox, a freeMatlab optimization toolbox. This
solver is indicated as the fastest non-commercial optimization
solver by Setlhaolo and Xia (2016).
3.2. Closed-loop MPC control

Closed-loop model predictive control (MPC) has the ability to
predict the future behaviour of the system, cope with constraints in
the design process and robustly deal with disturbances present in
the system. MPC makes use of both feed forward and feed back
measurements from the system to compute the control law on-line
Mayne et al. (2000). As discussed by Wang (2009), it obtains the
current control response by solving an open-loop optimal control
optimization problem using the current state of the plant as the
initial state in each sampling time. From the optimal sequence
generated, only the first control is implemented. The state of the
plant (water level in the tanks) is measured. During the next iter-
ation, k þ 1, objective function and constraints are updated while
taking the previous state of the tanks (water level at sampling time
k) as the initial state. The process of optimization is carried out in
real time over the new control horizon (Nc ¼ N � kþ 1) to give the
receding horizon control law. This process is repeated throughout
the entire operating cycle Xia and Zhang (2015).

The objective function, Jmpc, can be derived from the open-loop
objective (10) as,

Jmpc ¼
XkþNc�1

j¼k

�
a1tspeðjÞPm1 u1ðjjkÞþa2tsQ2u2ðjjkÞ

þa3tspeðjÞPm3 u3ðjjkÞ
�þa4

XkþNc�1

j¼k

½s1ðjjkÞþ s3ðjjkÞ�; (45)

where Nc is the control horizon, u1ðjjkÞ, u2ðjjkÞ and u3ðjjkÞ are
optimized control actions while s1ðjjkÞ and s3ðjjkÞ are auxiliary
values at jth sampling interval based on most recent measurements
SrainðNÞ
�

3
775
N�1

; (43)
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carried out at time k. Although MPC problems normally have pre-
dicting, Np, and control, Nc, horizons, only the control horizon,Nc, is
included in this optimization problem since none of the state var-
iables (height of water in the tank) is present in the objective
function. Therefore, the control horizon can be given as

Nc ¼ N � kþ 1: (46)

State equations are modified from Equations (3), (6) And (9) to,

h1ðjjkÞ ¼ h1ðkÞ þ
ts
At
1

Xj

i¼k

½Q1u1ðijkÞ � Q2u2ðijkÞ� �
1
At
1

Xj

i¼k

DpotðiÞ;

(47)

h2ðjjkÞ ¼ h2ðkÞ þ
ts
At
2

Xj

i¼k

½Q2u2ðijkÞ þ Q3u3ðijkÞ� �
1
At
2

Xj

i¼k

DgreyðiÞ;

(48)

h3ðjjkÞ ¼ h3ðkÞ þ
1
At
3

Xj

i¼k

�
SgreyðiÞ þ SrainðiÞ

�� ts
At
3

Xj

i¼k

½Q3u3ðijkÞ

þQ4u4ðijkÞ�; k � j � kþ Nc � 1; (49)

where h1ðjjkÞ, h2ðjjkÞ, and h3ðjjkÞ are predicted levels of water in the
respective tanks at jth sampling interval based on information
available at time k. Moreover, the system experiences the same
physical and operational constraints as the open-loop control sys-
tem. With feedback of water level measurements in various tanks
at every iteration, constraints and Equations (11)e(20), are modi-
fied to,

hmin
1 � h1ðjjkÞ � hmax

1 ; (50)

hmin
2 � h2ðjjkÞ � hmax

2 ; (51)

hmin
3 � h3ðjjkÞ � hmax

3 ; (52)

h3ðNÞ ¼ hf3; (53)

u1ð1jkÞ � s1ð1jkÞ � 0; (54)

u1ðjjkÞ � u1ðj� 1jkÞ � s1ðjjkÞ � 0; (55)

u3ð1jkÞ � s3ð1jkÞ � 0; (56)

u3ðjjkÞ � u3ðj� 1jkÞ � s3ðjjkÞ � 0; (57)

um;cðjjkÞ2f0;1gwherem ¼ 1;2;3;4; (58)

s1ðjjkÞ; s3ðjjkÞ2f0;1g: (59)
3.2.1. MPC algorithm
Similar to the open-loop control algorithm, control vector, rep-

resented as Xmpc, contains the control variables such that,
Xmpc ¼ ½u1ðkjkÞ;u1ðkþ 1jkÞ;…;u1ðkþ Nc � 1jkÞÞ;u2ðkjkÞ;u2ðkþ 1jk
u4ðkjkÞ;u4ðkþ 1jkÞ;…;u4ðkþ Nc � 1jkÞÞ; s1ðkjkÞ; s1ðkþ 1jkÞ;…
Zhang and Xia (2011) describe the work flow of the MPC
controller as follows;

1. For time, k, find the control horizon (NcðkÞ) using Equation (46).
2. Optimization: Find the optimal solution within the control

horizon;
Þ;…;u

; s1ðk
minimize objective function (45),
subject to constraints (50)e(59).
3. From the optimal solution, implement
½u1ðkjkÞ;u2ðkjkÞ;u3ðkjkÞ;u4ðkjkÞ�T to the plant.

4. Feed back: Measure state variables h1ðkþ 1Þ, h2ðkþ 1Þ and
h3ðkþ 1Þ.

5. Set k ¼ kþ 1 and update system states and inputs and outputs.
6. Repeat steps 1e5 until k reaches a predefined value.

This binary integer optimization problem solved using the SCIP
solver in OPTI toolbox.

4. Pertinent information

4.1. Case study

A building in Pretoria, South Africa, has unreliable water sup-
ply forcing occupants to pump and store water in a rooftop storage
tank, from where it flows by gravity to all end uses. Consumption
of potable water and associated energy is used as the baseline for
this study. The 0:8 kW fixed speed pump with a flow rate of
0:9m3=h is controlled by level switches that just detect empty and
full levels. Whenever the tank is empty, water is pumped until the
tank is full, regardless of TOU period. End uses in the house were
identified and some had their hourly water use measured using
digital flow meters and data loggers while others were estimated
after interviewing the occupants. These end uses were catego-
rized as those that must use potable water, those that could use
treated grey water and those whose used water is suitable for
recycling. The hourly water demand for a typical week day and a
weekend in this house is shown in Fig. 2.

It can be seen from the curves that the greywater supply, Sgrey, is
always less than the potable water demand, Dpot , as some of this
potable water qualifies to be recycled. On the contrary, the grey
water demand, Dgrey, doesn't necessarily follow the others, as this
demand entirely depends on the human behaviour.

The current cylindrical potable water tank has the dimensions
given in Table 1. In order to incorporate grey and rain water
recycling, two tanks; grey and holding water tanks are required.
Typical dimensions and capacity constraints of these tanks are
given in Table 1.

Level sensors will be used monitor the water level between
minimum and maximum levels given in Table 1. This is to ensure
safe and reliable operation of the system by avoiding either running
the tanks completely empty or spilling the water hence damaging
the roof of the house. The grey water pump to be incorporated
would be rated at 650 W with flow rate of 0:35m3=h.

To enable rain water harvesting, about 50 m2 of the house's roof
can easily have rain water directed to the holding tank, through the
filters. The area's weather data, that includes the hourly amount of
rainfall, is obtained from the Southern African Universities
2ðkþ Nc � 1jkÞÞ;u3ðkjkÞ;u3ðkþ 1jkÞ;…;u3ðkþ Nc � 1jkÞÞ;
þ Nc � 1jkÞ; s3ðkjkÞ; s3ðkþ 1jkÞ;…; s3ðkþ Nc � 1jkÞ�T6N�1:

(60)



Fig. 2. Hourly water profile for a typical week day and weekend.

Table 1
Dimensions and capacity of the tanks.

Tank Radius (m) Height (m) Min Max

Potable 0.55 1.2 0.1 1.0
Grey 0.36 1.0 0.1 0.8
Holding 0.30 0.6 0 0.5

Table 2
City of Tshwane tariff for 2014/20153.

Water
(m3=month)

0e6 7e12 13e18 19e24 25e30 31e42 43e72 >72

Price (R=m3) 6.81 9.72 12.77 14.77 16.89 18.25 19.53 20.91

Discharge
(%/month)

98 90 75 60 52 10 1 1

Price (R=m3) 5.06 6.83 8.81 8.81 8.81 8.81 8.81 8.81
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Radiometric Network,1 University of Pretoria's station.
4.2. Time-of-use electricity tariff

Time-of-use (TOU) tariff, commonly used across the world to
encourage shifting of peak load, and Middelberg et al. (2009) show
that it can vary by time of day, day of week and season. Eskom's
TOU Homeflex2 structure for residential consumers given below is
used.

peðtÞ ¼
�
poff ¼ 0:5510 R=Kwh if t2½0;6�∪½10;18�∪½20;24�;
ppeak ¼ 1:748 R=Kwh if t2½7;10�∪½18;20�;

(61)

where poff is the off peak price, ppeak is the peak time price, R is the
South African currency, Rand, and t is the time of day in hours.
1 http://www.sauran.net.
2 http://www.eskom.co.za/.
4.3. Potable and waste water tariffs

Table 2 shows the water and waste water tariffs for domestic
consumers in the City of Tshwane.3

The amount of waste water discharged into the drainage system
is calculated as a percentage of the amount of potable water
consumed in a household per month. Since potable and waste
water are charged through an incremental block tariff, it is
important to carry out simulations over a month in order to obtain
the cost incurred by the end user. It is assumed that the demand
pattern repeats itself over the 24-h operating cycle, for weekdays
and the two days of the week end. In this study, the weekday water
demand profile, DpotðweekdayÞ, is assumed to be the same for all
the 5 week days. Similarly, the weekend demand profile,
DpotðweekendÞ, is also taken to be the same for the 2 days of the
weekend. Therefore, both open-loop and closed-loop control sys-
tems are run over the 24-h operating cycle and then repeated over a
month. The month is taken to have 4 complete weeks with each
week having 5 weekdays and 2 days of the weekend. Taking the
first day of the month to be a Monday, the cumulative volume of
potable water consumed up to a certain weekday, Dpot;wkdy, or a
weekend, Dpot;wknd, is obtained as;

Dpot;wkdy ¼ð5qÞDpotðweekdayÞþð2q�2ÞDpotðweekendÞ;
Dpot;wknd ¼ð5qÞDpotðweekdayÞþð2q�1ÞDpotðweekendÞ; (62)

where q is the number of theweek in themonth (q ¼ 1;2;3;4). This
amount is then used to compute the amount of waste water dis-
charged and eventually the cost of potable and waste water in a
month.
5. Analysis of optimal results

The two control strategies are verified using the case study in
3 www.tshwane.gov.za.

http://www.sauran.net
http://www.eskom.co.za/
http://www.tshwane.gov.za


Fig. 3. Optimal operation of pumps and valves by open-loop controller.

Fig. 4. Variation of water level in respective tanks with open-loop controller.
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section 4.1. Simulations are carried out for an operating cycle of 24-
h with a sampling period, ts ¼ 15 minutes. The legend showing
peak and off peak periods of the TOU electricity tariff (section 4.2) is
used throughout the paper. Moreover, only potable and grey water
pumps, whose status are represented by u1 and u3 respectively, are
considered to consume power hence subjected to the TOU tariff.
5.1. Open-loop optimal control strategy

The optimal operation of the pumps and valves in the proposed
system by using open-loop optimal controller is shown in Fig. 3.

The controller operates both potable and grey water pumps
during the off-peak period of the TOU tariff in meeting the
household potable and grey water demand. This effectively shifts
the electrical load to the period when the grid experiences less
load, hence improving its stability. In addition, the controller
switches both pumps only 2 times during the 24-h operating cycle
in linewith the objective seeking tominimize themaintenance cost
of the pumps. This cost is attributed to frequent switching of a
pump that causes wear and tear to its motor as it tries to overcome
dead load (water) while changing from off to on status. In addition,
the controller operates potable water valve once in early morning
to supplement treated grey water. It also operates the drainage
valve several times after predicting that collectedwater is no longer
needed for treatment and pumping, and yet the holding tank has to
be emptied within the operating cycle.

Optimal operation of the proposed system using the open-loop
controller leads to variation of water level in various tanks as shown
in Fig. 4.

The controller does not violate any constraints in operating the
system throughout the 24-h operating cycle. After a 15min draw by
potable water valve, the controller predicts that potable tank does
not have sufficient water to take it through the high morning water
Fig. 5. Optimal operation of pumps
demand, which coincides with peak TOU period. It, therefore, opts
to switch on the pump twice at 05:15 and 06:15 for 30 min each,
raising the level, h1, to 0:49 m, which is sufficient for the remaining
period of the operating cycle. After this, water level h1 keeps
dropping while meeting potable water demand to a low of 0:16m
at the end of the operating cycle. At the onset, the holding tank is
emptywhile the treatedwater level in the greywater tank is almost
at the minimum allowable level. For this reason, the controller has
to use potable water to meet grey water demand in the early
morning leading to the potable water valve being switched on at
00:45 for 15 min. A simultaneous rise of water level in grey water
tank and drop in potable water tank takes place during this time. As
the day progresses, more water is collected hence there is no need
for using potable water for non-potable uses. The controller pre-
dicts an increase in grey water demand in the morning hours,
which again coincides with the peak TOU period. It consequently
operates the grey water pump twice at 05:45 for 30 min and 06:45
for 15 min leading to a rise in level h2 to 0:48 m, which is sufficient
to meet the grey water demand for the rest of the operating cycle.
In addition, the pumping leads to a simultaneous drop in level h3 to
0:05 m. Since the controller predicts that the treated grey water is
sufficient for the rest of the operating cycle, it then keeps draining
the collectedwater to the drainage, and also ensures that the tank is
emptied within the operating cycle to avoid formation bacteria
responsible for foul smell.
5.2. Closed-loop MPC strategy

The closed-loop MPC strategy operates the proposed system by
switching the pumps and valves as shown in Fig. 5.

Just like the open-loop controller, the closed-loop controller also
operates both pumps during the cheaper off-peak TOU periods, in
linewith the utility's desire. Additionally, the closed-loop controller
and valves using MPC strategy.



Fig. 6. Variation of water level in respective tanks with MPC.
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ensures that both pumps are not switched on frequently in order to
minimize the maintenance cost. In predicting increasing potable
water demand in the same period as the peak TOU period, the
closed-loop controller switches the potable water pump once at
05:30 for 1 h. This water is enough to meet potable water demand
in the house for the remaining period of the operating cycle. In
addition, the controller operates the grey water pump twice, first at
06:30 for 15 min and later at 13:30 for 30 min. However, the so-
lenoid valves are switched on at any time since they use negligible
amount of power. The controller switches the potable water valve
early in the morning at 00:15 for 15 min when there is insufficient
collected and treated grey water, and yet there is grey water de-
mand to be met. It also switches the drainage valve frequently as
more water is collected during the operating cycle to ensure the
tank is emptied.

Optimal operation of the pumps and valves leads to variation of
water levels in various tanks as shown in Fig. 6.

The closed-loop controller also ensures that none of the con-
straints is violated. Similar to the open-loop controller, the closed-
loop controller predicts that the amount of stored potable water is
Table 3
Comparison of weekly water consumption.

Wk Day Baseline

Potable (m3) Cost (R=m3) Waste (m3) Cost

1 Weekday 5.80 6.81 5.68 5.06
Weekend 8.14 9.72 7.81 6.83

2 Weekday 13.94 12.77 12.89 8.81
Weekend 16.29 12.77 14.65 8.81

3 Weekday 22.09 14.77 18.53 8.81
Weekend 24.43 16.89 19.90 8.81

4 Weekday 30.23 18.25 22.82 8.81
Weekend 31.61 18.25 25.98 8.81
not sufficient to meet the high potable water demand that co-
incides with the morning TOU peak. This situation is made worse,
by insufficient collected and treated grey water in respective tanks
forcing a 15 min draw of potable water to meet grey water demand
in the early morning. This prompts the controller to operate the
potable water pump at 05:30e06:30 raising the water level, h1, to
0:52 m, which is enough to meet potable water demand for the
remaining period of the operating cycle. To meet the early morning
grey water demand, the controller has to operate the potable water
valve, u2 for 15 min leading to a rise in level h2 to 0:15 m and a
simultaneous drop of h1 to 0:14m. By morning hours, enough
water has been collected in the morning even though the demand
for grey water is increasing during the peak TOU period. Conse-
quently, the controller pumps water from the holding tank at 06:30
raising the water level in the grey tank to 0:25mwhile at the same
time leading to a drop of water level in the holding tank to 0:24 m.
The treated grey water helps in meeting the morning water de-
mand but unfortunately, it is not enough for the rest of the oper-
ating cycle. Thereforemorewater is treated and pumped to the grey
tank at 13:30 for 30min raising water level, h2, to 0:34 mwhile also
Proposed strategies

(R=m3) Potable (m3) Cost (R=m3) Waste (m3) Cost (R=m3)

4.47 6.81 4.38 5.06
6.34 9.72 6.19 6.83
10.81 9.72 10.21 6.83
12.68 12.77 11.79 8.81
17.15 12.77 15.14 8.81
18.89 14.77 16.31 8.81
23.31 14.77 18.97 8.81
24.18 16.89 19.47 8.81



Table 4
Weekly consumption by grey water end uses.

Wk Day Potable water (m3) Treated water (m3)

Open-loop MPC Open-loop MPC

1 Weekday 0.05 0.05 0.18 0.18
Weekend 0.13 0.13 0.18 0.18

2 Weekday 0.05 0.05 0.18 0.18
Weekend 0.13 0.13 0.18 0.18

3 Weekday 0.05 0.05 0.18 0.18
Weekend 0 0 0.26 0.26

4 Weekday 0 0 0.26 0.26
Weekend 0 0 0.26 0.26
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emptying the holding tank, as desired. Thereafter, the closed-loop
controller predicts that the water in both storage tanks is suffi-
cient to meet the demand for the remaining period of the operating
cycle, hence, no more pumping is required. It therefore keeps
operating the drainage valve and empties the tank again in the
evening, in line with ensuring that the tank remains healthy and
bacteria forms.

5.3. Analysis and discussion

The performance of the two optimal controllers is compared
with the baseline, where potable water is used to meet all end uses
in the house, over a period of one month. Table 3 shows the weekly
water consumption, waste water discharge and the associated cost
in the baseline and the proposed water recycling system operated
using either control strategies. The consumption of water pre-
sented in the table holds for both scenarios with reliable and un-
reliable municipal water supply while the cost of water and waste
water discharge is obtained using tariffs provided in section 4.3.
Baseline and proposed strategies columns show the cumulative
amount of potable water consumed and waste water discharged
from the house together with their respective unit price. The
weekday or weekend cumulative water is the amount of either
potable or treated greywater used in the house at the end of 5 week
days or 2 days of the weekend respectively.

It is evident that more potablewater is consumed in the baseline
than when using the water recycling and harvesting system
controlled by either control systems. Consequently, more waste
water is discharged from the baseline than from the proposed
system. As a result, the household ends up paying for potable water
at a maximum unit cost 18:25 R=m3 in the baseline and as opposed
to 16:89 R=m3 in the proposed strategies at the end of the month.
Similarly, the household currently (baseline) pays for waste water
Table 5
Proposed system's operating costs.

Baseline Open-loop MPC

Potable water
Amount (m3=month) 31.61 24.18 24.18
Cost (R=month) 395.15 267.46 267.46

Waste water
Amount(m3=month) 25.98 19.47 19.47
Cost (R=month) 194.54 137.18 137.18

Potable pump
Energy (kWh=month) 13.04 8.00 8.00
Cost (R=month) 14.33 5.84 5.84

Grey pump
Energy(kWh=month) 0a 3.25 3.25
Cost (R=month) 0a 3.37 3.37

Total cost (R=month)b 604.02 413.85 413.85

a The household was only using potable water.
b Cost of pumping energy, potable and waste water.
at themaximum 8:81 R=m3 in amonth from the secondweekwhile
the proposed water conservation interventions would lead to the
same happening from the weekend of the second week. Therefore,
end users, whether with reliable or unreliable water supply, will
have the added benefit of lower cost of potable and waste water in
addition to conserving it. Operation of the proposed system by
either control strategies consumes about 0:05 m3 and 0:13 m3 of
potable water for grey uses in a week day and weekend, respec-
tively, during the first 2 weeks as shown in Table 4.

Thereafter, 0:05 m3 is used during the week day of the third
week. Up to this point, the cost of water has risen to 12:77 R=m3.
Nonetheless, during the weekend of the third week, when the unit
price rises to 14:77 R=m3, both controllers do not use potable water
for grey end uses. This results from weight of the term responsible
for minimizing the cost of water in objective functions (10) and (45)
increasing significantly, making both controllers to give this term
more preference as compared to the other terms. Further, the
increasing weighting factor leads to an increase in the use of grey
water from 0:18 m3 to 0:26m3 for both controllers.

The monthly water and energy consumption, waste water
discharge and the associated costs in the baseline and the two
control strategies operating the water recycling and harvesting
system are compared as shown in Table 5.

If municipal water supply is reliable, the baseline water con-
sumption is about 31:61 m3 leading to a discharge of about
25:98m3 in a month. Therefore, the cost of both water supply and
waste water discharge is about 589:69 R=month, as there is no en-
ergy cost associated with pumping potable water for storage.
Adoption of the proposed system in such a house would reduce the
monthly potable water consumption and waste discharge by about
23.5% and 25.1% with the corresponding cost reduction of 32.3%
and 29.5% respectively. Considering the proposed systemwould not
pump potable water for storage, up to 30.8% cost savings can be
achieved, irrespective of the added cost of energy incurred by the
grey water pump. In the second scenario where potable water is
pumped and stored, the baseline still uses 31:61 m3=month of
potable water, discharges about 25:98 m3=month but at a higher
cost of 604:02 R=month, resulting from cost of pumping potable
water to the storage tank. Incorporation of the proposed system
would still conserve about 23.5% potable water, reduce discharge
by up to 25.1%, corresponding to monthly cost saving from water
and waste water of 32.3% and 29.5% respectively. In addition, the
two controllers can save the cost of energy by up to 35.7% through
shifting the load to the cheaper off-peak periods of the TOU tariff.
Eventually, the proposed water recycling system with optimal
control would save up to 31.5% of the total operation cost. This
shows that the proposed system would conserve water, reduce
waste water discharge and lead to economic benefits in both water
supply scenarios.

Previous studies have shown that the two control strategies are
known to adapt differently. Luo et al. (2015) hold that the closed-
loop MPC is stable and robust in dealing with disturbances, un-
like the open-loop controller which, as discused by Wanjiru et al.
(2016b), can only deal with disturbances that do not largely
change the demand pattern. This, however, comes at a higher cost
in terms of computation and financial as well as more complexity,
since it would require extra components to enable feedback of the
height of water in the tanks to take place Qi et al. (2015). Adoption
of either controller depends on the nature of each application. The
open-loop controller is suitable where the demand pattern does
not change significantly, otherwise the closed-loop MPC is suitable.

Collection of grey water is dependent on human behaviour
making it a more reliable alternative source of water for non-



Table 6
Life cycle cost analysis of the water recycling and harvesting system.

Year Initial investment (R) Salvage value (R) Annual cost (R) Revenue (R) Total (R) Discounting factor Cash flows (R)

Operation Maintenance Discounted Cumulative

0 Water tanks (3500) 1800
Pumps (280.00) 50
UV purifier and filters (4500.00) 1700
Controller (10 000.00) 500
Accessories (6000.00)
Installation cost (8000.00)
Total Capital (28 230.00) 1.00 (28 230.00) (28 230.00)

1 (4966.20) (200.00) 2282.04 (2884.16) 0.94 (2706.61) (30 936.61)
2 (4966.20) (200.00) 2282.04 (2884.16) 0.88 (2539.98) (33 476.59)
3 (4966.20) (200.00) 2282.04 (2884.16) 0.83 (2383.62) (35 860.21)
4 (4966.20) (200.00) 2282.04 (2884.16) 0.78 (2236.88) (38 097.09)
5 (4966.20) (200.00) 2282.04 (2884.16) 0.73 (2099.17) (40 196.26)
6 (4966.20) (200.00) 2282.04 (2884.16) 0.68 (1969.94) (42 166.21)
7 (4966.20) (200.00) 2282.04 (2884.16) 0.64 (1848.67) (44 014.88)
8 (4966.20) (200.00) 2282.04 (2884.16) 0.60 (1734.86) (45 749.74)
9 (4966.20) (200.00) 2282.04 (2884.16) 0.56 (1628.06) (47 377.81)
10 (4966.20) (200.00) 2282.04 (2884.16) 0.53 (1527.84) (48 905.64)
11 (4966.20) (200.00) 2282.04 (2884.16) 0.50 (1433.78) (50 339.43)
12 (4966.20) (200.00) 2282.04 (2884.16) 0.47 (1345.52) (51 684.94)
13 (4966.20) (200.00) 2282.04 (2884.16) 0.44 (1262.68) (52 947.63)
14 (4966.20) (200.00) 2282.04 (2884.16) 0.41 (1184.95) (54 132.58)
15 (4966.20) (200.00) 2282.04 (2884.16) 0.39 (1112.00) (55 244.58)
16 (4966.20) (200.00) 2282.04 (2884.16) 0.36 (1043.55) (56 288.13)
17 (4966.20) (200.00) 2282.04 (2884.16) 0.34 (979.30) (57 267.43)
18 (4966.20) (200.00) 2282.04 (2884.16) 0.32 (919.02) (58 186.45)
19 (4966.20) (200.00) 2282.04 (2884.16) 0.30 (862.44) (59 048.89)
20 (4966.20) (200.00) 2282.04 (2884.16) 0.28 (809.35) (59 858.24)
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potable end uses. On the other hand, raining is a natural occurrence
making rain water harvesting largely dependent on climatic con-
ditions and weather patterns. Since both rain water and grey water
are collected to the same holding tank, rain water would have
greatest impact early in the morning when the holding tank is
almost empty. This would enable the two controllers to use this
other than using potable water, and would lower the cost of
operation even further. In countries with low amount of annual
rainfall, like South Africa, grey water is a more reliable alternative
source of water, and its amount hugely determines the design of the
system. However, for regions with higher annual rainfall, the sys-
tem design could be modified to maximize the efficiency of rain
water. The potential of rain water harvesting in a year is estimated
as a product of local precipitations, roof's catchment area and a
non-dimensional runoff coefficient. This coefficient is important in
accounting for losses arising due to spillage, leakage, wetting the
surface and evaporation. It is therefore useful in predicting the
amount of water running off the roof's surface and is conveyed to
the storage system. Generally, sloping roofs have a higher coeffi-
cient than flat roofs Farreny et al. (2011). The two control systems
can easily be modified for different types of roofs so as to accurately
predict the amount of rain water that can be collected. Wide
adoption of the system would greatly and positively influence the
environment. The savings out of water conservation, waste water
reduction and energy efficiency would immensely benefit munic-
ipal companies and energy utilities over a long time due to reduced
demand for the two resources and sewerage services.
5.4. Life cycle cost analysis

It is necessary to evaluate the feasibility of implementing any
project, not only in terms of environmental benefits, but also based
on economic effect. The cost effectiveness of implementing this
water recycling and harvesting system is based on comprehensive
consideration of various cost and revenue components. One
effective method is the present worth method that discounts back
all future elements of the financial analysis of a project to their
present worth, apart from capital costs that are already given in
present terms. Thereafter, the positive and negative elements of the
cash flow are summed, and if the net present value (NPV) is posi-
tive, then Vanek et al. (2012) argue that the investment is finan-
cially attractive. Life cycle cost (LCC) involves carrying out such
analysis over the entire life of the project, and therefore has the
benefit of capturing all costs and revenue that would take place
during operation of the project. In this analysis, it is assumed that
interest rate, taken as the inflation, revenue and operation cost are
constant throughout the life of the project. Based on Capehart et al.
(2006), costs included in analysis of LCC include cost of acquisition,
operation, maintenance and disposal. Therefore,

LCC ¼ Cc þ Co þ Cs (63)

where Cc is the capital cost, Co is the operation cost and Cs is the
salvage cost at the end of life of the system. Capital cost includes
total cost of acquiring and installing the system and labour. In the
operation stage, the operation cost includes water, waste water,
energy and maintenance cost incurred during the service life.
Finally, salvage cost is the cost incurred at the end of system's life
including the salvage value of the system, cost of removal and
disposal Bull (2015). Equation (63) can be written in terms of the
discounting factor, that is, the factor by which future cash flows
must be multiplied with to get the present worth, as,

LCC ¼ Cc þ
Xm
n¼1

CoðnÞ
ð1þ rÞn þ Cs; (64)

where n and m are the number of years and project lifetime
respectively while r is the discounting factor. The costs involved in
this study are based on the South African market rates. Some as-
sumptions aremadewhile carrying out the life cycle cost analysis of
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the proposed system; the discounting factor is taken as South
Africa's average inflation rate in 2016. The inflation rate, deprecia-
tion, operation and maintenance costs are assumed to be constant
throughout the life of the system. The annualized cost and revenue
are average from monthly values are obtained when the simula-
tions are carried out over the four seasons in a year having varying
demand for water.

Table 6 shows the life cycle cost analysis of the proposed system
controlled using the MPC strategy. Expenses are indicated using
negative values (brackets) while revenue is indicated as positive
values. A discount factor of 6.56%, which is the average inflation rate
of South Africa for 20164 is used to obtain the time value of money.
In this analysis, all capital investment is taken to be done in the
beginning of the project, and all components of the system will be
operational for the 20 year life of the system. Further, cost of
potable and waste water is assumed to remain constant for the
entire life of the project. The discounted cash flows continuously
increase the cumulative cash flows in each year, and the year which
the cumulative cash flows becomes zero is an indicator of the break
even point or the payback period. In this case, the proposed water
recycling and harvesting system does not pay back in its 20 year life
period, attributed to high capital cost coupled with low cost of
water in South Africa, even though the country is semi arid. These
findings are similar to a study done in two universities in South
Africa by Ilemobade et al. (2013), as well as in other parts of the
world such as Li et al. (2010) in Ireland, Fountoulakis et al. (2016) in
Greece and Jabornig (2014) in Austria. A study by Adewumi et al.
(2010) reveals that the current low water tariffs significantly in-
fluence end users’ willingness to embrace water recycling. Gov-
ernment subsidies are therefore necessary in order to encourage
the uptake of these technologies that will help in preventing water
insecurity around the country and the region. Even though the
proposed strategy currently looks economically infeasible, it is
important to conduct a thorough analysis while considering full
cost of water supply and waste water treatment.

South Africa is a semi-arid country that has constantly struggled
to provide reliable water supply to the population. In the recent
past, the situation has become worse forcing municipalities to
implement water restriction in various parts of the nation.5 In
addition, since the demand for water and energy is expected to
keep growing as the population increases, their will keep
increasing and the proposed system could soon become economi-
cally feasible. The implication of water scarcity and increased
pressure on existing infrastructure is evident in the City of Cape
Town6 where the municipality has opted to increase the cost of
water and waste water in an effort to encourage efficient and sus-
tainable use. The proposed water recycling and harvesting system
is therefore an important intervention in ensuring reliable water
supply, water conservation and energy efficiency are achieved.
6. Conclusion

Water and energy, two inseparable resources, are vital for sus-
tainable economic development of any country. Supply of these
resources is however unreliable in South Africa due to various
factors such as climatic factors, population increase, improved
standards of living and rapid urbanization. This has led in increased
demand surpassing existing supply capacity and various demand
4 www.inflation.eu/inflation-rates/south-africa/historic-inflation/cpi-inflation-
south-africa-2016.aspx.

5 www.droughtsa.org.za/about-the-drought/water-restrictions.html.
6 https://www.westerncape.gov.za/general-publication/how-manage-water-

restrictions-your-home.
management strategies are required. Grey water recycling and rain
water harvesting are suitable for conserving water by providing
alternative sources hence reducing the demand for water and
waste water services from the municipalities. Two controllers are
designed in this study to optimally operate the grey water and rain
water recycling system for a house subject to the TOU electricity
tariff in South Africa, where a case was considered. The two con-
trollers perform the same, however, the open-loop controller is
easier and more cost effective to implement while the closed-loop
MPC is more robust and reliable in controlling the proposed system
in domestic houses. The proposed system can potentially reduce
potable water consumption by 23.5% and consequent waste water
discharge by 25.1% as compared to the baseline. Optimal operation
of the system using either controllers can reduce the cost of energy
by 35.7% through load shifting. For the two scenarios considered in
this study, that is reliable and unreliable municipal water supply,
optimal operation of the proposed system can lead to a total
operation cost saving of up to 30.8% and 31.5% respectively. Despite
the proposed system having the benefit to conserve water and
efficiently use energy, it does not pay back the cost within its life-
time. Importantly, studies in other parts of the world have shown
similar results, predicting that the worsening water insecurity due
to increased demand and climate change could make such systems
financially feasible in the near future. Governments should
encourage adoption of these systems in order to conserve water
and environment at large. This can be done through policies, reg-
ulations, subsidies and incentives to encourage their uptake espe-
cially in cities with functional centralized water and waste water
systems. Otherwise, there will be no motivation for building de-
velopers and owners to consider these important systems. In cities
with dysfunctional or non-existent centralized water supply and
waste water systems such as Nairobi in Kenya, Jakarta in Indonesia
and Lima in Peru, building owners rely on exorbitantly expensive
water vendors to augment water supply and septic tanks for sani-
tation. Considering these cities are rapidly expanding, the demand
for housing requiring water and sanitation infrastructure will keep
increasing. It is therefore prudent for authorities in such countries
to develop proper and acceptable policies that would increase
water and sanitation security. The decentralized system developed
in this paper is necessary and comes as a huge relief in increasing
reliability and security of water supply at lower cost. Better still, less
water would go down the drain taking a longer period before the
septic tank requires emptying. More studies could be carried out in
these areas to determine the economic feasibility. The system can
be incorporated in new building designs or retrofitted in existing
ones, which would be more expensive. The complexity of retrofit-
ting would, however, depend on the plumbing system and space
available. Wide adoption of the systemwould have huge benefit to
the environment and municipalities that would not require to
rapidly expand their existing supply and drainage infrastructure.
This study forms the basis for future research into optimal opera-
tion of grey water recycling and rain water harvesting systems in
the built sector, whether domestic or commercial, to enhance re-
sources conservation and efficiency.
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A B S T R A C T

Measurement uncertainty is a key component in the overall uncertainty calculation for Measurement and
Verification (M& V) projects. However, in some cases, it is reduced to outlier detection or basic uncertainty
propagation calculations. In other cases, funds are spent on determining uncertainties that have little effect on
project decisions. Therefore a need exists for a fuller treatment of the subject in the light of literature from M&V
and other fields. This paper surveys general M &V literature, as well as relevant research from metrology,
electrical engineering, economics, decision analysis, and statistics. Electrical metering and sub-metering un-
certainty is investigated, as well as often-overlooked considerations such as power quality and the cost of ca-
libration. The effect of mismeasurement on energy models and practical techniques for mitigating such effects
are assessed. Last, research on building simulation and project decisions in the light of measurement error is
surveyed. Bayesian methods are found to be a recurring theme in much of the research being conducted on all of
these aspects. Power quality and mismeasurement effects have also been found to make a material difference in
project evaluation. The survey is concluded with recommendations for further research in the light of current
trends in data analysis and energy evaluation.

1. Introduction

The International Performance Measurement and Verification
Protocol (IPMVP) [1] notes that three forms of uncertainty arise in
energy Measurement and Verification (M&V): measurement un-
certainty, sampling uncertainty, and modelling uncertainty [1]. Al-
though research on combining sampling and modelling uncertainty has
been done by Ye et al. [2,3] and Carstens et al. [4] on lighting projects,
and Sun on building energy performance [5], measurement uncertainty
is usually assumed to be negligible. Nevertheless, the cost-effective al-
location of measurement resources continues to be a pertinent question
for decision makers. The aim of this survey is to introduce M&V pro-
fessionals and researchers to the salient literature on various topics
related to measurement uncertainty in energy monitoring.

While one usually associates measurement in M&V with electricity
meters, instruments measuring with error also include surveys and

questionnaires [6], tracking databases, non-intrusive load monitoring,
and inspection reports [7]. These instruments may measure or record
any number of variables such as occupancy [8], floor area, schedules,
income, the proportion of Miscellaneous Electrical Loads (MELs)
[9,10], etc. Sometimes data such as plug load energy use are used as a
proxy to measure occupancy [11]. More about this in Section 3.5.

Are cheaper, smarter meters and the big data revolution not going to
render measurement uncertainty concerns obsolete? Advanced
Metering Infrastructure (AMI) is being rolled out in the United Kingdom
(UK) and Europe, although state regulation is more fractured in the US
[12]. Although these regions represent only 12.4% of the world popu-
lation, they consume 66.2% of the world's electricity.1 The nature of
M&V in these regions is changing, with promising results for M&V 2.0
already being published [13]. On the other hand (or hemisphere), 17%
of the world population still have no access to electricity, and 38% still
cook using biomass [14]. Many of these live in sub-Saharan Africa, and
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for the companies serving these billion people, the big data revolution is
still some way off.

We should also note that AMI improves sampling rather than
measurement uncertainties. Even so, investigations into big data in
energy monitoring [13,15,16] are welcome, although bigger data are
no remedy if it is still measured with error. Although the tools and
methods are improving and becoming automated, measurement error
will continue to be relevant to M& V professionals. However, it does not
seem to be discussed directly in most M&V literature, and we hope that
this work goes some way in addressing this gap.

This survey is structured around the following questions:

• What does current literature say about measurement uncertainty?
How is it addressed in metrology?

• What are the sources of electrical metering uncertainty? What are
the effects of mismeasurement, has it been documented in energy
monitoring, and how can it be mitigated?

• How does measurement uncertainty affect project decisions?

2. Background

2.1. Measurement uncertainty in M&V literature

Measurement uncertainty is acknowledged in M&V literature, al-
though firm guidance is seldom given. A summary of guideline char-
acteristics in this respect can be found in Table 1. The American Society
of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE's)
Guideline 14-2002 [17,18] (henceforth referred to as G14) is the
foremost technical resource for M&V. It provides comprehensive gui-
dance on instrumentation, data-handling, uncertainty calculations, as
well as a catalogue of uncertainties for a wide variety of energy-related
measurement instruments. It has recently been updated to a 2014
version [19], although the original remains useful. ‘G14’ will refer to
both, unless stated otherwise. G14 and the California Commissioning
Collective [20] (CCC) adopt Reddy and Claridge's alternative fractional-
savings parametrisation of measurement uncertainty [21]. The IPMVP
[1,22] provides general guidance on uncertainty but does not address
measurement uncertainty in much detail. The National Renewable
Energy Laboratory (NREL's) Uniform Methods Project (UMP) [23] es-
tablishes best practices for energy data collection and is the only
guideline to discuss mismeasurement at all. ASHRAE Guideline RA96:

Engineering Analysis of Experimental Data [24] also deserves mention. It
is a general quantitative introduction to handling measurement un-
certainty in engineering measurements and could be applied to some
M&V cases. The State and Local Energy Efficiency (SEE) Action group's
Energy Efficiency Programme Impact Evaluation Guide [25] (hereafter
referred to as the SEE Action Guide) is also notable and does give
practical guidance on uncertainty. Finally, some preliminary work on
the relative contributions of measurement and sampling uncertainty in
M&V has also been presented by Carstens, Xia, and Yadavalli [26], and
a method for low cost calibration of energy meters proposed [27].
Recently, Ligier et al. [28] proposed a method for accounting for M&V
uncertainty alongside building simulation, and did consider measure-
ment uncertainty in the model.

Greenhouse Gas reduction programmes often require M& V. Vine
et al. reported on different options considered for dealing with mea-
surement uncertainty in such cases [29]. Although this was a work in
progress in 2002, it is still relevant, since the debate around the ad-
vantages and disadvantages of different measurement approaches is
explained well. Discount factors to compensate for the uncertainty of
various methods are also listed. The scale of the United Nations Fra-
mework Convention for Climate Change's Clean Development Me-
chanism (UNFCCC CDM) methodology specifications dwarfs other
M&V documentation. It contains over two hundred methodologies for
different project scales and applications. Accuracy requirements vary,
but the 90/10 criterion is most common, although Sonnenblick and Eto
[30] have shown that this precision level is only necessary for projects
where the savings to cost ratio to be verified is small. In many cases,
90/50 is adequate for identifying project cost-effectiveness, that is,
whether or not a project saved energy.

Shishlov and Belassen [31] provided a useful review of how mon-
itoring uncertainty is approached in the CDM. For example, CDM
AM0046 requires Compact Fluorescent Lamp Retrofit programmes to
be monitored very stringently at the insistence of regulators, even re-
quiring custom-made meters. Michaelowa, Hayashi, and Marr [32] who
developed the methodology noted that no projects were completed
under AM0046 until the alternative AMS II.C [33] was adopted. Later
AMS II.J [34] was also adopted. In it, every CFL is deemed to operate
for 3.5 h/day, eliminating the need for measurement. Even so, they
assert that there are still projects that would reduce emissions but are
ineligible. These difficulties illustrate that measurement goals should
always be construed in the larger project and social context. Achieving

Table 1
The treatment of measurement uncertainty in leading M&V guidelines.

Name Year Level of detail Features Reference

G14 2002, 2014 10 • Most comprehensive treatment of M&V uncertainty [18,19]

• Excellent methods

• Instrument uncertainty database

• Itemized measurement costs

• Technology slightly dated in 2002 version
IPMVP 2012 5 • Introductory treatment [1,22]

• Sensitivity and Uncertainty Analysis worked examples [1]
CDM 2015 8 • Approach varies between methodologies [41,31]

• Emphasis on being conservative [32]

• Discount factors used for >95/5 measurement error [35]

• 95/10 assumed for unknown measurement error [35]

• Deemed Savings also used [34]

• MC recommended for complex cases
UMP 2014 6 • Varies with authors of chapters [23]

• Errors-in-variables discussed in Chapters 13, 23 [43,44]

• Metering error discussed in Chapter 9 [45]

• Survey error discussed in Chapter 11 [46]
SEE Action Guide 2012 4 • Practical guidance [25]

• Discussion of uncertainty and project risk
CCC 2012 6 • Appendix on uncertainty analysis [20]

• Adopts and simplifies fractional savings approach

Abbreviations: CCC, California Commissioning Collective; CDM, Clean Development Mechanism; G14, ASHRAE Guideline 14-2002 and 14-2014; IPMVP, International Performance
Measurement and Verification Protocol; SEE Action Guide: State and Local Energy Efficiency Programme Impact Evaluation Guide; UMP, Uniform Methods Project.
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important individual statistical outcomes is never an end in itself. It
may even hinder meeting overarching programme goals such as emis-
sions reduction or development. Research on efficient sampling designs
has been conducted to reduce the sampling burden as much as possible
[2–4], although this is still much scope in this field. The CDM board is
also working towards a stringency/cost trade-off system to replace the
current system [35]. We discuss such approaches in Section 6.

2.2. Measurement uncertainty in metrology

Metrology is the science of measurement, and its guiding document
is the ISO Guide to the Expression of Uncertainty in Measurement, also
known as the GUM [36]. The GUM has standardised the expression of
uncertainty across most quantitative scientific disciplines and is also
applied to energy monitoring. Instructive tutorials have been written,
most notably by the British [37,38] and European [39] accreditation
agencies. ISO/IEC 17025 [40] General requirements for the competence of
testing and calibration laboratories has contributed to the GUM's popu-
larity by stipulating that complying laboratories apply a procedure to
estimate uncertainty in measurement.

The GUM distinguishes between measurement uncertainty calcu-
lated by statistical methods from measured data (Type A), and those
measured or stipulated from prior information or judgement (Type B).
It also standardised the expression of uncertainty as a coverage interval,
also known as an expanded uncertainty. This is the confidence/precision
format of expressing uncertainty, which should be familiar to most
M&V professionals and is used in the IPMVP [1], RA96 [24], and CDM
[41] documents. For example, when a measurement is expressed as

±10 1, the precision range (or semi-range) is =p 1. We expect the in-
terval from nine to eleven to correspond to the 95% confidence interval
if no more information is given [37,24]. Since the standard score of the
normal distribution = ≈z 1.96 295% , we say that the coverage factor is 2.
The rectangular/uniform distribution is recommended rather than the
Normal distribution for digital volt meters and instruments where un-
certainties are not stated [37]. Although this is conservative, it is not a
realistic assumption for M&V. Energy data are usually aggregated or
integrated over a time interval such as 30 min, and such errors would
then be normally distributed. If an M&V practitioner opts for the
uniform distribution assumption, and later convolves it with a normal
distribution for sampling error, for example, the resultant coverage
interval will be a statement about uncertainties, not probability density
intervals [42]. We recommend Monte Carlo (MC) convolution to obtain
the probability distribution in such a case.

M &V professionals should also be aware of the concept of dominant
uncertainty components. As a rule of thumb, if one uncertainty com-
ponent is two to three times larger than the next highest one, it may be
considered to be the sole contributor to the overall uncertainty [37,
p.17]. This is because of the sum-of-squares approach to adding stan-
dard deviations together allows larger standard deviations to dominate
the final result. Commenting on the efficient allocation of measurement
resources between Type A and Type B measurements, Birch, therefore,
remarks that the “quantification of uncertainties in testing normally
involves a large element of estimation of…uncertainty components.
Consequently, it is seldom justifiable to expend undue effort in at-
tempting to be precise in the evaluation of uncertainty for testing” [37,
p.15].

2.2.1. New directions in metrology
Although acknowledged as very helpful, the GUM has drawn criti-

cism, most notably from Bayesian statisticians [42]. One point of con-
tention relevant to M&V is that the propagation of errors calculation is
defined as a first-order Taylor series approximation, which does not
always hold.

Some physicists and statisticians are also uncomfortable with the
frequentist approach to how confidence intervals are calculated in the
GUM. It has been shown from first principles that this approach is

invalid in many measurement cases [42]. The standard (frequentist)
confidence interval, for example ‘90%’, is a product of a process that
produces an interval containing the true value 90% of the time [47]. It
is not an expression of certainty or degree of belief, as 10% of the time
the interval will not contain the true value at all. The Bayesian credible
interval can claim this, however. For many cases the distinction is
academic, as these intervals may agree [48], frequentists may borrow
Bayesian language [42]. For other situations, however, standard con-
fidence intervals are inappropriate for risk calculations, and credible
intervals are recommended.

In reaction to the criticisms above, the GUM was updated, and a
supplement describing a Monte Carlo (MC) alternative was published
[49]. It is especially useful for non-linear cases, where any distribution
other than the Gaussian or scaled-and-shifted T is used, or where the error
propagation function is complex. It also delivers the final error estimation
as a probability distribution rather than an uncertainty interval. Therefore
it is all but recommended as the de facto method for uncertainty propa-
gation calculation by the supplement. MC can be too computationally
expensive for high-dimensional problems and approaches such as MC-
Latin Hypercube Sampling or Sobol’ Sequences [50]. Respected Bayesian
metrologists such as Lira have advocated analytical calculus-based ap-
proaches over MC methods where possible [51]. However, we do not see
this as a viable alternative in the energy M&V industry.

A second, useful approach is the Mellin Transform Moment
Calculation (MTMC) method [52,53], which has a free online toolbox
for calculation [54]. The method has been developed as an analytical
alternative to MC and allows the moments of a distribution resulting
from a polynomial function of constituent distributions to be expressed
exactly. Once mean, variance, skewness, kurtosis, and higher order
moments are obtained, these can be used to calculate the shape of the
resultant distribution in a more computationally efficient and consistent
manner than MC. This has been used in M&V [55] by fitting a Johnson
SB [56] distribution using Hill's algorithm [57]. Rajan et. al [58] pro-
vided more information on moment-based distribution fitting.

Regarding the Bayesian approach, the UK Accreditation Service
(UKAS) noted that “Bayesian statistics is becoming recognised as being
particularly useful in certain areas of testing” [38], and as of 2016 the
GUM itself is also in the process of being extensively revised to ac-
commodate the Bayesian paradigm [59]. This signals an interesting
shift in metrology and the way in which uncertainty is viewed and
calculated, and M&V professionals would do well to take notice. (Some
already have, as will be seen in Section 6.) For those seeking an in-
troduction, Estler [60] provides a comprehensive tutorial of Bayesian
theory in the context of measurement and the GUM, while shorter
theoretical Bayesian frameworks for metrology have also been written
[61,62]. Although M&V practitioners should be cognizant of the un-
derlying theory at the level presented in these papers, the specific
mathematics in these sources are replaced by MC methods implemented
in software. Rossi developed domain-specific MC software for calcu-
lating measurement error by Bayesian methods [63], although general-
purpose software may be preferable by most M&V professionals, as
discussed in Section 5.2.2.

In a recent study, Carstens et. al. [27] used a Simulation Extra-
polation (SIMEX, see Section 5.2.2) [64] method enhanced by a Baye-
sian approach to calibrate energy meters in-situ while controlling for
uncertainty.

3. Metering uncertainty

Metering uncertainty can be dominated by other uncertainties such
as sampling or modelling [26], but can nonetheless be significant de-
pending on the application. Below we will consider five cases: general
energy metering uncertainty, sub-metering and its contribution to
measurement uncertainty, how power quality affects metering un-
certainty, virtual instrumentation, and the possibility of in-situ meter
calibration.
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Regarding metering uncertainty, static (solid-state) electrical energy
meters used for reporting purposes have to be qualified to standards set
by the International Electro-technical Commission (IEC), or its
equivalents, such as ANSI C 12–20 [65] in the US. Metering classes
indicate maximum allowable percentage errors over the majority of the
measurement range, so that a Class 1 m is 1% accurate, for example.
IEC 62053-21 [66] refers to Class 1 and 2 (active), 62053-22 [67] to
class 0.2S and 0.5S (active), and 62053-23 [68] to class 2 and 3 (re-
active) meters. A graphic illustration of the accuracy requirements is
shown in Fig. 1. Close attention should be paid when acquiring meters,
as accuracy class (mis)specification has also been abused as a marketing
tool, as catalogued by Irwin [69]. M &V professionals should also note
that influence quantities such as harmonics are tested for, but in a one-
at-a-time fashion, with all other quantities held at default levels.

A distinction between calibrated and qualified meters should be
drawn at this point. A qualified meter model range conforms to the IEC
standards (called ‘type conformity’ by the European Measurement
Instrument Directive (MID) [71]). Models of this type have undergone
many different tests to prove that their results are stable within certain
specified operating ranges for factors such as temperature, power
factor, and humidity. Thus qualification is a matter of the quality of a
given meter model. An individual meter, although qualified as a unit in
a model range, may still give incorrect readings because it is not cali-
brated. This may occur when internal conversion factors have drifted
over time, for example.

Even when meters are qualified to these standards, errors or bias
can be introduced by environmental conditions. For example, even
though temperatures in Saudi Arabia still fall within IEC specifications,
systematic bias is introduced due to consistently abnormal values [72].
Even such small biases on revenue meters metering large installations
can lead to significant billing errors.

The discussion above applies to the meter itself, but not to the
current transformer (CT) often used to measure the current. In many
cases, CT accuracies are lower than the meter accuracies. An example of
CT accuracy specifications can be found in Fig. 2. They need to be
considered separately from metering uncertainty and added using the
sum-squared error method. In many situations, the accuracy class of the
CT and meter, together with their rated currents will suffice to de-
termine the overall accuracy of the measuring system.

Although accuracy influences meter prices, the communication
protocol used by the meter is also significant, as shown by Ahmad et al.
in their review of energy and related sensors [73].

3.1. Sub-metering

Sub-metering an installation often provides valuable insight into the
main load drivers but can be expensive if revenue-accuracy meters are

used. One can consider less accurate and costly options in these ap-
plications.

Plug-through meters are popular for metering MELs. Polese et al.
provided a comprehensive case study detailing the challenges in im-
plementing such a solution at a large retailer, for an NREL study [74].
The study demonstrates the inaccuracy of such meters, as well as other
factors that contribute to general measurement uncertainty. In this
study, 41% of the meters had significant portions of the data series that
were erroneous. Errors of 20% in the range 0–20 W were common, and
6% in the range 25–100 W. Given that 40% of the MELs operated below
the 60 W level, these errors are significant.

Stick-on Electricity Meters (SEMs) represent an exciting new low-
cost measurement or logging option [75]. These sensors are placed on
the circuit breaker in the distribution board, and senses when current is
drawn on the circuit. Tests indicate an accuracy of 5% or less. It is
important to note that these do not work where relays are present.

Current-only meters are becoming a popular option for residential
metering. They usually use split-core CTs and are much more affordable
than revenue energy meters, but are not as accurate, or even qualified.
In personal correspondence with a popular meter manufacturer based
in the UK, the accuracy was quoted as 10% [76]. Given that they op-
erate in a narrow environmental and electric range, this is usually not of
great concern, provided that they can be verified in some way. How-
ever, they can not be recommended as the sole meters used for projects.
The voltage may vary due to supply-side fluctuations, or due to facility-
level demand factors. On the demand side, current-only meters multiply
their readings by a nominal voltage. The resultant power measurement

Fig. 1. Comparison of different IEC accuracy class
meters [66–68] for transformer-connected single or
polyphase meters with balanced loads under sinu-
soidal conditions.

Fig. 2. Instrument Current Transformer accuracies according to IEC 60044-8 [70]. For
Class 3 and Class 5, the limits are flat at 3% and 5% respectively.
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is in Volt-Ampéres: apparent power, not true power in Watts. The
power factor is thus assumed to be unity. Inductive power electronic
equipment found in most households will decrease the power factor to
below one, biasing the measurement by this power factor. On the
supply side, the utility voltage is seldom at the nominal level. It is
regulated to be in a certain range [77]. In Europe, utility supply voltage
is determined to be 230 V ± 10% [78], and in the United States, 120 V
± 5% [65]. However, certain asymmetrical tolerances may also hold.
For ANSI C84.1 Range B [79], these tolerances are − 13% and + 6%.
These asymmetrical tolerances may skew the calculation since under-
voltages are higher and possibly more likely than over-voltages.

For the symmetrical tolerance case, it may be argued that un-
measured variations would cancel out over time. However, a constant
voltage offset may also apply. The supply voltage at a facility such as a
house varies with a number of factors. These include the distance of its
distribution transformer from the substation on the primary feeder, the
distance between this house and the transformer on the secondary
feeder, the number of facilities on the secondary feeder, and the load on
the feeders. The average incomer voltage at a house on the edge of a
distribution network may be at the lower end of the specification in-
terval, while a facility closer to a transformer may be at the upper end
of the interval. Therefore the distribution of voltage for a single facility
may not be symmetric around the country's nominal voltage, biasing
the measurements for which a nominal voltage was specified.

3.2. Power quality

Power Quality is an important consideration in metering un-
certainty calculation, although M&V does not discuss it very much.
The IEC standards qualify meters only for sinusoidal conditions, but on
networks with modern power electronic equipment, this assumption is
usually invalid [80]. The harmonics which cause the non-sinusoidal
condition may originate from some modern power electronics sources,
such as Variable Speed Drives (VSDs), fluorescent lamps with electro-
nics ballasts, switching power supplies, or controlled rectifiers [81].
These harmonics are generated by loads on the network but are ob-
served as a supply quality problem when measured. For certain cases
where the customer pollutes the power network with large harmonic
power flows, the presence of harmonics may skew the reactive energy
measurement to such an extent that a power factor greater than unity is
indicated, even if this is not the case at all [81].

These conditions then lead to mismeasurement in static energy
meters, especially when a non-unity power factor is present [82], and
verification of meters for such cases have been proposed [83,84]. We
note that this does not apply to older electromechanical induction
meters, but only to solid-state (static) smart meters [85]. Berrisford
provides an accessible and practical introduction to this problem [86].
Literature reviews of this field have been conducted [87] and updated
[88], and readers are encouraged to consult them for more technical
details, as we will focus on the M&V implications.

The problem with measuring non-sinusoidal loads is that reactive
power is calculated and defined in numerous ways [84]. Although the
different formulas give the same result under sinusoidal conditions,
they differ when harmonics are present. Current magnitude and power
factor are the main uncertainty drivers [81]. An example of this in-
accuracy has been documented in the field [86]: an approved Canadian
meter using Budeanu's power definition [89] was replaced by an ap-
proved Canadian meter using Fryze's power definition [90]. This re-
sulted in a power factor penalty being added to the customer's bill when
the meter was changed, even though the energy use did not change.
Further investigation revealed non-sinusoidal conditions due to the
harmonics generated by the client's VSDs, which the meters measured
in different ways. We wonder whether some of the inaccuracy noted by
Polese et al. [74] in their metering of a retailer with many MELs may
not be due to such effects.

Because of these different definitions and different calculation

methodologies among different meters, Cataliotti et al. [91,92] re-
commend that when calibrating a meter in-situ, a reference meter im-
plementing the same metric as the Unit Under Test (UUT) should be
selected, so as not to compound the errors. If the manufacturer does not
state the metric used, methods for determining it experimentally have
been devised. However, it was found that in such a case, the UUT only
adheres to the accuracy limits set in the standard when compared with
the reference meter adopting the same power definition, not with the
true energy value.

There is, however, a course charted through the reactive power-
definition confusion. The IEEE Standard 1459 (2010) [93] gives gui-
dance on how reactive power should be defined and calculated. The
consensus among most of the papers cited here is that this definition
should be adopted. It is also endorsed by the IEC. Berrisford has de-
monstrated that reprogramming certain kinds of digital watt meters in
minor ways can lead to calculation according to the IEEE 1459 defi-
nition [86]. Although utilities do not itemise harmonic distortion on the
bill, preliminary work has been done to prepare the way for future
considerations [94,95].

We recommended that M&V professionals use meters measuring
so-called ‘fundamental’ quantities, from which to calculate the true
reactive power according to the IEEE 1459. Meters with sampling rates
adequate for including relevant harmonics should be selected, although
increasing the sampling rate increases the price of the meter sig-
nificantly in the range 0–80 sμ [96].

3.3. Analog to Digital Conversion (ADC) and virtual instrument
measurement uncertainties

Most modern static meters employ ADC (also known as Digital
Signal Processing). ADC is also used in Virtual Instrumentation (VI),
where a transducer is connected to a personal computer via a Data
Acquisition (DAQ) board, for user-built DSP software to process [97].
Note that VIs can measure any analog signal on which to perform ADC
and that the general uncertainty principles remain the same. This field
shows great promise for lower cost calibration and measurement of
electrical signals for M& V purposes.

ADC technology is useful in electrical measurements as it has the
potential for measuring true reactive non-sinusoidal power accurately,
as discussed in Section 3.2. However, various standards specifying
different parameters for ADC exist. Spataro [98] notes that ADC un-
certainty has been quantified by the ISO GUM uncertainty propagation
law (through a Fast Fourier Transform) [99], random-fuzzy variables
[100], and MC approaches [97]. Due to the difficulty of convolving
different uncertainty distributions analytically, such numerical methods
make sense. These require any number of different variables, depending
on the standard and method employed. Spataro identifies that only
offset (bias), gain, Total Harmonic Distortion (THD), spurious tones,
and the Signal to Noise Ratio (SNR) are needed to quantify power
quality. The details of such errors depend on the electronic components
of the DAQ itself, but such systems can reach standard-level accuracies
at a fraction of the cost [101]. They are thus expected to increase in
popularity as they become commercialised [99]. In any event, the un-
certainties introduced by ADC is usually much smaller than those of the
transducers themselves [97]. The most recent results in this field
comprise a detailed theoretical model with experimental results for a
DAQ-based sampling watt meter, based on the definitions set out in
IEEE 1459 [88].

3.4. In-situ meter calibration

Due to the MID ratified by the European parliament in 2004 [71],
European meters (gas, water, electricity, etc.) need to be calibrated
under actual conditions, interpreted as the actual meter installation
location [102]. This has lead to various studies of how such a calibra-
tion may be achieved. Femine et al. [102] have devised a scheme for a
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field laboratory with a travelling standard. Power generated by the
laboratory then allows a set of tests to be conducted at the facility. The
directive has been viewed as impractical since not all plants can be shut
down for such a procedure, metering cost increases drastically with a
call-out for a portable metrology laboratory, and man-hours needed to
test all Italian meters twice-yearly is unrealistic [103]. To offset this
burden, Amicone et al. proposed a low cost, stable, ‘add-on’ calibrator
that can be activated twice yearly to perform the necessary calibration
[103]. Crenna et al. [104] considered the MID as a step toward the
modernization of legal metrology. They considered water meters and
proposed an MC approach based on statistical metrology and risk
techniques, similar to Pendrill and Källgren's work on CO2 meters [105]
discussed in Section 6. This seems by far to be the simplest and most
affordable proposal, although it relies on large quantities of manu-
facturer data and does not address all the concerns raised by the other
authors. Meter ageing and water temperature are considered as influ-
ence factors similar to power factor and harmonic distortion for energy
meters, although the analogy is not close enough to use the method as-
is in electric applications.

Measurement accuracy and its place in the smart grid are being
investigated [106] and was proposed in rudimentary form a decade ago
[107]. As smart meters become more common and interconnected,
network cross-calibration to relieve the burden of calibrating every
single meter may become a possibility, and represents an opportunity
for future research.

3.5. Measurement uncertainty for non-electrical parameters

Often, non-electrical variables are also included in the energy
model. Table 2 details typical errors for such cases. This is especially
common when whole-facility regression models are constructed using
measurements of variables such as temperature [108], occupancy
[11,8] or flow rate [104]. Besides the error in the meter itself, poor
meter selection, placement, or misestimation of independent variables
may also contribute to unquantifiable errors in this case [22]. For ex-
ample, the flow rate and temperature in a duct vary between the edge
and the centre and features such as elbows impact flow and heat
transfer characteristics for a non-negligible downstream portion of the
duct. Because of these complex interactions, it is useful to work with
general error estimates such as those found in G14 [18]. However, even
these values should be used with caution. For example, CO2 sensor
accuracy was investigated [109] and the authors found that only seven
of the eighteen sensors had errors of less than 20% at standard CO2
levels for classrooms - a much higher value than that specified by G14.

Occupancy is a key factor in building energy use but is notoriously
difficult to measure and model. Combinations of reed switches and
passive infra-red (PIR) sensors seem to work well for offices [110], but
these are very simple environments with single occupants per room. For
more complex situations, proxies such as blind, fan, light, thermostat,
door, or other sensors are used, although these are imperfect [111,112].
We note that recently Wang et al. [8] have shown in a sophisticated
study that occupancy was not a significant energy use factor for their
case study building. However, the building in question used a centrally
controlled independent HVAC system, and this result is to be expected.

Occupancy models usually compare forecasts to data measured with
error. However, as long as the measured variable predicts energy use
well, the measurement error or true occupancy is not significant for
energy models, unless occupant behaviour is being investigated.

4. Meter uncertainty as a component of M&V uncertainty

In South Africa, measured and verified energy savings achieved by
businesses are eligible for tax deductions according to the 12L tax in-
centive [116]. However, measurement devices used for such projects
need to be calibrated by accredited laboratories. This is a sound prin-
ciple and has been adopted by many other agencies as listed by Ahmad

et al. [73]. However, it greatly increases measurement costs, which can
make M&V be prohibitively expensive and reduce the number of fea-
sible projects significantly, as in the CDM case [32,31]. Given the small
contribution to overall uncertainty made by electrical meters, especially
when sampling is done [26], such requirements may be counter-pro-
ductive. Overall accuracy requirements could be better served by
spending the funds on obtaining a larger or more detailed sample, or
measuring independent variables more accurately.

DAQ-based meter calibration discussed in Section 3.3 presents an
interesting opportunity in this regard. We recognise that calibration is
about more than having access to an accurate reference instrument and
that quality and traceability procedures as set out in ISO 17025 [40]
should also be in place. However, even energy meters calibrated to
lower accuracies than the current classes should be sufficient for most
M&V applications, where uncertainties are dominated by other factors
(cf. Section 2.2).

One should also use these techniques when one measures in-
dependent explanatory variables such as temperature or occupancy
with error. We now turn our attention to this topic.

Table 2
Instrument uncertainties for M&V Applications. Note that many of these values come
from ASHRAE Guideline 14-2002 Appendix A5.6 [18], and are quoted at the 68% con-
fidence level for this source. Guideline 14-2014 values are unchanged unless otherwise
noted. Furthermore, Guideline 14-2014 stipulates these as minimum requirements, rather
than typical values, but also recommends that they be used if no other values are avail-
able (Section 4.2.11.2). The confidence level for the other sources is unspecified or
complex, and readers are referred to the original documents for more complete descrip-
tions. FS denotes a percentage of full-scale.

Quantity Type Guideline 14 Other Source

Temperature Ambient outdoor portable
electronic

2–5%

Domestic water portable
electronic

2%

Air ducts 5%
Pipes and ducts 2–5%

Air velocity Indoor: non-mechanical or
blower door

5% 2–5% [73]

Handheld anemometer 10%
Recording anemometer 5%
Meteorological grade
anemometer

2%

Air ducts: array 2–5%
Pressure Gauge 0.25–2%

Ducts 1–5%
Pressurization/
depressurization

3–5%

Energy Electrical Energy meter 1% 0.2–0.5%
[66–68]

Current Transformer 2–3% 0.2–3% [70]
Portable Watt meter 1–5%
Current: low cost home
energy

>10% [76]

Stick-on Meter 5% [75]
Plug-through meter 20% [74]
Relative humidity 2–5% 4.5% [73]
Energy meter (gas) 1%

Flow rate Bucket and stopwatch,
portable meter/probe

5% < 1–5% [1]

Domestic, accumulating 1–2%
HVAC inline or insertion
meters

2% < 1% [1]

Ultrasonic, flare 2.5–5% [113]
Smokestack gas 5–20% [114]

Run-time Permanent 1–5%
Portable 2–5%

Light Sensor / logger 8–10% [73]
Other Pyranometer 2–5% >10% [115]

Door position 2%
RPM 1%
CO2 > 20% [109], 4%

FS [73]
Combustion 2% ∼ 0.5% [105]
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5. Mismeasurement

The measurement errors discussed thus far are mostly harmless. If
random, mismeasurement of the dependent variable (usually energy)
widens the confidence interval around the estimate but does not add
bias to the parameter estimates. However, this is not the case when
these noisy measurements are used as independent variables in a re-
gression analysis. This errors-in-variables effect is seen in energy re-
gression models when a covariate such as temperature or occupancy is
measured with error, and may also occur when one calibrates an in-
strument against a standard with some error. In such cases, the random
variation is no longer in y , but in x . Random errors in x have two
effects. First, all the regression parameters become biased due to the
“flattening out” of the data points as they spread out on the x-axis. This
is called attenuation. Second, the confidence intervals on these estimates
are narrower than they should be, giving misleadingly high confidence
in biased values, also manifesting as a loss of statistical power [64].
This is because as the measurement error (variance) increases, it be-
comes increasingly difficult to distinguish it from the process variance.
This lack of power may then be misinterpreted as a lack of effect when
pre- and post-retrofit measurements are compared [64]. To regain this
power, much larger sample sizes are then required. Table 3 summarises
the effect of mismeasurement on various statistics, but we should note
that effects vary with error type and regression model type.

To illustrate attenuation, consider attempting to use one unbiased
meter to calibrate another when the reference meter reading contains
random error. Let the reference meter be x, and the UUT be y . If both
the reference and the UUT are perfectly accurate, a regression line with
a gradient of one should be drawn on the xy plane:

= +a by x , (1)

where =a 1 and =b 0.
If only the UUT has an error (thus an error in the response or de-

pendent variable measurement), the dependent variable = + ϵy y* will
be measured by the UUT, where the y* indicates the surrogate reading
and ϵ the error. We thus observe y* in lieu of y , where:

∼ Normal τy y y* ( , ) (2)

The error will add noise, but will not bias the result, as illustrated in the
left-hand graphs of Fig. 3. These are Ordinary Least Squares (OLS) re-
gression estimates for increasing values of the standard deviation
multiplier τ . We observe that increasing error does not bias the esti-
mates. However, this does not hold for errors in x of the form

∼ Normal τx x x* ( , ), (3)

As can be seen on the right-hand side of Fig. 3. For a further graphical
illustration, see the UMP Chapter 13 [43], Section 3.2.

We note that mismeasurement is less of a problem for prediction,
which is often the goal of M&V models. If you infer some function

= θy x* * * based on measurements of x made with random error, that

relationship defined by θ* will continue to hold as long as you forecast
and measure using x* in lieu of x. In such a case a Measurement Error
Model (MEM) is unnecessary. This is part of the reason that measure-
ment error is not a greater problem in M&V: often the baseline and
reporting period measurements are made with the same instruments,
and so the attenuation effect may ‘cancel out’, as long as inference
about the physical meaning of the parameters (e.g. kWh/Heating
Degree Day) is not attempted. Consider the ‘time-of-week and tem-
perature’ M&V regression model [117] in a situation where the tem-
perature is measured with error because the weather station is in a
different microclimate to the facility [118]. The relationship between
energy use and temperature would be attenuated. This would cause
certain elements of the time-of-week parameter vector to seem more
influential than they actually are. But this may not be a problem.
Suppose that HVAC-related Energy Conservation Measure (ECM) is
installed and the model is used for M&V. The forecast (adjusted
baseline) energy use in the post-retrofit period will have the same at-
tenuation as the baseline. It would, therefore, be accurate, assuming a
calibrated model and same temperature data source. Therefore the total
savings estimation will have a similar Normalised Mean Bias Error
(NMBE) to the case with no measurement error, although the added
noise may lead to a higher Coefficient of Variation on the Mean Squared
Error (CVRMSE) on the training set. This being said, one cannot regress
energy use against temperature to infer the effectiveness of the ECM,
nor can such a regression be transported for project decisions in other
places. Furthermore, the confidence interval around the reported sav-
ings will also be too narrow.

5.1. Mismeasurement in M& V literature

Although attenuation bias due to mismeasurement has been docu-
mented in M&V, the effect is not well-known. Except for the UMP
Chapters 13 and 23 [43,44], all M &V guidelines discussed so far, as
well as M&V regression guides [121] do not mention attenuation, even
when measurement errors are discussed. The UMP Chapters 11 and 12
(Sample and Survey Design) [46,6] state that random measurement
error does not lead to bias, even though survey measurement error is
one of the most common MEM test cases [122]. G14-2014 stipulates
that the total span of the extra uncertainty created by errors in in-
dependent variables shall be determined by biasing the variables to
their maximum and minimum values [19]. Attenuation is unaccounted
for.

Regarding literature, an MC analysis was done by Sonnenblick and
Eto from Lawrence Berkeley in 1995. They found this bias effect for
measurement precision of energy programmes [30], Fig. EX-2, and
identified it as the errors in variables effect. The measurement of op-
erating hours was considered to be the most sensitive to this effect.

Ridge [123] presented an informative paper on mismeasurement in
M&V in 1997. He relates how the Californian utility Pacific Gas and
Electric's 1992–1993 Commercial New Construction Program and the
1994 Commercial HVAC program realisation rate estimates were un-
reasonably low. The realisation rate is the ratio of expected to actual
savings. He traced the problem back to random errors in independent
(explanatory) variables that led to attenuated estimates. This was cor-
rected for in subsequent studies by the use of dummy variables.

A more recent example of mismeasurement is found in the case
where Canadian economists Rivers and Jaccard published a study
which found that Demand Side Management (DSM) interventions made
no statistically significant impact on energy demand when viewed at a
national level [124]. This generated some controversy. Rivers and
Jaccard proposed that measurement error in the independent variable
(DSM spending proportion vs. EE spending proportion) may have
played a role in attenuating the DSM-effect parameter estimate. How-
ever, although Violette et al. [125] also acknowledged this errors-in-
variables possibility, they proposed that other features of the original
Rivers and Jaccard model were more influential.

Table 3
Spurious effect of mismeasurement in x on various statistics assuming classical additive
errors, summarised from Carroll et al. [64], Gustafson [119], and Ree et al. [120].

Statistic Effect

Mean None
Variance Increases
Covariance None
Regression, single predictor, slope Decreases
Regression, single predictor, intercept Increases
Regression, multiple predictors Complex
Confidence on regression coefficients Increases
Statistical power for detecting relationships Decreases
Correlation Decreases
Partial correlation Increases
Non-linear features (such as = siny x) Masked
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5.2. MEM and calibration techniques

There are two main bodies of research addressing measurement
errors relevant to energy models. First, commercial electrical me-
trological techniques have been honed over the last half century. These
methods usually employ Test Uncertainty Ratios (TURs), which is the
ratio of the precision of the calibrator to that of the UUT. They have had
to be revised recently as the accuracy of calibrators and digital multi-
meters (DMMs) has converged to 8.5 digits (one part in 108). Second,
trans-disciplinary academic investigations have been conducted using a
variety of approaches. These have advanced significantly in response to
the stringent and complex requirements of medical fields such as epi-
demiology, coupled with the relatively poor accuracy of the instru-
ments measuring certain human epidemiological variables.

5.2.1. Electrical calibration techniques
These techniques are applicable mainly to calibration. They are

commercial techniques usually using indirect, empirical, conservative
methods, and cannot be classified as true MEMs. A TUR of 4:1 is gen-
erally required. This means that an instrument accurate to p% may be
used to calibrate an instrument accurate to p4 % (called the Unit Under
Test, UUT). This may reflect the other rule of thumb proposed in
Section 2.2. However, since DMMs such as the 8.5-digit Fluke 8508A do
not allow for a TUR >4 between the UUT and the calibrator, other
techniques had to be developed. The simplest and most accurate is to
characterize the long-term drift of the instrument by plotting the
change in measurement errors over time, and then drawing a regression
line through the successive measurement points [126,127]. This re-
gression line has been shown to be more accurate than the individual
calibrations [128]. Within limits, and with a large enough calibration

history, this technique may be used to accurately quantify an in-
strument's error without recent calibration. This technique has also
been proposed for characterising the stability of a calibrator that may
not meet the TUR >4 nominally, but does meet it practically. This is
possible as the calibrator's stability specifications are usually lower than
what an individual instrument's stability may be, when measured with a
more accurate DMM.

On the other hand, if one wants to test an instrument with no his-
tory, and one can not achieve the required TURs, alternative methods
also exist [129]. For true calibration, the only option is “disciplining”
the calibrator by using an additional, more accurate DMM to measure
the calibrator output in real time [127].

In cases where an accept/reject decision has to be made rather than
full calibration, there are three options: lower the confidence level of
the test, invest in a more accurate standard, or analyse and document
the measurement points for which inadequate TURs exist. The first
option (lowering the confidence level) is called guard banding, and is
popular in metrology [130–132]. A guard band is a test limit stricter
than the instrument specification limit [133]. In other words, by em-
ploying guard bands, we can use a calibrator with a TUR of 2 instead of
4. The price we pay is that the UUT may still be rejected, even if the test
result falls between the Lower Confidence Limit and the Upper Con-
fidence Limit of the calibrator. This is because to compensate for our
lower TUR, the test limits are narrower than the instrument specifica-
tion limits. Thus guard banding keeps the consumer's risk constant even
though a less accurate calibrator is used, but increases the producer's
risk for such a case. When considering this approach, one must re-
member that at a certain level, testing becomes uneconomical. For
example, for a TUR of 2 and specification limit of 2 σ , the consumer's
risk is as large as it would be if no testing at all took place, and the

Fig. 3. OLS parameter estimates for y=ax+b, where
a=1 and b=0, given measurement error τ in the
form (2) and (3).

H. Carstens et al. Renewable and Sustainable Energy Reviews 82 (2018) 2791–2805

2798



consumer simply accepted the probability of the unit being outside of
specification (probability=1.2%) [129]. In such scenarios the expected
value of the test, or the cost/benefit trade-off between testing and not
testing, should be considered.

Rossi and Crenna [134] provided a good example of setting test
limits lower than specification limits for in-house testing at the pro-
ducer side to minimise risk, which they applied to water meters [104].
To this end, they have developed a software package called UNCERT -
essentially an automated MC approach. Researchers from the US Na-
tional Institute for Standards and Technology (NIST) have also shown
that a Bayesian approach to the accept/reject decision rule of ISO
14253-1 (inspection of work pieces) [135] delivers superior results in
cases where it is applicable [136].

5.2.2. Transdisciplinary techniques
Not all uncertainty analysis models (also known as uncertainty

quantification models) considering measurement error are MEMs. On
the other hand, some probabilistic models using MC methods could well
be incorporated into MEMs, although their function in most literature is
exploratory what-if analysis, sensitivity analysis, or forecasting (see
Section 6). Other methods are simply robust: insensitive to outliers.

There is a notable amount of literature on MEMs, although much of
it is too technical to be useful to the M&V practitioner without a strong
background in statistics. For linear problems Fuller [137] is popular,
and his method-of-moments is straightforward and recommended for
OLS regression with additive measurement errors (cf. Carroll et al.
[64]). The non-linear case presents a greater challenge, but may also be
more relevant to M&V and instrument calibrations as shown by Car-
obbi et al. [138]. The most appropriate (and readable) treatments are
by Carroll et al. [64], and Gustafson [119].

MEMs can be divided into functional and structural approaches.
Functional approaches make no assumptions about underlying dis-
tributions (thus avoiding model misspecification) and include
Regression Calibration and simulated extrapolation (SIMEX). Structural
approaches make assumptions about the underlying distributions and
relations governing the measurement system and include Maximum
Likelihood Estimation (MLE) and Bayesian Markov Chain Monte Carlo
(MCMC) techniques. All four of these techniques are powerful and can
yield useful results if applied well. The choice of method depends on its
appropriateness to the data and ease of implementation.

The SIMEX concept is simple and powerful. Suppose we know that
our variance = τx xVAR( *| ) . We also know our current parameter es-
timate θ x*| *, that is, θ τ*| 0

2. We want to know our true parameters θ x| . If
we now increase the error τ in the dataset, the parameter estimates will
start drifting away from their true values due to attenuation. In this
way, we can obtain values for …θ θ θτ τ τ*| , *| , *| ,1

2
2
2

3
2 We will observe a

trend, and can fit a curve to these points. Extrapolating backwards will
then yield =θ τ*|( 0), which is θ x| . The disadvantage is that SIMEX is
difficult for cases where there are combined multiplicative and additive
errors and that it can be expensive for non-linear higher dimensional
models. It has also been found that in certain cases MLE methods yield
considerable smaller variances [139], although for most applications
SIMEX is simple and effective.

Regression Calibration methods essentially trade an exposure
model for a validation (calibration) sample: a sub-sample measured
without error, using a ‘gold standard’. From the information gleaned
from the sub sample, values for x are imputed instead of the x* values
measured. Repeated measurements may also be used. It is not suscep-
tible to bias due to model misspecification since the exposure models do
not need to be specified. Regression Calibration is useful for trials
where extensive, precise, or repeated testing is only feasible for a small
sub-sample.

One potential weakness of the Regression Calibration method is that
it maps x* onto x in a one-to-one fashion, where methods such as Bayes-
MCMC consider all reasonable values for x given the data. Therefore
the uncertainty is specified as fully as possible. This avoids the effect of

not considering the uncertainty contribution of imputing x values for
the first step of the Regression Calibration procedure.

Maximum Likelihood Estimation has become a very powerful
structural approach in many areas of statistics. MLE techniques have
the potential of producing better estimates than functional approaches
if the model is well specified, although this is often difficult [64].

Kennedy and O'Hagan presented a seminal paper on which much of
the current Gaussian Process (GP) energy MLE research is based [140].
The short discussion below will focus on this method, which may be
classified as Bayesian or quasi-MLE, depending on your preference.
Purer MLE MEMs are also used [64]. GPs are popular because they are a
generic, convenient and accurate. In a GP, every data point is assumed
to be normally distributed, with the dataset then assumed to have a
multivariate normal distribution. The GP kernel is a function that de-
scribes how the covariance matrix between the data points behaves,
and the parameters of the kernel function are determined using an MLE
technique with a two-step Expectation Maximisation algorithm. In the
E-step the algorithm averages over the unknown explanatory variable x
based on the observations of the response y to x*, and updates the
expected log-likelihood. It uses numerical integration as the expressions
may not be closed-form. The M-step maximises the log-likelihood of x,
after which the algorithm returns to the E-step and iterates until
maxima are found. Recently Burkhart et al. have applied this success-
fully in the energy monitoring and evaluation field [141]. They found
that adding MC Expectation Maximisation to a Gaussian Process to
account for uncertainty in input data makes parameter estimates more
robust, and requires fewer data. They then propose trading GUM Type
A uncertainties for Type B uncertainties to minimise cost.

Methods such as GP regression present advantages over full
Bayesian methods in that model misspecification and computational
expense becomes less of a concern. However, MLE methods are ad-
vanced empirical Bayesian methods. Full Bayesian methods provide
some advantage since the models are easily specified and solved, no
approximations are necessary, and standard errors on the estimates are
more easily calculated [119]. Stopping or convergence criteria are a
concern for both approaches [141]. Gelman [142] also notes that EM
algorithms with multivariate normal approximations are not ideal for
small data sets as convergence is only asymptotic, and the normal
distribution not ideal for describing such cases.

Much literature on the technical merits and application of Bayesian
methods exists, as it is the natural structural MEM approach [64]. It is
more than a machine learning algorithm: it is rather a branch of sta-
tistics derived from conditional probability logic. Very briefly, Baye-
sianism can be explained as follows. The unknown parameters θ are
viewed as random variables defined by ‘prior’ probability distributions.
With the data D, they are solved for as θπ D( | ). Bayesianism is different
to frequentism, which sees the parameters as fixed and the data as
random realisations which will even out to the parameters in the long
run. This distinction is often quoted, but remains obscure to someone
without Bayesian modelling experience. As an explanatory example,
consider the = +a by x linear regression case discussed in Section 5.
We define a and b as

∼ = =a b Normal μ σ, ( 0, 10 ).5 (4)

These are the priors: they define the information we have about the
system that is not present in the data itself. In the case above, the priors
are vague because we presume to know little about the system. Bayes
theorem states that

=θ θ θπ π π
π

D D
D

( | ) ( | ) ( )
( )

,
(5)

and allows us to invert our priors θπ ( ) and data θπ D( | ) to find what we
are interested in: the probability distributions of the unknown para-
meters, given the data: θπ D( | ). This usually requires intractable in-
tegration and the specification of the probability of our data π D( ).
However, the MCMC numerical algorithm circumvents this difficulty by
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generating a Markov process whose stationary distribution is the pos-
terior θπ D( | ). By sampling in Monte Carlo fashion from this distribu-
tion, parameter distributions are found numerically.

Bayesian approaches with non-informative priors provide MLE es-
timates of data [142]. However, they are more flexible since they do not
require ad hoc techniques dealing with special cases, as with most
frequentist statistics. This allows rapid model development and less
time spent on building complex, realistic models. Mathieu et al. also
recommend this approach for error analysis of energy measurement and
verification, especially for cases where errors are financially significant
[143]. For the reader unfamiliar with Bayesian techniques, Kruschke
[144] and Gelman et al. [142] are recommended; Kruschke being more
practically oriented and Gelman et al. more advanced.

The disadvantages of the Bayesian-MCMC techniques are that they can
be computationally expensive, susceptible to model misspecification, and
requires more thinking on the part of the practitioner. The computational
expense becomes a problem when many variables (or data points) have
uncertainties in them which need to be modelled using MCMC. The model
then suffers from the curse of dimensionality. Thus, for problems such as
the real-time calibration of thermal network parameters is needed,
Bayesian techniques have been found to be too computationally expensive
even though they are more robust than lightweight ‘gray-box’ techniques
[145]. Variational inference may alleviate this concern, and although the
technique is relatively new it has been implemented in popular software
[146]. Model misspecification arises when the true error structure is dif-
ferent from the one specified in the model. Investigating the robustness or
sensitivity of the model to such assumptions becomes necessary. Last,
there are few simple ‘recipes’ in Bayesian statistics. There is no t-test or F-
test blanket equivalent, although Kruschke provides alternatives [144].
Generally, however, Bayesian solutions are more problem-specific than
popular frequentist tests.

Several non-technical reasons for the application of Bayesian ap-
proaches to M&V should be noted. First, a Bayesian MEM is similar to a
standard, well-specified Bayesian model. The model's ability to deal
with measurement errors follows from the nature of the Bayesian
mathematics itself. Second, the development of Markov Chain Monte
Carlo (MCMC) techniques has allowed for the previously intractable
integration involved in most non-trivial Bayesian calculations to be
done efficiently and accurately. The numerical MCMC model converges
reliably on the analytical solution [147]. Third, as noted in the GUM
Supplement [49], the MC approach is not distribution dependent and is,
therefore, more flexible. Fourth, intuitive and powerful open-source
software libraries have become available by which Bayesian models
specified and solved. Scaling to more complex models is straightfor-
ward. Although BUGS and JAGS have been the mainstay software
packages in the past, Stan [148] probably leads at the moment. It can be
implemented in various languages such as Python, R, Matlab, Julia, or
C++. PyMC3 [149] is also worth mentioning. It is written in and for
the Python environment and is gaining popularity due to its simple
interface, discrete variable and missing value support, and ease of in-
tegration into the popular scientific Python environment. Both
packages are being developed actively.

6. Project decisions under measurement uncertainty

Pendrill [105] rightly observed that measurements are seldom made
for their own sake, but rather in support of a financial decision. Indeed,
decision maker uncertainty about cost-effectiveness is the most fre-
quently-cited barrier to the commissioning of energy projects [150].
However, the contribution of technical uncertainty in the performance of
the ECM is usually smaller than economic uncertainty contributions, as
noted by Rysanek en Choudhary [151] and Friege and Chappin [152].

Regarding the M&V literature on the subject, project risk associated
with measurement uncertainty has been identified by both researchers
[143,153] and practitioners [154], but little M&V literature addresses
this topic directly. Ligier et al.'s recent contribution [28] on decision

support explicitly in the context of building simulation and M&V
comes very close, and Boxer et al.'s method for self-benchmarking can
also be viewed as an M&V and decision support tool [155]. We will
consider four aspects below. First, M & V guides on risk or its compo-
nents namely cost and uncertainty. Second, M&V research related to
the aforementioned topics. Third, financial energy project decision
support literature. Fourth, metrological decision support literature.
Since building energy simulation is a subject on its own, that will be
dealt with in Section 6.1.

Sonnenblick and Eto [30] investigated expected monitoring project
value as a function of measurement precision in 1995 already. In that
case, it was applied to overall DSM project cost-effectiveness: levelized
project cost vs. levelized savings. Probably the most notable measure-
ment/cost treatment is ASHRAE Guideline 14–2002 [18], which supplies
elaborate tables for determining measurement costs for different in-
struments in various project scenarios. However, it does not calculate
risk adequately [156]. The SEE Action Guide [25] also provides an in-
troductory overview of measuring budgets in the context of project risk.

Regarding research, a foundational mathematical description of
M&V has been compiled [157], and a useful theoretical summary of
different uncertainty approaches in power systems given [158]. M&V
sampling, metering have been traded off to minimise project cost [2–4],
and modelling uncertainty was added later [159], although risk was not
treated explicitly. These designs were extended to a Bayesian frame-
work where risk could be incorporated [55,160], although the research
did not focus on risk. An insightful cost-benefit trade-off for chilled-
water system design in the context of uncertainty [161] influenced the
G14 [18] approach. Preliminary work on decisions in Energy Perfor-
mance Contracts (EPCs) under measurement uncertainty has also been
presented [26]. It is noted that attempts have been made to quantify the
risk due to energy meter measurement uncertainty [69,162]. However,
this calculation was much too simplistic, and was presented by a
marketing manager of a meter manufacturer calling for even-more-
stringent standards to which the latest meters could be qualified. This
standard is unnecessary since the current Class 0.2S energy meters are
the smallest uncertainty sources in almost any conceivable project, and
their uncertainties can already be neglected for risk calculation pur-
poses in many cases [26].

Research on financial decision support related to EPC, project un-
certainty and risk have been conducted from an economic perspective
using MC analysis [163] and other techniques [164]. The US Depart-
ment of Energy's EnergyPlus software is usually used [165]. Deng et al.
[166] provided a useful summary of the design of EPCs under un-
certainty and presented a relatively sophisticated EPC decision model
[167]. Measurement uncertainty is not considered explicitly in these
cases, although it can be incorporated without much extension.

Focusing now on measurement, relevant research on this topic has also
been conducted from a legal metrological perspective. Here measurement
uncertainty and cost are traded off in a decision support framework.
Crenna [104] and Pendrill [168,105] used an MC method, while Fearn
[169] used a more cumbersome analytical approach. However, the focus
of these studies is accept/reject decisions based on a standard, rather than
the verification of individual measurements. Risk was viewed from a
government perspective as a function of the cost of emissions to society.
Sonnenblick and Eto also used this cost function in their report on the cost-
effectiveness estimates of energy projects in the context of measurement
precision [30], and Rysanek and Choudhary [151] used the marginal
abatement cost: the ratio of net present value to GHG units saved. These
metrics seem more rational than short-term financial risk measures when
one considers the broader goals of energy research.

6.1. Measurement uncertainty in building simulation

Research into uncertainty in building energy modelling (BEM) has
increased dramatically in the last ten years. This is because it has been
recognised that considering model input uncertainty is essential to
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identifying which ECMs should be implemented.
A full review of building simulation calibration literature is beyond

the scope of this survey, and we will focus on cases where measurement
uncertainty could be considered. For a broader view, a useful starting
point is Reddy et al.'s research series forming part of ASHRAE's in-
vestigation of calibrated simulation in RP-1051 [170–173], and
Coakley, Raftery, and Keane's more up-to-date review, considering
uncertainty in detail as well [174]. Heo's PhD thesis also provided an in-
depth discussion and case study of one approach [156].

Databases of parameter uncertainties have been compiled [175],
and these, or results from the literature, are used for uncertainty ana-
lysis or quantification. The key problem, however, is that doing an MC
simulation considering all parameters simultaneously is infeasible due
to the curse of dimensionality. Sensitivity analysis methods are thus
needed to reduce the number of parameters to a feasible figure. Sun
et al. provided one of the better discussions on this topic [118], and
Tian also wrote an informative review [176]. Several excellent ex-
amples of this process have been published, and are summarised in
Table 4.

Most building simulation research accounts for varying input para-
meters through uncertainty and sensitivity analysis. However, much of
this research concerns itself with how varying the input parameters
changes the output, but not how variance in the input parameters affects
the output. In other words, it does not ask how noisy input may at-
tenuate the output, but how biased input will bias the output. It is
possible that this is accounted for in GPs, although it is uncertain.

Two related studies deserve mention. To alleviate the burden of MC
computation for building simulation studies with large uncertainties
and many options and combinations, Rysanek and Choudhary proposed
a lightweight non-probabilistic decision approach [151]. These sce-
narios apply more to simulation (modelling) uncertainty rather than
measurement uncertainty. On the other side of the spectrum, Sanyal
et al. reported a machine learning and supercomputer-based method to
alleviate the modelling burden by pre-tuning simulation inputs to ex-
tant data for standard US buildings [177]. This speeds up model
building significantly.

In what seems to be a recurring theme, the Bayesian approach is
becoming increasingly popular because of its uncertainty quantification
features. Riddle and Muehleisen provided a useful introduction to
building calibration with such models [178], and Heo has recently
presented an overview of building simulation models under uncertainty,
as well as an introduction to the Bayesian approach [179]. Note that in a
Bayesian framework measurement, sampling, and modelling errors are
considered simultaneously, although they remain distinct [180].

Heo and Augenbroe have built up a noteworthy body of work on
building simulation covariate calibration and uncertainty analysis using
(Bayesian) Gaussian Process methods [181,182]. Quantitative risk
analysis for decision support in retrofit project planning was then ex-
plored with a focus on the accuracy of the simulation rather than me-
tering decision making [183]. Their latest research incorporates this
into a scalable methodology whereby more optimal retrofit decisions
can be made, given uncertainty in input parameters [184]. Along si-
milar lines, a lightweight and reasonably accurate alternative to the GP
has been proposed [185]. Another notable contribution has been made
by Tian et al. who used sophisticated data analysis and Bayesian
methods to show the relative importance of different data on building
calibration, and the robustness of the Bayesian method to missing input
data [186]. Bayesian methods have therefore been demonstrated to
deliver very good estimates, but Heo notes that even if this were not the
case, they could still be superior to deterministic models since they
quantify model prediction uncertainty distributions [181].

7. Recommendations

In the light of the literature on measurement uncertainty and M&V,
several recommendations can be made. Regarding M&V reporting,

1. The effect of power quality on M&V studies should be noted in
M& V reports. Stating the meter type and meter calculation method
should be standard.

2. The sensitivity to mismeasurement should at least be investigated
for M&V regression models. In some cases it may be necessary to
use MEMs to compensate for measurement error effects such as bias
and unrealistically high statistical power.

Regarding further research,

1. Input uncertainty quantification is a now firmly established in the
building simulation field. However, it is unclear whether the effect
of mismeasurement on building energy simulation calibration is
accounted for. Attenuation bias may produce incorrect results in the
parameter screening phase by lowering the apparent influence
coefficients of certain mismeasured, influential variables. A study on
this phenomenon is therefore warranted.

2. The in-situ calibration of smart meters through the smart grid is an
interesting and potentially revolutionary possibility. Instead of ca-
librating meters in a laboratory using reference instruments, other
techniques could be used. For example, by cross-referencing meters
in a network, or utilising smart devices acting as loads one could
reduce calibration costs significantly.

3. Although risk-conscious capital expenditure decisions in energy
projects have been investigated, the same depth of treatment has not
been given to energy monitoring. By utilising metrics such as those
found in Table 4, monitoring costs may be optimised, leading to
risk-optimal measurement and sampling designs.

8. Conclusion

Measurement uncertainty remains an important consideration in
energy M&V. Not only does this apply to electrical meter measure-
ments, but also to the quantification of uncertainty in covariate speci-
fication. Even unbiased random error in covariate measurement may
lead to biased parameter estimates. However, the contribution of in-
dividual measurement uncertainties, and the cost and effort expended
to quantify or mitigate them should be considered carefully to allocate
resources efficiently. In some cases, more accurate quantification or
calibration of instruments may make little difference to the project
decisions.

Many techniques are used for uncertainty quantification, but
Bayesian methods are notable for their support in almost all related
fields, from general metrology to Measurement Error Methods and
decision support. However, these techniques are still new and represent
a growing field in energy research.
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Abstract: Energy Measurement and Verification (M&V) aims to make inferences about the savings
achieved in energy projects, given the data and other information at hand. Traditionally, a frequentist
approach has been used to quantify these savings and their associated uncertainties. We demonstrate
that the Bayesian paradigm is an intuitive, coherent, and powerful alternative framework within
which M&V can be done. Its advantages and limitations are discussed, and two examples from the
industry-standard International Performance Measurement and Verification Protocol (IPMVP) are
solved using the framework. Bayesian analysis is shown to describe the problem more thoroughly
and yield richer information and uncertainty quantification results than the standard methods while
not sacrificing model simplicity. We also show that Bayesian methods can be more robust to outliers.
Bayesian alternatives to standard M&V methods are listed, and examples from literature are cited.

Keywords: statistics; uncertainty; regression; sampling; outlier; probabilistic

1. Introduction

This study argues for the adoption of the Bayesian paradigm in energy Measurement and
Verification (M&V) analysis. As such, no new Bayesian methods will be developed. Instead,
the advantages, limitations, and application of the Bayesian approach to M&V will be explored.
Since the focus is on application, a full explanation of the underlying theory of the Bayesian paradigm
will not be given. Readers are referred to Sivia and Skilling [1] or Kruschke [2] for a basic introduction,
or von der Linden et al. [3] or Gelman et al. [4] for more complete treatments.

The argument made below is not that current methods are completely wrong or that the Bayesian
paradigm is the only viable option, but that the field can benefit from a increased adoption of Bayesian
thinking because of its ease of implementation and accuracy of the results.

This paper is arranged as follows. After discussing the background of current M&V analysis
methods and the opportunities for improvement in Section 1.1, the Bayesian paradigm is introduced
and its practical benefits and some caveats are discussed in Section 2. Section 3 offers two well-known
examples and their Bayesian solutions. We also discuss robustness and hierarchical modelling. Section 4
gives a reference list of Bayesian solutions to common M&V cases.

1.1. Background

M&V is the discipline in which the savings from energy efficiency, demand response, and
demand-side management projects are quantified [5], based on measurements and energy models.
A large proportion of such M&V studies quantify savings for building projects, both residential and
commercial. The process usually involves taking measurements or sampling a population to create
a baseline, after which an intervention is done. The results are also measured, and the savings are
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inferred as the difference between the actual post-intervention energy use, and what it would have
been, had no intervention taken place. These savings are expressed in probabilistic terms following the
International Standards Organization (ISO) Guide to the Expression of Uncertainty in Measurement
(GUM) [6]. M&V study results often form the basis of payment decisions in energy performance
contracts, and the risk-implications of such studies are therefore of interest to decision makers.

The Bayesian option will not affect the foundational M&V methodologies such as retrofit isolation
or whole facility measurement, but only the way the data are analysed once one of these methods has
been decided upon.

M&V guidelines such as the International Performance Measurement and Verification Protocol
(IPMVP) [5], the American Society of Heating, Refrigeration, and Air Conditioning Engineers
(ASHRAE)’s Guideline 14 on Measurement of Energy, Demand, and Water Savings [7], or the United
States Department of Energy’s Uniform Methods Project (UMP) [8], as well as most practitioners,
use frequentist (or classical) statistics for analysis. Because of its popularity in the twentieth century,
most practitioners are unaware that this is only one statistical paradigm and that its assumptions can
be limiting. The term ‘frequentist’ derives from the method that equates probability with long-run
frequency. For coin flips or samples from a production line, this assumption may be valid. However,
for many events, equating probability with frequency seems strained because a large, hypothetical
long-run population needs to be imagined for the probability-as-frequency-view to hold. Kruschke [2]
gives an example where a coin is flipped twenty times and seven heads are observed. The question
is then: what is the probability of the coin being fair? The frequentist answer will depend on the
imagined population from which the data were obtained. This population could be obtained by
“stopping after 20 flips”, but it could also be “stopping after seven heads” or “stopping after two
minutes of flipping” or “to compare it to another coin that was flipped twenty times”. In each case,
the probability that it is a fair coin changes, even though the data did not—termed incoherence [9].
In fact, the probabilities are dependent on the analyst’s intention. By changing his intention, he can
alter the probabilities. This problem becomes even more severe in real-world energy savings inference
problems with many more factors. The hypothetical larger population from which the energy use
at a specific time on a specific day for a specific facility was sampled is difficult to imagine. That is
not to say that a frequentist statistical analysis cannot be done, or be useful. However, it often does
not answer the question that the analyst is asking, committing an “error of the third kind”. Analysts
have become used to these ‘statistical’ answers (e.g., “not able to reject the null hypothesis”), and have
accepted such confusion as part of statistics. For example, consider two mainstays of frequentist M&V:
confidence intervals (CIs) and p-values. CIs are widely used in M&V to quantify uncertainty. According
to Neyman, who devised these intervals, they do not convey a degree of belief, or confidence, as is
often thought. Frequentist confidence intervals are produced by a method that yields an interval that
contains the true value only in a specified percentage (say 90%) of cases [10]. This may seem like
practically the same thing, but an explanation from most frequentist statistics textbooks will then seem
very confusing. Consider Montgomery and Runger’s Applied Statistics and Probability for Engineers [11],
under “Interpreting a Confidence Interval” (CI). They explain that, with frequentist CIs, one cannot say
that the interval contains the true number with a probability of e.g., 90%. The interval either contains
the value, or it does not. Therefore, the probability is either zero or one, but the analyst does not know
which. Therefore, the interval cannot be associated with a probability. Furthermore, it is a random
interval (emphasis theirs) because the upper and lower bounds of the interval are random variables.

Consider now the p-value. Because of the confusion surrounding this statistic, the American
Statistical Association issued a statement regarding its use [12], in which they state that p-values
neither signify probabilities of the hypothesis being true or false, nor are they probabilities that the
result arose by chance. They go on to say that business (or policy) decisions should not be based on
p-value thresholds. p-values do not measure effect sizes or result importances, and by themselves are
not adequate measures of evidence.
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Such statements by professional statisticians leave most M&V practitioners justifiably confused.
It is not that these methods are invalid, but that they have been co-opted to answer different kinds
of questions to what they actually answer. The reason for their popularity in the 20th century has
more to do with their computational ease, compared to the more formal and mathematical Bayesian
methods, than with their appropriateness. The Bayesian conditional-probability paradigm is much
older than the frequentist one but used to be impractical for computational reasons. However, with the
rise in computing power and new numeric methods for solving Bayesian models, this is no longer a
consideration.

2. The Bayesian Paradigm

Instead of approaching uncertainty in terms of long-run frequency, the Bayesian paradigm views
uncertainty as a state of knowledge or a degree of belief, the sense most often meant by people
when thinking about uncertainty. These uncertainties are calculated using conditional-probability
logic and calculus, proceeding from first principles. For example, consider two conditions M and S.
Let Pr() denote a probability and | “conditional on” or “given”. Furthermore, let I be the background
information about the problem. Bayes’ theorem states that:

Pr(S|M, I) =
Pr(M|S, I)Pr(S|I)

Pr(M|I) . (1)

Now, as stated previously, M&V is about verifying the savings achieved, based on some
measurements and an energy model, and quantifying the uncertainty in this figure. If we let S be
the savings, and M the measurements, Bayes’ theorem as stated above answers that question exactly:
it supplies a probability of the savings given the measurements and any background information that
might be available; Pr(S|M). Bayes’ theorem is, therefore, the natural expression of the M&V aim:

Verification|Measurement ≡ Pr(S|M).

Whereas the frequentist paradigm views the data as random realisations of a process with fixed
parameters, the Bayesian paradigm views the data (measurements) as fixed, and the underlying
parameters as uncertain (thereby avoid the incoherence of the coin flip example [9]). This seems like a
trivial distinction at first but is significant: the frequentist only solves for Pr(M|S): the probability of
observing that data, given the underlying savings value. However, that is not the question M&V seeks
to answer. In the frequentist paradigm, the analyst does not invert this as Bayes’ theorem does to find
the probability distribution on the savings, given the data. Therefore, in the frequentist case, the wrong
question is being answered, as alluded to above (Technical note: to be fair, we note that, for constant
priors, the likelihood may be equivalent to the posterior. When it is the case, the frequentist likelihood
may borrow from Bayesian theory and be interpreted as a probability).

It is this inversion process that has often been intractable in higher dimensions until the advent
of Markov Chain Monte Carlo (MCMC) techniques and increased computing power (Technical
note: other Monte Carlo-based inversion techniques such as rejection or importance sampling
are only efficient enough to be practical in low-dimensional settings. Note that we use Monte
Carlo here in the sense of a straightforward sense of generating random numbers according to
standard distributions [13]). MCMC software has allowed users to specify a model (e.g., a linear
regression model), supply the observations or data (measurements), and infer the values on the model
parameters probabilistically. This is called probabilistic programming. Probabilistic programming is
compelling because, instead of working with point estimates on all unknown parameters (e.g., slope
and intercept in a straight-line regression model), one describes the system in terms of probability
distributions. Working with probability distributions rather than point estimates is preferable, since
it is well known that doing calculations with point estimates can lead to erroneous conclusions [14].
When doing forward-calculations as illustrated in Figure 1, it is therefore desirable to use distributions
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on unknown variables and then apply a Monte Carlo simulation or Mellin Transform Moment
Calculation method [15,16] to obtain a probability distribution on the result. MCMC allows one
to do the inverse: inferring parameter distributions from given data and a model. Therefore, MCMC
is to regression what Monte Carlo simulation is to deterministic computation. The adoption of the
Bayesian paradigm therefore allows the analyst to move from deterministic to probabilistic M&V,
as shown in Figure 1.

Parameters
a, b

Regression
y = ax + b

Deterministic Calculation
y = ax + b

Parameters
∼ N[a, σ|D]
∼ N[b, σ|D]

Bayesian Regression
D ∼ N(a, σ)x + N(b, σ)

Data, D
———-

Results, y

Monte Carlo Simulation
y ∼ N(a, σ)x + N(b, σ)

Deterministic

Probabilistic

Data, D
———-

Result, y

Figure 1. Deterministic and probabilistic calculation, simulation, and inverse modelling. The notation
∼ N[·] denotes a normal distribution as a convenient substitute for any distribution. Note that this
figure does not illustrate or recommend a cyclic work flow; usually, only one of the for processes is of
interest for a particular problem. Indeed, continually updating, or “fiddling”, a Bayesian prior based
on the posterior (i.e., treating the illustration as a cycle) is poor modelling practice. We recommend that
M&V analysts set, state, and defend their prior, and not change it to achieve a different outcome.

For the inversion described above to work, the Pr(S|I) term, called the prior, needs to be specified.
Although the prior can be used to incorporate information into the model, which is not available
through the data alone, it is, in essence, merely a mathematical device allowing inversion. The prior
is often specified as “non-informative”—a flat probability distribution over the region of interest,
allowing the data to “speak for itself” through the likelihood term. This will be discussed in more
detail below. The other term, Pr(M|I), need not be specified in numeric MCMC models—it is a
normalising factor ensuring that the right-hand side of the equation can integrate to unity, making it a
proper probability density function (Technical note: this term becomes important in more sophisticated
Bayesian analyses where model selection or experimental design is done [1]). The left-hand side of the
equation is called the posterior distribution and is proportional, therefore, to the product of the prior
and the likelihood.

Advanced Bayesian models may be nuanced, but the fundamental mechanics as described above
stay the same for all Bayesian analyses: specify priors, describe the likelihood, and solve to find the
posterior on the parameters of interest.
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2.1. Practical Benefits

Besides the theoretical attractiveness discussed above, the Bayesian paradigm also offers many
practical benefits for energy M&V:

1. Because Bayesian models are probabilistic, uncertainty is automatically and exactly quantified.
2. Uncertainty calculations in the Bayesian approach can be much less conservative than standard

approaches. Shonder and Im [17] show a 40% reduction in uncertainty in one case. Since project
payment is often dependent on savings uncertainties being within certain bounds, using the
Bayesian approach can increase project feasibility.

3. By making the priors and energy model explicit, the Bayesian approach ensures greater
transparency—one of the five key principles of M&V [5].

4. The Bayesian approach is widely used and is rapidly gaining popularity in other scientific
fields. Lira [18] relates that even the GUM (adopted by many societies of physics, chemistry,
electrotechnics, etc.) is being rewritten to be more consistent with this approach. Since M&V
reports uncertainty according to the GUM, Bayesian calculations would be useful.

5. Bayesian models are more universal and flexible than standard methods. Bayesian modelling can
be highly sophisticated, but the core of probabilistic thinking is consistent throughout. This is
different to frequentist statistics where knowledge of one or even many tests will not necessarily
aid the analyst in understanding a new metric, or approach to a problem not seen before.
Many frequentist tests are ad hoc and apply only to specific situations. For example, t-tests
have little to do with regression in frequentism, but, in Bayesian thinking, they are expressions of
the same idea.

6. Being modular, Bayesian modelling is more flexible. Ordinary least squares (OLS) linear regression
assumes residuals are normally distributed and that the variance is constant for all points. In a
probabilistic Bayesian model, the parameters can be distributed according to any distribution,
but the posterior for each will be determined by the data (if the prior is appropriately chosen).
Models are also modular and can be designed to suit the problem. For example, it is no different to
create terms for serial correlation, or heteroscedasticity (non-constant variance) than it is to specify
an ordinary linear model. This also allows for easy specification of non-routine adjustments,
the handling of missing values, and the incorporation of unmeasured yet important quantities
such as measurement error, often problematic for energy models. For the retrofit isolation with a
key parameter measurement approach, the unmeasured parameters (the estimates) can also be
incorporated in this way.

7. Bayesian models can account for model-selection uncertainty. There are often multiple reasonable
energy models which could describe a specific case—for example: time and dry-bulb temperature;
occupancy and dry-bulb temperature; temperature, humidity, and occupancy, etc. The analyst
usually chooses one model, discards the rest, and reports the uncertainty produced in that specific
model. However, this uncertainty does not account for model selection. In other words, there is an
uncertainty associated with choosing that specific model above another reasonable one. Bayesian
model averaging allows many models to be specified simultaneously, and averages their results
by automatically weighting each model’s influence on the final result by that model’s explanatory
power. This gives a far more realistic uncertainty value [4].

8. Because uncertainty is automatically quantified, CIs can be interpreted in the way most people
understand them: degrees of belief about the value of the parameter.

9. The Bayesian approach is well-suited to “small data” problems. This seems like a minor point
in developed countries where questions surrounding big data are more pressing. However,
big (energy) data is a decidedly “first-world problem”. In developing countries, a lack of meters
makes M&V expensive, and it is useful to have a method that is consistent on smaller data sets
as well.

10. Bayesian approaches allow real-time or online updating of estimates [19–21]. For many other
machine learning techniques, the data need to be split into testing and training sets, the model
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trained on the training set, and then used to predict the testing set period. As new data becomes
available, the model needs to be retrained in many cases (Technical note: Artificial Neural
Networks (ANNs), stochastic gradient descent and passive-aggressive algorithms, as well as
Dynamic Linear Models can also be updated online), making it computationally expensive to
keep a model updated. In a Bayesian paradigm, previous data can be summarised by the prior so
that the model need not be retrained.

11. The Bayesian approach allows for the incorporation of prior information where appropriate.
The danger in this will be discussed in Section 2.2. However, in cases where it is warranted,
known values or ranges for certain coefficients can be specified in the prior. This has been done
successfully for energy projects [22–25]. Prior information is also useful in longitudinal studies,
where measurements or samples from previous years can be taken into account [20,21].

12. When the savings need to be calculated for “normalised conditions”, for example, a ‘typical
meteorological year’, rather than the conditions during the post-retrofit monitoring period, it is
not possible to quantify uncertainty using current methods. However, Shonder and Im [17] have
shown that it can be naturally and easily quantified using the Bayesian approach.

2.2. Caveats

The Bayesian approach also comes with certain caveats that M&V practitioners and policy makers
should bear in mind.

1. Modelling is non-generic. In point 5 above, it was stated that the Bayesian approach is more
universal. This is true in the sense that the same basic approach is used for many different kinds
of problems. However, the inherent modularity of the method as described in point 6 means that
there is not a one-size-fits-all generic template in Bayesian modelling, the way there usually is in
frequentist modelling. This necessitates more thinking from the analyst. However, we believe
this to be an advantage: frequentist approaches make it easier to think less, but as a consequence,
also to build poor models, which has led to the current replication crisis seen in research [26] and
a general mistrust of statistical results [27]. High quality models require some thought and care,
in any paradigm.

2. As with any method, it is not immune to abuse. The most popular criticism is that, by having
a prior distribution on the savings, the posterior may be biased in a way not warranted by the
data, making the result subjective. This is certainly possible. However, having a prior in an M&V
analysis is actually an advantage.

(a) As stated above, it allows for greater modelling transparency. The Bayesian form forces
the analyst to be explicit about his or her modelling assumptions, and to defend them.
Such assumptions cannot be imported by (accidentally or purposefully) choosing one test
over another, as in the frequentist case.

(b) It is sometimes necessary to include priors to avoid bias. Ioannidis [28] and Button [29] have
shown that many medical studies contain false conclusions due to biased results. The bias
that was introduced was to consider positive and negative outcomes from a clinical trial
equally likely. However, the prior odds of an experimental treatment working is much
lower than the odds of that treatment not working. Ignoring these prior odds leads to a
high false-positive rate, since many of the positive results are actually false and due to noise.
In M&V, the situation is reversed: the prior odds of energy projects saving energy are high.
Having a neutral prior would therefore bias a result towards conservatism (Technical note:
conservatism is one of the key principles of M&V [5], but we do not hereby advocate for
neutral priors in all cases). Nevertheless, Button’s study is an excellent illustration of why
priors are an important part of probability calculus.

(c) Because the assumptions and distributions used are clearly stated, it precludes hedging the
M&V result with phrases such as “however, from previous studies/experience, we know
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that this is a conservative figure . . . ”. Because the prior was stated and defended at the
outset, the final result should already incorporate it and should not be hedged.

(d) The thorough analyst will test the effect of different priors on the posterior, demonstrating
the bias introduced through his modelling assumptions, and justifying its use.

3. Bayesian methods can be computationally expensive for large datasets and complex models. It is
true that numerical solvers are becoming more efficient and computational power is increasing.
However, in comparison with matrix inversion techniques used for linear regression, for example,
Bayesian methods are much slower and may be inappropriate for real-time applications [30].

4. The forecasting accuracy of other machine learning (ML) methods can be higher
than regression in some cases [31,32], although regression-based approaches such as
time-of-week-and-temperature [33] still perform very well [32,34] and may be preferred for
simplicity. Note that this is a limitation of regression, not the overall Bayesian paradigm, although
regression is the way most M&V analysts would use Bayesian methods. Many ML techniques
also have Bayesian approaches, for example Bayesian tree-based ensemble methods [35] or
Bayesian Artificial Neural Networks [36,37]. It also depends on the problem: it is not possible
to know beforehand which model will work the best [38]. ML algorithms without Bayesian
implementations also still only produce point estimates. Therefore, they cannot be compared
to the full probabilistic approach, which provides much richer information and is not just a
forecasting technique, but a full inference paradigm.

5. The parametric from of the model needs to be specified. Parametric Bayesian models as described
in most of this study can only be correct in so far as their functional form describes the underlying
physical process. Functional form misspecification is a real possibility. This is different to the
machine learning methods described in the previous paragraph, which do not rely on a functional
form being specified. Non-parametric models have their own benefits and limitations: for cases
where the underlying physical process is well-understood, a parametric model can be more
accurate. However, non-parametric methods such as Gaussian Processes (GPs) [22,39] or Gaussian
Mixture Models [40] still require some model specification at a higher level (hyperparameters).
GP models, for example, rely on an appropriate covariance function for valid inference. For more
information on GPs for machine learning, see Rasmussen and Williams [41].

3. Bayesian M&V Examples

To demystify the Bayesian approach, two basic M&V calculations will be demonstrated. The reader
will notice the recurring theme of expressing all variables as (conditional) probability distributions.

3.1. Sampling Estimation

Consider the following example from the IPMVP 2012 [5] (Appendix B-1). Twelve readings are
taken by a meter. These are reported as monthly readings, but are assumed to be uncorrelated with
any independent variables or other readings, and are therefore construed to be random samples.
The values are:

D = [950, 1090, 850, 920, 1120, 820, 760, 1210, 1040, 930, 1110, 1200]. (2)

The units are not reported and the results below are therefore left dimensionless, although kWh
would be a reasonable assumption. These data were carefully chosen, and have a mean µ = 1000,
sample standard deviation ss = 150.

3.1.1. IPMVP Solution

The standard error is SE = 43. The confidence interval on the mean is calculated as:

CI = µ± t× SE. (3)
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Since t90%,11 = 1.80, the 90% confidence interval on the mean was calculated as
1000 ± 1.80 × 43 = (933, 1077), or a 7.7% precision. Metering uncertainty is not considered
in this calculation.

3.1.2. Bayesian Solution

The Bayesian estimate of the mean is calculated as follows. First, prior distributions on the data
need to be specified. Vague priors will be used:

Pr(µ) ∼ Uni f orm[0, 2000], (4)

Pr(σ) ∼ Uni f orm[0, 1000]. (5)

A t-distribution will be used for the likelihood below, and the degrees of freedom parameter (ν)
of this distribution will, therefore, need to be specified. One could fix ν for the t-distribution at 12,
since there are twelve data points and traditionally ν has been taken to signify this number. However,
if outliers are present or if the data has more or less dispersion than the standard t-distribution with
as many data points, this would not be realistic. It is therefore warranted to indicate the uncertainty
in the data by specifying a prior distribution on ν also: a hyperprior. Kruschke [42] recommends
an exponential distribution with the mean equal to the number of data points. This allows equal
probability of ν being higher or lower than the default value:

Pr(ν) ∼ Exponential[1/12]. (6)

If the vector of the parameters is θ = (µ, σ, ν), then the likelihood can be written as:

Pr(D|θ) ∼ StudentT [Pr(µ), Pr(σ), Pr(ν)] . (7)

Note that the t-distribution is not used because of the t-test, but because its heavier tails are
more accommodating of outliers. Any distribution could have been specified if there was good
reason to do so. The posterior on µ is plotted in Figure 2. It was simulated in PyMC3 using the
Automatic Differentiation Variational Inference (ADVI) algorithm with 100,000 draws, which is stable
and converges on the posterior distribution in 10.76 s on a middle-range laptop computer. Although
the mathematical notation may seem intimidating to practitioners who are not used to it, writing this
in the probabilistic Python programming package PyMC3 [43] demonstrates the intuitive nature of
such a model:

import pymc3 as pm
with pm.Model() as bayesian_sampling_model:

# Hyperpriors and priors:
mean = pm.Uniform('mean', 0, 2000)
std = pm.Uniform('std', 0, 1000)
nu = pm.Exponential('nu', 1/len(data))
# Likelihood
likelihood = pm.StudentT('likelihood', mu=mean, sd=std, nu=nu, observed=data)
# ADVI calculation
trace = pm.variational.sample_vp(vparams=pm.variational.advi(n=100000))

It is important to note that no probability statements about the values inside the frequentist
interval can be made, nor can one fit a distribution to the interval. The distribution indicated is
strictly a Bayesian one. The Bayesian (highest density) interval is slightly wider than the frequentist
confidence interval, at a precision of 8.5%. If ν were fixed at 12 (indicating that we are certain that the
data does indeed reflect a t-distribution with 12 degrees of freedom exactly), Bayesian and frequentist
intervals correspond exactly. However, the Bayesian alternative allows for a more realistic value.
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With comparisons between two groups (two-sample t-tests), the effect of uncertainty in the priors
becomes even more pronounced [42].

800 900 1 000 1 100 1 200
0

2

4

6

8
·10−3

Mean Estimate

Bayesian 90% HDI
Frequentist 90% CI
Data points
Bayesian posterior distribution

Figure 2. Illustration of Bayesian posterior density Pr(µ|D), 90% Highest Density Interval (HDI), and
frequentist 90% Confidence Interval (CI).

The posterior distribution can now be used to answer many interesting questions. For instance,
what is the probability, given the data at hand, that the true mean is below 900? Or, is it safe to assume
that the standard value of 950 is reflected by this sample, or should the null hypothesis be rejected?
(If previous data to this effect is available, it could be included in the prior, maybe using the equivalent
prior sample size method [44]). The frequentist may say that there is not enough evidence to reject
the null, but cannot accept it either. In the Bayesian paradigm, 950 falls comfortably within the 90%
confidence range, and can therefore be accepted at that level. As a further question, if this is an energy
performance contracting project, and we assume that the data points are different facilities rather than
different months, would it be worthwhile taking a larger sample to increase profits, if we believe that
the true mean is 1100 (on which see Lindley [45], Bernardo [46] and Goldberg [47]).

It is therefore evident that the Bayesian result yields richer and more useful information using
intuitive mathematics.

3.2. Regression

In M&V, one often uses the baseline data (Db) to infer the baseline (pre-retrofit) model parameters
θ through an inverse method:

θ = f−1(Db, τ), (8)

where f (·) is a function relating the independent variables (energy governing factors) to the energy
use of the facility, and τ is time. The model parameters describe the sensitivity of the energy model to
the independent variables such as occupancy, outside air temperature, or production volume.

As an aside, this section will discuss an elementary parametric energy model using Bayesian
regression, similar to standard linear regression. In practice, a two-parameter linear regression model
seldom captures the different states of a facility’s energy use, for example, heating at low temperatures,
a comfortable range, and cooling at high temperatures. Piecewise linear regression techniques are
often used [48–52], and they tend to work reasonably well if their assumptions are satisfied, but they
are not stable in all cases, are approximate, and the assumptions are often restrictive. Shonder and
Im [17] provide a Bayesian alternative. A non-parametric model using a Gaussian Process could also
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be used, and since one does not need to specify a parametric model, it allows very flexible models
to be fit while still quantifying uncertainty. This is especially useful for models where energy use
is a nonlinear function of the energy governing factors. However, to keep the example simple and
focussed, only a simple parametric model will be considered below.

3.2.1. Example

Suppose one has a simple regression model where the energy use of a building E is correlated
with the outside air temperature through the number of Cooling Degree Days (CDD). One cooling
degree day is defined as an instance where the average daily temperature is one degree above the
thermostat set point for one day, and the building therefore requires one degree of cooling (Technical
note: a more accurate description would be the “building balance point”, where the building’s mass
and insulation balance external forcings [53]). Let the intercept coefficient be θ0, the slope coefficient θ1,
and the Gaussian error term ε. One could then write:

E = θ0 + θ1CDD + ε. (9)

In standard linear regression, one would write θ̂ as the vector of two coefficients and do some
linear algebra to obtain their estimates. There would be a standard error on each, which would
indicate their uncertainties, and if the assumptions of linear regression, such as normality of residuals,
independence of data, homoscedasticity, etc. hold, then it would be accurate. In Bayesian regression,
one would describe the distributions on the parameters:

Pr(θ|D) ∝ Pr(D|θ)Pr(θ) ∼ N[θ̂, σ], (10)

where σ is the vector of the standard deviations on the estimates. Generating random pairs of values
from the posterior, at a given value of CDD, according to the appropriate distributions, will yield the
posterior predictive distribution. This is the distribution of energy use at a given temperature, or over
the range of temperatures. Overlaying such realisations onto the actual data is called the posterior
predictive check (PPC).

Now, consider a concrete example. The IPMVP 2012 [5] (Appendix B-6) contains a simple
regression example of creating a baseline of a building’s cooling load. The twelve data points
themselves were not given, but a very similar data set yielding almost identical regression
characteristics has been engineered and is shown in Table 1.

Table 1. Cooling Degree Day (CDD) Data for International Performance Measurement and Verification
Protocol (IPMVP) Example B-6. Note that these data were reverse-engineered to yield the same
regression results as reported in the IPMVP. The original data were not reported in the IPMVP.

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

CDD 312 292 222 112 92 22 12 32 157 207 182 302
Energy Use 7823 7585 7486 6646 6185 5933 5381 5917 7158 7064 7231 8250

A linear regression model was fit to the data, and yielded the result shown in Table 2.

Table 2. Linear regression fit characteristics for data in Table 1. The coefficient of determination is
R2 = 0.93, which is identical to the IPMVP case. These results may be compared to Bayesian summary
statistics in Table 3.

Parameter Value Standard Error 95% Interval

Slope coefficient 7.75 0.67 [6.26, 9.23]
Intercept coefficient 5634 129 [5347, 5921]
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3.2.2. IPMVP Solution

The IPMVP then proceeds to calculate the uncertainty in the annual energy figure by multiplying
the standard error on the estimate (the average standard error) by t95% and the average consumption
in the average month, and assumes that this value is constant for all months. As discussed in this
study, this approach is problematic, and can at best be seen as approximate. Since it is treated in some
detail in the IPMVP, the analysis will not be repeated here.

3.2.3. Bayesian Solution

The key to the Bayesian method is to approach the problem probabilistically, and therefore
view all parameters in Equation (9) as probability distributions, and specify them as such. In this
regression model, there are three parameters of interest: the intercept (θ0), slope (θ1), and the response
(E). This response is the likelihood function, familiar to most readers as the frequentist approach.
These distributions need to be specified in the Bayesian model. First, consider the priors on the slope
and intercept. These can be vague. Technical note: the uniform prior on θ0 in Equation (11) is actually
technically incorrect: it may seem uniform in terms of gradient but is not uniform when the angle of the
slope is considered. It is therefore not “rotationally invariant” and biases the estimate towards higher
angles [54]. The correct prior is Pr(θ|I) ∼ (1 + θ2)−

3
2 ; this is uniform on the slope angle. The reason

that Equation (11) works in this case is that the exponential weight of the likelihood masks the effect.
However, this is not always the case, and analysts should be careful of such priors in regression
analysis:

Pr(θ0) ∼ Uni f orm[0, 10000], (11)

and
Pr(θ1) ∼ Uni f orm[0, 20]. (12)

Now, consider the likelihood. In frequentist statistics, one needs to assume that E in Equation (9)
is normally distributed. In the Bayesian paradigm, one may do so, but it is not necessary.
A Student’s t-distribution is often used instead of a Normal distribution in other statistical calculations
(e.g., t-tests) due to its additional (“degrees of freedom”) parameter, which accommodates the variance
arising from small sample sizes more successfully. As in Section 3.1.2, an exponential distribution
on the degrees of freedom (νp) is specified. It has also been found that specifying a Half-Cauchy
distribution on the standard deviation (σp) works well [55]. Therefore, the hyperpriors are specified as:

Pr(νp) ∼ Exponential[12−1] (13)

and:
Pr(σp) ∼ Hal f Cauchy[1]. (14)

The mean of the likelihood is the final hyperparameter that needs to be specified. This is
simply Equation (9), written with the priors:

µp = Pr(θ0) + Pr(θ1)CDD. (15)

The full likelihood can thus be written as:

Pr(CDD|E) ∼ StudentT
(
µ = µp, ν = Pr(νp), σ = Pr(σp)

)
. (16)

The PyMC3 code is shown below:
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import pymc3 as pm
with pm.Model() as bayesian_regression_model:

# Hyperpriors and priors:
nu = pm.Exponential('nu', lam=1/len(CDD))
sigma = pm.HalfCauchy('sigma', beta=1)
slope = pm.Uniform('slope', lower=0, upper=20)
intercept = pm.Uniform('intercept', lower=0, upper=10000)
# Energy model:
regression_eq = intercept + slope*CDD
# Likelihood:
y = pm.StudentT('y', mu=regression_eq, nu=nu, sd=sigma, observed=E)
# MCMC calculation:
trace = pm.sample(draws=10000, step=pm.NUTS(), njobs=4)

The last line of the code above invokes the MCMC sampler algorithm to solve the model. In this
case, the No U-Turn Sampler (NUTS) [56] was used, running four traces of 10,000 samples each,
simultaneously on a four-core laptop computer, in 3.5 min fewer samples, could also have been used.

A discussion of the inner workings and tests for adequate convergence of the MCMC is beyond
the scope of the study and has been done in detail elsewhere in literature [4]. The key idea for M&V
practitioners is that the MCMC, like MC simulation, must converge, and must have done enough
iterations after convergence to approximate the posterior distribution numerically. For most simple
models such as the ones used in most M&V applications, a few thousand iterations are usually
adequate for inference. Two popular checks for posterior validity are the Gelman–Rubin statistic
R̂ [57,58] and the effective sample size (ESS). The Gelman–Rubin statistic compares the four chains
specified in the program above, started at random places, to see if they all converged on the same
posterior values. If they did, their ratios should be close to unity. This is easily done in PyMC3
with the pm.gelman_rubin(trace) command, which indicates R̂ equal to one to beyond the third
decimal place. However, even if the MCMC has converged, it does not mean that the chain is
long enough to approximate the posterior distribution adequately because the MCMC mechanism
produces a serially correlated (autocorrelated) chain. It is therefore necessary to calculate the effective
sample size: the sample size taking autocorrelation into account. In PyMC3, one can invoke the
pm.effective_n(trace) command, which shows that the ESSs for the parameters of interest are well
over 1000 each for the current case study. As a first-order approximation, we can therefore be satisfied
that the MCMC has yielded satisfactory estimates.

The MCMC results can be inspected in various ways. The posteriors on the parameters of interest
are shown in Figure 3. If a normal distribution is specified on the likelihood in Equation (16) rather
than the Student’s t, the posterior means are identical to the linear regression point estimates—an
expected result, since OLS regression is a special case of the more general Bayesian approach. Using a
t-distributed likelihood yields slightly different, but practically equivalent, results. The mean or mode
of a given posterior is not of as much interest as the full distribution, since this full distribution will
be used for any subsequent calculation. However, the mean of the posterior distribution(s) is given
in Table 3 for the curious reader.

Two brief notes on Bayesian intervals are necessary. As discussed in Section 1.1, the frequentist
‘confidence’ interval is a misnomer. To distinguish Bayesian from frequentist intervals, Bayesian
intervals are often called ‘credible’ intervals, although they are much closer to what most people
think of when referring to a frequentist confidence interval. The second note is that Bayesians often
use HDIs, also known as highest posterior density intervals. These are related to the area under the
probability density curve, rather than points on the x-axis. In frequentist statistics, we are used to
equal-tailed confidence intervals since we compute them by taking the mean, and then adding or
subtracting a fixed number—the standard error multiplied by the t-value, for example. This works
well for symmetrical distributions such as the Normal, as is assumed in many frequentist methods.
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However, real data distributions are often asymmetrical, and forcing an equal-tailed confidence interval
onto an asymmetric distribution leads to including an unlikely range of values on the one side, while
excluding more likely values on the other. An HDI solves this problem. It does not have equal tails but
has equally-likely upper and lower bounds.

Table 3. Summary statistics for Bayesian posterior distributions shown in Figure 3 when a
Student’s t-distribution is used on the likelihood. Compare to linear regression results in Table 2.
HDI: Highest Density Intervals.

Parameter Value 95% HDI

Slope coefficient 7.69 [6.21, 9.24]
Intercept coefficient 5634 [5351, 5937]
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Figure 3. Joint plot of posterior distributions on the parameters of interest. The summary statistics are
given in Table 3. Notice how the slope and intercept estimates are correlated: as the slope increases,
the intercept decreases. The Markov Chain Monte Carlo (MCMC) algorithm explores this space,
resulting in the real joint two-dimensional posterior distribution on the slope and intercept.

The posterior distributions shown in Figure 3 are seldom of use in themselves and are more
interesting when combined in a calculation to determine the uncertainties in the baseline as shown
in Figure 4, also known as the adjusted baseline. To do so, the posterior predictive distribution needs to
be calculated using the pm.sample_ppc() command, which resamples from the posterior distributions,
much like the MC simulation forward-step of Figure 1.
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Figure 4. Measured data with overlaid Bayesian baseline model and its 95% HDI.

The Bayesian model can also be used to calculate the adjusted baseline, or what the post-
implementation period energy use would have been, had no intervention been made. The difference
between this value and the actual energy use during the reporting period is the energy saved. For the
example under consideration, the IPMVP assumes that an average month in the post-implementation
period: one with 162 CDDs. It also assumes that the actual reporting period energy use is 4300 kWh,
measured with negligible metering error.

To calculate the savings distribution using the Bayesian method, one would do an MC simulation of:

Savings ∼ θ0 + 162θ1 − 4300, (17)

where θ0 and θ1 are the distributions shown in Figure 3. Note that they are correlated and so using
the PPC method described above would be the correct approach. Running this simulation with
10,000 samples yields the distribution shown in Figure 5. The 95% HDI is [2229, 2959], while the
frequentist interval is [1810, 3430] for the same data—a much wider interval. Furthermore, the IPMVP
then assumes averages and multiplies these figures to get annual savings and uncertainties. In the
Bayesian paradigm, the HDIs can be different for every month (or time step) as shown in Figure 4,
yielding more accurate overall savings uncertainty values.
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Figure 5. Distribution on the savings for a month with 162 Cooling Degree Days (CDDs).



Energies 2018, 11, 380 15 of 20

3.2.4. Robustness to Outliers

As alluded to above, using the Student’s t-distribution rather than the normal distribution allows
for Bayesian regression to be robust to outliers [59]. The heavier tails more easily accommodate an
outlying data point by automatically altering the degrees-of-freedom hyperparameter to adapt to
the non-normally distributed data. Uncertainty in the estimates is increased, but this reflects the true
state of knowledge about the system more realistically than alternative assumptions of light tails,
and is therefore warranted. The robustness of such regression does not give the M&V practitioner
carte blanche to ignore outliers. One should always seek to understand the reason for an outlier; if the
operating conditions of the facility were significantly different, the analyst should consider neglecting
(or ‘condoning’) the data point. However, it is not always possible to trace the reasons for all outliers,
and inherently robust models are useful (Technical note: the treatment here is very basic, and for
illustration. More advanced Bayesian approaches are also available. For example, if there are only a
few outliers, a mixture model may be used [60]. If there is a systematic problem such an unknown error
variable, one can “marginalise” the offending variable out. The right-hand and top distributions of
Figure 3 are marginal distributions: e.g., the distribution on the slope, with the intercept marginalised
out, and vice versa. For an M&V example of marginalisation where an unknown measurement error is
marginalised out, see Carstens [61] (Section 3.5.3). von der Linden et al. provides a thorough treatment
of all the options for dealing with outliers [3] (Ch. 22)).

To demonstrate the robustness of such a Bayesian model, consider the regression case above.
Suppose that for some reason the December cooling load was 3250 kWh and not 8250 kWh, indicated
by the red point in the lower right-hand corner of Figure 6. If OLS regression were used, and this point
is not removed, it would skew the whole model. However, the t-distributed likelihood in the Bayesian
model is robust to the outlier. The effect is demonstrated in Figure 6. Four lines are plotted: the solid
lines are for the data set without the outlier. The dashed lines are for the data set with the outlier. In the
Bayesian model, the two regression lines are almost identical and close to the OLS regression line for
the standard set. However, the OLS regression on the outlier set is dramatically biased and would
underestimate the energy use for hot months due to the outlier.
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Figure 6. Demonstration of robustness of t-distributed Bayesian regression. Note that the two Bayesian
regression lines (solid and dashed) coincide almost perfectly.

3.2.5. Hierarchical Models

A further advantage in the Bayesian paradigm is the use of hierarchical, or multilevel models.
This is a feature of the model structure rather than the Bayesian calculation itself (it also works for
MLE) [2], but it is nevertheless useful in M&V. Suppose that multiple measures are installed at multiple
sites so that the IPMVP Option C: Whole Building Retrofit is used for M&V. The UMP Chapter 8 [62]
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reports that there are two ways to analyse such data. The two-stage approach involves first analysing
each facility separately and then using these results for the overall analysis in stage two. The fixed
effects approach analyses all buildings simultaneously but assumes that the effect sizes are constant
across facilities, using an average effect for all buildings. Hierarchical modelling considers both the
individual facility’s energy saving and the overall effect simultaneously. It does this by assuming that
the group effects are different realisations of an overarching distribution with a mean and variance,
which is used as a prior. This can lead to ‘shrinkage’ in the parameter uncertainty estimates because the
group effects are mutually informative. For groups with little data, the overarching effect distribution
plays a larger role, and for groups with more data, a smaller role. In addition, the overall variance is
reduced because the sources of inter-facility variance are isolated from that of inter-measure variance.
The result for a hierarchical model is that the effect estimation for an individual facility is influenced
by the overall estimate of the measured effect, as well as by the data for the facility. As another
example, consider a program that retrofits air conditioning units in different provinces in South Africa.
One could fix the savings effect across all facilities, but this will underestimate some and overestimate
others. Otherwise, one could analyse by facility, then by province, and then overall. The hierarchical
model provides a better alternative in these cases, and comprises the bulk of many Bayesian data
analysis texts [2,4]. Booth, Choudhary, and Spiegelhalter have provided an excellent example of using
hierarchical Bayesian models in energy M&V [63].

4. Bayesian Alternatives for Standard M&V Analyses

At this point, an M&V analyst may want to try the Bayesian method for an M&V problem,
but where to start? In Table 4, some Bayesian alternatives to standard M&V analyses are given.
The references cited are mostly from M&V studies, although some general statistical sources are also
listed where applicable.

Table 4. Common M&V (Measurement and Verification) cases and their Bayesian alternatives.

Problem Type Variant Bayesian Alternative Example Reference

Sampling Single Sample Section 3.1, [2]
Randomised Control Trial Bayesian Estimation [42]
ANOVA Hierarchical modelling [64]

Regression Standard Bayesian regression Section 3.2, [19]
With change points Bayesian regression [17]
Pooled fixed effects Hierarchical modelling [63]
Non-parametric Gaussian Process [39,65,66]

Longitudinal Persistence Dynamic Generalised [20]

Linear Model
Meter calibration Simulation Extrapolation [67]

with Bayesian refinement

5. Conclusions

The Bayesian paradigm provides a coherent and intuitive approach to energy measurement
and verification. It does so by defining the basic M&V question—the savings inference given
measurements—using conditional probabilities. It also provides a simpler and more intuitive
understanding of probability and uncertainty because it allows the analyst to answer real questions in
a straightforward manner, unlike traditional statistics. Due to recent technological and mathematical
advances being incorporated into software, analysts need not be expert statisticians to harness the
power and flexibility of this method.

The probabilistic nature of Bayesian analysis allows for automatic and accurate uncertainty
quantification in savings models. The richer nature of the Bayesian result is shown in a sampling and a
regression problem, where it is found that the Bayesian method allows for more realistic modelling and
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a greater variety of questions that can be answered. Its flexibility is also demonstrated by constructing
a robust regression model, which is much less sensitive to outliers that standard ordinary least squares
regression traditionally used in M&V.
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Abbreviations

The following abbreviations are used in this manuscript:

ADVI Automatic Differentiation Variational Inference
ANN Artificial Neural Network
ASHRAE American Society of Heating, Refrigeration, and Air Conditioning Engineers
CDD Cooling Degree Days
CI Confidence Interval
ESS Effective Sample Size
GP Gaussian Process
HDI Highest Density Interval
IPMVP International Performance Measurement and Verification Protocol
ISO International Standards Organization
MC Monte Carlo
MCMC Markov Chain Monte Carlo
M&V Measurement and Verification
PPC Posterior Predictive Check
OLS Ordinary Least Squares
UMP Uniform Methods Project
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H I G H L I G H T S

• A new way is developed to directly perform the forecast of PV power at demand side.

• Effects of temperature, humidity, historical value on PV power forecast are explored.

• Estimation results are qualitatively investigated via data mining approaches.

• Experimental studies show that the new method could achieve more accurate prediction.
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A B S T R A C T

Power forecasting, in a hybrid photovoltaic (PV) system, is an important issue regarding to the control and
optimization of energy systems. In this work, multi-clustered echo state network (MCESN) models are proposed
to directly perform the forecast of PV power generation. Furthermore, data characteristics of measured and
estimated PV power are qualitatively investigated via data mining approaches. These characteristics include
seasonality, stationarity (or non-stationarity) and complexity analysis. Simulation results indicate that the
proposed MCESN model is able to precisely forecast PV power one-hour-ahead. The performance on the 24-h-
ahead forecast is competitive with the correlation coefficient 99% for sunny days, and 91–98% for cloudy days.
Results of data analysis unveil that critical characteristics between the measured and estimated PV power data
are analogous. Comparison studies also show that MCESN could achieve more accurate prediction, compared
with auto-regressive moving average (ARMA), back propagation (BP) neural networks.

1. Introduction

In recent years, due to globally increasing energy demand, renew-
able energy sources(e.g., wind and solar energy) have gained great
attention, as they are freely available, omnipresent, and environmental
friendly. Thanks to easy accessibility, government’s support, and tech-
nical development, large-scale photovoltaic (PV) systems have been
installed around the world. However, the power generation of PV
system is a nonlinear and complex process, depending on time-varying
factors, such as, temperature, humidity, wind speed and direction, and
historical data of PV system. In order to ensure reliable and efficient
operation of PV energy systems, it is essential and urgent to forecast PV
power precisely [1,2].

There have been a large number of studies on PV power prediction,
in which high accuracy and low computational complexity are two
main concerns.

A common approach is to transform PV power prediction into solar

irradiance prediction, which consists of two steps. The first step is to
forecast solar irradiance, and the second step is to calculate the PV
power according to solar irradiation and system parameters. Different
models of prediction have been developed by traditional techniques
and linear methods, e.g., various clear-day models [3], auto-regressive
moving average (ARMA) [4] and other econometric technologies.
However, as many statistical assumptions and empirical parameters are
involved in these models, it is rather difficult to precisely forecast the
dynamic behavior of solar irradiance. Some improved models have
been proposed based on advanced technologies in [5–7].

Artificial intelligence (AI) and neural network (NN) provide pow-
erful tools of approximating nonlinear systems. Various AI and NN
models have been successfully applied to forecasting solar irradiance in
literature. A wavelet-coupled support vector machine (W-SVM) model
was adopted to forecast global incident solar radiation [8]. A NN model
is proposed to achieve a 24-h-ahead solar irradiance prediction for a PV
system [9]. Based on recurrent neural networks (RNNs) and wavelet
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neural networks (WNNs), a new diagonal recurrent wavelet neural
network (DRWNN) was established to perform the forecast of hourly
and daily global solar irradiance [10]. Advanced approximation tech-
niques based on wavelet analysis [11,12], fuzzy technique [13], and
empirical analysis [14] can also be employed to enhance NN models. In
addition, some other forecasting approaches have also been proposed,
such as, peer-to-peer (P2P) solar forecasting [15], machine learning
[16,17], probabilistic approach, and so forth. The predicted values of
solar irradiance are used to obtain PV power output. On the one hand,
canonical PV formula could be utilized to compute the power output of
PV system. On the other hand, some commercial PV simulation soft-
wares, such as HOMER and PVFORM, could be used to forecast PV
power based on the forecasted solar irradiance and system parameters.

Echo state networks (ESNs) is an improved and simplified form of
RNNS [18]. Unlike classical RNNs, ESNs adopt non-trainable sparse
connections in the hidden layer (called dynamic reservoir), and only
connections in the output layer need to be trained through linear re-
gression. As a result, the high computational complexity is conquered,
and ESNs is much faster than traditional RNNs. ESNs also show obvious
advantages in dealing with nonlinear time series and dynamic predic-
tion system due to its high prediction accuracy and efficiency. ESNs
have been widely applied to various practical fields, including dynamic
pattern classification and recognition [19,20], image processing [21],
optimal energy management [22], and especially nonlinear time series
prediction [23,24]. To our best knowledge, there exist few results in
ESN-based prediction of solar irradiance and PV power.

For a PV hybrid system, one practical issue is the uncertainty of PV
power. While considering the external environment and different de-
mand-side features, the PV power cannot be directly calculated from a
linear form of solar irradiance. Therefore, recent studies have focused
on the direct prediction of PV power [25–28]. In this paper, the un-
certain PV power at the demand side will be specifically modeled in a
direct approach. In the application of PV hybrid system, few results are
reported to evaluate inner rules and hidden patterns of the demand-side
PV power. Influenced by many factors, such as seasons, geographic
locations, weather and surroundings, the PV power profile presents its
own data characteristics, which are closely related to the power gen-
eration process [29]. In order to unveil the inner dynamics, data fea-
tures of measured and estimated PV power are quantitatively analyzed.
In this paper, some main data characteristics between measured and
forecasted PV power will be studied to check statistical similarity.

The contributions are in three folds. First, the ESN models are es-
tablished to directly perform the one-hour-ahead and 24-h-ahead
forecast in the PV hybrid system. The direct effects of measured tem-
perature, humidity, historical 24-h-lag information are also explored in
detail. Comparison between ARMA model, BP neural networks and
MCESN have been conducted. Secondly, the estimation performance is
evaluated with comprehensive criteria, such as normalized root mean
square error (NRMSE), mean absolute error (MAE), root mean square
error (RMSE), and correlation coefficient (r). Thirdly, the data char-
acteristics are investigated with respect to descriptive statistics, sea-
sonality, non-stationarity and complexity.

The rest of this paper is organized as follows. In Section 2, back-
ground is introduced. Section 3 describes the basic theory of ESN in
terms of network structure, mathematical model, and training methods.
The experimental design and numerical results are shown in Section 4.
The data characteristics of measured and estimated PV power are
qualitatively analyzed in Section 5. Finally, the conclusion is presented
in Section 6.

2. Uncertainty in the PV hybrid system

The electricity consumption have been increasing in past decades,
which could result in over exploration of traditional fossil fuel re-
sources. Therefore, the exploration of renewable energy (RE) resources
is necessary to control fossil fuel consumption and pollutant emission.

Due to large potential and free availability, wind and solar energy are
the popular choices among available RE resources. However, the sto-
rage components are required for renewable energy hybrid system due
to the intermittent nature. A renewable energy hybrid system is com-
posed of multiple power resources and storage components for stable
power supply.

Hybrid renewable energy system (HRES), commonly used for re-
mote power supply, is playing an important role in demand side man-
agement with the grid connection, such as, green building and smart
community. The PV hybrid system is the most popular application due
to easy accessibility, low cost, and high safety. The PV hybrid system
consists of PV panel and battery bank that are both connected to the
grid, as shown in Fig. 1. As the first priority, the PV power is used to
feed the load demand. If the demand is less than the PV power, the
surplus PV power will be charged into the battery. If the demand is
larger than the PV power, the deficient amount will be then covered by
the battery. For saving electricity cost, the battery can be charged by
the grid when the electricity has a low price, and be discharged when
the electricity has a high price. The grid takes part into the power
supply when the load demand cannot be satisfied by the PV and the
battery. Note that the PV hybrid system could work in the stand-alone
mode and the grid-connected mode, depending on the on/off status of
switch v, as shown in Fig. 1.

In the PV hybrid system, a critical problem arisen is the power flow
control, which refers to scheduling the power flow between each
component for satisfying requirements of cost saving and safety. Let P1
denote the PV power generation, and P2 denote the charging/dischar-
ging power of battery. Let P3 denote the grid power flow, and P4 denote
the load demand. With respect to cost, the electricity cost can be ex-
pressed as

∫=
=

J ρ t P t( ) ( ),
t

T

0 3 (1)

where ρ t( ) is the real time price of electricity, and J is the electricity
cost. With respect to safety, the power balance should be first satisfied
as

+ + =P P P P ,1 2 3 4 (2)

Power flow control methods have significant effects on electricity
cost and operational safety at demand side. In literature, rule-based and
optimization-based methods are proposed to reduce the cost and en-
hance the safety. However, the uncertainty of PV power has presented
several challenges on the power flow control. First, the uncertainty
could violate the condition of power balance and risk the security of
grid and demand-side units. Secondly, the uncertainty could influence
actual energy consumption, so that the electricity cost might deviate
from the reference one.

In this paper, the prediction of uncertain PV power is specifically
studied at the demand side, as solar irradiation at a certain location (a
weather station or solar farm) cannot be directly used in the PV power

Fig. 1. Schematic of PV hybrid system.
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for other distant customers. A PV panel usually consists of several PV
cells to convert solar irradiation into direct current power. With a
number of PV panels, the hourly PV power output can be simply for-
mulated as:

=P t η t I t A( ) ( ) ( ) ,pv pv pv c (3)

where P t( )pv is the hourly power output from the PV panels; η t( )pv is the
efficiency of solar generation; I t( )pv is the hourly solar irradiation in-
cident on the PV panels (kW h/m2); Ac is the total size of PV panels.

Many researchers have studied the prediction of solar irradiation,
and several kinds of methods have been proposed. The PV power can be
linearly derived from the solar irradiation, if customers have the same
characteristics. Considering different demand-side characteristics, such
as, location, weather, external environment, the efficiency η t( )pv is
time-varying. For example, when partial shading occurs due to cloud
and other objects, the efficiency will decrease. Therefore, the uncertain
PV has to be modeled specifically at the demand side, while the solar
irradiation can only be regarded as a reference. In this study, dis-
tributed generation at a university of South Africa is investigated, and
the uncertain PV power is directly modeled with an approach of echo
state networks. Note that the proposed approach can also be extended
to the prediction of solar irradiation.

3. Echo state neural network

As a kind of neural networks, the ESN has a typical architecture that
is composed of an input layer, a hidden layer (referred to as a dyna-
mical reservoir), and an output layer, as shown in Fig. 2(a). In the ESN,
the input signal, the output signal, and reservoir states are denoted as

t t tu y x( ), ( ), ( ), respectively. For the task of PV power prediction, the
input signal could be current and historical values of PV power, tem-
perature, humidity, and other meteorological indicators. The output
signal is the future PV power that needs to be predicted, and the re-
servoir states are states of neurons in the dynamic reservoir, i.e., the
hidden layer. First, the ESN has adopted a dynamic reservoir to transfer
the input signal into a high-dimensional state vector, which is expected
to include all characteristics. Then, an optimal combination of states is
chosen for representing output dynamics that is task-related. In other
words, the output signal, extracted from the reservoir, is expected to
match the desired target signal. In the rest of the paper, vectors are
denoted by boldface lowercase letters, e.g., x, while matrices are de-
noted by boldface uppercase letters, e.g., X.

In the reservoir, there are a large number of neurons with sparse
connections. The weight of each connection is randomly initialized, and
remains unchanged in the process of training and testing. Inspired by
the nature of biological neural system, such as small-world and modular
characteristics, a multi-clustered structure of reservoir was designed in
the authors’ recent study [30]. Compared with the traditional ESN with
a random structure, the multi-clustered ESN (MCESN) achieved more
accurate prediction. As illustrated in Fig. 2(b), the MCESN has a similar
architecture with the traditional ESN, and their difference is the

structure of reservoir. In this paper, the MCESN is adopted for the
prediction of PV power. The multi-clustered structure is generated ac-
cording to Kaisers clustering algorithm [31]. All neurons in the re-
servoir are divided into two different kinds of neurons, i.e., pioneer
neurons and normal neurons. The pioneer neurons, with mutual con-
nections, are the critical neurons that determine the number of clusters.
The normal neurons have connections within a cluster according to
spatial distance between neurons and associated time windows prob-
ability model. Note that the spatial distance is defined as the Euclidean
distance in the graphic space, and the time window size determines the
value of the probability function and affects the connection probability
between neurons. The procedure for reservoir generation is given as the
following steps [30]:

Step 1: The reservoir is initialized by a small number (denoted as n) of
pioneer neurons, which are bi-directionally connected to each
other.

Step 2: A random neuron is added and categorized into the nearest
cluster, which is determined by the evaluation of the nearest
pioneer neuron. This neuron has a probability to connect each
node belonging to the same cluster. The probability is calcu-
lated based on the spatial distance and the time window size.
Any new neuron that fails to establish a connection will be
given up. Step (2) is repeated until the number of existing nodes
reaches the defined reservoir size (denoted as N).

Step 3: Each node is connected with itself with a self-connecting
probability.

Step 4: The reservoir connection matrix Wres is calculated as follows:

=

⎛

⎝

⎜
⎜

…

⋮ ⋱ ⋮

…

⎞

⎠

⎟
⎟

W
W W

W W
res

i

i i i

1,1 1,

,1 , (4)

where Wi i, is the weight matrix of the ith cluster ( = …i n1, , ); Wi j,
are the weight matrix between the ith and jth cluster. Fig. 3
shows the topology of 200 nodes in the two-dimensional gra-
phic plane [0,1]. The clustered phenomenon is obvious, and it is
also clear that the intra-cluster connections are more intensive
than the inter-cluster connections.

Assume that the MCESN has K N, , and L neurons in the input,
hidden, and output layer, respectively. There exist connection weights
from the input units to reservoir (denoted as �∈ ×W W,in in

N K), re-
servoir connection weights collected in an ×N N weight matrix

�∈ ×Wres
N N , and connection weights from the reservoir to the readout

neurons given in a ×L N output weight matrix �∈ ×Wout
L N . For Win

and Wres, each component is a random number in the MCESN.
Furthermore, the connection weights projected back from the readout
neurons to the reservoir units are given in an ×N L feedback weight
matrix �∈ ×Wback

N L. The update of the reservoir states is expressed as
follows:

(a) (b)

Fig. 2. Network architecture: (a) regular echo state network model with random reservoir structure; (b) multi-clustered echo state network, where the triangles denote the pioneer
neurons.
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+ = + + + +t f t t t tx W u W x W y v( 1) ( ( 1) ( ) ( ) ( )),in res back (5)

where f is the activation function of each reservoir neuron (usually
defined as a sigmoid or Fermi function), and tv( ) is noise signals. The
Fermi function is adopted as the hidden neurons function in the paper.
The network output is calculated as

+ = +t f ty W x( 1) ( ( 1)),out out (6)

where f out is the activation function of the output units. Note that the
identity function is adopted in this paper. In the MCESN, the main task
is to determine the output weight matrix Wout by training the networks.

At the training stage, the teaching signal, i.e., the future PV power,
is given in prior, and the reservoir states can be updated according to
Eq. (5). Regression methods could be employed to calculate the output
weight matrix. Let ltr represent the length of training datasets, and X
represent the internal state matrix. The corresponding teacher signal
vector matrix Λ is denoted as

=

⎡

⎣

⎢

⎢

⎢

…

…
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…

⎤

⎦

⎥

⎥

⎥

×

d d d
d d d

d l d l d l

Λ

(1) (1) (1)
(2) (2) (2)

( ) ( ) ( )

L

L

tr tr L tr l L

1 2

1 2

1 2 tr (7)

and the internal states matrix X is collected as

=

⎡

⎣
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X

(1) (1) (1)
(2) (2) (2)

( ) ( ) ( )

N

N

tr tr N tr l N

1 2

1 2

1 2 tr (8)

where d t( ) is the teacher signal, i.e., the future PV power at the training
stage.

According to the classical pseudo-inverse method, the output weight
matrix Wout is computed as

=
+W X( ) Λ,out T (9)

where +X is defined as generalized inverse matrix of X.
To overcome the over-fitting phenomenon, a ridge regression

training method [32] is applied as

= +
−ρW X X I X( ) ( ) Λ,out T T T1 (10)

where I denotes the identity matrix, ρ is the regularization parameter
which should be determined through a large number of experiments for
the specific learning tasks.

4. Experimental design and estimation results

In this study, a MCESN model is established to forecast the hourly
PV power at the PV hybrid system, installed in University of Pretoria at
South Africa. The PV system comprises a large number of equal PV
modules with rated power 250W, providing the cooling, heating, and
electrical needs for the campus. The historical data, mainly including
temperature, humidity, and PV power, is collected for the year 2014.
The meteorological sensors are installed for measuring temperature and
humidity, the Danfoss Comlynx Monitor logger [33] is used for re-
cording these PV power, temperature, and humidity. As an example of
recorded data, Fig. 4 shows the profiles of hourly PV power P t( )pv ,
temperature (T), and humidity (H) from January 1st 2014 to December
31st 2014.

4.1. ESN setup

To generate the multi-clustered reservoir, the parameter settings are
given in Table 1 based on [30]. Weight matrices Win and Wback are
sampled from a uniform distribution over −[ 1,1], and the spectral radius
of Wres is set as 0.8 [34]. The ridge regression training method is
adopted to obtain the output weights in the current study. The pre-
diction accuracy is indicated by the normalized root mean square error
(NRMSE) [18], which can be expressed as

∑= −
=

NRMSE y t d t l σ( ( ) ( )) / ,
t

l
t1

2 2t

(11)

where y t( ) is the forecast of PV power; d t( ) is the actual PV power; lt is
the number of samples; and σ2 is the variance of the actual PV power. In
this application, 60% of data is used for training, and the remaining data
is used for testing.
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Fig. 3. Two-dimensional projection of multi-clustered network with cluster size =n 2.
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Fig. 4. Recorded data set used in this study: (a) hourly PV power data; (b) corresponding air temperature, humidity.
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4.2. One-hour-ahead prediction

In this section, the feasibility and prediction performance of MCESN
is evaluated in the one-hour-ahead prediction. As the PV power of each
month shows different characteristics, the hourly PV power is modeled
for each month in this paper. The PV power at a certain time, denoted
as −P t( 1)pv , is regarded as the input signal, and the PV power at the
subsequent hour is regarded as the teacher signal. Take sub-data in
summer (January) and winter (July) as two examples, respectively.
Results of MCESN are presented in terms of the actual and predicted
values at the training and testing stages, as shown in Fig. 5. It can be
observed that the prediction output could well match the actual output,
and that large fluctuations could be feasibly discovered.

For each month, the prediction accuracy is evaluated in the terms of
training and testing NRMSE, respectively. The average NRMSE over 20
independent runs is calculated and shown in Fig. 6. As a result, it can be
seen that the prediction accuracy is the lowest in summer.

In addition, in order to directly analyze the factors that may affect
PV power, a reasonable input layer of MCESN should be designed. In
this study, measured temperature (T) and humidity (H) are used as

examples to analyze the direct effect on PV power. The historical values
of temperature and humidity are also regarded as the input signals.
Besides the model previously derived, 3 other models are evaluated, as
illustrated in Table 2. In the first model, the input signal includes the PV
power. In the second model, the input signal includes the PV power and
temperature. In the third model, the input signal includes the PV power
and humidity. In the fourth model, the input signal includes the PV

Table 1
Model parameters for multi-clustered network.

Parameter meaning Values

Reservoir size 200
Cluster number 2
Time window size 0.3
Self-connecting probability 0.8
Connection probability coefficient1 6
Connection probability coefficient2 10
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Fig. 5. One-hour-ahead prediction results by MCESN versus actual values for 200 training and testing points: (a) January; (b) July.
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Fig. 6. NRMSEs comparison of training and testing set for each month.

Table 2
Different input and output for MCESN model considering temperature (T) and humidity
(H).

Model MCESN MCESN+T MCESN+H MCESN+T+H

Input −P t( 1)pv − −P t T t( 1), ( 1)pv − −P t H t( 1), ( 1)pv − − −P t T t H t( 1), ( 1), ( 1)pv

Output P t( )pv P t( )pv P t( )pv P t( )pv
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power, temperature, and humidity. In these different situations, the
input and output signals are listed in Table 2. For each model, the
prediction accuracy is reported with respect to the NRMSE, as shown in
Fig. 7. It can be observed that the input effects of setting measured
temperature and humidity are minor, as each model has similar accu-
racy. In the same way, the direct effect of other measured factors (cloud
cover, geographic location) could also be analyzed.

Furthermore, in order to evaluate the periodic phenomenon, the
hourly data of PV power is represented as a 24∗365 matrix, in which
the component at the mth column and the sth row represents the PV
power at the mth hour of the sth day ( = …m 1, ,24, and = …s 1, ,365). The
2-D matrix is plotted as a surface mesh shown in Fig. 8. The daily profile
of PV power has a periodic pattern, so the effects of 24-h-lag in-
formation on the prediction accuracy are further explored. The multiple
inputs are selected as −P t( 1)pv and −P t( 24)pv , and the single output is
selected as P t( )pv . The testing NRMSE without/with the lag information
is presented in Fig. 9, where the blue bar represents the results without
the lag information and the red bar represents the results with the lag
information. It can be obtained that the 24-h-lag information has po-
sitive effects on the prediction accuracy in winter and negative effects
in summer. The reason behind this phenomenon is that there exist in-
tensive fluctuations that cause greater prediction error, as shown in
Fig. 10.

4.3. 24-h-ahead prediction

The MCESN approaches are utilized to predict the hourly PV power
with a good accuracy. However, the hourly PV power is insufficient for
certain cases of daily schedule and optimization. Therefore, 24-h-ahead
forecast of PV power is further investigated. According to [9], MCESN
permits to estimate 24-h-ahead of PV power based on the actual mean
value of daily current PV power, daily air temperature, and the day of
each month.

Experimental results are presented in Fig. 11 to compare the fore-
casted profiles and the measured profiles for 4 sunny days (July

19th–22nd). As can be seen, the forecast profiles of PV power can ap-
proximate the measured profiles with well accuracy. The scatter plots of
prediction results are given in Fig. 12. Most points are close to the di-
agonal line with the coefficient of determination =R 0.992 .

To quantify the prediction performance, several different statistical
criteria, i.e., root mean square error (RMSE), correlation coefficient r,
and the mean absolute error (MAE), are calculated for different case
studies. These statistical results are listed in Table 3. It can be observed
that the RMSE for the sunny day is smaller than the cloudy day, and
that the correlation coefficient for the sunny day is larger than the
cloudy day. The results indicate that the MCESN model delivers less
accuracy on the cloudy days. One possible reason is that the weather
information, such as, rain and cloud, which is missing in this study, is
required for the prediction task of cloudy days.

4.4. Comparisons of MCESN and other typical models

In order to validate the effectiveness of proposed method, two
popular models, i.e., auto-regressive moving average (ARMA) and BP
neural networks, are selected in the comparison study.

In Fig. 13 and Table 4, the MAE, RMSE, r values between measured
and forecasted profiles are compared with respects of ARMA, BP and
MCESN. Obviously, MCESN has the highest precision, while ARMA
performs the worst. This demonstrates that MCESN has obviously better
performance to deal with nonlinear PV power prediction task.

For the PV hybrid system, future PV power is essential information
for most problems of design and operation, e.g., sizing and power flow
dispatching. For power flow dispatching, day-ahead optimal control is
usually applicable to minimize the electricity cost of customers, who
already install the hybrid PV system at demand side. Under a certain
pricing policy, the PV power prediction affects the optimal dispatching
strategy and its associative cost. For example, the PV hybrid system
with the proposed MCESN could be used in a time-of-use (TOU) pro-
gram, which is a typical demand response program to alleviate peak
burden. In TOU, the electricity prices are fixed in advance for the
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Fig. 7. Testing NRMSEs comparison under four diverse input-output models.
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customer reference. Note that future PV power and load demand could
be forecasted using MCESN.

5. Analysis of data characteristics

The prediction performance has been evaluated by quantifying the
difference between the predicted results and the measured results.
However, internal dynamic of the measured results are not essentially
the same with the predicted results. Therefore, some data character-
istics, including descriptive statistics, seasonality, stationarity (or non-
stationarity), and complexity, are qualitatively investigated in this
section. The one-hour-ahead forecast is taken as an example to analyze
these characteristics.
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Fig. 11. Comparison between measured and forecasted PV power values 24-h-ahead during period July 19th–22nd (sunny days).
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Fig. 12. Scatter plots comparison between measured and forecasted PV power values 24-h-ahead for 4 sunny days (July 19th–22nd).

Table 3
Statistical test between measured and forecasted PV power values 24-h-ahead for 4 sunny
days: July 19th–22nd 2014 and 4 cloudy days: November 19th, December 23rd, January
20th, February 20th.

Seasons Days MAE (kW) r RMSE (kW)

Winter July 19th 16.33 0.9993 26.72
July 20th 8.61 0.9988 15.49
July 21st 12.97 0.9957 24.54
July 22nd 13.32 0.9996 21.83

Summer November 19th 65.16 0.9567 113.61
December 23rd 97.58 0.9225 158.19
January 20th 74.04 0.9153 120.34
February 20th 37.14 0.9864 60.12
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5.1. Descriptive statistics

The histogram between the measured and predictive PV power va-
lues are firstly studied. The histogram for January (in the summer) and
July (in the winter) is given in Fig. 14(a) and (b), respectively. From
Fig. 14, it can be seen that the PV power distribution of the forecasted
results is similar with that of the measured results. The distribution of
January is also different with that of July, which indicates there exist
varying dynamics between seasons. The mean and standard deviation
of monthly PV power are computed in Table 5. It can be concluded that
the mean, standard deviation of the forecasted results are close to those
metrics of the measured results. In addition, statistical test between

measured and forecasted values is conducted, e.g., F-test and T-test, and
the results are reported in Table 5. Note that 0 means two data sets are
statistically similar, and 1 means they are significantly different. The F-
test results indicate that there is no significant difference between
measured values and forecasted values for most months except March.
The T-test results also show that there is no significant difference be-
tween measured and forecasted PV power values for all months.
Therefore, it can be concluded that the forecasted values is similar with
the measured valued.

5.2. Periodicity and stationarity

In order to explore the periodic or seasonal characteristics, a surface
mesh and a gray image are plotted in Fig. 15. When the region is
brighter, the PV power is more intensive, and vice versa. The profiles of
PV power show seasonally periodic, although some fluctuations occur
in summer (January, November, and December). There is a wider white
blob during the summer compared with the winter, as the period from
dawn to dusk is longer. Meanwhile, autocorrelation coefficients of
measured and forecasted data are plotted in Fig. 16, which can indicate
the cyclical pattern has a period of 24 h and non-stationarity. Both the
measured and forecasted autocorrelation coefficients values with lag of
24 h are far higher than those with other lags, further demonstrating the
24-h-lag information has strongly positive correlation. Note that non-
stationarity means that the statistical properties of PV power dynamics
remain diverse during the data generation process. It can be concluded
that internal dynamic characteristics, with respect to periodicity and
stationarity, keep similar between the measured and forecasted results.
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Fig. 13. MAE, RMSE comparison between measured and forecasted PV power values for 4 sunny days: July 19th–22nd 2014 and 4 cloudy days: November 19th, December 23rd, January
20th, February 20th.

Table 4
Correlation coefficient (r) comparison between measured and forecasted PV power values
for 4 sunny days: July 19th–22nd 2014 and 4 cloudy days: November 19th, December
23rd, January 20th, February 20th.

Correlation coefficient r

Seasons Days ARMA BP MCESN

Winter July 19th 0.9866 0.9957 0.9993
July 20th 0.9836 0.9928 0.9988
July 21st 0.9824 0.9835 0.9957
July 22nd 0.9845 0.9690 0.9996

Summer November 19th 0.8686 0.9227 0.9567
December 23rd 0.8273 0.9143 0.9225
January 20th 0.8213 0.9048 0.9153
February 20th 0.9020 0.9440 0.9864
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5.3. Complexity

The complexity characteristic could reflect the complex state be-
tween regular and irregular relationships. Different techniques have
been applied to measure the data complexity, including the phase-space
reconstruction method [35], the G-P algorithm [36], and so on. A
simple and fast method, i.e., visibility graph method [37], is used to

analyze the complexity of forecasted and measured results in this study.
The basic idea of the algorithm is to map a time series signal into an
associated graph, and graph theory can be employed to characterize the
associated graph. The visibility graph method can reflect the structure
of the mapped time series according to [37].

For the visible graph method, scatter diagrams and corresponding
degree distributions are shown in Figs. 17 and 18. Besides forecasted

Table 5
Monthly mean and standard deviation comparison between the forecasted and actual PV power.

The measured values The forecasted values Statistical test

Month Mean (kW) Std (kW) Month Mean (kW) Std (kW) Month F-test T-test

1 269.92 346.92 1 280.39 343.94 1 0 0
2 253.65 328.49 2 253.18 319.09 2 0 0
3 173.96 259.98 3 163.76 231.44 3 1 0
4 201.59 282.26 4 202.75 277.53 4 0 0
5 186.78 260.31 5 188.83 260.06 5 0 0
6 174.72 244.89 6 177.59 245.64 6 0 0
7 183.38 256.32 7 185.28 256.15 7 0 0
8 209.44 287.96 8 211.61 296.99 8 0 0
9 261.14 340.75 9 262.92 343.72 9 0 0
10 287.49 370.75 10 285.03 363.40 10 0 0
11 236.96 332.01 11 235.03 320.09 11 0 0
12 265.97 355.24 12 273.59 348.61 12 0 0
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Fig. 15. (a) 2-D surface plot comparison between the estimated and measured PV power. (b) Image visualization comparison between the estimated and measured PV power.
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and measured singles, several time series are modeled for comparison,
such as, a random sequence uniformly distributed in [0,1], and a chaotic
sequence generated from the Mackey-Glass system (MGS). From
Fig. 17, we can conclude that both forecasted and measured signals
present more intensive intra-cluster connections compared with
random series. In Fig. 18, the degree distribution of random sequence
fits an exponential distribution, while the degree distribution of fore-
casted and measured signals fits the Gauss-like distribution, which is
similar to the distribution of MGS chaotic series. The Gauss-like dis-
tribution shows certain chaotic property of PV power.

Note that the scatter diagrams and degree distributions differ from
each month. To further evaluate the seasonal complexity, the basic
graph metrics, including average path length (AP), clustering coeffi-
cient (CC), and average degree (AD), are calculated for each month. The
formulas of AP and CC are given in the following equations:

∑=
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≠

AP 1
O(O 1)

ϑ ,
ς ζ
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∑=
−

=

CC e
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1
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2
( 1)

,
ε

ε

ε ε1

O

(13)

where ϑς ζ, denotes the shortest length between point ς and ζ of time
series, O is the length of sequence; ξ e,ε ε represent the degree of point ε

and the actual number of edges among the points connected to point ε.
In Table 6, AP, CC and AD are calculated for different time series. It

can also be seen that the AP and AD of measured and forecasted signals
are between those of MGS and random signals, which could indicate
certain small-world properties between random and chaos. In Table 7,
AP, CC and AD are calculated for each month. The measured results are
comparable with respect to these three metrics. The small values of AP,
CC, and AD in summer mean the high randomness, which can explain
the poor performance in summer.

In this section, several main data features, including descriptive
statistics, seasonality, non-stationarity and complexity of measured and
forecasted results are qualitatively analyzed. Experimental results show
that the measured and forecasted signals have similar dynamics and
complexity. Some linear models, such as, moving average (MA), auto-
regressive (AR), and auto-regressive moving average (ARMA) may not
be suitable for modeling the demand-side PV power precisely.
Therefore, the MCESN model is proposed to predict the demand-side PV
power due to its nonlinear mapping capacity.

6. Conclusions

For the PV power forecast in the demand-side hybrid system, this
paper presents a direct approach for one-hour-ahead prediction and 24-
h-ahead prediction based on multi-clustered echo state network
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(MCESN). The proposed approach can achieve competitive perfor-
mance of prediction. The effects of measured temperature, humidity,
and 24-h-lag information are also studied in the MCESN model. The
results show that consideration of temperature and humidity informa-
tion has negligible effects on the prediction accuracy, and that the
historical 24-h-lag information has positive effects on the prediction
accuracy in winter and negative effects in summer. The simulation re-
sults also indicate that the proposed model could perform accurate 24-
h-ahead prediction for sunny days with the correlation coefficient being

99%, and acceptable precision for cloudy days with the correlation
coefficient being in the range 91–98%. MCESN could achieve more
accurate prediction, compared with ARMA, BP neural networks.
Finally, several data characteristics of measured and estimated PV
power are qualitatively analyzed. Experimental results show that the
seasonality, non-stationarity, complexity, and descriptive statistics
characteristics are analogous between measured and estimated values.

There are some open issues for the PV hybrid system. One issue is
big data analysis in the PV power forecast. Additional factors, such as
cloud cover, sunshine duration, should be considered in the ESN model.
Some advanced neural networks, such as convolutional neural network
(CNN) and long short-term memory (LSTM) can also be studied for
large and complicated applications. Another issue is the load modeling,
which is closely related to customer behavior and demand response.
The ESN model will be investigated for the load forecast. Furthermore,
after day-ahead PV power output and load demand are forecasted,
power flow dispatching in the PV hybrid system will be studied under
different demand-side programs, e.g., the time-of-use program. Energy
efficiency and economic performance must be considered in some rule-
based or optimization-based strategies.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.apenergy.2018.02.160.
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A B S T R A C T

To promote sustainable development and expedite the progress on moving to a green building sector, the
government of South Africa has developed an energy performance certificate (EPC) standard for buildings. A
building is required to obtain a certain rating from the EPC in order to comply with the country's green building
policy. Therefore, finding optimal retrofit plans for existing buildings are essential given the high investments
involved in the retrofit of buildings that do not currently comply with the policy. This paper presents an opti-
mization model to help decision makers to identify the best combination of retrofit options for buildings to
ensure policy compliance in the most cost-effective way. The model determines optimal retrofit plans for a whole
building in a systematic manner, taking into account both the envelope components and the indoor facilities. A
roof top PV system is utilized to reduce the usage of electricity produced from fossil fuels. The model breaks
down the long-term investment into yearly short-term investments that are more attractive to investors. Tax
incentive program available in the country is taken into account to offset the long payback period of the in-
vestment. Economic analysis is also built into the model to help decision makers to make informed decisions. The
retrofit of an existing office building is taken as a case study. The results show that 761.6MWh energy savings
and an A rating from the EPC can be obtained with a payback period of 70 months, which demonstrates the
effectiveness of the model developed.

1. Introduction

The building sector is responsible for about 30%–40% of energy
consumption throughout the world, being one of the largest energy
consuming sectors [1,2]. It was also concluded that existing buildings
are the main cause of the high energy consumption in the sector given
that the replacement rate of existing buildings with new buildings is
about 1%–3% per year [3]. In view of this, improving the energy effi-
ciency of existing buildings is a priority task to mitigate environmental
impacts of the building sectors [4]. Aligning to this purpose, many
countries, such as the US, Australia, China, etc., are developing green
building policies to promote the transition to a green building sector.
For example, the Leadership in Energy and Environmental Design
(LEED) certification program developed by the US Green Building
Council, the Green Star rating system developed in Australia, and the
evaluation standard for green buildings developed in China all aim to
bring down the energy demand of the building sector. For the same
purpose, the government of South Africa has recently developed a si-
milar rating system called energy performance certificate (EPC) of
buildings [5]. Unlike green building rating systems developed by other
countries, the EPC program only focuses on the energy intensity,
without considering other indicators such as water usage and indoor air

quality, thus, enforcing the building sector to use energy more effi-
ciently.

The EPC system classifies the energy intensity of a building into
seven grades ranging from grade A to grade G. Grade A is for the most
energy efficient buildings and grade G is for buildings that are the most
inefficient. These grades are rated according to the energy intensity of a
building in comparison with a reference consumption level determined
for buildings of different occupancy classes specified in Ref. [6]. The
national green building policy requires that all buildings which are
owned, operated and leased by the South African Department of Public
Works must reach at least a D rating from the EPC. Enforcement of this
green building policy will be extended to all buildings in the country
shortly.

While a Grade D rating is mandatory, the government is also pro-
moting higher ratings for the targeted buildings. The existing buildings
targeted are usually quite old and are inefficient. Achieving a desired
rating for these buildings requires considerable investments. In light of
the financial uncertainties and long payback periods of some existing
building retrofit projects, a decision support tool is essential to help
decision makers to come up with the optimal retrofit plan. This paper
aims to fill in this gap by developing an optimization model to identify
the optimal retrofit plan aiming at achieving the desired grade with the

https://doi.org/10.1016/j.buildenv.2018.03.044
Received 19 October 2017; Received in revised form 12 March 2018; Accepted 26 March 2018

∗ Corresponding author.
E-mail address: ylfan.up@gmail.com (Y. Fan).

Building and Environment 136 (2018) 312–321

Available online 29 March 2018
0360-1323/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03601323
https://www.elsevier.com/locate/buildenv
https://doi.org/10.1016/j.buildenv.2018.03.044
https://doi.org/10.1016/j.buildenv.2018.03.044
mailto:ylfan.up@gmail.com
https://doi.org/10.1016/j.buildenv.2018.03.044
http://crossmark.crossref.org/dialog/?doi=10.1016/j.buildenv.2018.03.044&domain=pdf


Nomenclature

α1 power load densities of people (W/m2)
α2 power load densities of lightings (W/m2)
α3 power load densities of appliances (W/m2)
C M( )f the absolute value of the cumulative cash flow at the end

of the M-th month ($)
βt budget allocated in year t for retrofit ($)
δ t( ) coefficient taking the values from Table 1

W tΔ ( ) difference of humidity ratio between the inside air and
outdoor air in year t (kg/kg)

ηp efficiency of the p-th solar panel alternative
ηs average solar energy to electrical power conversion effi-

ciency
λj thermal conductivity of the j-th alternative of the external

wall insulation materials (W/m°C)
λk thermal conductivity of the k-th alternative of the roof

insulation materials (W/m°C)
ζa allowance rate set by the government
ζt tax rate for general businesses in South Africa
Al

pv area of the l-th solar panel alternative (m2)
Ap

pv area of one solar panel of the p-th alternative (m2)
Ae available roof area for the PV power supply system in-

stallation (m2)
Aflr areas of the floor of the building (m2)
Ag gross area of the building (m2)
Arof areas of the roof of the building (m2)
Awal areas of the walls of the building (m2)
Awin areas of the windows of the building (m2)
C number of chiller alternative
C t( ) retrofit cost in year t ($)
Cc

chi cost of the c-th chiller alternative ($)
+C M( 1)f the discounted cash flow in the +M( 1)-th month ($)

Ch
pum cost of the h-th heat pump alternative ($)

Ci
win cost of the i-th window alternative ($/m2)

Cj
wal cost of the j-th wall insulation material alternative ($/m2)

Ck
rof cost of the k-th roof insulation material alternative ($/m2)

Cl latent heat factor of air (W/(L/s))
Cl

pv unit cost of the l-th solar panel alternative ($)
Cs sensible heat factor of air (W/(°C L/s))
C t( )dd cooling degree days in year t (°Ch)
Cl

lig
m

m unit cost of the lm-th alternative of the lightings used to
retrofit the m-th type of existing lighting technologies ($)

d discount rate
dj thickness of the j-th alternative of the external wall in-

sulation materials (m)
dk thickness of the k-th alternative of the roof insulation

materials (m)
E t( )p net energy consumed by the building in year t (kWh/m2)
Er reference of net annual energy consumption (kWh/m2)
E t( )cool energy consumed by the chillers in year t
E t( )d energy usage of lighting systems and appliances in year t
E t( )heat electrical energy used for the heating purpose in year t
E t( )i internal heat gain in year t
E t( )lc latent heat gain in year t
E t( )lh latent heat gain in year t
Epre baseline energy consumption of the building before ret-

rofit
E t( )pv energy produced by the PV system in year t
E t( )sc sensitive heat gain in year t
E t( )sh sensitive heat loss in year t
E t( )sl solar heat gain of the cooling load in year t
E t( )tc transmission heat gain of the cooling load in a general

building in year t
E t( )th transmission heat loss through the envelope in year t

E t( )tot total energy consumption of the building during year t
ES t( ) resultant energy savings in year t
H number of heat pump alternative
H t( )dd heating degree days in year t (°Ch)
HSPF t( ) heating seasonal performance factor in year t (Btu/Wh)
HSPFh performance coefficient of the h-th heat pump alternative
I number of window alternative
I t( )pv solar irradiation on the PV power supply system during

year t (Wh/m2)
I t( )win solar irradiance on windows in year t (W/m2)
J number of wall insulation material alternative
K number of roof insulation material alternative
Lm number of lighting alternative for retrofitting the m-th

type of existing lights
M the month after the investment at which the last negative

cumulative discounted cash flow occurs
m number of existing lightings' type
Nlm maximum quantity of the m-th type of existing lamps

available for retrofit
N t( )ligm number of the m-th type of existing lighting technology

retrofitted in year t
N t( )pv number of the selected solar panel to be installed in year t
P number of solar panel alternative
p t( ) electricity price in year t ($/kWh)
Pa total power of the appliances in the building in year t (W)
P t( )l total power of the lights in the building in year t (W)
Qs air flow rate (L/s)
R t( ) the actual monetary incentive in year t
SEER t( ) seasonal energy efficiency ratio (Btu/Wh)
SEERc performance coefficient of the c-th chiller alternative
SHGC t( ) solar heat gain coefficient as a function of incident angle

in year t
T project period
T t( )c cooling time in year t (h)
T t( )h heating time in year t (h)
Tp payback period measured (months)
T t( )s solar radiation time in year t
T t( )d occupancy time of the lightings and appliances in year t

(h)
T t( )oc occupancy time during the cooling season in year t (h)
Ui thermal transmittance of the i-th window alternative (W/

m2°C)
Ur thermal transmittance of the roof before retrofit (W/m2°C)
Uw thermal transmittance of the wall before retrofit (W/m2°C)
U t( )flr thermal transmittances of the floor in year t (W/m2°C)
U t( )rof thermal transmittances of the roof in year t (W/m2°C)
U t( )wal thermal transmittances of the walls in year t (W/m2°C)
U t( )win thermal transmittances of the windows in year t (W/m2°C)
w1 positive weight
w2 positive weight
x t( )c

chi retrofit state of the c-th chiller alternative in year t, similar
to x t( )i

win

x t( )h
pum retrofit state of the h-th heat pump alternative in year t,

similar to x t( )i
win

x t( )i
win retrofit state of the i-th alternative of the windows

x t( )j
wal retrofit state of the j-th alternative of the insulation ma-

terials for the external walls in year t, similar to x t( )i
win

x t( )k
rof retrofit state of the k-th alternative of the insulation ma-

terials for the roof in year t, similar to x t( )i
win

x t( )p
pv retrofit state of the p-th solar panel alternative in year t,

similar to x t( )i
win

x t( )l
lig
m

m retrofit state of the lm-th alternative of the lightings for the
m-th type of existing lightings in year t, similar to x t( )i

win
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maximum possible financial benefits.
To reduce energy usage of buildings, it is noted that energy con-

sumption in buildings are attributed to two main subsystems. That is,
the energy dissipated by the envelope/enclosure that separates the in-
terior and exterior environments and the energy consumed by the fa-
cilities and appliances inside the building.

In the literature, the energy efficiency of buildings was classified
into performance efficiency, operation efficiency, equipment efficiency,
and technology efficiency, definitions of which are given in published
works such as [7–9]. Efforts on improving the energy efficiency of the
existing buildings, regarding the two subsystems mentioned earlier,
were mainly focused on the technology and equipment efficiency levels
from both power supply and demand sides. At technology efficiency
level, efforts have been made to introduce renewable power generating
technologies to buildings, including solar systems [10,11], wind sys-
tems [12], etc. from the energy supply side. At the same time, many
energy efficiency technologies have been developed and reported from
the demand side. These include development of insulation materials
[13–15], energy-efficient appliances [16], etc. At the equipment level,
the maintenance of envelope system, ventilation and air conditioning
(HVAC) systems and lighting systems was also studied [17–20]. At the
operation level, studies have been focused on the optimal scheduling,
coordination, and control of the indoor appliances/facilities including
heating, HVAC systems, lighting systems, smart appliances [21,22], etc.
to reduce both energy consumption and cost for individual or a group of
buildings. Performance level studies were mainly focusing on the im-
pacts of existing building on the environment and the electricity grid.
Such as the ones reported in Refs. [23–25].

The retrofit planning, a technology level problem, has not been well
studied in the literature. Majority of the reported studies in this area
focuses on developing guidelines to facilitate the retrofit process or on
the cost-benefit analysis of retrofits. This means that the reported stu-
dies mostly focusing on policy or management level, that deals with
long term impacts of the retrofit or the procedures of a building retrofit
at a high level. For example [26], concluded that the key enabling
factors for the implementation of green building retrofits include in-
troduction of a project facilitation team, performance contracting, etc.
[27] presented a state-of-the-art review of all building energy retrofit
activities and developed a conceptual method for determining the most
cost-effective retrofit measures for a particular project [28]. empha-
sized the importance of the selection of optimization objectives in the
decision making process for building retrofits and developed a decision
matrix to guide the objective selection process [29]. looked into de-
veloping a building retrofit index to guide the selection of building with
the best retrofit potential at regional and national scales to support
green building policies making use of a clustering method. Cost-benefit
analysis of building retrofits was reported in Ref. [30] aiming at offer
policy makers and managers to develop incentive mechanisms and
management interventions to promote the implementation of building
retrofit programs [31]. presented a life cycle analysis approach for
building retrofits with similar objective of helping identify retrofit op-
tions in early planning stage. As pointed out by Webb in a review paper
[32], echoed by another review paper [27], that although the devel-
opment of building retrofit criteria, performance simulation and ana-
lysis tools, and consistent guidelines certainly aids the building retrofit
process, methods to identify the most cost-effective retrofit measures
for particular projects is still a major technical challenge.

In this regard, several studies presented detailed mathematical
models to determine the optimal retrofit options in a building from
several aspects. In particular, a mixed integer model was developed for
the indoor appliances retrofit to reduce energy consumption in Ref.
[33] from a control system point of view. In the building retrofit for
green building certification context, a particular study [34] reported an
optimization model to reduce energy and water consumptions of an
existing building aiming at LEED certification. In Ref. [34], the optimal
retrofit planning problem was formulated as a mixed integer

programming problem, which only considered indoor appliances such
as light bulbs and washing machines. Because of the envelope struc-
ture's significant contribution to a building's energy consumption, the
retrofit planning for the envelope components of buildings was also
studied recently in Refs. [35–37].

However, no study on the systematic retrofit planning for the whole
building including the envelope and the indoor systems has been re-
ported so far. Only indoor facilities were considered in Refs. [19,33,34].
The thermal dynamics of the building envelope, which contributes up
to 40% of energy consumption of buildings, was ignored in those stu-
dies. Previous studies on the building envelope energy consumption
reduction, however, didn't consider the energy usage inside the
building [35–38]. Consequently, no study was done on retrofit planning
considering the interactions between the indoor and envelope systems
of the building in terms of energy consumption. This is because of the
technical difficulties associated with the building retrofit problem
considering both the envelope and indoor systems. When only indoor
appliances are considered, the problem can be formulated as a linear
mixed integer problem. However, the problem becomes highly non-
linear and of high-dimensional when both the indoor and envelope
systems are involved. In addition, no study on the optimal building
retrofit plan considering the EPC rating system, which looks at the
energy intensity of a whole building and calls for a systematic whole-
building retrofit approach, has been conducted.

Therefore, the purposes of this study are to

• develop a mathematical model that can determine an optimal ret-
rofit plan for the whole building aiming at maximizing the energy
savings, minimizing the payback period of the project, and
achieving a desired energy rating from the EPC systematically;

• help decision makers to directly obtain the best retrofit solution to a
specific building without the need of complex human decision
making process;

• provide a detailed analysis of the retrofit plan given by the model
developed in terms of its financial implications such as payback
period, NPV, etc.

Although operational level optimization is also an important aspect
to improve energy efficiency of existing buildings by optimal sizing,
matching and timing control of facilities in the building. This is how-
ever out of the scope of this study and not considered.

The main contributions of this study are stated in the following.
Firstly, a systematic approach to determine the optimal retrofit plan for
existing buildings considering both the envelope systems and the indoor
systems and their interactions to reduce the energy consumption and to
ensure compliance with a green building policy with reference to the
EPC rating system is presented. The optimal retrofit plan obtained can
help a building to achieve a desired energy rating from the EPC rating
system in a cost-effective manner. Secondly, factors including energy
savings and economic benefits, which are important to decision makers,
are built into the proposed optimization model to make sure that the
economic benefits of an investment project are maximized and the
desired energy savings is achieved. Thirdly, the proposed model treats
the retrofit plan as a multi-year project with improving efficiency tar-
gets in the consecutive years. That is to say, the model breaks down the
one-time long-term project into smaller projects over multiple financial
years with shorter payback periods. This is of great help to mitigate the
concerns of the investors. In view that obtaining the best rating (grade
A) usually requires a significant amount of investment with a long
payback period and the high economic uncertainties, breaking the in-
vestment down in short-term ones helps to attract investments for si-
milar building retrofit projects. The proposed approach in this study
will make sure that at least the so-called ‘low-hanging fruits’ projects,
which generate noticeable savings with a relatively small investment,
for energy efficiency improvement will be implemented in the starting
years of the retrofit project. Lastly, the government of South Africa,
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struggling from sever energy supply constraints, has implemented a
series of initiatives to promote efficient utilization of the country's
limited power generating capacity in recent years. The tax incentive
program introduced under the section 12L of the income tax act is one
of these initiatives. It allows business owners to claim a deduction of
their taxable income according to their energy savings over a year
comparing to their baseline consumption in the previous year. The 12L
tax incentive program helps to bring in an additional cash flow by
means of reduced tax paid by the building owner, which can be used to
fund the new retrofit projects in the coming years and can further
shorten the payback period of the retrofit project. This tax incentive
program is also considered in the optimal retrofit planning method.

Relevance of this research to the building retrofit field can be stated
from two aspects. From the application point of view, this study de-
velops a powerful decision support tool for the whole building energy
efficiency retrofit aiming at a green building rating taking into account
all possible retrofit activities, interactions between the indoor and en-
velope systems of a building, and financial incentives over several
years. From the academic perspective, the presented optimization
model adds value to the literature on the green building retrofit by
introducing a systematic model capable of optimizing the retrofit ac-
tions of both envelope and indoor facilities of a building simulta-
neously. This systematic approach essentially develops a retrofit plan-
ning tool for buildings involving multi-technologies, which was found
to be difficult [39]. It also features a multi-year planning architecture
that helps to ease the mind of investors and helps to evaluate the fi-
nancial and energy savings benefits of the retrofit over a realistic multi-
year scale [39]. Moreover, the formulated optimal retrofit planning
problem is a nonlinear mixed-integer programming (NMIP) problem
that cannot be solved by conventional optimization techniques and
consequently, a genetic algorithm (GA) is developed in this study to
solve this NMIP problem. It should be noted that the focus of this study
is developing the optimization model to “identify the most cost-effec-
tive retrofit measures for particular projects” and not the optimization
algorithm to solve this problem. Although a GA based algorithm is
adopted, it should be noted that this problem can be solved by other
algorithms as well. Investigation of the most efficient algorithm to solve
the formulated problem will be reported in our future works.

The remainder of this paper includes five parts. Modeling of the
building energy consumption is presented in Section 2 followed by the
optimal retrofit problem formulation in Section 3. After that, a case
study covering all aspects of the whole building retrofit problem is
given in Section 4 and conclusions are drawn in Section 5.

2. Energy modeling of the building

The energy consumption of the various components of a building
must be mathematically modeled before the retrofit problem can be
formulated. This section presents the equations that govern the energy
usage of a building. Specifically, the heating and cooling energy usages
are modeled considering the heat flows through the envelope materials
and the characteristics of the heating and cooling facilities. The energy
consumption of lighting system and appliances inside the building is
then modeled. Lastly, a photovoltaic (PV) system is included in the
model to produce electricity for the building in order to help it to reach
the desired grade. The motivation of such a PV system is because that
South Africa is one of the countries in the world that has the best solar
resource, and that other energy saving technologies such as district
heating infrastructures are not available in the country. It is however
noted that if other energy saving systems are available, they can be
modeled and then incorporated in the optimal retrofit plan model de-
veloped in this study, which sets a general framework for the optimal
retrofit plan with reference to the EPC rating system.

The impacts of the envelope components on the energy consump-
tion of the building are modeled first followed by the energy con-
sumption model of the lighting and appliances. Modeling of the rooftop

PV power supply system comes at the end of this section.
In the following subsection, equations for the cooling and heating

loads calculation are derived from Refs. [40,41] if not specifically
stated otherwise.

2.1. Cooling energy consumption

In a general building, the energy consumption for the cooling load
includes the following parts: transmission heat gain, infiltration and
ventilation heat gain, solar heat gain, and internal heat gain.

2.1.1. Transmission heat gain
The transmission heat gain of the cooling load in a general building

in year t can be determined by

= +

+ +

E t C t A U t A U t
A U t A U t

( ) ( )( ( ) ( )
( ) ( ))

tc dd win win wal wal

rof rof flr flr (1)

In this study, the floor of the building is not considered to be ret-
rofitted. Hence, the thermal transmittance of the floor U t( )flr keeps
unchanged. The thermal transmittances of the other envelope compo-
nents of the building after the retrofit are calculated by

∑=

=

U t x t U( ) ( ) ,win
i

I

i
win

i
1 (2)

∑=
+

=

U t x t
U λ

U d λ
( ) ( ) ,wal

j

J

j
wal w j

w j j1 (3)

∑=
+

=

U t x t U λ
U d λ

( ) ( ) ,rof
k

K

k
rof r k

r k k1 (4)

in which x t( )i
win denotes the state of the i-th alternative of the windows,

i.e., when =x t( ) 1i
win , it is chosen to retrofit the existing window in

year t, while if =x t( ) 0i
win , it is not chosen.

2.1.2. Infiltration and ventilation heat gain
The infiltration and ventilation heat gains of the cooling load in a

general building consist of sensible and latent components. The sensi-
tive heat gain in year t can be calculated by

=E t C Q C t( ) ( ).sc s s dd (5)

The latent heat gain in year t can be calculated by

=E t C Q W t T t( ) Δ ( ) ( ).lc l s c (6)

2.1.3. Solar heat gain
The solar heat gain of the cooling load in a general building in year t

can be calculated by

=E t A I t SHGC t T t( ) ( ) ( ) ( ).sl win win s (7)

In the calculation of SHGC t( ), the shading factor is not considered
in this study.

2.1.4. Internal heat gain
The internal heat gain of the cooling load in a general building

mainly results from people, lightings and appliances. It can be calcu-
lated by

= + +E t α α α A T t( ) ( ) ( ).i g oc1 2 3 (8)

2.1.5. Energy consumption of the cooling load
The cooling loads detailed in Sections from 2.1.1 to 2.1.4 are sup-

plied by chillers installed in the building. The following equation is
used to determine the energy consumed by the chillers to supply these
cooling loads [42].
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=
+ + + +E t E t E t E t E t E t

SEER t
( ) ( ) ( ) ( ) ( ) ( )

( )
.cool

tc sc lc sl i

(9)

SEER is a ratio of the cooling output in BTU over the cooling season
to the used watt-hours electricity input during the same period mea-
sured in Btu/Wh. When the exiting chiller is retrofitted by a new one,
the resulting SEER is determined by

∑=

=

SEER t x t SEER( ) ( ) .
c

C

c
chi

c
1 (10)

2.2. Heating energy consumption

The heating load for a building includes two parts, namely, trans-
mission heat loss and infiltration and ventilation heat loss.

2.2.1. Transmission heat loss
The transmission heat loss through the envelope in year t is calcu-

lated by

= +

+ +

E t H t A U t A U t
A U t A U t

( ) ( )( ( ) ( )
( ) ( ))

th dd win win wal wal

rof rof flr flr (11)

2.2.2. Infiltration and ventilation heat loss
The infiltration and ventilation heat loss consists of sensitive and

latent heat losses. The sensitive heat loss in year t can be calculated by

=E t C Q H t( ) ( ),sh s s dd (12)

and the latent heat gain in year t can be calculated by

=E t C Q W t T t( ) Δ ( ) ( ).lh l s h (13)

2.2.3. Energy consumption of the heating load
The heat loads determined in Sections 2.2.1 and 2.2.2 are supplied

by heat pumps in the HVAC system. Accounting for the efficiency of the
heat pump, the electrical energy used for the heating purpose can be
determined by Ref. [42].

=
+ +E t E t E t E t
HSPF t

( ) ( ) ( ) ( )
( )

.heat
th sh lh

(14)

HSPF is defined as the heating output in BTU during the heating
season divided by the total electricity energy input in watt-hours during
the same period measured in Btu/Wh. When the heat pump is retro-
fitted, the resulting HSPF can be calculated by

∑=

=

HSPF t x t HSPF( ) ( ) .
h

H

h
pum

h
1 (15)

2.3. Lighting and appliance energy consumption

In addition to heating and cooling energy consumption, lighting
systems and appliances in the building also consume energy. This part
of energy usage in year t is calculated by

= +E t P t P T t( ) ( ( ) ) ( ).d l a d (16)

2.4. PV system energy production

The energy produced by the PV system in year t depends on the local
solar radiation and is calculated by Refs. [43,44]:

∑ ∑ ∑=

= = =

E t I t η x t η x t A N t( ) ( ) ( ) ( ) ( ).pv pv s
p

P

p
pv

p
p

P

p
pv

p
pv

t

t

pv
1 1 1 (17)

2.5. Total energy consumption of a building

Summing up all the energy consumption and generation in the
building from Section 2.1 to Section 2.4, the total energy consumption
of the building during year t can be calculated by

= + + −E t E t E t E t E t( ) ( ) ( ) ( ) ( ).tot cool heat d pv (18)

3. The energy-efficiency retrofit problem

The objective of the retrofit is to obtain a desired EPC rating in order
to comply with the green building policy. Therefore, the details on the
EPC rating system are briefly discussed first.

3.1. EPC for buildings

The EPC rating system assigns a grade from A (most efficient) to G
(most inefficient) to a building by comparing its actual net annual en-
ergy usage in kilowatt hours per square meter to a reference value set
by the national standard SANS10400-XA [6]. To be exact, the re-
quirements to reach different energy performance grades are detailed in
Table 1, in which Er is the reference net annual energy consumption in
kilowatt hours per square meter. The value of Er for a target building is
determined by the occupancy type and climate zone of the building
which can be found in Ref. [6]. For instance, the value of Er is set to
190 kWh/m2 for an office building operating in climate zone 2 while it
is set to 630 kWh/m2 for a hotel operating in climate zone 6.

The minimum requirement for target buildings is to obtain a D
rating from the EPC at least. Therefore, the main aim of the presented
optimization model in this study is to design an optimal energy effi-
ciency retrofit plan for existing buildings that will ensure compliance
with the green building policy and maximize the economic benefits of
the retrofit.

As mentioned in Section 1, the one-time long-term investment
project is breakdown into yearly investments with shorter payback
periods. Keep in mind that tighter regulation may come into effect in
the coming years, the targeted rating for each consecutive year can be
different. Therefore, the retrofit plan problem can be put in the fol-
lowing optimization problem format.

max
min
s t

energy savings
payback period

. . desired EPC rating, and
budget available (19)

In this study, the retrofit actions focus on the retrofit of envelope
components, including windows, walls, and roof; the replacement of
the chiller, heat pump in the HAVC system and the lighting fixtures in
the building by more efficient models; and installation of a rooftop PV
power supply system to produce electricity for the building. Details of
this optimization problem are formulated in the following subsections
with the following assumptions:

1) The occupancy type of the building over the planning period re-
mains unchanged, i.e., an office building will continue to serve as an

Table 1
Energy performance scale.

Grade Requirement

A Energy intensity < 0.3Er
B 0.3Er ≤Energy intensity < 0.6Er
C 0.6Er ≤Energy intensity < 0.9Er
D 0.9Er ≤Energy intensity < 1.1Er
E 1.1Er ≤Energy intensity < 1.4Er
F 1.4Er ≤Energy intensity < 1.7Er
G Energy intensity ≥ 1.7Er
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office building and will not be used for other purposes.
2) Proper maintenance of the retrofitted items is practiced such that

the resulting energy savings is persistent.
3) Any existing item will only be retrofitted once during the project

period. For instance if the heat pump is retrofitted by a certain al-
ternative in year one, no further retrofit of this alternative will
happen during the project period.

3.2. Decision variables

Assume that there are I alternatives of windows, J alternatives of
wall insulation materials, K alternatives of roof insulation materials, C
alternatives of chillers, H alternatives of heat pumps, and P alternatives
of solar panels available for the retrofit. And that, there are m types of
existing lightings to be retrofitted and Lm alternatives for retrofitting
the m-th type. Let
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The decision variable of the optimization problem is then given by:

= …X X X X X X X X
X N

[ , , , , , , , ,
, ].

win wal rof chi pum pv lig

ligm

1

3.3. The objective function

As seen in (19), the objectives of the retrofit problem will maximize
energy savings and minimize the payback period of the retrofit.

Energy savings resulted from the retrofit is calculated by

= −ES t E E t( ) ( ).pre tot (20)

Taking into annual discounts of the cash flow, the following formula
is used to determine the discounted payback period of the retrofit
project [45].

= +
+

T M
C M

C M
( )

( 1)
.p

f

f (21)

In the calculation of cash flows of the investment, the tax incentive
program is taken into account. The incentive program promotes green
development by reducing the amount of total taxable incomes of the
owner of the buildings according to the energy savings achieved an-
nually. Therefore, the actual monetary incentive for the building owner
is calculated by multiplying the offset amount by the tax rate of the
individual/business. It can be obtained by

= − −R t E t E t ζ ζ( ) ( ( 1) ( )) .tot tot a t (22)

Combining Eqs. (20) and (22), the discounted cash flows of the
retrofit problem can be obtained by

=
− + +

+
C t

C t p t ES t R t
d

( )
( ) ( ) ( ) ( )

(1 )
.f t (23)

The retrofit cost in year t is calculated by
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Eventually, the multiple objective optimization problem that max-
imizes the energy savings and minimizes the payback period is con-
verted to a single objective optimization problem making use of the
weighted sum method [46–48] with the following combined cost
function

∑= − +

=

J w ES t w T( ) .
t

T

p1
1

2
(25)

During the optimization process, the values of the two objectives are
normalized with respect to their base case for the convenience of tuning
the weighting factors in the optimization process.

3.4. The constraints

The constraints of the optimization problem consist of three parts.
The first constraint is the limit on the available budget, which is de-
scribed as

≤C t β( ) .t (26)

The second one is to ensure target buildings to obtain desired EPC
ratings. It is described as

<E t δ t E( ) ( ) ,p r (27)

where δ t( ) takes the values from Table 1. For example, =δ t( ) 1.1 en-
sures that the energy performance of the building must reach grade D at
least in year t. The energy performance of the building in year t can be
described by Ref. [5]:

=E t E t
A

( ) ( ) .p
tot

g (28)

The third kinds of constraints are some physical limits of the ret-
rofit, including the limit on usable area of the roof for PV system in-
stallation

∑ ∑ ≤
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and boundary limits on the decision variables
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The each of the x t( )i
win , x t( )j

wal , x t( )k
rof , x t( )c

chi , x t( )h
pum , x t( )p

pv , x t( )p
pv

and x t( )l
lig
m

m takes the value of either zero or one.

4. Case study

To analyze the effectiveness and feasibility of the optimization
model, an existing office building situated in Pretoria, South Africa, the
Koppen-Geiger climate of which is Cwa, is used as a case study in this
section. The building has a gross area of 568m2 and consists of two
floors with the same structure, which is shown in Fig. 1.

Y. Fan, X. Xia Building and Environment 136 (2018) 312–321

317



The existing windows of the building are single glazing and the
existing roof, walls and floor have no thermal insulation. The retrofit
plan for this building includes a set of actions. For the envelope, retrofit
of the windows using better alternatives is considered and insulation
materials are considered to be installed to the walls and roof. The ex-
isting lighting system is to be upgraded by more energy efficient models
and the chiller and heat pump in HVAC system are to be retrofitted with
their more efficient counterparts. Installation of a PV power supply
system is also part of the retrofit options. The detailed information of
the systems/components used for the retrofit, including windows, wall
and roof insulation materials, chiller, heat pump, and PV panels, is
given in Tables 2–8. In Table 8, three alternative lighting technologies
are listed to retrofit the corresponding existing technologies. The
baseline energy consumption of the building before the retrofit is
120.6 MWh per year. The discount rate involved in the optimization
process is set at 6% according to South Africa statistics.1 The rate of

increase in the electricity price in South Africa is determined as 12.69%
according to the average increase rate of electricity published by
Eskom, which is the largest utility in South Africa.2 The values of other
parameters involved in the optimization model are taken from the na-
tional code on the energy efficiency in buildings [49].

For this particular building studied, EPC rating system gives it a E
rating before the retrofit. Therefore, to improve the energy efficiency in
order to reach D rating for policy compliance and subsequently C, B and
A rating in the following years, the retrofit plan considers an im-
plementation period of the retrofit of four years. In particular, the
retrofit plan will improve the EPC rating of this building to D in year
one and to grade C in year two, and eventually to grade A in year four to
first ensure policy compliance and then pursuit better energy efficiency.

In this study, a genetic algorithm (GA) is employed to solve the
multi-objective optimization problem [50,51]. With the genetic algo-
rithm, the optimization problem is solved with the weighting factors set
to =w1 0.7 and =w2 0.3. The budgets allocated to each year for the

Fig. 1. Floor plan of the office building under study.

Table 2
Alternatives of windows.

i Alternatives Ui (W/m°C) Ci
win ($/m2)

1 Single glazing, aluminum frame 1.25 21.00
2 Double glazing, uncoated air-filled metallic

frame
0.82 38.00

3 Double glazing, tinted uncoated air–filled
metallic frame

0.49 50.00

4 Double glazing, tinted coated air–filled metallic
frame

0.38 80.00

5 Double glazing, low-e window, air-filled metallic
frame

0.32 97.00

Table 3
Alternatives of external wall insulation materials.

j Alternatives dj(m) λj(W/m°C) Cj
wal($/m2)

1 Stone wool 0.03 0.034 14.49
2 Glass wool 0.05 0.038 16.32
3 EPS 0.03 0.036 9.84
4 EPS 0.07 0.036 13.45
5 EPS 0.08 0.036 14.37
6 EPS 0.08 0.033 21.10
7 EPS 0.04 0.036 10.44
8 EPS 0.06 0.036 12.32
9 SPF 0.02 0.042 8.23
10 Cork 0.01 0.040 3.93
11 Cork 0.10 0.040 23.13
12 Cork 0.15 0.040 34.70
13 Cork 0.30 0.040 69.38

Table 4
Parameters of roof insulation materials.

k Alternatives dk(m) λk(W/m°C) Ck
rof ($/m2)

1 SPF 0.020 0.042 8.23
2 EPS 0.030 0.033 5.57
3 EPS 0.040 0.033 7.22
4 EPS 0.050 0.033 8.85
5 EPS 0.060 0.033 10.49
6 EPS 0.070 0.033 12.15
7 EPS 0.080 0.033 13.79
8 EPS 0.040 0.034 15.00
9 Stone wool 0.065 0.037 31.78
10 Stone wool 0.105 0.037 44.84

Table 5
Parameters of chiller alternatives.

c Alternatives SEER Ch
pum($)

1 Trane chiller type 1 17.0 8580
2 Trane chiller type 2 15.0 7590
3 Trane chiller type 3 12.0 6435

Table 6
Parameters of heat pump alternatives.

h Alternatives HSPF Cc
chi($)

1 Trane heat pump type 1 9.5 7920
2 Trane heat pump type 2 8.6 7425
3 Trane heat pump type 3 7.9 5775

Table 7
Parameters of solar panels.

l Alternatives Cl
pv($) ηl Al

pv(m2)

1 STP255-20/WD 900.78 15.7% 1.627
2 YL190P-23B 592.62 14.7% 1.297
3 YL265C-30B 942.30 16.3% 1.624
4 CS6X-300P 870.33 15.6% 1.919
5 HSL60P6-PB-1-240B 704.82 14.8% 1.616
6 Sharp ND 245 Poly 1023.12 14.9% 1.642
7 SW 275 MONO 1042.50 16.4% 1.593

1 http://www.statssa.gov.za/.

2 Eskom. Historical average price increase. http://www.eskom.co.za/CustomerCare/
TariffsAndCharges/Pages/Tariff_History.aspx. Accessed 7th Dec. 2016.
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building retrofit are $2000, $7000, $30000 and $70000, respectively.
The results obtained by the optimization procedure are given in Table 9.
In Table 9, the numbers shown in the last four columns from the fourth
row onward indicate the retrofit decision on the corresponding items
listed in the first column. L1, L2, L3, L4 and L5 represent the five existing
lighting technologies. Npv, Nlig1, Nlig2, Nlig3, Nlig4 and Nlig5, represent the
numbers of installed solar panels and the numbers of lamps replaced.
For example, the number ‘10’ in the fifth row of the third column means
that the tenth alternative of the wall insulation materials will be applied
to the walls of the office building under study in the second year. The ‘1’

for L1 and ‘75’ for Nlig1 in the year one means that 75 of the first type of
the existing lighting technologies will be replaced by its first alternative
shown in Table 8. A ‘0’ in the table indicates that the corresponding
item will not be retrofitted in that year. In addition, Table 9 also shows
the payback periods of the individual investments made at each year
(t t( )p ). For instance, in year one, tp is eight months, which corresponds
to the payback period of the $1452 investment. The resulting absolute
and percentage energy savings, ES t( ) and ES t( )p , together with the
energy intensity, E t( )p , are also listed in the table.

The results obtained indicate that the lighting retrofit is the most
cost-effective option followed by retrofit of HVAC facilities. Installation
of PV system and retrofitting the envelope of the building require a long
payback period. However, it can be concluded from Table 9 that the PV
system can generate remarkable energy savings by comparing the va-
lues of ESp in years 3 and 4, which positively contributes to the sus-
tainability and environmental friendliness of the building.

Therefore, the optimization chooses the best combination of retrofit
actions for the optimal plan. Table 9 shows that only the first lighting
technology is retrofitted in the first year to achieve the desired EPC
rating ‘D’. Most of the lightings are replaced and the insulation is in-
stalled for the walls in the second year. It is noticed that not all of the
last lighting technologies are retrofitted in the second year because of
target grade ‘C’ requiring more energy savings, which is satisfied by the
wall insulation. To reach grade ‘B’ rating in year three, the remaining
quantities of the fifth lighting technology is retrofitted and the HVAC
facilities are upgraded. The roof and solar panels are lastly considered
in the forth year.

Intuitively, the payback period of the lighting system is the shortest
while that of the envelope is the longest. Without help of the proposed
optimization model, the decision maker is limited to this intuition and
can only make retrofit plans accordingly, which, as demonstrated by
the optimization result, will result in non-optimal retrofit activities.
This demonstrates the effectiveness as well as the importance of the
proposed optimal retrofit plan model.

The cumulative energy savings and net present value over ten-year
period, and payback period of the total investment are given in Fig. 3. It
is shown that the optimal retrofit plan results in 761.6MWh energy
savings, a net present value of $81003 with a payback period of 70
months.

Since GA is adopted to solve the optimization problem formulated, a
statistical analysis of the results obtained is done through 20 run of the
simulations. The relative standard deviations of the cumulative energy
savings, net present value and the payback period of the building ret-
rofit project and the energy intensity of the building are presented in
Table 10, which are 1.19%, 1.88%, 1.72% and 5.12%, respectively. The
results verify the effectiveness and convergence of the solution obtained
by the GA algorithm.

As the parameters considered in the optimization process influence
the optimal results, this study analyzes the effects of the discount rate,
weighting factors and tax incentive on the proposed model.

Firstly, the discount rates with values of 5.82%, 5.70%, 5.40% and
5.28% are introduced. The resulting changes in the investment

Table 9
The optimal solution.

Year 1 Year 2 Year 3 Year 4

β t( ) ($) 2000 7000 30000 70000
C t( ) ($) 1425 6991 18959 69742
Window 0 0 0 0
Wall 0 10 0 0
Roof 0 0 0 2
Chiller 0 0 1 0
Heat pump 0 0 1 0
PV 0 0 0 5
Npv 0 0 0 97
L1 1 3 0 0
Nlig1 75 5 0 0

L2 0 2 0 0
Nlig2 0 48 0 0

L3 0 3 0 0
Nlig3 0 56 0 0

L4 0 2 0 0
Nlig4 0 32 0 0

L5 0 2 3 0
Nlig5 0 10 58 0

t t( )p (month) 8 20 44 90

ES t( ) (kWh) 12096 34433 58111 93852
ES t( )p 10% 29% 48% 78%

E t( )p 1.01 0.80 0.58 0.25

Fig. 2. Sensitivity analysis of the discount rate.

Table 8
Parameters of lighting technologies.

lm Existing lighting Nlm Alternatives Clm
ligm($)

l1 2-lamp 4′ T8 fixture 70W 80
2-lamp 4′ T5 14W 19.0
2-lamp 4′ T5 18W 20.5
2-lamp 4′ T5 36W 10.0

l2 PAR 38–65W 48
CFL lamp 7W 35.4
CFL lamp 14W 37.1
CFL lamp 20W 27.6

l3 Halogen 50W − 12 V 56
LED flood 7W 8.5
LED flood 10W 12.2
LED flood 14W 17.7

l4 Incandescent 100W 32
LED bulb 12W 79.5
LED bulb 17W 53.0
LED bulb 20W 42.4

l5 Incandescent 60W 68
LED bulb 12W 79.5
LED bulb 17W 53.0
LED bulb 20W 42.4

Table 10
RSD of investment's indicators.

Payback period Energy saving NPV Energy intensity

RSD 1.72% 1.19% 1.88% 5.12%
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indicators of applying the new discount rates are detailed in Fig. 2. To
be specific, the optimal solution to the whole-building retrofit problem
remained the same, thus leading to no change in the energy savings
obtained. However, the payback period and NPV of the project change
when the discount rate varies. It can be concluded from Fig. 2 that the
energy savings are robust against the uncertainty on the discount rate
while the economic factors are sensitive to its change. For instance, the
NPV grows by 10.41% and the payback period decreases by 1.43%
when the discount rate decreases to 5.28%.”

Four more sets of results with the weighting factors in the objective
function (25) set to different values are presented in Fig. 2. It can be
seen that a shorter payback period and more energy savings can be
achieved when the values of their corresponding weighting factors
grow. For instance, the payback period of the project increases by 2.9%
(from 68 to 70 months) and the percentage of energy savings increases
by 3.6% (from 60.9% to 63.1%) when the values of the weighting factor
change from =w1 0.3 and =w2 0.7 to =w1 0.7 and =w2 0.3. Com-
paring the five sets of results with different weighting factors, one can
find that the shortest payback period of the retrofit can be obtained
when the decision makers emphasizes minimization of the payback
period with =w1 0 and =w2 1 and the most energy savings can be
achieved when emphasis is put on the energy savings with =w1 1 and

=w2 0.
Lastly, the optimization problem with =w 0.71 and =w 0.32 is

solved again without taking into account the tax incentive program in
view that some of the government owned buildings do not qualify for
tax allowance. The ten-year energy savings and economic indicators
obtained are shown in Fig. 4. It can be seen that the payback period is
longer and the net present value is less than the case when the tax
incentive is considered (see Fig. 3). However, it is seen that the tax
incentive program has very limited impact on the building energy ef-
ficiency retrofit. To be exact, the payback period increased marginally
by one month (1.4%) and the net present value decreased slightly by
1.5 thousand dollars (1.9%).

5. Conclusion

The focus of this paper is to develop a systematic optimization method
for whole-building retrofit planning, aiming at reducing the energy con-
sumption of existing buildings for green building policy compliance in a
cost-effective manner. The main conclusions are given as follows:

• The model developed is able to identify the best retrofit plans for
whole-building retrofit projects, taking into account both the en-
velope components and the indoor appliances. In this study, the
retrofit actions considered include upgrade of lighting systems,
HVAC facilities, installation of insulation materials to the walls and
roof of the building, replacement of windows by more energy-effi-
cient alternatives and installation of a roof top solar power system.

• The optimal retrofit plans obtained by the model can help target
buildings to achieve a desired energy rating from the energy per-
formance certificate (EPC) standard set by the South Africa gov-
ernment in the most profitable way.

• The proposed model is capable of breaking down the long-term
building retrofit project requiring substantial investment into
smaller projects over multiple financial years. This helps decision
makers to select the best retrofit activities on a yearly basis to ensure
that the energy performance of the building is improved and com-
plies with the green building policy. In such a way, the most energy
savings is obtained with a reasonable payback period of the in-
vestment.

• The tax incentive program available in South Africa is taken into
account by the retrofit planning model to further shorten the pay-
back period of the investment. It is however found that the tax in-
centive program has little impact on the building energy efficiency
retrofit project.

The results of a case study show that 761.6MWh energy savings and
$81003 cost savings can be achieved in 70 months after applying the
optimal retrofit plan, which validate the effectiveness and the im-
portance of the model for decision makers because intuitive plans will
lead to non-optimal retrofit actions.
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H I G H L I G H T S

• We propose a novelty control strategy to save more energy consumed and cost.

• The results validate the proposed method for improving comfort levels.

• The proposed hierarchical control method is easy to implement in practice.

• Performance of designed control strategy is better than the previous strategies.

• The designed control method is not very sensitive to the system parameters.

A R T I C L E I N F O

Keywords:
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Energy saving
time-of-use

A B S T R A C T

This paper presents an autonomous hierarchical control method for a direct expansion air conditioning system.
The control objective is to maintain both thermal comfort and indoor air quality at required levels while re-
ducing energy consumption and cost. This control method consists of two layers. The upper layer is an open loop
controller that allows obtaining tradeoff steady states by optimizing the energy cost of the direct expansion air
conditioning system and the value of predicted mean vote under the time-of-use price structure of electricity. On
the other hand, the lower layer designs a model predictive controller, which is in charge of tracking the tradeoff
steady states calculated by the upper layer. Control performance of the proposed control method is compared to
a conventional control strategy. The results show that the proposed control strategy reduces the energy con-
sumption and energy cost of the direct expansion air conditioning system by 31.38% and 33.85%, respectively,
while maintaining both the thermal comfort and indoor air quality within acceptable ranges, which validate the
proposed methodology in terms of both comfort and energy efficiency.

1. Introduction

It is well known that the building sector is responsible for almost
40% of the global total energy consumption, costing $350 billion per
year. Since energy management of building air conditioning (A/C)
systems is a key factor in improving the energy efficiency and reducing
the energy cost of buildings, optimal control of the A/C systems has
increasingly attracted research attention. Energy efficiency improve-
ment of buildings can also be performed at different levels of time scale
and building subsystems such as ambient intelligence [1–3], energy
balance [4–8], building portfolio management and planning [9–14] and
energy-water nexus [15,16].

Since people spend much time indoors, thermal comfort and indoor
air quality (IAQ) are important issues in A/C control. Thermal comfort

has been accomplished by regulating temperature and relative hu-
midity of indoor air. In view of air quality, CO2 concentration is used as
an indicator because carbon dioxide is the main fluid waste from oc-
cupants in a building. The indoor air temperature, humidity and CO2
concentration are affected by A/C systems, lighting, the number of
occupants and natural ventilation. They are also affected by outdoor
environment, including the outside temperature, humidity, CO2 con-
centration and solar irradiation. The A/C system needs to provide a
comfortable environment for occupants with the minimum energy
consumption and cost. There are strong interactions of energy cost and
energy consumption with thermal comfort and IAQ. This crucial fact
has been recognised by industrial and academic researchers.

Researchers proposed various control strategies to improve energy
efficiency and comfort temperature [17–20]. In [21], the authors
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proposed an optimization method on room air temperature to improve
both thermal comfort and energy efficiency. In [22], Cigler et al. pre-
sented an MPC to minimize the energy consumption and the value of
predicted mean vote (PMV) index simultaneously. The simulation re-
sults showed that it would save 10–15% energy while keeping the
comfort temperature within a level defined by standards. A hierarchical
control method was proposed to improve the energy efficiency while
maintaining the indoor temperature equal to a value such that the PMV
index will be equal to zero reported in [23]. The results showed that it
would reduce more energy consumption in comparison with previous
work [24]. An economic model predictive control (MPC) method for
optimising the building demand and energy cost under a TOU price
policy under given bounded comfort temperature is studied in [25]. It
demonstrated that this strategy is capable of reducing more energy cost
and shifting the peak demand to off-peak hours while keeping the
temperature at comfort bounded. In [26,27], the authors presented an
MPC that minimises the expected energy cost and bounds of tempera-
ture comfort violations. One can note that all the above contributions
focus on improving the energy efficiency of buildings by heating,
ventilation and air conditioning (HVAC) temperature control. However,
ensuring the indoor humidity at an appropriate level is also a crucial
problem since it directly affects building occupants’ thermal comfort
and the operating efficiency of building A/C installations [28]. In fact,
in cities with high humid climates, such as Cape Town or Hongkong,
high humidity may still adversely impact indoor thermal comfort level
and energy efficiency of building A/C systems even when indoor air
temperature has been maintained at a desired value.

In recent years, a model-based predictive control algorithm pro-
posed for HVAC system to control indoor temperature and humidity
simultaneously taking into account energy efficiency was reported in
[29]. In the study, the indoor air temperature and humidity are con-
sidered in two separate control loops. However, the control method
remained inadequate fundamentally. A multi-input-multi-output
(MIMO) control strategy is proposed for controlling the indoor air
temperature and humidity simultaneously by varying the speeds of the
compressor and the supply fan in an experimental direct expansion
(DX) A/C system in [30]. In the research, the authors considered the
coupling effect between indoor air temperature and humidity; so that
the control accuracy and sensitivity can be improved. However, the

control strategy was carried out based on the linearized system around
a particular operational point, i.e., fixing the supply air temperature
and moisture content. For a DX A/C system, its inlet air temperature
and humidity affect its output cooling capacity directly [31]. The de-
velopment of a physical model-based controller for a variable speed DX
A/C system, aiming at controlling indoor air temperature and humidity
simultaneously should be within its entire possible working range. An
artificial neural network (ANN)-based modeling and control for an
experimental variable speed DX A/C system was proposed to control
the indoor air temperature and humidity simultaneously [32]. A real-
time neural inverse optimal control for the simultaneous control of
indoor air temperature and humidity using a DX A/C system was re-
ported in [33]. A three-evaporator air conditioning system for si-
multaneous indoor air temperature and humidity control was studied in
[34]. In [35], a fuzzy logic controller was developed for temperature
and humidity control. The results demonstrated that the fuzzy logic
controller developed can achieve the simultaneous control over indoor
air temperature and humidity, with a reasonable control accuracy and
sensitivity.

Nowadays, the indoor air quality (IAQ) is also an important issue for
users, especially in office buildings, since a poor IAQ has a direct effect
on work efficiency. In [36,37], Zhu et. al., studied indoor air tem-
perature, humidity and CO2 concentration control simultaneously
without considering their coupling effects. However, these coupling
effects cannot be ignored in many cases. In fact, the experimental in-
vestigation [38] suggested that the indoor CO2 concentration affected
indoor air temperature. Furthermore, indoor humidity was correlated
with CO2 concentration according to measurement results reported in
[39]. Indoor air temperature, relative humidity and CO2 levels assess-
ment in academic buildings with different HVAC systems was studied in
[40]. In [41], this study aimed to establish an optimal occupant beha-
vior that can reduce total energy consumption and improve the thermal
comfort, IAQ and visual comfort simultaneously by an energy simula-
tion and optimization tool. In [42], an energy-optimised open loop
controller and a closed-loop regulation of the multi-input-multi-output
(MIMO) MPC schemes for a DX A/C system were proposed to improve
both thermal comfort and IAQ, while minimizing energy consumption.
The results showed that the energy savings were achieved and thermal
comfort and IAQ were improved. However, the setpoints of thermostats

Nomenclature

A1 heat transfer area of the DX evaporator in the dry-cooling
region, m2

A2 heat transfer area of the DX evaporator in the wet-cooling
region, m2

A0 total heat transfer area of the DX evaporator, m2

Awin total window area, m2

Cc CO2 concentration of conditioning space, ppm
Cs CO2 concentration of supply air, ppm
Cz specific heat of air, °

− −kJ kg C1 1

G amount of CO2 emission rate of people, m3/s
hfg latent heat of vaporization of water, kJ/kg
hr1 enthalpy of refrigerant at evaporator inlet, kJ/kg
hr2 enthalpy of refrigerant at evaporator outlet, kJ/kg
kspl coefficient of supply fan heat gain, kJ/m3

k k,P I proportional and integral gains of PI controller
mr mass flow rate of refrigerant, kg/s
Mload moisture load of conditioned space, kg/s
Occp number of occupants
Qload sensible heat load of conditioned space, kW
Qrad solar radiative heat flux density, W/m2

Qspl heat gain of supply fan, kW
Td air temperature leaving the dry-cooling region on air side,

°C
Ts temperature of supply air from the DX evaporator, °C
Tw temperature of the DX evaporator wall, °C
Tz air temperature of conditioned space, °C
T0 temperature of outside, °C
va air face velocity for DX cooling coil, m/s
vf air volumetric flow rate, m /s3

V volume of conditioned space, m3

Vh1 air side volume of the DX evaporator in the dry-cooling
region on air side, m3

Vh2 air side volume of the DX evaporator in the wet-cooling
region on air side, m3

Ws moisture content of supply air from the DX evaporator,
kg/kg dry air

Wz air moisture content of conditioned space, kg/kg dry air
W0 air moisture content of outside, kg/kg dry air
α1 heat transfer coefficient between air and the DX eva-

porator wall in the dry-cooling region, °
− −kW m C2 1

α2 heat transfer coefficient between air and the DX eva-
porator wall in the wet-cooling region, °

− −kW m C2 1

εwin transmissivity of glass of window
ρ density of moist air, kg/m3
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are constant over a 24-h period. This strategy is simple but not optimal
in the sense of energy efficiency or cost-effectiveness. On the other
hand, the outside temperature and humidity are also constant over a
24-h period in the study, while the outdoor air temperature and hu-
midity vary over a 24-h period actually. Besides, a ventilation fan with
an independent pressure swing absorption box was added to improve
IAQ, which would increase the complexity and the cost of hardware.

Reduction of energy consumption and cost is important to promote
economic and environmental development. Therefore, it is of great
interest to develop advanced control technologies for building A/C
systems to reduce energy consumption and cost. However, several
control methods were proposed recently to reduce energy consumption
and cost of building A/C systems while maintaining thermal comfort
and IAQ at required levels. In this paper, an autonomous hierarchical
control method is proposed to ensure occupants’ thermal comfort and
IAQ in a certain environment, and at the same time, tries to reduce the
energy consumption and cost for a DX A/C system. The use of the DX A/
C system has many advantages. When compared to central chilled
water-based A/C systems, DX A/C systems are simpler in system con-
figuration, more energy efficient [43] and cost less to own and main-
tain. Therefore, DX A/C systems have been widely used over recent
decades in buildings, especially in small to medium scaled buildings.
The proposed control strategy will further enhance the performance of
DX A/C system. The proposed autonomous hierarchical controller is
formed by two layers. (i) The upper layer consists of a nonlinear opti-
mizer, which provides trajectory references of indoor air temperature,
humidity and CO2 concentration within acceptable ranges. This con-
troller uses an open loop controller to optimise the energy cost of the
DX A/C system and the value of the PMV index under a TOU price
policy. (ii) Meanwhile, the lower layer contains a closed-loop MPC
controller to track adaptively and automatically the trajectory refer-
ences of indoor air temperature, humidity and CO2 concentration cal-
culated by the upper layer. To demonstrate the advantage of the pro-
posed control method, we will compare the proposed control and a
baseline control strategy.

The contributions of this paper are listed below. The references of
indoor air temperature, humidity and CO2 concentration are not
needed. We present a method to autonomously and adaptively optimise
and generate all steady states on required levels of thermal comfort and
IAQ which could vary during the day. The volume of outside air

entering into the system is fixed in [37,42]. In our study, the volumes of
fresh air entering the DX A/C system are considered to vary with the
environment over a 24-h period and are optimised by the proposed
method. Moreover, a supply fan to drive the pressure swing absorption
with a built-in PI controller is proposed to reduce indoor CO2 con-
centration in this paper. Hence, it has the potential of reducing the
complexity of computation and the cost of hardware. The PMV index is
traditionally used as an indicator of indoor thermal comfort. In this
study, it is used as an indicator of thermal comfort and that of IAQ when
the indoor air CO2 concentration is at its steady state.

The remainder of this paper includes five parts. The nonlinear re-
duced order dynamical system models, the energy consumption models
of the DX A/C system and the indoor cooling load models are presented
in Section 2. The proposed control method is presented in Section 3.
Results are given in Section 4, and conclusions are drawn in Section 5.

2. System model

2.1. DX A/C system

A DX A/C system is mainly composed of two parts, which are the DX
refrigeration plant (refrigerant side) and air-distribution sub-system (air
side). Fig. 1 is the simplified schematic diagram of the DX A/C system.
The DX refrigeration side mainly consists of the following components:
a variable speed rotor compressor, an electronic expansion valve (EEV),
a high-efficiency tube-louver-finned DX evaporator and an air-cooled
tube-plant-finned condenser. The evaporator is placed inside the supply
air duct on the air side to work as a DX air cooling coil which is located
in the room. The air side includes an air-distribution ductwork with
return air dampers, a variable speed centrifugal supply fan, a pressure
swing absorption (PSA) box, a conditioned space and a damper position
which is used to control the proportion of return air to outside air. The
PSA box absorbs the CO2 contaminant concentration to maintain IAQ.
The allowed fresh air is also used to improve indoor fresh air ratio.

2.2. DX A/C models

The dynamic model of the DX A/C system is mainly derived from
the principles of energy and mass balance. The model is highly non-
linear with respect to temperature, moisture content and CO2

Fig. 1. Simplified diagram of DX air conditioning system.
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concentration. In this paper, the system is assumed to operate in the
cooling mode. The basic operation and assumptions of the system on
the cooling mode are given for the purpose of simplicity as below: (i) It
is assumed that p% of outside air enters into the system and gets mixed
with −p(100 )% of recirculated air entering into the system. (ii)
Sufficient air mixing occurs inside the heat exchangers where the air
gets conditioned. (iii) Two regions on the air side of the DX evaporator
are shown in Fig. 2, i.e., dry-cooling region (sensible heat transfer only)
and wet-cooling region (sensible and latent heat transfer region). The
coupling between both regions that the outlet air properties of the first
one (dry-cooling region) are the inlet air conditions entering the wet-
cooling region. Therefore, the area from zero to A1 pertains to the dry-
cooling region and the rest of the total surface area is the wet-cooling
region A2. The boundary between the dry surface and the wet surface
within a DX evaporator can be determined by the distribution of the
surface temperature. It is a time-varying parameter under different
conditions. (iv) Thermal losses in air ducts are neglected. (v) The supply
air enters into the air-conditioned space to offset the cooling and pol-
lutant loads acting upon the system. (vi) The air in the conditioned
room exhausts through a fan, where −p(100 )% of the air is recirculated
and the rest is exhausted from the system through the fan.

Based on the above assumptions, the dynamic mathematical model
for the DX A/C system for controlling indoor air temperature, moisture
content and CO2 concentration is developed based on the energy and
mass conservation principles, which can be described by the following
equations:
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More details for the system models (1)–(6) can be found in [42,44].
Note that the system models (1)–(5) without outside air entering into
the system have been reported and validated by the experimental

demonstrated in [44]. The model (6) has been verified in [45] by using
an online learning and estimation approach for model parameter
identification with acceptable accuracy.

We assume that the CO2 concentration absorption rate vs is a PI
controller designed by

∫= +v k v k v sd .s P f I
T

f0

I

(7)

The relationship among air enthalpy, temperature and the moisture
content leaving the evaporator can be described by:

= +h C T h W .s z s fg s (8)

Then, Eqs. (2) and (4) can be rewritten by
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The air side convective heat transfer coefficients for the louver
finned evaporator under both dry-cooling and wet-cooling regions are
calculated as follows [46]:

= =α j ρv
C

Pr
α j ρv

C

Pr
, ,e a

z
e a

z
1 1 2

3
2 2 2

3 (11)

where Pr is Prandtl number, je1 and je2 are the Colburn factors. The air
velocity va is described as follows:

= +v dv ε,f a

where d (m )2 is the cross-sectional area of the conditioned space, ε is the
error vector since the air enters or exits through the door or window.

The left-hand side of (1) and (2) is the heat flow into the condi-
tioned space. On the right-hand side of (1), the first term denotes the
heat transfer from the DX A/C system to the conditioned space, which is
positive if >T Ts z for the heat mode and negative if <T Ts z for the
cooling mode; the other terms mean the sensible heat load needs to be
removed by the DX A/C system. Similarly, on the right-hand side of (2),
the first term represents the wet-bulb temperature transferred to the
conditioned space, which is positive if >W Ws z for the humidification
mode and negative if <W Ws z for dehumidification mode; the second
term denotes the moisture load to be removed by the DX A/C system.
Eqs. (3), (5) and (10) mean that the heat transfer takes place in the
inside DX A/C system. In Eq. (3), the first term of the right-hand side
represents the heat transfer between the mixed air and the air side at
the evaporator; the second term means the heat transfer between the
mixed air and the evaporator wall. Eq. (6) represents a dynamic balance
of indoor CO2 concentration.

Fig. 2. Simplified diagram of DX evaporator [44].
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Remark 1. In this paper, the relationship between the moisture content
and temperature at the evaporator outlet [44],

=
+ +Ws

T T0.0198 0.085 4.4984
1000

s s2
, has been released since it may not be

feasible under different operating conditions. The proportion of
outside air entering into the system is not fixed according to the
changing environment during the day. In our previous work [42], we
used a variable air volume (VAV) ventilation fan with an independent
PSA to reduce indoor CO2 concentration. In this paper, we use the
supply fan to drive the PSA with a built-in PI controller. This results in
one less independent control input.

2.3. Load models

Thermal comfort and IAQ are influenced by a set of disturbances,
such as external air, solar radiation through opaque and transparent
surfaces and internal heat gains due to appliances, lights, occupants,
etc. Therefore, good performance for controlling indoor air tempera-
ture, humidity and CO2 concentration is required to deal with the dis-
turbances. When the disturbances are neglected, a large error occurs.
Nevertheless, a perfect prediction of disturbances in the future is in-
adequate in practice. Some disturbances can be measured, such as
outside temperature, humidity and CO2 concentration, and others, such
as solar radiation and internal gains, cannot but may be estimated.
Next, we will provide more details on the sensible heat load Qload,
moisture load Mload, pollutant load Cload.

The indoor sensible heat load is usually related to the internal loads,
including occupants, lighting, equipment, fresh air entering inside and
applications and the external loads, including heat transfer conduction
through the building walls, roof, floor, doors and heat transfer by ra-
diation through fenestration such as windows and skylights. In this
paper, we consider the external load including heat loads by radiation
through windows and the fresh air by ventilation. The moisture load is
relevant to occupants, equipment, fresh air entering inside and appli-
cations. The CO2 pollutant load is relevant to occupants’ respiration.
The sensible heat and moisture loads from lighting, equipment and
applications are easy to identify, based on their electrical character-
istics; the main uncertainties in identifying the sensible heat load and
latent heat loads are from the loads associated with the occupants in the
conditioned space. The sensible heat and moisture loads by occupants
are determined through the current CO2 emission. To estimate the
sensible heat, moisture and indoor pollutant loads, a method is pro-
posed as follows:

= + + + +Q t Q Q μC ν Q( ) ,load r load spl c air, (12a)

= + +M t ϕC γ M( ) ,load c air (12b)

=C t G Occp( ) · ,load (12c)

where μ and ϕ are the sensible heat and moisture gain coefficients,
respectively, ν and γ are the certainties sensible heat and moisture
loads, respectively. The heat gain of the supply fan Qspl increases with
the air volumetric flow rate of supply air as follows:

=Q k v .spl spl f (13)

The external heat load by radiation Qr load, through windows is described
by the following equation:

=Q n ε A Q ,r load win win win rad, (14)

where nwin denotes whether the conditioned space has a window, i.e.,
when =n 1win , if it has a window, while if =n 0win , it does not. The
fresh air of the sensible heat load Qair and the moisture load Mair in
conditioned space are expressed as follows:

= −Q p C ρv T T% ( ),air z f z0 (15a)

= −M p ρv W W% ( ).air f z0 (15b)

Remark 2. In this section, a simple method is given to estimate the
indoor sensible heat and moisture loads, and CO2 pollutant load. An
alternative method to estimate cooling load has been reported in [26].
Besides, the weather forecast data from the weather station in Cape
Town are qualified for this research, because: (1) the current weather
station is precisely predicted and (2) the weather conditions and solar
radiation in this area are relatively stable, indicating that the profiles of
the predicted outside temperature, relative humidity and CO2
concentration are representative.

2.4. PMV index

The PMV index is used as a human thermal comfort requirement
indicator. This indicator was first proposed by Fanger [47] to predict
the average vote of a large group of persons on the thermal sensation
scale. This sensation is expressed by relating the integer range [−3,
+3] to the qualitative words cold, cool, slightly cool, neutral, slightly
warm, warm, and hot. PMV is defined by six variables, namely meta-
bolic rate M (W/m )2 , clothing insulating Icl (m2°C/W), air temperature
Tz , air humidity Hz, air velocity va (m/s), and mean radiant temperature
Tr . The PMV index can be described by the following equation [47]:
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where W (W/m )2 is the external work; Pa is the partial water vapor
pressure in Pascal. The surface temperature of clothing Tcl is given by:
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and the convective heat transfer coefficient hc is defined as:
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0.25 is the ratio of body surface area covered
by clothes to the naked surface area, can be defined as:
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The mean radiant temperature Tr is determined as [48]:
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where Tg is the globe temperature; D and ∊ are the globe diameter in
meters and the globe emissivity coefficient, respectively. Pa is related to
the relative humidity of the air Hz by means of Antoine’s equation [49]:

=
− +P H10 e ,a z

T(16.6536 4030.183/( 235))z (21)

where =H W A A100 / ,z z conv conv is the unit transfer coefficient. The me-
tabolic rate M is determined by [50]:

=M λG,

where the coefficient λ is a constant. Then the metabolic rateM under a
steady state of the indoor CO2 concentration can be rewritten as fol-
lows:

∫= + −( )M λ
Occp

k v k v ds C C( ).P f I
T

f c s0

I

The PMV can be written as a function of the following variables:

= g T W C v T I TPMV ( , , , , , , ).z z c f r cl cl (22)

Remark 3. There are several existing metrics to measure human (dis)
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comfort, e.g., temperature constraint violations [26], comfort penalty
[17], predicted percentage dissatisfied (PPD) [51], and PMV index
[23,29]. The PMV index has been used as an indicator to maintain
indoor comfort temperature [23] and to control indoor temperature
and humidity [29]. In this paper, the Eq. (22) implies that the modified
PMV index can estimate not only the indoor thermal comfort but also
IAQ under a steady state of the indoor CO2 concentration and keep
them in a certain range. This is subjective and can be considered as
perfect when PMV=0.

2.5. Energy models for the DX A/C system

The DX A/C system components that consume energy include the
power input of the evaporator fan, compressor fan, and condenser. The
power to drive the dampers is assumed to be negligible. The total power
consumption Ptot of the DX A/C system at time t then is calculated as
[52]:

= + +P P P P ,tot e c f (23)

where the fan power input of the evaporator Pe, the fan power of the
compressor Pf and the power input of the condenser Pc are given below:
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where the coefficients = … = … =a i b i c i( 0,1, ,9), ( 0,1, ,9), ( 0,1,2)i i i are
constant and can be determined by curve-fitting of experimental data in
[52]. The indoor cooling load Qc is the summation of the sensible and
latent heat loads.

2.6. Constraints

The DX A/C system is subject to thermal comfort, IAQ and opera-
tional constraints defined as below.

(C1) ∈PMV [PMV,PMV]. The limit of the PMV value means thermal
comfort and IAQ are within the required levels for human.

(C2) ∈ ∈ ∈T T T W W W C C C[ , ], [ , ], [ , ]z z z z z z c c c . The indoor air tempera-
ture, moisture content and CO2 concentration are within the re-
quired ranges for occupants in the conditioned space.

(C3) ∈ ∈T T T W W W[ , ], [ , ]s s s s s s . The bounds of the supply air tempera-
ture and moisture content are constrained because of the physical
characteristics of the coils and the air cooling coils inside the
evaporator. Besides, the upper bounds Ts and Ws are less than Tz
and Wz, respectively, since the DX A/C system is operating in the
cooling mode. The bound of air enthalpy hs satisfies:

∈ + +h C T h W C T h W[ , ]s z s fg s z s fg s due to (8).
(C4) ⩽T Tw d. The air temperature after the surface of the DX cooling

coil cannot be warm.
(C5) ∈ ∈v v v m m m[ , ], [ , ]f f f r r r . The upper bounds of the air volumetric

flow rate vf and mass flow rate of refrigerant mr are limited by the
physical characteristics of the DX A/C system. The lower bounds

>v 0f and >m 0r match minimum operation and ventilation
demands.

(C6) ∈p p p% [ %, %). The upper and lower bounds limit the ratio of the
fresh air entering indoor.

(C7) ⩽ − + ⩽ − +T p T p T W p W p W(1 %) % , (1 %) %d z s z0 0. The mixed tem-
perature and moisture content between the fresh air and return air
after the DX dry-cooling region and wet-cooling region can only
decrease, respectively.

By collecting the system dynamic Eqs. (1), (3), (5), (6), (9) and (10),
we reach the following:

=x t f x t u t w ṫ ( ) ( ( ), ( ), ( )), (27)

where the state vector of the system is denoted by

=x h T T T W C[ , , , , , ] ,s z d w z c
T

the control vector is denoted by

=u v m[ , ] ,f r
T

the load vector is denoted by

=w Q M C[ , , ] ,load load load
T

the output vector is denoted by

=y T W C[ , , ] .z z c
T

The constraints in (C1)-(C7) are compactly written as

     ∈ ∈ ∈ ∈ ∈ ∈ ⩽x u PMV p T W h x, , , , , , and ( ) 0,s s s s

(28)

where    , , , s and s are bounded sets, and h x( ) is a function of state
variables.

2.7. TOU Strategy

In this paper, the energy charge is determined based on the TOU
strategy. The TOU electricity tariff is a typical program of demand-side
management, in which the electricity price changes over different
periods based on the electricity supply cost; for example, a high price σh
for peak periodsTh, medium price σm for standard periodsTm and low
price σl for off-peak periods Tl . In this study, the daily TOU electricity
price can be described as

T

T

T
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⎧

⎨

⎩

= ∈
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σ l
σ l
σ l
σ l

( )
0.20538"$"/kW h, ,
0.05948"$"/kW h, ,

0.03558"$"/kW h, ,

h h

m m

l l (29)

where T T= ⋃ = ⋃(8,11] (19,21], (0,7] (23,24]h l and T =m
⋃ ⋃(7,8] (11,19] (21,23]. "$" is the United States dollar and timeT is the

whole period of the day with = …l 1, ,24. Since there is a big difference
in energy prices between the peak and off-peak hours, cost savings can
be expected if significant amount of peak power consumption is shifted
to off-peak hours. To minimize the energy cost, some previous opti-
mization control strategies are reported in [18,25]. In this paper, we
propose an alternative optimisation control scheme to minimize not
only the energy cost but also the energy consumption.

3. Hierarchical control

Hierarchical control can be interpreted as an attempt to handle
complex problems by decomposing them into smaller subproblems and
reassembling their solutions in a hierarchical structure. The idea is to
establish a hierarchical control structure composed of two layers. The
two layers are adopted by using a control schedule, the simplified
scheme of which is described in Fig. 3. The main principle of hier-
archical control is as follows. At the upper layer, the objective is per-
formed to compute the optimal conditions with respect to a perfor-
mance index representing an economic and environmental criterion
over a long-term scale horizon HL with a sampling period TL. At this
stage, a detailed, a physical nonlinear model of the system although
static is used. At the lower layer, a simple linear dynamic model is used
to design an MPC controller, guaranteeing that the target values
transmitted from the upper layer are obtained over a short time horizon

=h Tl L with a smaller sampling period =t T n/l L l. Fig. 3 implies that the
upper layer sends information to the lower layer at the sampling instant

= … ∞mT m( 0,1, , )L ; meanwhile, the lower layer receives the informa-
tion as a task, and then completes the task within the sampling intervals
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+ + + = … −mT qt mT q t q n[ , ( 1) )( 0,1, , 1)L l L l l .
This paper presents an autonomous hierarchical control approach to

obtain a real-time optimisation scheduling strategy for the DX A/C
system to minimise the total energy cost while maintaining the indoor
thermal comfort and IAQ within acceptable ranges. The control method
is based on a traditional control scheme with a reference governor in
the upper layer, named the optimization layer, which, by means of a
nonlinear optimizer, is able to generate the steady states and the op-
timal volume of air entering the system by optimising the energy cost of
the DX A/C system and the value of the PMV index under the TOU
strategy. Then, the lower layer receives the steady states as input, and
the closed-loop MPC controller is designed to track the trajectory re-
ferences of indoor air temperature, moisture content and CO2 con-
centration. The conceptual framework of the proposed autonomous
hierarchical control approach is shown in Fig. 4. The details are pro-
vided in the following subsections.

3.1. Optimization layer (Upper layer)

At the upper layer, the reference governor has been defined ac-
cording to the optimization problem described by (30). Note that the
PMV index (22) and the energy consumption model (23) are the opti-
mization objectives. At the upper layer, the optimisation problem is
considered as an open loop optimal control framework. Considering the
DX A/C system (27) and its constraints (28), we formulate the following
optimal controller to generate the steady states.

+ −α PMV t α P t σ tmin( | ( )| (1 ) ( ) ( )),m tot m m0 0 0 (30)

subject to the following constraints:

=f x t u t T t p t( ( ), ( ), ( ), ( )) 0,m m s m m0 0 0 0 (31)

   

 

∈ ∈ ∈ ∈

∈ ∈ ⩽

x t u t PMV t p t T t

W t h x t

( ) , ( ) , ( ) , ( ) , ( )

, ( ) , ( ( )) 0,
m m m m s m

s s m s m

0 0 0 0 0

0 0 (32)

where α is a weighting factor ( < <α0 1), x u, and f (·) are denoted in
(27). x t u t v t( ), ( ), ( )m m m0 0 0 are the optimization variables for

= … −m N0, , 1L , where =v p T T T[ , , , ]s r cl .
Assuming that all the variables are within the bounded sets, feasible

solutions exist for the optimization problem (30) by using an open loop
controller. Among all the feasible solutions, let x t u t v t( ), ( ), ( )s m s m s m0 0 0 be
the optimal solution of optimization problem (30), and

∈ ∈ ∈X U Vx t u t v t( ) , ( ) , ( )s m s s m s s m s0 0 0 for = … −m N0, , 1L . X U V, ,s s s are the
optimal sequence points of the state, input and parameter variables. In
this paper, the optimal sequence points are the steady states of Eq. (31).

Remark 4. The weighting factor α is chosen to balance the tradeoff
between the two objectives, which are energy cost and comfort levels.
Specifically, a relative large α gives better comfort level but worse cost
savings. In the case that α is relatively large, more effort is put into
optimizing the most comfortable indoor air temperature, humidity and
CO2, which may result in a loss of balancing capacity. The parameter α

can be adjusted by utilities to achieve different goals.

The above nonlinear steady state optimization algorithm is provided
as below.

Algorithm 1. Nonlinear Programming algorithm to the DX A/C system
static optimization problem.

Initialization: Given initial state values x (0) and u (0). The initial
state values are selected within their bounds.

1: Input the data of the outside temperature, relative humidity,
sensible heat load, latent heat load and pollutant load.

2: The objective function (30) and constraints in (31) and (32) are
converted into the following standard nonlinear programming so
that it can be conveniently solved by the Matlab built-in function
fmincon:

⎧

⎨

⎪
⎪

⎩

⎪

⎪

⩽

=

⩽

=

⩽ ⩽

f z s t

c z
ceq z
A z b
A z beq
lb z ub

min · . .

( ) 0
( ) 0

·
·

c
T

eq

(33)

3: Solve the above procedure (33).

3.2. Control layer (Lower layer)

As discussed above, for each every sample periodTL, the upper layer
controller computes the optimal steady state point and delivers it into
the lower layer. The task of the lower layer receives the steady state as
the trajectory reference and includes a control algorithm trying to drive
the system to track the trajectory reference. Therefore, in this case, this
layer consists of a discrete-time MPC controller with a sampling time of

∈ + + + = … − = … −t mT qt MT q t m N q t[ , ( 1) ), 0,1, , 1, 0,1, , 1m L l L l L lq , which
is designed to track the reference point of indoor air temperature,
moisture content and CO2 concentration.

In the sequel, we make a commensurate quantization assumption:
all variables are quantised in the two sampling schemes, i.e., they are
represented by the starting values and remain these values in the same
sampling interval, and the objective functions PMV t P t( ), ( )tot , the TOU
function σ t( ), and the constraints in (C1)-(C7) are coarsely quantised,
i.e., they take their corresponding values at mTL, for all

∈ +t mT m T[ ,( 1) )L L . This assumption ensures that if the steady state
( ( ) ( ))x t u t,s m s mq q would be obtained from the optimisation (30)–(32),
then one would have =( ( ) ( )) ( ( ) ( ))x t u t x t u t, ,s m s m s m s mq q 0 0 .

The lower layer receives the reference points of state vector and
input vector, which are defined as xs

≜ [ ( ) ( ) ( ) ( ) ( ) ( )]t h t T t T t T t W t C t( ) , , , , ,m s s m z s m d s m w s m z s m c s m
T

, , , , , ,q q q q q q q and
= [ ( ) ( )]u t v t m t( ) ,s m f s m r s m

T
, ,q q q . Define = −δT t T t T( ) ( )z m z m z s,q q

Fig. 3. Simplified schematic of two-layer hierarchical structure scheme.
Fig. 4. Conceptual framework of the proposed hierarchical control approach.
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= − = −

= − = −

= − = −

= −
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m t m t

( ), ( ) ( ) ( ), ( ) ( ) ( ), ( )
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( ) ( ), ( ) ( ) ( ), ( )
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r m r s m

, ,

, ,

, ,

,

q q q q q q q q

q q q q q q

q q q q q q

q q

,

as the deviations of states and inputs from their trajectory references at
sampling period + + +mT qt mT q t[ , ( 1) )L l L l . Therefore, the dynamical
mathematical equation of the DX A/C system at time tmq can be line-
arized and written in a linear state-space representation:

⎧

⎨
⎩

= +

= +

δx t A x t u t δx t B x t u t δu t
y t Cδx t y t

̇ ( ) ( ( ), ( )) ( ) ( ( ), ( )) ( ),
( ) ( ) ( ),

m c s m s m m c s m s m m

m m s m

q q q

q q

0 0 0 0

0

(34)

where the state variables = −δx t x t( ) ( )m mq q

= [ ( ) ( ) ( ) ( ) ( ) ( )]x t δh t δT t δT t δT t δW t δC t( ) , , , , ,s m s m z m d m w m z m c m
T

q q q q q q0 , the

input variables = − =

=

[ ( ) ( )]
[ ( ) ( ) ( )]

δu t u t u t δv t δm t y t

T t W t C t

( ) ( ) ( ) , , ( )

, ,

m m s m f m r m
T

s m

z s m z m c s m
T

, ,

q q q q q 0

0 0 0
and y = [ ( ) ( ) ( )]t T t W t C t( ) , ,m z m z s m c m

T
,q q q q are the original output vari-

ables.
A x t u t B x t u t C( ( ), ( )), ( ( ), ( )),s m s m s m s m0 0 0 0 are the system state matrix,

input matrix and output matrix at the sampling time tmq, respectively,
which can be calculated by:

= =

=

= =

=

∂

∂

∂

∂

A x t u t x t x t
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B x t u t x t x t
u t u t

( ( ), ( )) ( ) ( )
( ) ( )

,
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( ) ( )

,

c s m s m
f x t u t

x t m s m
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( )

( ( ), ( ))
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m m

m
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0 0 0

0 0

0 0
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0 0 0
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and

=
⎡

⎣

⎢

⎤

⎦

⎥
C

0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

.

Consider the discrete-time version of (34):

⎧

⎨
⎩

= +

= +

+
δx t A x t u t δx t B x t u t δu t
y t Cδx t y t

( ) ( ( ), ( )) ( ) ( ( ), ( )) ( ),
( ) ( ) ( ),

m d s m s m m d s m s m m

m m s m

q q q

q q

1 0 0 0 0

0

(35)

where x t u t( ), ( )m mq q and y t( )mq are the state vector, input vector and
output vector at sampling instant +mTL

= … − = … −qt m N q n, 0,1, , 1, 0,1, , 1l L l .

∫

=

=

A x t u t e B x t u t

e τ B x t u t

( ( ), ( )) , ( ( ), ( ))

( d ) ( ( ), ( ))
d s m s m

A x t u t t
d s m s m

t A x t u t τ
c s m s m

( ( ), ( ))

0
( ( ), ( ))

c s m s m l

l c s m s m

0 0 0 0 0 0

0 0 0 0

are the

system state matrix and input matrix, respectively.
The objective of the proposed MPC controller is to maintain the

indoor air temperature, moisture content and CO2 concentration at the
required levels with low energy cost. To achieve this aim, the cost
function to be minimised can be chosen as

     
∑ ∑= − +

= =

−

+ + +
J t y t t r t R δu tmin ( ) ‖ ( | ) ( )‖ ‖ ( )‖ ,δu m j
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1 2
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q j q q j
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(36)

subject to:
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⎨
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δx t t A x t u t δx t t
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l q l q
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 + ∈ + ∈

= + … + = … + −

= … − = … −

δx t t x t δu t u t
l q q n l q q n
q n m N

( | ) ( ) , ( ) ( ) ,
1, , , , , 1,

0,1, , 1, 0,1, , 1.

m m s m m s m

p c

l L

1 2

l q l1 0 2 0

(38)

where (a) penalizes the indoor air temperature, moisture content and
CO2 concentration tracking error and (b) penalizes the balancing signal
tracking error in quadratic forms. The current time index tmq denotes
the current time +mT qt t;|L l mq means that the predicted value is based
on the information up to = + =t mT qt n T t; /L l p L l is the prediction hor-
izon; =n T t/c L l is the control horizon;

+
r t( )mq j is the reference vector at

step
+ +

t y t t; ( | )m m mq j q j q is the predicted output vector at step

+ +
t δu t; ( )m mq j q j is the predicted control vector at step

+
t R;m δuq j is used as a

tuning parameter for the desired closed-loop performance.

Remark 5. The system matrices of the system (34) are updated to
+ +A x t u t( ( ), ( ))d s m s m( 1) ( 1)0 0 and + +B x t u t( ( ), ( ))d s m s m( 1) ( 1)0 0 when the system

transiting from the sampling interval + − +mT n t m T[ ( 1) ,( 1) )L l l L to
+ + +m T m T t[( 1) ,( 1) )L L l . On the other hand, on sampling interval
+ + +m T m T t[( 1) ,( 1) )L L l , the variables

−
δx t( )mnl 1 and

−
δu t( )mnl 1 as the

initial points are fed to the system (37), and the references are updated
in (36). The convergence for this periodic MPC for an optimisation
problem over an infinite time horizon has been proven in [53,54].

The proposed MPC algorithm is as below:

Algorithm 2. MPC algorithm to the DX A/C tracking control problem.

Initialization: Given initial state value x (0) and let
= = =t m q0( 0, 0)mq .

1: Compute the optimal solution
= …

−
[ ( ) ( ) ( )]U t u t u t u t( ) , , ,m m m m

T
nl0 0 1 1 of the problem formulated

in (36) and (38).
2: Apply the MPC control =u t u t( ) ( )mpc m m0 0 to the system in the

sampling interval +[ )t t t,m m l0 0 ; the rest of the solutions
= … −u t q n( ), 1, , 1m lq are discarded.

+
x t( )mq 1 is calculated by

=
+

x t f x t u t( ) ( ( ), ( ))m m mpc mq q q1 .

3: Set ≔
+

t tm mq q 1, and update system states, inputs and outputs with

control u t( )mpc m0 and state equation =
+

x t f x t u t( ) ( ( ), ( ))m m mpc mq q q1 .

4: Until ≔
−

t tm mq nl 1, and update system states, inputs and outputs;

repeat the steps 1 and 2, we have obtain that
=

− −
u t u t( ) ( )mpc m mnl nl1 1 . Apply the MPC control

−
u t( )mpc mnl 1 to the

system in the sampling interval +−
[ )t t,m m( 1)nl 1 0 .

5: Set ≔ +t tm m( 1)q 0, measure the state value
−

x t( )mnl 1 by the step

=
−

t tm mq nl 1, and −
u t( )mpc mnl 1 to the system

=+ − −
x t f x t u t( ) ( ( ), ( ))m m mpc m( 1) nl nl0 1 1 , and update reference

≔ +r t r t( ) ( )m m( 1)0 0 in (36).
6: Compute the optimal solution

= …+ + + + −
[ ( ) ( ) ( )]U t u t u t u t( ) , , ,m m m m

T
( 1) ( 1) ( 1) ( 1)nl0 0 1 1 of the problem

formulated in (36) and (38). Then the MPC control
=+ +u t u t( ) ( )mpc m m( 1) ( 1)0 0 (the remaining = … −+u t q n( ), 1, , 1m l( 1)q

are discarded) is applied to the system in the sampling interval
++ +[ )t t t,m m l( 1) ( 1)0 0 to obtain the closed-loop MPC solution

=+ + +x t f x t u t( ) ( ( ), ( ))m m mpc m( 1) ( 1) ( 1)1 0 0 over the period

+ ++ +[ )t t t t, 2m l m l( 1) ( 1)0 0 .
7: Set ≔ +t tm m( 1)q 1 and go to step 1.

Generally, the above MPC algorithm never stops, and it updates the
controller at each time interval

+
[ )t t,m mq q 1 to include feedback in-

formation.

4. Results

Here, a case study is presented to demonstrate the performance of
the closed-loop system with the proposed hierarchical control for the
DX A/C system. The proposed hierarchical control strategy is compared
with a baseline strategy through simulations over a 24-h period.
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4.1. System setup

In the case study, an office room is taken as the conditioned space.
The volume of the DX conditioned space is 77m3. The parameters of the
DX A/C system are listed in Table 1. For the proposed hierarchical
control strategy, the values of the system dynamic variable constraints
are listed in Table 2, and we constrain the value of the PMV in the range
of −[ 0.5,0.5] to ensure that the DX A/C system is able to control indoor
thermal comfort and IAQ at acceptable levels. The coefficients of the
energy consumption models (23) of the DX A/C system are taken from
[52], which are summarized in Table 3.

In this paper, data of the outside temperature and relative humidity
in a single summer are given, as shown in Fig. 5(a). The data is obtained
from a meteorological station located in Cape Town, South Africa. The
predicted solar radiative heat flux density profile of Cape Town is
shown in Fig. 5(b). The certainty internal sensible and latent heat loads,
the external sensible heat load and pollutant load in the conditioned
space are predicted in Fig. 6. The values in Figs. 5 and 6 at every hour
are commensurately quantised. It is assumed that the PI controller can
absorb the CO2 concentration in the air supply, where =C 360s ppm is
used in this paper.

The TOU schedule for summer hours is summarized in (29); for
simplicity, only the TOU energy charge is used in the cost function. The
unit of Relative Humidity (RH) is percent (%). 11.35

1000
kg/kg of moisture

content is equivalent to 60% RH in the conditioned space. In addition,
the original nonlinear system (27) is used as the system to be controlled
in the simulation.

4.2. Two scheduling strategies

Here, we consider two strategies to schedule the operation of the DX
A/C system in the conditioned space. One is energy optimised open loop
controller and the closed-loop regulation of the MIMO MPC approach,
which serves as a baseline strategy [42], and the other is the proposed
energy and comfort optimised open loop controller and the closed-loop
tracking of the MIMO MPC strategy. To simplify the comparison, the
predicted load profiles are the same in both control strategies.

(1) Baseline: The baseline can be described as follows: We first select
a setpoint for indoor air temperature and relative humidity based on
a comfort zone within the psychrometric chart and a setpoint for
CO2 concentration based on the required level of occupants. The
ASHRAE comfort zone is shown in [55]. Its details are omitted here
because of space limitations. Under the given setpoint, we can ob-
tain a unique steady state of the DX A/C system by solving the Eqs.
(1), (3), (5), (6), (9) and (10) at every hour over a 24-h period. The
nonlinear model is then linearised around its steady state. An MPC is
designed for the linearised model. The proposed MPC with sampling
period 2min is applied to achieve better performance on thermal
comfort and IAQ with superior energy efficiency simultaneously.
(2) Proposed method: For the proposed control strategy, the details
are also given as below: We first consider the open loop controller to
solve the optimization problem (30) to obtain steady states at every
hour. The open loop controller and closed-loop MPC are employed
to track the references of temperature, humidity and CO2 con-
centration. In the proposed control method, the volume of the out-
side air entering indoor is optimized. The optimal volume of the
outside air is used in the DX A/C system for closed-loop MPC con-
troller. The sampling period is set to =T 1L h; the sampling interval
is set to =N 24L hour; the sampling period for MPC design is =t 2l
min, the prediction horizon and control horizon are taken as

= =n n 30p c in the lower layer. At each time step, the open loop
controller is employed to solve the optimization problem (30) and
the steady states obtained are sent to the lower layer. In Section 4.3,
we will compare the energy consumption and energy cost for the
baseline and the proposed strategies next.

4.3. Comparison of two strategies

The performance of both strategies is compared with historical
weather data of a specific day in Cape Town. The total simulation time
is =K 24 h. The predicted indoor cooling loads profile is depicted in
Fig. 7 overlaid with an electricity rate for summer hours. We duplicate
the indoor cooling loads profile for the next day to simulate the MPC
scheme. The temperature profile of the air leaving the DX evaporator
and p% of the outside air entering into the system over a 24-h period
are shown in Fig. 8(a) and (b). The data is used in the DX A/C system
for closed-loop tracking control.

The controls computed from two strategies are applied to the DX A/
C system. The tracking reference points of indoor air temperature in the
conditioned space for the proposed strategy and the setpoint regulation
of indoor air temperature for the baseline strategy are depicted in
Fig. 9(a). The tracking reference points of indoor air relative humidity
in the conditioned space for the proposed strategy and the setpoint
regulation of indoor air relative humidity for the baseline strategy are
depicted in Fig. 9(b). The tracking reference points of indoor CO2
concentration in the conditioned space for the proposed strategy and
the setpoint regulation of indoor CO2 concentration for the baseline
strategy are depicted in Fig. 9(c). We observe that the indoor tem-
perature, humidity and CO2 concentration for the proposed strategy can
track their reference points well. We also observe that for the proposed

Table 1
Parameters of system model.

Notations Values Notations Values

ρ 1.2 kg/m3 hfg 2450 kJ/kg
V 77m3 εwin 0.45
Vh1 0.04 m3 Vh2 0.16 m3

kspl 0.0251 kJ/m3 Cz 1.005 °
− −kJ kg C1 1

A0 22.07m2

Table 2
Constraints of system variables.

Notations Values Notations Values

Ts 22 °C T s 8 °C
Tz 26 °C T z 22 °C
Td 22 °C Td 10 °C
Tw 22 °C T w 10 °C
Wz 12.3/1000 kg/kg W z 9.85/1000 kg/kg

Cc ×
−800 10 6 ppm Cc ×

−650 10 6 ppm
Ws 9.85/1000 kg/kg W s 7.85/1000 kg/kg

hs 46.3 kJ/kg hs 27.3 kJ/kg
vf 0.8m3/s v f 0m3/s
mr 0.11 kg/s mr 0 kg/s

Table 3
Coefficients of energy consumption models.

Notations Values Notations Values

a0 900.5 a1 −8.1
a2 6.18 a3 −0.15
a4 −4.61 a5 0.02
a6 −0.2 a7 0.01
a8 0.12 a9 0.09
b0 −6942 b1 82
b2 −0.7 b3 2.4
b4 −2.5 b5 2.68
b6 0.03 b7 −0.02
b8 0.04 b9 0.0001
c0 138.1 c1 0.52
c2 −2.3
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strategy the reference points are tallish during peak hours for tem-
perature and humidity tracking. This is because the proposed controller
can automatically adjust the reference points upward during peak hours
such that the energy cost and energy consumption are minimized while
both the thermal comfort and IAQ still maintain in the acceptable
ranges. We further observe that with the baseline strategy under the
varying loads, the MPC controller always maintains the indoor tem-
perature, humidity and CO2 concentration at their setpoint by reg-
ulating the control inputs. From the local zooming out of Fig. 9, the
reference points of indoor air temperature, humidity and CO2 con-
centration are reached after a transient process of 18min. After
reaching their reference points, the proposed controller maintains the
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reference points with small variation ranges. Fig. 10 shows the air vo-
lumetric flow rate and mass flow rate of refrigerant over a 24-h period.
The two input variables vary to drive the indoor air temperature,

humidity and CO2 concentration to track their trajectory references
according to the changing environment during the day. In Fig. 11, it can
be observed that the values of the PMV index for the two control
methods lie within the expected range [−0.5,0.5].

Fig. 12(a) and (b) illustrate the energy consumption and cost of the
DX A/C system operation for the proposed strategy and the baseline
strategy. We observe from Fig. 12(a) and (b) that both strategies con-
sume almost the same energy cost from 0:00 to 7:00. The indoor tem-
perature, humidity and CO2 concentration reference points stay at the
lower bound of the PMV index during off-peak hours without more cost.
After 8:00, the energy costs of the baseline and proposed strategies start
to increase since the increased cooling loads are required to be removed
and the electric power price is increased. Compared to the baseline
strategy, Fig. 12(a) shows that the proposed method consumes less
energy. Comparing the two strategies, we observe that under the pro-
posed method, more energy costs are reduced during peak hours. The
reason is that the proposed method automatically adjusts upward the
reference points such that the energy consumption and the energy costs
are minimized during peak hours while maintaining both thermal
comfort and IAQ at the required levels. From the simulation, it is ver-
ified that the major energy consumption and costs have been reduced
effectively during peak hours. We summarize the total energy con-
sumption, energy cost and comfort levels in Table 4. According to it, the
proposed hierarchical control strategy performs better than the baseline
by around 31.38% in terms of total energy consumption, and by around
33.85% in terms of total energy cost. It can be seen from Table 4 that
the proposed control strategy presents a lower energy consumption and
costs compared to the baseline control strategy. The table also shows
that the total values of the PMV index for the proposed control strategy
is higher than that of the baseline control strategy. It is expected that
the proposed control strategy reduces energy consumption and cost at
the expenses of the comfort level, which is still reasonably and opti-
mally regulated to acceptable levels. Therefore, the utilities can choose
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Fig. 9. (a) Temperature tracking. (b) Relative humidity tracking. (c) CO2 con-
centration tracking.
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Fig. 10. (a) Air volumetric flow rate over a 24-h period. (b) Mass flow rate of refrigerant over a 24-h period.
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the two control strategies to implement building DX A/C systems based
on their different aims.

Though it is desirable to calculate the cost savings brought by the
proposed control strategy over the baseline strategy, it is an impossible
task for real buildings to simply compare the cost values of two control
strategies in one day because load factors and ambient temperature and
humidity cannot be the same in every day. To demonstrate the effec-
tiveness of the proposed automatic hierarchical control strategy in
different conditions, the proposed testing days happened to be much

warmer than the baseline days in this test. The weather conditions of
the testing days are shown in Table 5. The energy consumption in the
testing days is shown in Fig. 13. From this comparison, all proposed
control testing days have much lower power consumption, showing
successful energy efficiency improvement by the proposed control
strategy.

4.4. Parameter sensitivities analysis

The simulation results presented here are obtained under the as-
sumption that the parameters are accurate and the DX A/C system
models can perfectly represent the real system. However, in reality,
there usually exist uncertainties in parameters and models. In this
section, a simple uncertainty analysis is carried out to demonstrate how
the uncertainty parameter would affect the potential performance of
the proposed autonomous hierarchical control strategies. Here, we
consider the uncertainties of some major parameters of the DX A/C
system, namely, the heat transfer area of the DX evaporator in the dry-
cooling region A1 and the heat transfer area of the DX evaporator in the
wet-cooling region A2. The total area = +A A A0 1 2 is known. Hence, it
is only necessary to consider the effect of the uncertainty parameter A1

on the performance of the proposed control technique. The open loop
optimal controller and the closed-loop tracking of the MPC with dif-
ferent values of the uncertainty parameter A1 are verified through si-
mulation. For the case study considered here, the simulations for indoor
air temperature optimised by open loop optimal controller and the
closed-loop MPC temperature tracking under different parameter values
are depicted in Figs. 14 and 15, and the results for the open loop op-
timal controller under all different ranges of the uncertainty parameter
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Fig. 12. (a) Energy consumption by two strategies over a 24-h period. (b) Energy cost by two strategies over a 24-h period.

Table 4
Comparison of baseline and proposed strategies.

Control strategy Energy consumption (kW h) Energy cost ($) ∑ |PMV|

Baseline control 20.52 1.734 103.33
Proposed control 14.08 1.147 162.32
Saving (%) 31.38 33.85

Table 5
Weather conditions for the testing days.

Date Control Average T0 Average H0 Tmax
0 Hmax

0

12/30 Baseline 28.6 72.4% 33.9 80%
12/31 Proposed 29.2 71.6% 34.2 81%
01/01 Proposed 28.8 72.1% 32.2 79%
01/02 Proposed 28.9 72.4% 33.2 81%
01/03 Proposed 28.1 73.2% 32.0 82%
01/04 Baseline 28.0 72.3% 32.4 79%
01/05 Baseline 27.6 73.4% 32.0 80%

Fig. 13. Energy consumption for the proposed and baseline strategies testing days.
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are listed in Table 6. The standard deviations for the steady state of
indoor air temperatures are less than 0.2 °C. The standard deviations for
the objective function values of the open loop controller are less than
6%. The results show that the fluctuation of the control performances
caused by parameter uncertainty is relatively small. Thus, the proposed
autonomous hierarchical control strategy is not very sensitive to the
modeling parameter A1 specified here.

5. Conclusions

This work formulates an autonomous hierarchical control problem
to minimize energy consumption and cost while maintaining both
thermal comfort and indoor air quality at the required levels for su-
pervisory control of a direct expansion air conditioning system. It
proposes an efficient control algorithm to solve the autonomous hier-
archical control problem based on nonlinear programming and closed-
loop model predictive control. The optimal reference points of indoor
air temperature, humidity and CO2 concentration for the direct ex-
pansion air conditioning system are obtained, and the closed-loop
model predictive controller steers the direct expansion air conditioning
system to reach the reference points, whereas the energy consumption
and energy costs are reduced. Results show that the proposed control
method could achieve a reduction of the operation energy consumption
by 33.9% and cost by 33.85% with the predicted mean vote value in
[-0.5,0.5], respectively. The performances of the proposed control are
obtained under the assumption that the models and parameters can
perfectly represent the real system. However, in reality, there usually
exist uncertainties. The uncertainty analysis has been made in this
paper. The results show that the proposed control method is effective
because the standard deviations of energy savings are less than 5% in
comparison with around 35% energy saving for normal values. The
proposed control method is significant to be applied in theoretical and
practical applications.
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In this paper, we study the distributed optimization problem of multi-agent systems with delayed 

sampled-data, where the interconnected topology is directed, weighted-balanced and strongly connected, 

and also local cost functions are strongly convex with globally Lipschitz gradients. Based on synchronous 

and asynchronous sampled-data, we construct two respective algorithms. Our main results, sufficient con- 

ditions for the convergence to an optimal solution, are obtained under assumption that all design param- 

eters are chosen properly. We also present one example to validate our theoretical results. 
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1. Introduction 

Over the past years, distributed optimization problem has been

a hot topic. As a result, there are an increasing number of studies

conducted on distributed optimization in the context of control

theory. Its wide range of applications can be found in various

fields, such as statistical machine learning [1] , smart grid [2,3] ,

sensor networks [4] , and so on. Based on multi-agent environ-

ments, objective of a distributed optimization problem is to solve

an optimization problem cooperatively in a distributed way, where

the objective function formed by a sum of local objective func-

tions, and each agent can access to one local objective function

only. The ultimate goal is to make states of all agents converge

to the optimal solution of the optimization problem via a local

computation and information exchange with its neighbors. Com-

pared with the consensus problem of multi-agent systems, which

makes all agents achieve a common state [5–12] , the optimization

problem of consensus does not only make all agents achieve the

same state but also minimizes the optimization problem. 

It is common that time-delay exists in practical systems

[13–15] because of the finite speeds of information transmission

and spreading as well as traffic congestions, and time-delay may
∗ Corresponding author at: College of Science, China Three Gorges University, 

Yichang 443002, China. 

E-mail addresses: Yanjunx_2017@163.com (J. Yan), yuhui@ctgu.edu.cn (H. Yu), 
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esult in undesirable dynamics such that the system runs out.

herefore, it is important to analyze the robustness against time-

elay of a system and take time-delay into account in the algo-

ithm design of multi-agent systems [16–18] . Meanwhile, in the

eal situation, agents in systems usually communicate with each

ther in some certain time intervals. Due to implementation of

igital sensors, filters, and controllers, it is desirable that sampled-

ata takes place only at the discrete sampling instants but not

he entire continuous process [19–21] . It is well known that ef-

ective methods to deal with sampled-data consensus problems is

ne of the input delay approach [22–24] . The consensus of multi-

gent systems with both sampling data and time-delay is consid-

red in [25] . The simultaneous stability problem of a finite num-

er of linear subsystems is studied in [26] under asynchronous

nd aperiodic sampling, time-varying delays, and measurement er-

ors. Furthermore, [27,28] provided overviews of recent advances in

istributed sampled-data cooperative control and event-triggered

onsensus of multi-agent systems, respectively. Thus, the consen-

us problem with sampled-data and time-delay is a meaningful re-

earch topic. 

In distributed optimization problems of multi-agent systems,

ost algorithms in earlier works were time-varying, consensus-

ased dynamics implemented in discrete time [29–31] . In the

ontext of time-varying network topology, discrete time subgradi-

nt algorithms are proposed for unconstrained, separable, convex

ptimization problems in [29,30] . Recent works have introduced

ontinuous-time methods whose convergence properties can be

https://doi.org/10.1016/j.neucom.2018.03.036
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.03.036&domain=pdf
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nalyzed via classical stability theory. Based on the gradient algo-

ithm and integral feedback, auxiliary-variables are introduced in

tability analysis of continuous-time dynamical systems [32–34] .

rom the control system viewpoint, a continuous-time multi-agent

ystem is proposed with strongly connected and weight-balanced

irected communication topology in [32] . A modified system

s proposed in [33] with auxiliary-variables no longer need to

xchange information, where centralized synchronous and dis-

ributed asynchronous event-triggered communication schemes 

re also considered to reduced communication bandwidth. In

34] , time-delays are considered in continuous-time multi-agent

ystems for distributed optimization and a sampled-data com-

unication scheme is formulated based on the results of delay

ystems, where conditions are derived in form of Linear Ma-

rix Inequality(LMI). In order to avoid using auxiliary-variables,

 family of Zero-Gradient-Sum algorithms are proposed over

xed communication topology in [35] . In [36,37] , the continuous

ime Zero-Gradient-Sum algorithm, sampled-data, event-triggered 

ommunication for distributed convex optimization problem are

onsidered over directed networks and undirected, connected net-

orks, respectively. In [38] , a periodic event-triggered consensus

f first-order time-delayed multi-agent systems under switching

opologies can be achieved with appropriate choices of the event-

riggering parameters, sampling period, and time-delay. Moreover,

utput consensus problem of delayed sampled-data is considered

n [39] , where the data of the system is sampled at a sampling

nstant but can be available with a time-delay. However, so far,

tudies on the distributed optimization problem of multi-agent

ystems with delayed sampled-data are rare. 

In this paper, the distributed consensus optimization problem

f multi-agent systems with delayed sampled-data is considered.

he interconnected graph is assumed to be directed, strongly con-

ected and weight balanced. Only available data of the system is

ssumed to be sampled and delayed. Local costs are strongly con-

ex with global Lipschitz gradients. Two control algorithms under

ynchronous and asynchronous sampled-data are proposed for the

ampled-data multi-agent systems to reach the consensus and op-

imal state, respectively. A stability analysis is conducted based on

yapunov theory and algebraic graph theory. Finally, sufficient con-

itions are obtained such that optimization problems can be solved

n the consensus state. 

The main contributions of this paper are listed as follows:

irstly, two control algorithms using sampled-data with time-delay

nder synchronous and asynchronous sampling are presented for

he considered multi-agent systems, respectively. Secondly, suffi-

ient conditions are obtained to guarantee the convergence to the

ptimal solution. In general, the multi-agent system with sampled-

ata is transformed into time-delay system, and then LMI condi-

ions can be obtained such as in [34] . Other works related to this

ssue are based on event-triggered scheme due to the advantages

f reducing communication resources such as in [37] . The main dif-

erences between this paper and previously mentioned works are

hat the sampled-data becomes available with a time-delay, and

hen some inequalities conditions are obtained such that the pa-

ameters can be chosen properly. In other words, we consider a

istributed optimization problem of multi-agent systems with de-

ayed sampled-data in this paper. To the best of our knowledge, no

imilar results appear in the existing literatures. 

This paper is organized as follows. Some preliminaries on alge-

raic graph theory, useful lemmas and model formulation are pre-

ented in Section 2 . The convergence results of the proposed al-

orithm are established and proved under a given communication

ondition on network topology in Section 3 . An example is pro-

ided to illustrate results in this paper in Section 4 . Finally, this

aper concludes in Section 5 . 
Notations: R and R 

n represent the set of real numbers and the

et of n × 1 real vectors, respectively; I n ∈ R 

n ×n is the n × n identity

atrix; 1 n (or 0 n ) denotes an n dimensional column vector whose

ll entries being 1 (or 0); A 

T represents the transpose of a matrix

 ; for vectors x 1 , x 2 , . . . , x n , col (x 1 , x 2 , . . . , x n ) = [ x T 1 , x 
T 
2 , . . . , x 

T 
n ] 

T ; for

 vector w , ‖ w ‖ = 

√ 

w 

T w represents the standard Euclidean norm;

or a matrix P, λmin ( P ) and λmax ( P ) denote the smallest and largest

igenvalue. 

. Preliminaries and problem statement 

.1. Preliminaries 

For a multi-agent system, the information exchange among N

gents can be modeled by a weighted digraph G = (V, E, A ) with

he finite set of nodes V = { 1 , 2 , . . . , N} and edge set E ⊂ V × V . An

dge starts from i and ends on j , which means that agent j can

btain information from agent i . The weighted adjacency matrix

 = [ a i j ] ∈ R N×N with a ij > 0 if ( j, i ) ∈ E and a i j = 0 otherwise. If
 N 
j=1 a i j = 

∑ N 
j=1 a ji for all i ∈ V, the digraph G is called weighted-

alanced. A path is a sequence of connected edges in a graph. If for

very pair of nodes there is a directed path connecting them, the

igraph G is said to be strongly connected, otherwise disconnected.

he Laplacian L = [ � i j ] ∈ R N×N of graph G is defined by 

 i j = 

{∑ N 
k =1 ,k � = i a ik j = i 

−a i j j � = i 
. 

The next lemmas related to the important properties of Laplace

 and provide useful mathematical tools. 

emma 1 [40] . Laplace matrix L has least one zero eigenvalue with

 N = [1 , 1 , . . . , 1] ∈ R 

N as its eigenvector, and all the non-zero eigen-

alues of L have positive real parts. Laplacian L has a simple zero

igenvalue if and only if G is strongly connected. 

emma 2. For matrices A, B, C and D with appropriate dimensions,

he Kronecker product � satisfies (1)(A � B )(C � D ) = (AC) � (BD ) ;

(2)(A � B ) T = A 

T 
� B T ; (3)(A � B ) −1 = A 

−1 
� B −1 . 

emma 3 [41] . For a given n × n −matrix G > 0 and for all continuous

unctions ω in [ a, b] → R 

n , the following inequality holds: ∫ b 

a 

ω(s ) ds 

]T 

G 

[∫ b 

a 

ω(s ) ds 

]
≤ (b − a ) 

∫ b 

a 

ω 

T (s ) Gω(s ) ds. 

.2. Problem statement 

We consider a multi-agent system consisting of N agents. The

ynamics of the i th agent, i ∈ V, are described by 

˙ 
 i (t) = u i (t) , (1) 

here x i ∈ R 

m denotes the state of agent i , u i ∈ R 

m is the control

nput. 

Consider the multi-agent optimization problem, in which the

oal is to minimize the sum of local cost functions associated to

he individual agent. More specially, it can be expressed as 

inimize f (x ) = 

N ∑ 

i =1 

f i (x ) , x ∈ R 

m . (2)

et x = col (x 1 , x 2 , . . . , x N ) ∈ R 

Nm . Next, we provide an alternative

ormulation of (2) , i.e., 

minimize f (x ) = 

N ∑ 

i =1 

f i (x i ) , x i ∈ R 

m , 

ubject to (L � I m 

) x = 0 Nm 

. (3) 
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We can see problem (2) on R 

m is equivalent to problem (3) on

R 

Nm . 

In this paper, our goal is to design a distributed controller for

each agent such that the states of all agents converge to a optimal

solution of the optimization problem (2) via local communication. 

Before proceed, we give the following assumption on the local

cost function f i based on the convex analysis [42] . 

Assumption 1. (a) For each i ∈ V, f i is differentiable and its gradi-

ent is Lipschitz with constant ρ i > 0 in R 

m : 

‖∇ f i (x ) − ∇ f i (y ) ‖ ≤ ρi ‖ x − y ‖ , ∀ x, y ∈ R 

m . (4)

(b) For i ∈ V, f i is m i −strongly convex with constant m i > 0: 

(x − y ) T (∇ f i (x ) − ∇ f i (y )) ≥ m i ‖ x − y ‖ 

2 , ∀ x, y ∈ R 

m . (5)

Remark 1. Under Assumption 1 (b), we can note that f is strictly

convex, then the optimization problem (3) has an unique optimal

solution. 

Assumption 2. The directed graph G is weighted-balanced and

strongly connected. 

Remark 2. From Assumption 2 , zero is a simple eigenvalue of ma-

trix L and 1 T 
N 

L = 0 . Moreover, there exists a matrix Q ∈ R 

N ×(N −1)

with 

1 

T 
N Q = 0 , Q 

T Q = I N−1 , Q Q 

T = I N − 1 

N 

1 N 1 

T 
N , (6)

such that the matrix Q 

T LQ = H, where the real parts of all eigen-

values of H are positive, and H + H 

T is a positive definite matrix. 

3. Main results 

3.1. Synchronous sampling 

The state x i ( t ) of system (1) and (3) is assumed to be sampled

at time instants t k and available at t k + τk . { t k }, k = 0 , 1 , . . . , ∞ , is

a strictly increasing sequence such that lim k →∞ 

t k = ∞ and τ k ≥ 0,

that is the sampled-data x i ( t k ) is available with a time-delay τ k .

The sampling interval [ t k −1 , t k ) satisfy 0 < T min ≤ t k − t k −1 = T k ≤
T max for all k = 0 , 1 , . . . , ∞ , where T k is the length of the k th

sampling interval, T min 

= min { T k } and T max = max { T k } , and when

 ∈ [ t k + τk , t k +1 + τk +1 ) , x i (t k +1 + τk +1 ) = lim t→ (t k +1 + τk +1 ) 
−x i (t) . We

assume that τ is the upper bound of τ k , that is τ k ≤ τ , and sat-

isfy τ < T min , which means that the sampled-data at time t k can be

used before next sampling time instant. 

We use the following sampled-data based control algorithm to

achieve consensus and optimum: 

u i (t) = −k 

N ∑ 

j=1 

a i j [ x i (t k ) − x j (t k )] − w i (t) − γ∇ f i (x i (t)) , 

˙ w i (t) = α
N ∑ 

j=1 

a i j [ x i (t k ) − x j (t k )] , 

w i (0) = 0 , t ∈ [ t k + τk , t k +1 + τk +1 ) , k ≥ 0 , (7)

where w i ( t ) is an auxiliary state of agent i and k, α, γ are the

scalar tuning positive parameter. It can be seen from (7) that each

agent only uses the information at time t k when t ∈ [ t k + τk , t k +1 +
τk +1 ) , k ≥ 0 . 

Noticed that x i (t k )(i ∈ V) are constant in all of the time in-

tervals [ t k + τk , t k +1 + τk +1 ) , k ≥ 0 . From the second equation of

(7) , we can know that w i ( t ) is continuous in [ t k + τk , t k +1 + τk +1 ) .

From Assumption 1 , ∇f i ( x i ( t )) is Lipschitz and then continuous in

[ t k + τk , t k +1 + τk +1 ) . Therefore, ˙ x i (t) and then x i ( t ) is continuous in

time intervals [ t k + τk , t k +1 + τk +1 ) , k ≥ 0 . According to the defini-

tion x i (t k +1 + τk +1 ) = lim t→ (t k +1 + τk +1 ) 
−x i (t) in the beginning of this
ection, we have lim t→ (t k +1 + τk +1 ) 
−x i (t) = lim t→ (t k +1 + τk +1 ) 

+ x i (t) =
 i (t k +1 + τk +1 ) , which means that x i ( t ) is continuous in the time

nstant t k +1 + τk +1 . Thus, x i (t)(i ∈ V) are continuous in the time in-

erval [ t 0 , ∞ ). 

Let 

(t) = col (w 1 (t) , w 2 (t ) , . . . , w N (t )) , 

nd 

 f (x (t)) = col (∇ f 1 (x 1 (t)) , ∇ f 2 (x 2 (t)) , . . . , ∇ f N (x N (t))) . 

hen the closed-loop systems of (1) and (7) can be expressed as a

ompact form: 

˙ x (t) = −k (L � I m 

) x (t k ) − w(t) − γ∇ f (x (t)) , 

˙ 
 (t) = α(L � I m 

) x (t k ) . (8)

Let the right-side of the closed-loop system (8) equal to 0, then

e can get a equilibrium point ( x ∗, w 

∗), i.e. 

k (L � I m 

) x ∗ − w 

∗ − γ∇ f (x ∗) = 0 , 

α(L � I m 

) x ∗ = 0 . (9)

ccording to the properties of Laplacian matrix, and from (9) , one

an obtain 

x ∗ = 1 N � π, π ∈ R 

m , 

 

∗ = −γ∇ f (x ∗) . (10)

nder Assumption 2 , we have 1 T 
N 

L = 0 . Left multiplying the second

quation of (8) by 1 T 
N 

� I m 

, we obtain 

∑ N 
j=1 ˙ w j (t) = 0 , and using

nitial condition w i (0) = 0 , then 

N 
 

j=1 

w j (t) = 

N ∑ 

j=1 

w j (0) = 0 , ∀ t ≥ 0 . (11)

sing 1 T N � I m 

left multiply the second equation of (10) again re-

ults in 

 = 

N ∑ 

j=1 

w 

∗
j =−γ (1 

T 
N � I m 

) ∇ f (x ∗)=−γ
N ∑ 

j=1 

∇ f i (π )=−γ∇ f (x ∗) . 

hus, the optimal condition ∇ f (x ∗) = 0 is satisfied, which means

hat x ∗ = 1 N � x ∗, x ∗ ∈ R 

m is the optimal solution of the optimiza-

ion problem (3) . 

Using the transformation 

 (t) = x (t) − x ∗, w (t) = w(t) − w 

∗, (12)

ne can shift the equilibrium point into the origin, then system

8) can be transformed into the following form: 

˙ x (t) = −k (L � I m 

) x (t k ) − w (t) − γ
( x (t)) , 

˙ 
 (t) = α(L � I m 

) x (t k ) , (13)

here 
( x (t)) = ∇ f (x (t)) − ∇ f (x ∗) . 
Let 

 (t) = (T T � I m 

) x (t ) , ϑ(t ) = (T T � I m 

) w (t) , T = 

[
1 N √ 

N 

Q 

]
. 

enote e = col (e 1 , e 2 ) , and ϑ = col (ϑ 1 , ϑ 2 ) with e 1 , ϑ 1 ∈ R 

m , and

 2 , ϑ 2 ∈ R 

m (N−1) . By the structure of T and (6) , we can know T is

n orthogonal matrix. Then system (13) can be rewritten as: 

˙ e 1 (t) = −γ

(
1 

T 
N √ 

N 

� I m 

)

( x (t)) , 

˙ e 2 (t) = −k (H � I m 

) e 2 (t k ) − ϑ 2 (t) − γ (Q 

T 
� I m 

)
( x (t)) , 

˙ 
 1 (t) = 0 , 

˙ 
 2 (t) = α(H � I m 

) e 2 (t ) . (14)
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Let ε(t) = col (e 2 (t) , ϑ 2 (t)) , then 

˙  (t) = Cε(t) − E 

∫ t 

t k 

˙ ε (s ) ds + F (t) , (15)

ith 

 = 

(
−kH −I N−1 

αH 0 

)
� I m 

, E = 

(
−kH 0 

αH 0 

)
� I m 

, 

nd 

 (t) = 

(
−γ (Q 

T 
� I m 

)
( x (t)) 
0 

)
. 

Then the main results can be obtained as follows. 

heorem 1. Suppose Assumptions 1 and 2 hold, the optimization

roblem (3) for multi-agent system (1) can be solved by the optimiza-

ion control (7) , if the following conditions are satisfied: 

 − (3 m + 1) γ ρ2 
> 0 , (16)

1 − 6 m [(α2 + k 2 ) λ2 + 1] − 1 

2 

> 0 , (17)

nd 

 max + τ < 

√ 

m 

λ2 [(k − α) 2 + 3 m (α2 + k 2 )] 
, (18) 

here m > 0 is a constant, λ1 = λmin (R ) , λ2 = λmax (H 

T H) , and R =
(k − α)(H + H 

T ) I N−1 

I N−1 2 I N−1 

)
� I m 

. 

roof. Consider the following Lyapunov function: 

 1 (t) = 

1 

2 

e T 1 (t) e 1 (t) + 

1 

2 

ε 

T (t)ε (t) , 

here  = 

(
I N−1 I N−1 

I N−1 
k 
α I N−1 

)
� I m 

is positive definite for k > α, the

ondition k > α will be proved later. The derivation of V 1 along the

rst equality of (14) and - system (15) yields: 

˙ 
 1 = e T 1 (t) ˙ e 1 (t) + 

1 

2 

ε T (t)(C + C T ) ε(t) 

− ε T (t)E 

∫ t 

t k 

˙ ε (s ) ds + ε T (t)F (t) . (19) 

Due to e (t) = (T T � I m 

) x (t) and from Assumption 1 , we have 

 

T 
1 (t) ˙ e 1 (t) + ε T (t)F (t) 

= −γ e T 1 (t) 

(
1 

T 
N √ 

N 

� I m 

)

( x (t)) + ε T (t)F (t) 

= −γ x 
T 
(t)
( x (t)) + γ e T 2 (t)(Q 

T 
� I m 

)
( x (t)) 

−γ e T 2 (t)(Q 

T 
� I m 

)
( x (t)) − γϑ 

T 
2 (t)(Q 

T 
� I m 

)
( x (t)) 

= −γ x 
T 
(t)
( x (t)) − γϑ 

T 
2 (t)(Q 

T 
� I m 

)
( x (t)) 

≤ −γ m x 
T 
(t) x (t) + 

1 

4 

ϑ 

T 
2 (t) ϑ 2 (t) + γ 2 ‖ (Q 

T 
� I m 

)
( x (t)) ‖ 

2 

≤ −γ m x 
T 
(t) x (t) + 

1 

4 

ϑ 

T 
2 (t) ϑ 2 (t) + γ 2 ρ2 x 

T 
(t) x (t) , (20) 

here m = min { m 1 , m 2 , . . . , m N } , ρ = max { ρ1 , ρ2 , . . . , ρN } . 
Let R = −(C + C T ) , according to condition (17) , we can know

 is positive definite, and due to H + H 

T is positive definite, then

 > α. Thus 

ε T (t)E 

∫ t 

t k 

˙ ε (s ) ds 

= (k − α) e T 2 (t)(H � I m 

) 

∫ t 

t 

˙ e 2 (s ) ds 

k 
≤ 1 

4 

e T 2 (t) e 2 (t) + (k − α) 2 λ2 

(∫ t 

t k 

˙ e 2 (s ) ds 

)T (∫ t 

t k 

˙ e 2 (s ) ds 

)

≤ 1 

4 

e T 2 (t) e 2 (t) + (k − α) 2 λ2 

(∫ t 

t k 

˙ ε (s ) ds 

)T (∫ t 

t k 

˙ ε (s ) ds 

)
. (21) 

From (19) –(21) and ε T ( t ) R ε ( t ) ≥λ1 ε 
T ( t ) ε ( t ), we have 

˙ 
 1 (t) ≤ −γ m x 

T 
(t) x (t) + 

1 

4 

ϑ 

T 
2 (t) ϑ 2 (t) + γ 2 ρ2 x 

T 
(t) x (t) 

− 1 

2 

ε T (t) Rε(t) 

+ 

1 

4 

e T 2 (t) e 2 (t) + (k − α) 2 λ2 

(∫ t 

t k 

˙ ε (s ) ds 

)T (∫ t 

t k 

˙ ε (s ) ds 

)

≤ −γ m x 
T 
(t) x (t) + 

1 

4 

ε T (t) ε(t) + γ 2 ρ2 x 
T 
(t) x (t) 

− 1 

2 

λ1 ε 
T (t) ε(t) 

+ (k − α) 2 λ2 

(∫ t 

t k 

˙ ε (s ) ds 

)T (∫ t 

t k 

˙ ε (s ) ds 

)
. (22) 

Construct the following auxiliary integral function 

 2 (t) = 

∫ t 

t−T max −τ

∫ t 

θ
˙ ε T (s ) ̇ ε (s ) d sd σ, 

e can obtain 

˙ 
 2 (t) = (T max + τ ) ̇ ε T (t ) ̇ ε (t ) −

∫ t 

t−T max −τ
˙ ε T (s ) ̇ ε (s ) ds. 

By calculation, we have 

˙  T (t) ̇ ε (t) = ε T (t) C T Cε(t) + 

(∫ t 

t k 

˙ ε (s ) ds 

)T 

E T E 

(∫ t 

t k 

˙ ε (s ) ds 

)
+ F T (t) F (t) 

− 2 ε T (t) C T E 

(∫ t 

t k 

˙ ε (s ) ds 

)
− 2 

(∫ t 

t k 

˙ ε (s ) ds 

)T 

E T F (t) 

+ 2 ε T (t) C T F (t) . (23) 

Due to 2 a T b ≤ a T Xa + b T X −1 b, we have 

2 ε T (t) C T E 

(∫ t 

t k 

˙ ε (s ) ds 

)
≤ ε T (t) C T Cε(t) + 

(∫ t 

t k 

˙ ε (s ) ds 

)T 

× E T E 

(∫ t 

t k 

˙ ε (s ) ds 

)
, (24) 

2 

(∫ t 

t k 

˙ ε (s ) ds 

)T 

E T F (t) ≤
(∫ t 

t k 

˙ ε (s ) ds 

)T 

E T E 

(∫ t 

t k 

˙ ε (s ) ds 

)
+ F T (t) F (t) , (25) 

nd 

 ε T (t) C T F (t) ≤ ε T (t) C T Cε(t) + F T (t) F (t) . (26)

Based on Assumption 1 (a), the following result can be obtained:

 

T (t) F (t) = γ 2 ‖ (Q 

T 
� I m 

)
( x (t)) ‖ 

2 ≤ γ 2 ρ2 x 
T 
(t) x (t) . (27)

From (23) –(27) , we have 

˙  T (t) ̇ ε (t) ≤ 3[ ε T (t) C T Cε(t) + 

(∫ t 

t k 

˙ ε (s ) ds 

)T 

E T E 

(∫ t 

t k 

˙ ε (s ) ds 

)
+ F T (t) F (t)] 

≤ 3[(α2 + k 2 ) λ2 + 1] ε T (t ) ε(t ) + 3 γ 2 ρ2 x 
T 
(t ) x (t ) 
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b

w  

S  

−  

t

 

t  
+ 3(α2 + k 2 ) λ2 

(∫ t 

t k 

˙ ε (s ) ds 

)T (∫ t 

t k 

˙ ε (s ) ds 

)
. 

(28)

Let V (t) = V 1 (t) + 

m 

T max + τ V 2 (t) , we have 

˙ 
 (t) ≤ −γ m x 

T 
(t) x (t) + 

1 

4 

ε T (t) ε(t) + γ 2 ρ2 x 
T 
(t) x (t) 

− 1 

2 

λ1 ε 
T (t) ε(t) 

+ (k − α) 2 λ2 

(∫ t 

t k 

˙ ε (s ) ds 

)T (∫ t 

t k 

˙ ε (s ) ds 

)
+ 3 m [(α2 + k 2 ) λ2 + 1] ε T (t ) ε(t ) + 3 mγ 2 ρ2 x 

T 
(t ) x (t ) 

+ 3 m (α2 + k 2 ) λ2 

(∫ t 

t k 

˙ ε (s ) ds 

)T (∫ t 

t k 

˙ ε (s ) ds 

)

− m 

T max + τ

∫ t 

t−T max −τ
˙ ε T (s ) ̇ ε (s ) ds. (29)

From Lemma 3 , we have (∫ t 

t k 

˙ ε (s ) ds 

)T (∫ t 

t k 

˙ ε (s ) ds 

)
≤ (t − t k ) 

∫ t 

t k 

˙ ε T (s ) ̇ ε (s ) ds, 

where t ∈ [ t k + τk , t k +1 + τk +1 ) , t − t k ≤ T max + τ, that is t − T max −
τ ≤ t k . Then, we have 

˙ 
 (t) ≤ −γ m x 

T 
(t) x (t) + 

1 

4 

ε T (t) ε(t) + γ 2 ρ2 x 
T 
(t) x (t) 

− 1 

2 

λ1 ε 
T (t) ε(t) 

+ (k − α) 2 λ2 (t − t k ) 

∫ t 

t k 

˙ ε T (s ) ̇ ε (s ) ds 

+ 3 m [(α2 + k 2 ) λ2 + 1] ε T (t ) ε(t ) + 3 mγ 2 ρ2 x 
T 
(t ) x (t ) 

+ 3 m (α2 + k 2 ) λ2 (t − t k ) 

∫ t 

t k 

˙ ε T (s ) ̇ ε (s ) ds 

− m 

T max + τ

∫ t 

t−T max −τ
˙ ε T (s ) ̇ ε (s ) ds. (30)

Note that 

(t − t k ) 

∫ t 

t k 

˙ ε T (s ) ̇ ε (s ) ds ≤ (T max + τ ) 

∫ t 

t−T max −τ
˙ ε T (s ) ̇ ε (s ) ds, 

we have 

˙ 
 (t) ≤ −γ m x 

T 
(t) x (t) + 

1 

4 

ε T (t) ε(t) + γ 2 ρ2 x 
T 
(t) x (t) 

− 1 

2 

λ1 ε 
T (t) ε(t) 

+ (k − α) 2 λ2 (T max + τ ) 

∫ t 

t−T max −τ
˙ ε T (s ) ̇ ε (s ) ds 

+ 3 m [(α2 + k 2 ) λ2 + 1] ε T (t ) ε(t ) + 3 mγ 2 ρ2 x 
T 
(t ) x (t ) 

+ 3 m (α2 + k 2 ) λ2 (T max + τ ) 

∫ t 

t−T max −τ
˙ ε T (s ) ̇ ε (s ) ds 

− m 

T max + τ

∫ t 

t−T max −τ
˙ ε T (s ) ̇ ε (s ) ds, (31)

and then 

˙ 
 (t) ≤ −[ γ m − (3 m + 1) γ 2 ρ2 ] x 

T 
(t ) x (t ) 

−
{ 

1 

2 

λ1 − 3 m [(α2 + k 2 ) λ2 + 1] − 1 

4 

} 

ε T (t) ε(t) 

−
[ 

m 

T max + τ
− (k − α) 2 λ2 (T max + τ ) 
− 3 m (α2 + k 2 ) λ2 (T max + τ ) 
] ∫ t 

t−T max −τ
˙ ε T (s ) ̇ ε (s ) ds. 

(32)

ence, conditions (16) –(18) guarantee that ˙ V (t) < 0 . Based on Lya-

unov stability theory, we can conclude that e 1 ( t ) → 0 and ε ( t ) → 0,

hat is e ( t ) → 0 mN , ϑ( t ) → 0 mN as t → ∞ . 

With the transformation x (t) = (T � I m 

) e (t ) and w (t ) = (T �

 m 

) ϑ(t) and T is a orthogonal matrix, we can obtain x (t) →
 mN , w (t) → 0 mN , which means x ( t ) → x ∗, w ( t ) → w 

∗ as t → ∞ . As

 result, this proof is completed. �

.2. Asynchronous sampling 

Based on the dynamics (1) and the optimization problem (3) ,

e assume that each agent i independently samples its own

tate at sampling instant t i 
k 

and the sampled-data is available

t t i 
k 

+ τ i 
k 
, i ∈ V, k = 0 , 1 , . . . , ∞ , which is determined by its own

lock. { t i 
k 
} is a strictly increasing sequence such that lim k →∞ 

t i 
k 

=
 . The sampling interval [ t i 

k 
, t i 

k +1 
) satisfies 0 < T min ≤ t i 

k +1 
− t i 

k 
≤

 max for all k ≥ 0. τ i 
k 

> 0 denote the transmission delay with

n upper bound τ ≥ max { τ i 
k 
} , and satisfy τ < T min , which means

hat the sampled-data at time t i 
k 

can be used before next sam-

ling time instant. When t ∈ [ t i 
k 

+ τ i 
k 
, t i 

k +1 
+ τ i 

k +1 
) , x i (t i 

k +1 
+ τ i 

k +1 
) =

im 

t → (t i 
k +1 

+ τ i 
k +1 

) −x i (t) . 

The following asynchronous sampled-data control algorithm is

roposed: 

u i (t) = −k 

N ∑ 

j=1 

a i j [ x i (t i k ) − x j (t j 
k 
)] − w i (t) − γ∇ f i (x i (t)) , 

˙ w i (t) = α
N ∑ 

j=1 

a i j [ x i (t i k ) − x j (t j 
k 
)] , 

 i (0) = 0 , t ∈ [ t i k + τ i 
k , t 

i 
k +1 + τ i 

k +1 ) , k ≥ 0 . (33)

imilar mechanism of asynchronous sampling for consensus prob-

em of multi-agent systems can be found in [26] . 

By the similar discussion as in the Section 3.1 , we can also con-

lude that lim 

t → (t i 
k +1 

+ τ i 
k +1 

) −x i (t) = lim 

t → (t i 
k +1 

+ τ i 
k +1 

) + x i (t) = x i (t i 
k +1 

+
i 
k +1 

) , which means that x i ( t ) is continuous in time instant t i 
k +1 

+
i 
k +1 

. Thus, x i ( t ) is continuous in the time interval [ t 0 , ∞ ). 

According to the definition of Laplacian matrix L , (1) and

33) can be rewritten as 

˙ x i (t) = −k 

N ∑ 

j=1 

� i j x j (t j 
k 
) − w i (t) − γ∇ f i (x i (t)) , 

˙ 
 i (t) = α

N ∑ 

j=1 

� i j x j (t j 
k 
) , w i (0) = 0 , 

t ∈ [ t i k + τ i 
k , t 

i 
k +1 + τ i 

k +1 ) , k ≥ 0 . (34)

Let ˆ x (t) = col (x 1 (t 1 
k 
) , x 2 (t 2 

k 
) , . . . , x N (t N 

k 
)) , then system (34) can

e expressed as the following compact form: 

˙ x (t) = −k (L � I m 

) ̂  x (t) − w(t) − γ∇ f (x (t)) , 

˙ 
 (t) = α(L � I m 

) ̂  x (t) . (35)

imilarly, we can obtain the equilibrium point x ∗ = 1 N � x ∗, w 

∗ =
γ∇ f (x ∗) , where x ∗ ∈ R 

m is the optimal solution of the optimiza-

ion problem (3) . 

Using transformation (12) and 

ˆ x (t) = 

ˆ x (t) − x ∗, one can shift

he equilibrium point into the origin, then system (35) can be
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t

w

e

ϑ

D  

e  

(  

b

ϑ

ϑ

L  

ε

ε  

w

C

a

F

T  

p  

t

m  

λ  

a

T

w  (
P  

d  

(

V

 

k

−

w

x

V

V

w

V

w

e

w

e

a

e

S

e

w

e

V ) 

) 
ransformed into the following form: 

˙ x (t) = −k (L � I m 

) ̂ x (t) − w (t) − γ
( x (t)) , 

˙ 
 (t) = α(L � I m 

) ̂ x (t) , (36) 

Let 

 (t) = (T T � I m 

) x (t ) , ˆ e (t ) = (T T � I m 

) ̂ x (t) , 

(t) = (T T � I m 

) w (t) , T = 

[
1 N √ 

N 

Q 

]
. 

enote e = col (e 1 , e 2 ) , ˆ e = col ( ̂  e 1 , ̂  e 2 ) and ϑ = col (ϑ 1 , ϑ 2 ) with

 1 , ̂  e 1 , ϑ 1 ∈ R 

m , and e 2 , ̂  e 2 , ϑ 2 ∈ R 

m (N−1) . By the structure of T and

6) , we can know T is an orthogonal matrix. Then system (36) can

e rewritten as: 

˙ e 1 (t) = −γ

(
1 

T 
N √ 

N 

� I m 

)

( x (t)) , 

˙ e 2 (t) = −k (H � I m 

) ̂  e 2 (t) − ϑ 2 (t) − γ (Q 

T 
� I m 

)
( x (t)) , 

˙ 
 1 (t) = 0 , 

˙ 
 2 (t) = α(H � I m 

) ̂  e 2 (t) . (37) 

et ε(t) = col (e 2 (t) , ϑ 2 (t )) , ̂  ε (t ) = col ( ̂  e 2 (t ) , ˆ ϑ 2 (t )) , and ˜ ε (t) =
(t) − ˆ ε (t) , then 

˙  (t) = Cε(t) − E ̃  ε (t) + F (t) , (38)

ith 

 = 

(
−kH −I N−1 

αH 0 

)
� I m 

, E = 

(
−kH 0 

αH 0 

)
� I m 

, 

nd 

 (t) = 

(
−γ (Q 

T 
� I m 

)
( x (t)) 
0 

)
. 

heorem 2. Suppose Assumptions 1 and 2 hold, the optimization

roblem (3) for multi-agent system (1) can be solved by the optimiza-

ion control (33) , if the following conditions are satisfied: 

 − (4 m + 1) γ ρ2 
> 0 , (39)

1 − 6 m (1 + 2 k 2 λ2 ) − 1 

2 

> 0 , (40)

nd 

 max + τ < 

√ 

m 

λ2 [(k − α) 2 + 6 mk 2 ] 
, (41) 

here m > 0 is a constant, λ1 = λmin (R ) , λ2 = λmax (H 

T H) , and R =
(k − α)(H 

T + H) I N−1 

I N−1 2 I N−1 

)
� I m 

. 

roof. Consider Lyapunov function V 1 ( t ) given in Theorem 1 , the

erivation of V 1 along the first equality of (37) and system

38) yields: 

˙ 
 1 = e T 1 (t) ˙ e 1 (t) + 

1 

2 

ε T (t)(C + C T ) ε(t) 

− ε T (t)E ̃  ε (t) + ε T (t)F (t) , (42) 

Let R = −(C + C T ) , we obtain that R is positive definite and

 > α. Then, we have 

ε T (t)E ̃  ε (t) = (k − α) e T 2 (t)(H � I m 

) ̃  e 2 (t) 

≤ 1 

4 

e T 2 (t) e 2 (t) + (k − α) 2 ˜ e T 2 (t)(H 

T H � I m 

) ̃  e 2 (t) 

≤ 1 

e T 2 (t) e 2 (t) + (k − α) 2 λ2 ̃  e T 2 (t ) ̃  e 2 (t ) , (43) 

4 
here ˜ e 2 (t) = e 2 (t) − ˆ e 2 (t) = (Q 

T 
� I m 

)( x (t) − ˆ x (t)) , and 

 (t) − ˆ x (t) = col [ x 1 (t) −x 1 (t 1 k ) , x 2 (t) − x 2 (t 2 k ) , . . . , x N (t) −x N (t N k )] 

= col 

[∫ t 

t 1 
k 

˙ x 1 (s ) ds, 

∫ t 

t 2 
k 

˙ x 2 (s ) ds, . . . , 

∫ t 

t N 
k 

˙ x N (s ) ds 

]
. (44) 

Combining (20), (42) and (43) , we have 

˙ 
 1 (t) ≤ −γ m x 

T 
(t) x (t) + 

1 

4 

ϑ 

T 
2 (t) ϑ 2 (t) + γ 2 ρ2 x 

T 
(t) x (t) 

− 1 

2 

ε T (t) Rε(t) 

+ 

1 

4 

e T 2 (t) e 2 (t) + (k − α) 2 λ2 ̃  e T 2 (t ) ̃  e 2 (t ) 

≤ −γ m x 
T 
(t) x (t) + 

1 

4 

ε T (t) ε(t) + γ 2 ρ2 x 
T 
(t) x (t) 

− 1 

2 

λ1 ε 
T (t) ε(t) + (k − α) 2 λ2 ̃  e T 2 (t ) ̃  e 2 (t ) . (45) 

Construct the following auxiliary integral function 

 2 (t) = 

∫ t 

t−T max −τ

∫ t 

θ
˙ e T (s ) ̇ e (s ) d sd σ, 

e can obtain 

˙ 
 2 (t) = (T max + τ ) ̇ e T (t ) ̇ e (t ) −

∫ t 

t−T max −τ
˙ e T (s ) ̇ e (s ) ds, 

here 

˙ 
 

T (t) ̇ e (t) = 

˙ e T 1 (t) ̇ e 1 (t) + 

˙ e T 2 (t) ̇ e 2 (t) , 

ith 

˙ 
 

T 
1 (t) ̇ e 1 (t) = γ 2 ‖ 

(
1 

T 
N √ 

N 

� I m 

)

( x (t)) ‖ 

2 ≤ γ 2 ρ2 x 
T 
(t) x (t) , 

nd 

˙ 
 

T 
2 (t) ̇ e 2 (t) = k 2 ˆ e T 2 (t)(H 

T H � I m 

) ̂  e 2 (t) + ϑ 

T 
2 (t) ϑ 2 (t) 

+ γ 2 ‖ (Q 

T 
� I m 

)
( x (t)) ‖ 

2 

+ 2 k ̂  e T 2 (t)(H 

T 
� I m 

) ϑ 2 (t) 

+ 2 kγ ˆ e T 2 (t)(H 

T 
� I m 

)(Q 

T 
� I m 

)
( x (t)) 

+ 2 γϑ 

T 
2 (t)(Q 

T 
� I m 

)
( x (t)) . (46) 

imilarly to (24) –(27) , and due to the fact that 

ˆ 
 

T 
2 (t) ̂  e 2 (t) = (e 2 (t) − ˜ e 2 (t)) T (e 2 (t) − ˜ e 2 (t)) ≤ 2(e T 2 (t) e 2 (t) 

+ ̃

 e T 2 (t) ̃  e 2 (t)) , 

e have 

˙ 
 

T 
2 (t) ̇ e 2 (t) ≤ 3[ k 2 ˆ e T 2 (t)(H 

T H � I m 

) ̂  e 2 (t) + ϑ 

T 
2 (t) ϑ 2 (t) 

+ γ 2 ‖ (Q 

T 
� I m 

)
( x (t)) ‖ 

2 ] 

≤ 3[ k 2 λ2 ̂  e T 2 (t) ̂  e 2 (t) + ϑ 

T 
2 (t) ϑ 2 (t) + γ 2 ρ2 x 

T 
(t) x (t)] 

≤ 6 k 2 λ2 ̃  e T 2 (t) ̃  e 2 (t) + 6 k 2 λ2 e 
T 
2 (t) e 2 (t) + 3 ϑ 

T 
2 (t) ϑ 2 (t) 

+ 3 γ 2 ρ2 x 
T 
(t) x (t) 

≤ 6 k 2 λ2 ̃  e T 2 (t) ̃  e 2 (t) + 6 k 2 λ2 ε 
T (t) ε(t) + 3 ε T (t) ε(t) 

+ 3 γ 2 ρ2 x 
T 
(t) x (t) . (47) 

Let V (t) = V 1 (t) + 

m 

T max + τ V 2 (t) , then 

˙ 
 (t) ≤ −γ m x 

T 
(t) x (t)+ 

1 

4 

ε T (t) ε(t) + γ 2 ρ2 x 
T 
(t) x (t)− 1 

2 

λ1 ε 
T (t) ε(t

+ [(k − α) 2 + 6 mk 2 ] λ2 ̃  e T 2 (t ) ̃  e 2 (t ) + 6 mk 2 λ2 ε 
T (t ) ε(t ) 

+ 3 mε T (t) ε(t) + 4 mγ 2 ρ2 x 
T 
(t) x (t) 

− m 

T max + τ

∫ t 

t−T max −τ
˙ e T (s ) ̇ e (s ) ds. (48
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Fig. 1. Connected graph. 

Fig. 2. The trajectories of x i ( t ) with T k = 0 . 01 , τk = 0 . 07 . 

w

 

O  

A  

ρ

x  −4 . 6] T , 

a

w

 

t  

s

 

T  

n  

i

Recalling that ˜ e 2 (t) = (Q 

T 
� I m 

)( x (t) − ˆ x (t)) and (44) , it follows

that 

˜ e T 2 (t) ̃  e 2 (t) = ‖ (Q 

T 
� I m 

)( x (t) − ˆ x (t)) ‖ 

2 

≤ ‖ x (t) − ˆ x (t) ‖ 

2 

= 

N ∑ 

i =1 

(∫ t 

t i 
k 

˙ x i (s ) ds 

)T (∫ t 

t i 
k 

˙ x i (s ) ds 

)
. (49)

From Lemma 3 , we have (∫ t 

t i 
k 

˙ x i (s ) ds 

)T (∫ t 

t i 
k 

˙ x i (s ) ds 

)
≤ (t − t i k ) 

∫ t 

t i 
k 

˙ x 
T 

i (s ) ̇ x i (s ) ds, 

where t ∈ [ t i 
k 

+ τ i 
k 
, t i 

k +1 
+ τ i 

k +1 
) , t − t i 

k 
≤ T max + τ, that is t − T max −

τ ≤ t i 
k 
, and 

˙ x 
T 
(t) ̇ x (t) = ˙ e T (t) ̇ e (t) . 

Then, we have 

˜ e T 2 (t) ̃  e 2 (t) ≤
N ∑ 

i =1 

(t − t i k ) 

∫ t 

t i 
k 

˙ x 
T 

i (s ) ̇ x i (s ) ds 

≤
N ∑ 

i =1 

(T max + τ ) 

∫ t 

t−T max −τ

˙ x 
T 

i (s ) ̇ x i (s ) ds 

= (T max + τ ) 

∫ t 

t−T max −τ

N ∑ 

i =1 

˙ x 
T 

i (s ) ̇ x i (s ) ds 

= (T max + τ ) 

∫ t 

t−T max −τ

˙ x 
T 
(s ) ̇ x (s ) ds 

= (T max + τ ) 

∫ t 

t−T max −τ
˙ e T (s ) ̇ e (s ) ds. (50)

From (48) and (50) , we have 

˙ 
 (t) ≤ −γ m x 

T 
(t) x (t) + 

1 

4 

ε T (t) ε(t) + γ 2 ρ2 x 
T 
(t) x (t) 

− 1 

2 

λ1 ε 
T (t) ε(t) 

+ [(k − α) 2 + 6 mk 2 ] λ2 (T max + τ ) 

∫ t 

t−T max −τ
˙ e T (s ) ̇ e (s ) ds 

+ 6 mk 2 λ2 ε 
T (t) ε(t) + 3 mε T (t) ε(t) + 4 mγ 2 ρ2 x 

T 
(t) x (t) 

− m 

T max + τ

∫ t 

t−T max −τ
˙ e T (s ) ̇ e (s ) ds, (51)

and then 

˙ 
 (t) ≤ −[ γ m − (4 m + 1) γ 2 ρ2 ] x 

T 
(t ) x (t ) 

−
[ 

1 

2 

λ1 − 3 m (1 + 2 k 2 λ2 ) − 1 

4 

] 
ε T (t) ε(t) 

−
[ 

m 

T max + τ
− ((k − α) 2 + 6 mk 2 ) λ2 (T max + τ ) 

] 
×

∫ t 

t−T max −τ
˙ e T (s ) ̇ e (s ) ds. (52)

By the similar analysis as the proof of Theorem 1 , we can conclude

that ˙ V (t) < 0 , which completes the proof. �

4. Simulations 

In this section, we give an example to validate our theoretical

results. In this example, we consider a multi-agent system consist-

ing of five agents. Supposes that the interconnected topology is de-

scribed as in Fig. 1 . The weight of every edge is 1. 

Consider the following optimization problem 

minimize f (x ) = 

N ∑ 

i =1 

f i (x ) , x ∈ R , 
here the local objective function is given as following 

f 1 (x ) = 0 . 7(x − 6) 2 , 

f 2 (x ) = (x − 4) 2 , 

f 3 (x ) = 

x 2 

ln (x 2 + 2) 
, 

f 4 (x ) = sin 

x 

2 

+ 

x 2 

4 

, 

f 5 (x ) = 

x 2 √ 

x 2 + 1 

+ 0 . 2 x 2 . (53)

bviously, for i = 1 , 2 , . . . , 5 , f i is differentiable and satisfies

ssumption 1 . Choosing α = 0 . 6 , k = 1 . 0 , γ = 0 . 2 , we can obtain

= 2 , m = 1 , λ1 = 0 . 6861 , λ2 = 3 . 6180 . Let the initial values 

 (0) = [ x 1 (0) , x 2 (0) , x 3 (0) , x 4 (0) , x 5 (0)] T = [ −3 . 2 , 1 . 9 , −1 . 8 , 4 . 5 ,

nd 

 (0) = [ w 1 (0) , w 2 (0) , w 3 (0) , w 4 (0) , w 5 (0)] T = [0 , 0 , 0 , 0 , 0] T . 

(1) synchronous sampling: The sampling interval T k and the

ime-delay τ k are given as T k = 0 . 01 s, τk = 0 . 07 . The simulation re-

ults are shown in Figs. 2 and 3 . 

(2) asynchronous sampling: The sampling interval is given as

 = 0 . 01 s, time-delay τ i 
k 
(i = 1 , 2 , . . . , 5) are simulated by random

umbers in the interval [0, 0.3 T ]. The simulation results are shown

n Figs. 4 and 5 . 
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Fig. 3. The trajectories of w i ( t ) with T k = 0 . 01 , τk = 0 . 07 . 

Fig. 4. The trajectories of x i ( t ) with T = 0 . 01 , τ i 
k 

∈ [0 , 0 . 3 T ] . 

Fig. 5. The trajectories of w i ( t ) with T = 0 . 01 , τ i 
k 

∈ [0 , 0 . 3 T ] . 

Fig. 6. The trajectories of x i ( t ) with T 0 = 0 . 09 . 

Fig. 7. The trajectories of x i ( t ) with T 1 = 0 . 07 . 
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We can see that the trajectories x i of each agent i converge to

he global optimal solution x ∗ = 3 . 1798 of the objective function

f (x ) = 

∑ N 
i =1 f i (x ) and all the trajectories w i converge to a constant,

espectively, for i = 1 , 2 , . . . , 5 . The optimal value of f ( x ) is 18.8773.

The simulation result for synchronous sampling with T 0 = 0 . 09

s depicted in Fig. 6 and asynchronous sampling with T 1 = 0 . 07 is

epicted in Fig. 7 , respectively, where T 0 and T 1 are larger than

he upper bound T max in Theorems 1 and 2 . Then x i ( t ) is not con-

ergent. 

. Conclusion 

In this paper, a distributed optimization problem of multi-agent

ystems with delayed sampled-data is considered. The intercon-

ected topology is assumed to be directed, weighted-balanced

nd strongly connected, and the local costs are strongly con-

ex with globally Lipschitz gradients. Two control algorithms us-

ng sampled-data with time-delay under synchronous and asyn-

hronous sampling are presented for the multi-agent systems to

each consensus and optimal state. Based on Lyapunov theory and
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algebraic graph theory. Sufficient conditions are obtained to make

all the agents converge to the optimal solution of the system if the

design parameters are chosen properly. Finally, numerical example

are given to illustrate the theoretical results. 
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H I G H L I G H T S

• A model for optimization of compressor scheduling based on demand is presented.

• 59.3% cost reduction for a studied gas station fuelling 143 vehicles over a high demand season.

• 25% cost reduction a studied gas station fuelling 146 vehicles over a low demand season.

• Compressor switching frequency is minimized by different strategies.
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A B S T R A C T

Compressed natural gas propulsion of vehicles has been shown to have advantages over petrol and diesel pro-
pulsion due to lower carbon dioxide emissions as well as the increased durability of vehicle engines. The growth
of compressed natural gas as an alternative fuel to petrol and diesel can be accelerated by implementing stra-
tegies that result in the economical operation of the distribution infrastructure. Economic scheduling of power
consumption is a useful strategy for reducing the cost of energy for both industrial and domestic consumers who
operate in time-of-use based electricity pricing environments. In this paper, an optimal energy management
strategy is proposed for the operation of a compressed natural gas fuelling station. The compressor energy
consumption, being the main component of the total operating cost of the fuelling station, presents a cost saving
opportunity through which optimal scheduling of operation can be used to lower cost of operation of the station.
The developed model shows potential average savings of 59.3% in daily electricity costs while maximizing
compressor life through minimization of compressor cycling.

1. Introduction

Compressed Natural Gas (CNG) is one of the alternatives to liquid
hydrocarbon fuels that have been promoted to address the challenges of
air pollution, energy dependence and climate change [1–4]. CNG,
which is largely made up of methane and small quantities of other
hydrocarbons such as propane butane and ethane could be considered a
clean fuel in comparison with gasoline and diesel because it has the
lowest emissions among hydrocarbon fuels [5,6]. Furthermore, CNG
vehicles have been shown to have lower total cost of ownership (TCO)
than gasoline or diesel fuelled cars [7–9]. In recent years, the use of
CNG for vehicle propulsion has been increasing worldwide in both
developed and developing countries, especially in countries that have
suffered severe air pollution from rapid industrialization in the past
three decades such as India and China [10,11]. The expanding adoption

of CNG has corresponded to a simultaneous growth of CNG distribution
infrastructure for vehicular end users [12]. In South Africa for example,
the Department of Energy recognizes compressed natural gas as one of
the possible energy options for transportation that will contribute to the
reduction of the country’s carbon footprint [13]. In view of the long
way to large-scale adoption of electric vehicles, CNG is viewed as an
appropriate transition fuel towards a greener transportation sector
[14]. Introduction of public service vehicles powered by CNG as well as
growth in the number of CNG fleet customers has resulted in the growth
in number of vehicle fuelling station in the city of Johannesburg and
Pretoria. Being consumers of electric power, CNG fuelling stations are
subject to the availability and pricing conditions of the electricity en-
vironment in which they operate [15]. While the expansion of CNG
distribution infrastructure is a sign of investor confidence in the future
of the industry, the distribution infrastructure is subject to challenges
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arising from the supply of electricity and must implement adaptive
strategies to remain energy efficient and economically attractive.

CNG is stored under high pressure in on-board vehicle tanks, from
where it flows to the combustion engine under regulation [16]. CNG
powered vehicles receive their fuel from high pressure reservoirs at
CNG fuelling stations. Although refuelling of vehicles with natural gas
can take a long time, the fast-fill process which is used at most CNG
fuelling stations has been developed to achieve fuelling times of less
than five minutes, which is comparable to the fuelling time of diesel or
gasoline powered automobiles [17]. Fast-fill fuelling stations use re-
servoir tanks in a cascaded storage system divided into low pressure,
medium pressure and high pressure levels [18]. The dispenser at the
fast-fill station has electronic sequencing valves that are controlled by a
microprocessor algorithm as well as sensors for measuring mass flow
from each of the three reservoirs [19]. A vehicle typically arrives with
low pressure in its tank and the dispenser starts the filling of the tank by
connecting it to the low pressure reservoir. The differential pressure
causes gas to flow into the vehicle tank and as the vehicle tank fills up,
the mass flow rate between the reservoir and the vehicle tank falls to a
limit after which the dispenser switches the filling to the medium
pressure reservoir for a higher mass flow rate [20]. The vehicle tank
continues to fill up from the medium pressure reservoir which results in
the mass flow rate falling until a limit is reached and the dispenser
switches the filling from the medium pressure reservoir to the high
pressure reservoir. The high pressure reservoir completes the filling of
the vehicle tank [21]. It is possible in some scenarios for the vehicle to
arrive with a high tank pressure that can only be filled from the high
pressure reservoir since it is almost full or from the medium pressure
reservoir followed by the high pressure reservoir. The dispenser algo-
rithm determines from initial vehicle tank pressure which reservoir to
start with [22]. It is also possible in some scenarios for the customer to
request a quantity of gas that does not result in filling of the vehicle
tank and therefore receive gas from the low pressure reservoir and
medium pressure reservoir only, or even the low pressure reservoir
alone. This means that the demand of gas from one reservoir is not
always synchronized with demand from the other two reservoirs. The
CNG station dispenser runs a vehicle filling algorithm that is compen-
sated for temperature and pressure to ensure that correct quantities of
gas demanded by consumer are dispensed to the vehicle tank. This
isolates the consumer vehicle tank from the fluctuations in the pressure
and temperature that may occur in the cascade storage as a result of
vehicle gas demand itself or as a result of operation control [23–27].

A priority panel controls the filling of the three reservoirs of the
cascade storage, by switching the gas flowing from the outlet of the
compressor between the reservoir valves [28]. The priority panel is
operated through a PLC, which runs an algorithm that controls the
sequence of opening the three reservoir valves during charging of the

cascade storage by the reciprocating compressor [29]. The compressor
is a vital part of the fast-fill operation and is the main contributor to the
CNG fueling station’s operating cost through its power consumption as
well as wear and tear [30]. The sizing of the station compressor and
other station components is based on the expected inlet flow rate from
the municipal supply line and the quantity of gas expected to be dis-
pensed at the station [31]. Efficient operation of the compressor in a
CNG fuelling station presents an opportunity for the reduction of op-
erating costs. The savings that are realised can be passed on to con-
sumers in the form of reduced price of CNG per unit of sale.

Energy efficiency of energy converting systems falls into four gen-
eral categories of equipment efficiency, technology efficiency, perfor-
mance efficiency and operation efficiency [32–35]. CNG fuelling station
operators, just like other commercial electricity consumers, must make
careful consideration for all the four categories of energy efficiency in
order to increase the economic performance of these installations
[36–39].

Research into the efficient operation of CNG fuelling stations has
been greatly aided by the work of previous researchers. Kountz [40]
modelled the fast-fill process based on the first law of thermodynamics
for gas behaviour between a single reservoir and the on-board vehicle
cylinder. Other researchers have expanded the modelling of the fast-fill
CNG fueling station by considering the individual components of the
station infrastructure and their interaction with the flowing gas. These
include [41,42] whose work advanced the thermodynamic modelling of
the fast-filling process. The research on further minimization of filling
time has been studied by [43]. Using thermodynamic laws and mass
balance, [44] studied the effects of initial conditions and ambient
temperature on the filling of the vehicle on-board cylinder and
achieving of the target pressure. The effects of the connecting pipe on
the process of vehicle filling was also studied by [45]. Research on the
complete filling of on-board vehicle cylinder through the development
of dispenser algorithms for the fast-fill process has been conducted by
[46,19]. Research has also been undertaken in relation to the thermo-
dynamic behaviour of the reciprocating compressor in achieving dif-
ferent performance goals for the CNG fuelling station [47–50]. Frick
et al. [51] studied the optimization of the distribution of CNG refuelling
stations in Switzerland. The study applied cost benefit analysis to de-
termine optimal location of new CNG fuelling stations among the ex-
isting petrol filling stations as well as existing CNG filling stations. CNG
self-fuelling of vehicles and fuelling from homes has also been the
subject of other research towards efficient delivery of the gas [16,52].
The significant effect that domestic refuelling of CNG vehicles in con-
sumer homes could have on the electric power infrastructure has been
studied by [53]. Their study recognized limited infrastructure as a
major technological barrier to the market penetration of CNG vehicles
in the United States of America. This limitation was also shown to result

Nomenclature

J objective function (currency)
Mwa molecular weight of the air (g)
Mwg molecular weight of the gas (g)
m m m, ,hp

max
mp
max

lp
max maximum mass for high pressure, medium pres

sure and low pressure reservoirs (kg)
m m m, ,hp

min
mp
min

lp
min minimum mass for high pressure, medium pressure

and low pressure reservoirs (kg)
m m m, ,ohp

max
omp
max

olp
max mass demand from high pressure, medium pres

sure and low pressure reservoirs (kg)
ṁco compressor outlet mass flow rate (kg/h)
N total samples over the control horizon
n gas quantity (moles)
p pressure (bars)
pco compressor motor power rating (kW)
pe price of electricity under TOU tariff (currency/

kWh)
p p p, ,hp

max
mp
max

lp
max maximum pressure for high pressure, medium

pressure and low pressure reservoirs (bars)
p p p, ,hp

min
mp
min

lp
min minimum pressure for high pressure, medium

pressure and low pressure reservoirs (bars)
Qstd capacity of the compressor under standard con-

ditions (Nm3/h)
R universal gas constant (L bar/Kmol)
T absolute temperature (K)
u state of compressor switch
u u u, ,hp mp lp state of reservoir valves for high pressure, medium

pressure and low pressure reservoirs
V volume of cascade reservoir tanks (L)
z compressibility factor of CNG
ρa std, density of air under standard conditions (kg/m3)
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in more consumers using domestic compressor units to fuel their ve-
hicles, with potential effects on the electric grid network.

To the best of the authors’ knowledge no research has been done on
the implementation of electric load shifting for CNG fuelling stations in
order to reduce their electricity costs charged at a time-of-use (TOU)
tariff. Further, the simultaneous optimization of the operation of
priority panel valves and the compressor for the purpose of achieving
electric load scheduling for a CNG fuelling station has not been reported
in the literature. This study presents an attempt to apply an optimized
operation strategy to CNG fuelling stations in order to secure the ben-
efits of demand response (DR) programs implemented by power utility
operators through the time-of-use tariff for both the utility and the
fuelling station, by means of shifting the stations electricity load out of
high demand periods. This study also implements, evaluates and com-
pares novel strategies for minimizing of the compressor switching fre-
quency to mitigate wear and tear of compressor components caused by
frequent on/off operation. The time-of-use tariff is implemented in
order to encourage change in electricity usage by end users from the
normal use pattern in response to change in electricity pricing based on
time [54–56]. DR programs are implemented to cause intentional
modifications of electricity consumption patterns by end-use customers,
to alter the timing, demand level and total electricity consumption
[57–60]. The present work seeks to explore the implementation of a
response to the time-of-use DR program for the CNG fuelling station by
tracking the gas demand profile. An optimization strategy is used to
alter the operation of the compressor in order to achieve a reduction in
electricity costs thereby lowering operating costs of the station. Low-
ering of the operating costs of CNG fuelling stations can improve the
attractiveness of CNG as a fuel through passing on of some of the ac-
crued savings to consumers in the form of reduced prices on CNG per
unit of sale. The proposed method achieves a breakthrough in

scheduling the on/off switching of the compressor while considering
CNG demand, the electricity TOU pricing and the protection of the
compressor from damage caused by excessive on-off cycling. The pro-
posed methods provide measures for optimal use of energy resources
through optimization of energy processes in alternative fuels.

2. Operation modelling and formulation

The schematic diagram of a CNG fast-fill refuelling station unit with
a cascade storage system is shown in Fig. 1. The cascade storage tanks
are supplied from the municipal gas supply line via the station com-
pressor when it is turned on at switch u. The compressor switch is ac-
tivated when pressure in the three reservoir tanks of the cascade storage
falls to the lower limits [61]. The gas enters the storage tanks via a
priority panel which is controlled to switch the incoming gas flow be-
tween the reservoir tanks by activating valves uhp for the high pressure
tank, ump for the medium pressure tank and ulp for the low pressure
tank. Only one of the three valves is activated at a time. When the
maximum pressure limits are reached, the compressor is switched off.
Gas from the cascade storage tanks is supplied to vehicle tank via a
dispenser with a dispensing algorithm that compensates for the varia-
tion in temperature to ensure the correct quantities are transferred to
vehicle tanks [24]. Depending on vehicle tank pressure, the dispenser
switches the gas supply between the three cascade storage tanks to
sustain flow of gas above a minimum flow rate. Considering the me-
tered gas demand from the three reservoirs for the cascade storage
m m,ohp omp and molp for the high pressure reservoir, medium pressure
reservoir and low pressure reservoir respectively, the proposed strategy
seeks to optimally schedule the on/off switching of the compressor via
switch u, as well as the priority panel valves u u,hp mp and ulp in order to
minimize the cost of power consumed by the compressor when

Fig. 1. Schematic of a CNG fuelling station with a cascade storage system.
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electricity is purchased under a TOU tariff. The status of the compressor
switch u and the status of the priority panel valves u u,hp mp and ulp are
the control variables in the current problem.

2.1. The objective function

The objective is to minimize the cost of power consumed by the
CNG fuelling station compressor within the limits of the cascade storage
system over the control horizon [62]. The objective function is there-
fore expressed as

∑=

=

J p p t u t t( ) ( )
t

N

co e s
1 (1)

where pco is the power rating of the electric motor driving the com-
pressor, p t( )e is the price of electricity per kWh in a sampling interval, N
is the total number of samples and ts is the sampling interval. The
horizon in the present work is 24 h, divided into a sampling interval of
4min yielding a total number of samples = =

×N 36024 60
4 . The sam-

pling time of 4min represents the average fuelling time of vehicles
visiting a typical CNG fast-fill station [29,63].

2.2. Constraints

The problem in this study is subject to the following constraints.

2.2.1. Reservoir capacity
The mass of gas in the cascade storage high pressure, medium

pressure and low pressure tanks in the tth sampling interval is
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=

−
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i

t
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i

t
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1

1

1

1

(4)

respectively, where m m,ohp omp and mohp are the values of mass dispensed
in the ith sampling instant from the high pressure, medium pressure and
low pressure reservoirs respectively. ṁcmp is the outlet mass flow rate of
the compressor obtained using the Eq. (5)[29]

⎜ ⎟= × = ⎛

⎝

⎞

⎠

× ×m ρ Q
Mw
Mw

ρ Q̇ cmp std std
g

a
a std std, (5)

where ρstd is the density of the gas being compressed under standard
conditions (0 °C) temperature and 105 Pa pressure),1 Mwg is the mole-
cular weight of the gas, Mwa the molecular weight of air, ρa std, is the air
density under standard conditions and Qstd is the capacity of the com-
pressor under standard conditions.

The mass in the tanks in Eqs. (2)–(4) must be sustained at values
between the masses corresponding to the maximum pressure and
minimum pressure for the three reservoirs respectively such that

∑ ∑⩽ + − ⩽
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−
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−
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where m m,hp
min

mp
min and mmp

min are the values of minimum quantity of gas

for the high pressure, medium pressure and low pressure reservoirs
respectively, while m m,hp

max
mp
max and mlp

max are the values for the max-
imum quantity of gas for the high pressure, medium pressure and low
pressure reservoirs respectively. These quantity limits can be obtained
from the relationship between gas properties and the system rated
pressure limits in the equation of state

=pV znRT (9)

where p is the pressure, V the volume, T the absolute temperature, R is
the universal gas constant, z the compressibility factor and n is the
quantity of gas in moles [64,65].

= =n m
M

pV
zRT (10)

where m is the mass of the gas and M is the molar mass of the gas. Eq.
(10) can be used to determine the upper and lower limits of the mass
content of the reservoir tanks in the cascade storage of the CNG re-
fuelling station. In the present work we consider the effect of the am-
bient temperature on the cascade storage by assuming that the cascade
storage reservoirs normalize to the ambient temperature during char-
ging and discharging. The maximum and minimum temperatures for
the control horizon are taken as the day’s highest and lowest tem-
peratures respectively. When the ambient temperature rises, the pres-
sure in the reservoirs will rise. If the upper pressure limit is breached,
the safety release valve will open to expel excess gas into the atmo-
sphere. It is therefore necessary to calculate and set the upper limit of
mass that can be held in the reservoir at the highest temperature in the
control horizon. Similarly, the lower limit of the reservoirs must be
calculated and set at the lowest temperature to prevent the pressure of
gas held in storage from falling below the lower limit when ambient
temperature falls, causing a pressure drop. The limits are therefore
calculated as

= =m
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zRT
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max
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where p p,hp
max

mp
max and plp

max are the maximum pressure limits for the
respective reservoirs, p p,hp

min
mp
min and plp

min are the minimum pressure
limits for the respective reservoirs and Tmax and Tmin are the maximum
and minimum ambient temperatures in the control horizon respec-
tively.

2.2.2. Switching combinations
During operation, whenever the compressor switch u is turned on,

only one of the valves u u,hp mp and ulp can be on [29,66] and all the
valves must be off whenever the compressor is off such that

+ + − =u u u u 0hp mp lp (14)

2.3. Compressor switching frequency

Frequent on/off switching increases mechanical stress induced in
the compressor components, which causes an increase in wear and tear
[67] and therefore increases the maintenance costs, while reducing the
life of the compressor [68]. Transient start-up and shut-down states of
the compressor have been shown to induce the highest stresses in dif-
ferent compressor components [69]. Additionally, there are vibrations
resulting from torsional oscillations caused by loading changes
throughout the compressor shaft, seals and coupled mechanisms as the
motor pulls the load towards stabilization which cause further wear and
tear [70]. It is therefore desirable that after the compressor is turned on,1 https://goldbook.iupac.org/html/S/S05910.html.
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it should be kept running for as long as possible, meaning it should
operate in wide on or off state bands [71]. This is the motivation of
presenting switch frequency minimization in our work. It would be
more accurate to directly minimize the actual wear and tear caused by
switching in the model instead of minimizing the switching numbers.
However, there is no accurate model that captures the relationship
between the switching actions and the wear and tear. Because of lack of
such models in literature, the approach by many researchers is to pe-
nalise the occurrence of transient states when optimizing operation of
rotary machine systems such as compressors [62,67,72]. This is still a
valid approach because it is a known prior that the wear and tear in-
creases with the increase of switching frequency.

In this study, we aim to achieve the least number of switching in-
stances that does not raise the cost of electricity when compared to the
cost achieved during optimization without penalizing of switching
frequency. We implement two methods of achieving a minimum
number of switching instances of the compressor. The first method is
the Pretoria method proposed by [73] and used subsequently in opti-
mization of the performance of water pumping systems [63,74]. The
Pretoria method makes use of an auxiliary variable s t( ) which assumes
a value of 1 whenever a switch start-up occurs. The auxiliary variable is
then minimized in the objective function (36) which is then expressed
as

∑ ∑= + −

= =

J ξ p p t u t t ξ s t( ) ( ) (1 ) ( )
t

N

co e s
t

N

1 1 (15)

where ξ is a weighting factor. Additional to the constraints in Sections
2.2.1 and 2.2.2, the problem is subject to further constraints arising
from the use of the auxiliary variable. The constraints are

− ⩽u s(1) (1) 0 (16)

− − − ⩽u t u t i s t( ) ( ) ( ) 0 (17)

where the inequality (16) initializes the auxiliary variable as the initial
status of u while the inequality (17) favours the control that involves
less switching instances [75]. The Pretoria method was shown to be
superior to a method proposed by [63] that used constraints to restrict
the number of on/off instances for the switch. The constraint method
was determined to run at risk of infeasibility in certain control condi-
tions.

We propose a second approach we call the non-linear objective
function method which is describe in Section 2.6.

2.4. Boundaries

The condition of the switch u and the valves u u,hp mp and ulp as well
as the auxiliary variable is binary such that

∈ ⩽ ⩽u t u t u t u t s t t N( ), ( ), ( ), ( ), ( ) {0,1} (1 )hp mp lp (18)

2.5. Algorithm

The generalized optimization problem in the present study is to
minimize f XT subject to equality constraints ( =A X beq eq), inequality
constraints ( ⩽AX b) and the upper and lower boundaries of the control
variables ( ⩽ ⩽L X UB B) [76]. The control variables
u t u t u t u t( ), ( ), ( ), ( )hp mp lp and s j( ) are contained in vector X, while A and
Aeq are matrices. b L, B and UB are vectors represented as

= ⋯ ⋯ ⋯ ⋯

⋯
×

X u u N u u N u u N u

u N s s N

[ (1) ( ) (1) ( ) (1) ( ) (1)

( ) (1) ( )]

hp hp mp mp lp

lp N
T
5 1 (19)

and the objective function as

= ⋯ ⋯ ⋯ ⋯ − ⋯ − ×f ξp t p ξp t p N ξ ξ[ (1) ( ) 0 0 0 0 0 0 (1 ) (1 )]T
co s e co s e N1 5

(20)

from the inequality constraints (6)–(8), (16) and (17), if we denote
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N N (22)

Table 1
CNG fuelling station data.

Specification value

High pressure reservoir capacity 2000 L
Medium pressure reservoir capacity 2000 L
Low pressure reservoir capacity 2000 L
Maximum Pressure for all reservoir levels 252 bar
High pressure reservoir minimum pressure 210 bar
Medium pressure reservoir minimum pressure 150 bar
Low pressure reservoir minimum pressure 75 bar
Priority panel 3 lines
Compressor capacity 900 Nm3/h
Compressor motor rating 132 kW

Fig. 2. CNG demand from the three cascade storage levels for single day in each electricity pricing season.
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then

=
×

A A[0 0 0 0]c N N1 5 (23)

=
×

A A[0 0 0 0]c N N2 5 (24)

=
×
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= −
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A A I[ 0 0 0 ]u N N4 5 (26)
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Fig. 3. System behaviour in the high demand electricity pricing season without
consideration for compressor switching frequency.

Fig. 4. System behaviour in the high demand electricity pricing season using
the Pretoria method of minimizing compressor switching.
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then the linear inequality constraints become
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for the equality constraint (14) we denote

= − =× ×A I I I I b[ 0] [0]eq N N eq N5 1 (35)

This binary linear optimization problem is solved using the
MATLAB Solving Constraint Integer Programs (SCIP) solver in the OPTI
toolbox interface.

2.6. The non-linear objective function method to minimize compressor
switching instances

In this method, we introduce the quadratic element
∑ + −u t u t( ( 1) ( ))2 to the objective function. The element minimizes
the rate of change of status of the switch over the control horizon so as
to achieve longer operating bands in both on and off states. The control
variables are u u u, ,hp mp and ulp and the objective function (36) using this
method becomes

∑ ∑= + − + −

= =

−

J ψ p p t u t t ψ u t u t( ) ( ) (1 ) ( ( 1) ( ))
t

N

co e s
t

N

1 1

1
2

(36)

Fig. 5. System behaviour in the high demand electricity pricing season using
the non-linear objective function method of minimizing compressor switching.

Table 2
Comparison of performance for the control strategies.

Electricity cost
(Rands)

Switching
instances

Computing
time (sec)

Optimal operation without
switching minimization

148.90 16 0.5

Optimal operation with
Pretoria switching
minimization

148.90 4 71

Optimal operation with non-
linear Objective function
switching minimization

148.90 4 21
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where ψ is a weighting factor. The constraints in this approach remain
as in Sections 2.2.1 and 2.2.2. The optimization problem can be written
in the standard form

= ⋯ ⋯ ⋯ ⋯ ×

x
u u N u u N u u N u u N[ (1) ( ) (1) ( ) (1) ( ) (1) ( )]hp hp mp mp lp lp N

T
4 1

(37)

and in the general OPTI toolbox solver algorithm the objective function

is formulated as
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from the linear inequality constraints (6)–(8), we can denote

′ =
×

A A[0 0 0]c N N1 5 (39)

′ =
×

A A[0 0 0]c N N2 5 (40)

′ =
×

A A[0 0 0 ]c N N3 5 (41)

then the linear inequality constraints become

′ =

⎡

⎣

⎢

⎢

⎢

⎢

⎢

⎢

⎢

′

− ′

′

− ′

′

− ′

⎤

⎦

⎥

⎥

⎥

⎥

⎥

⎥

⎥

′ =

⎡

⎣

⎢

⎢

⎢

⎢

⎢

⎢

⎤

⎦

⎥

⎥

⎥

⎥

⎥

⎥

×
×

A

A
A

A
A

A
A

b

b
b
b
b
b
b

N N N

1

1

2

2

3

3 6 4

1

2

3

4

5

6 6 1 (42)

for the equality constraint (14) we can denote

′ = − − − − ′ =
× ×A I I I I b[ ; ; ; ] [0]eq N N eq N4 1 (43)

This non-linear optimization problem is also solved using the
MatLab SCIP solver in the OPTI toolbox interface.

2.7. Consideration for terminal constraints

It is desirable that the quantity of gas available at the end of the
control horizon be similar to the initial quantity of gas in the cascade
storage to ensure that the initial conditions are repeated for the next
control period because open loop strategies do not guarantee proper
operation in the subsequent control periods if initial conditions are not
the same [74,77]. From Eqs. (2)–(4), the mass of gas in the three tanks
of the cascade storage at the end of the control horizon can be set as;

∑ ∑= = + −
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s cmp hp
i

N

ohp
1 1 (44)

∑ ∑= = + −

= =

m N m m t m u i m i( ) (0) (0) ̇ ( ) ( )mp mp mp
i

N

s cmp mp
i

N

omp
1 1 (45)

∑ ∑= = + −

= =

m N m m t m u i m i( ) (0) (0) ̇ ( ) ( )lp lp lp
i

N

s cmp lp
i

N

olp
1 1 (46)

It was deemed necessary to implement the terminal constraints as
soft constraints, considering a fixed mass of gas flows into the cascade
storage when the compressor is switched on in a sampling interval. This
may not allow the solution to be automatically feasible with a hard
constraint. The softened terminal constraint is a restriction of the final
mass of gas in the cascade storage to within 90% of the initial mass in a
control period. Therefore from Eqs. (44)–(46)
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Fig. 6. System behaviour in the low demand electricity pricing season using the
non-linear objective function method.
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3. Case data

3.1. The CNG fuelling station

A CNG fuelling station in Johannesburg, South Africa is used as a
case for the present study. The fuelling station has two dispensers with
four refuelling nozzles and one reciprocating compressor. The fuelling
station is supplied with gas from the utility company contracted by
Johannesburg municipality to operate the municipality’s gas pipeline.
Table 1 shows the specifications of the CNG fuelling station unit. Under
baseline operation, the low pressure limits of the cascade storage
trigger the switching on of the compressor while the high pressure
limits trigger the switching off.

3.2. Time-of-use electricity tariff

The time-of-use (TOU) electricity tariff is used in the electricity
power industry so that retail electricity pricing is such that it reflects
changes in the wholesale electricity market due to electricity demand
[78]. It may vary by time of day, by day of the week and by seasons
[79,36]. South Africa electric utility company, Eskom’s tariff2 for
businesses named the TOU Miniflex is applicable to the CNG station in
this study. The tariff is implemented at two levels; seasonal as well as
time of day. Seasonal pricing is divided into high demand season in the
winter months of June to August while the rest of the year is priced as

low demand season, September to May. Further, the peak, standard and
off-peak times in the day differ in the two seasons such that

=

⎧

⎨

⎪

⎩
⎪

= ∈ ∪

= ∈ ∪

= ∈ ∪

p t

p t
p t
p t

( )

0.5157 R/kW h if [0,6] [22,24]
0.9446 R/kW h if [9,17] [19,22]
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0.7016 R/kW h if [6,7] [10,18] [20,22]

1.0167 R/kW h if [7,10] [18,20]
eLD

offpeak
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(51)

where peHD and peLD is the price during high demand season and low
demand season respectively, poffpeak is the off-peak price, pstandard the
price at standard time and ppeak the price at peak time, R is the South
African Rand and t is the time of the day in hours. The tariff also has
other charge components that are not considered in this study as they
are constant [74].

3.3. Gas demand

The mass of gas flowing from the three CNG reservoir storage levels
measured at the dispenser results in a gas demand profile shown in
Fig. 2 for two days; one in the high demand electricity pricing season
and the second in the low demand electricity pricing season. The dis-
penser uses mass flow measurements from each reservoir to make de-
cision on valve sequencing when filling the vehicle tank and determine
sale quantities with an operation log recording system performance

Fig. 7. (a) Compressor switching and (b) mass of gas in reservoir results with terminal constraints for high and low electricity demand seasons.

2 http://eskom.co.za/tariffs.
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[80]. The recorded mass of gas flowing from each reservoir for the two
days in the two electricity pricing seasons bear similarities. From the
profiles, there is an increase in gas demand in the early morning hours
up to 10:00, due to motorists fuelling before beginning their journeys.
There is also increased gas demand in the afternoon from 14:00 due to
motorists refuelling in preparation for the evening rush hour. CNG
powered vehicles are used mainly by courier fleet clients, security fleet
clients and public service vehicles. Demand of gas tends to increase
before and during people movement rush hours due to the public ser-
vice transportation needs. Increased late afternoon and evening fuelling
activity is also as a result of motorists who fuel prior to travelling the
next day.

4. Results and discussion

4.1. High demand electricity pricing season

4.1.1. Optimization without consideration for compressor switching
frequency

Fig. 3 shows the system behaviour when optimized without taking
into consideration the switching frequency of the compressor in the
objective function. Before the end of the off-peak electricity pricing at
06:00, the activity of the compressor increases in order to fill up the

three reservoirs and therefore reduce compressor action in the peak
electricity pricing band between 06:00 and 09:00. The method suc-
cessfully avoids turning on the compressor in the peak electricity pri-
cing time band thereby saving energy cost. Since the compressor stays
off during the morning peak electricity pricing period, the compressor
has to be switched on to satisfy gas demand for the standard electricity
pricing period. The mass of gas in the reservoir is maintained at a high
level before the beginning of the second electricity peak pricing period,
to reduce the activity of the compressor in the undesirable time band
between, 17:00 and 19:00. The approach also succeeds in preventing
compressor activity in this second peak electricity pricing period, fur-
ther reducing the cost of electricity consumed for the day. The com-
pressor is turned on minimally in the following standard electricity
pricing band between 19:00 and 22:00 to enable meet gas demand
before the onset of the off-peak electricity pricing period when the
compressor can supply gas to meet the rest of the day’s demand. By
operating the filling of each reservoir independently, the minimum
electricity cost is achieved through ensuring the compressor runs only
when there is predicted demand on an individual reservoir. From a
baseline electricity cost of R432.59 for the day, a reduction of elec-
tricity cost to R148.90 is realised. Although this optimization regime
minimizes the compressor action during the peak periods of electricity
pricing thereby reducing electricity cost, the number of on/off

Fig. 8. (a) Compressor switching and (b) mass of gas in reservoir results with terminal constraints for one week in high and low electricity demand seasons.
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switching of the compressor is too high at 14 and increases the prob-
ability of failure through fatigue to the compressor components which
will results in an increase in maintenance cost [68,81].

4.1.2. Optimization while considering compressor switching frequency
Figs. 4 and 5 show the behaviour of the system when the switching

frequency of the compressor is minimized using the Pretoria method
with a weighting factor ξ=0.01 and the non-linear objective function
method with a weighting factor ψ=0.9 respectively. These weighting
factors were chosen to achieve the minimum number of switching in-
stances without increasing the cost of electricity when compared to
optimal operation without switching minimization. Both the Pretoria
method and the non-linear objective function method are able to reduce
the number of compressor turn-on instances to four when compared to
the 14 instances in the optimized system without consideration for
compressor switching frequency as can be seen in Figs. 4a and 5a.
Compressor on-state is successfully avoided during the morning peak
electricity pricing period between 06:00 and 09:00 by performing a
reservoir refill just before the end of the off peak period at 06:00, prior
to the onset of the peak electricity pricing period for both methods. Two
compressor on-states occur in the standard electricity pricing time be-
tween 09:00 and 17:00 driven by the mid morning gas demand as well
as the filling of the reservoirs just before the second peak electricity
pricing period at 17:00. Both approaches are able to successfully pre-
vent compressor activity in the second peak pricing period of the day
and the subsequent standard electricity pricing period by predicting the
demand in this time to ensure the compressor comes on only after the
end of the standard electricity pricing period at 22:00.

The reduction in switching times for both the non-linear objective
function method and the Pretoria method is achieved through syn-
chronizing the utilization of the compressor to fill up each of the three
reservoirs whenever an on-state occurs. Figs. 5b and 4b show how valve
action is coordinated in the priority panel, to achieve gas levels in each
of the reservoir that can sustain demand until the next synchronized
need for a refill for the three reservoirs. The effects of the coordination
on mass of gas in storage can be seen in the respective mass of gas in
reservoir graphs in Figs. 4c and 5c. The reduction in switching occur-
rences represents a 71.4% reduction in the number of on/off actions
that the compressor has to perform in comparison to optimization
without consideration for the switching frequency. Fewer on/of in-
stances mean a reduced probability of compressor component failure
due to a high frequency of switching [82,83]. This also reduces the
maintenance costs of the CNG fuelling station unit for which the com-
pressor is an critical component [15,84].

A comparison of the three approaches to minimization of energy
cost in the high demand electricity pricing season is shown in Table 2.
From a baseline cost of power of R432.59, all the methods studied in
the present work are able to reduce the cost to R148.90. The three
strategies yield the same costs of electricity because they deliver the
same effective compressor operation time in each electricity pricing
period with variations only occurring in the exact time when the
compressor-on state occurs and the length of time the compressor stays
on under each strategy. Although the optimization strategy without
switching control yields similar electricity cost savings as with the other
two and with less computing time, the number of switching instances is
too high and exposes the CNG fuelling station unit to higher prob-
abilities of failure. The non-linear objective function method is de-
monstrably superior to the Pretoria method, given that it yields equal
cost savings in a shorter computing time which corresponds to lower
computing costs [85]. The optimization of the operation of a CNG
fuelling station compressor and priority panel using the non-linear
objective function method of compressor cost minimization is con-
cluded as the superior approach to achieve the objective of electricity
cost reduction in a TOU tariff electricity pricing regime as well as
compressor care.

4.2. Low demand electricity pricing season

When applied to optimize operation of the CNG station considering
the low electricity demand pricing season, the non-linear objective
function method which has been determined to be the superior ap-
proach to the current problem in Section 4.1 results in the system be-
haviour shown in Fig. 6. To avoid compressor activity in the morning
peak hours, the compressor is turned on some minutes before the
morning standard electricity pricing period at 06:00 and stays on a few
minutes into the standard electricity pricing period. This provides the
cascade storage with sufficient gas to meet the demand without com-
pressor activity past the morning peak electricity pricing time. Two
compressor-on instances occur in the standard electricity pricing period
between 10:00 and 18:00 which replenish the cascade storage sus-
taining the gas demand until after the night standard pricing period that
ends at 22:00. A single compressor-on instance occurs in the subsequent
off-peak period supplying gas for end of day demand. The profile ac-
complished by this approach reduces electricity cost for the CNG station
in the low demand electricity pricing season from a baseline of R212.40
to R122.40 which is a 42.3% reduction in the day’s electricity cost. This
significant reduction in cost means that the energy cost reduction
strategy is applicable throughout the year with significant savings in
both electricity demand pricing seasons.

4.3. Solutions with terminal constraints

It is evident from Figs. 3c, 4c, 5c and 6c that the mass of gas in the
reservoir at the end of the 24 h control horizon is different from the
initial mass at the start of the control period under these strategies. This
results in the initial conditions of the subsequent control period being
different from those of the current one. When the terminal constraints
are implemented with the non-linear objective function method of
minimizing compressor switching frequency, the resulting profile of
operation is shown in Fig. 7. In this regime, the strategy is able to keep
the compressor operations outside of the high electricity pricing periods
as well as raise the quantity of gas in storage close to the initial con-
dition levels while keeping the number of compressor instances at four.
However the cost of electricity incurred rises to R171.60 for the high
electricity demand season and R139.84 for the low electricity demand
season due to the operation for restoring the levels of gas to initial
conditions compared to optimization without the terminal constraints.
The effect of the terminal constraints can be observed when the opti-
mization is repeated for seven consecutive days shown in Fig. 8. In
general, the level of gas in storage after the end of each day remains
similar to the initial conditions for that day. However the small varia-
tions have an effect on the performance of the strategy with a tendency
to increase the number of compressor switching instances in some of
the days. A maximum of seven switching instances for a single day
occur during the high demand electricity pricing season while a max-
imum of six occur during the low electricity pricing season. These
number of switching instances are still 50% lower than those observed
under optimization without minimization of the switching frequency.

Over the course of the week in evaluation, the strategy is able to
keep operation of the compressor outside the peak electricity pricing
times for the high demand electricity pricing season. The resultant
average cost of electricity is R176.13 per day, which represents 59.3%
savings from the baseline. The highest cost at R179.91, happened on
the fourth and seventh days while the lowest cost at R171.60 occurred
on the first day. In the low demand electricity pricing season, the
compressor is turned on during the morning peak electricity pricing
time in the 4th, 5th, 6th and 7th days. However, the strategy still
manages to keep the average cost of electricity per day at R158.54 with
the highest cost observed on the fifth day at R172.54 and the lowest on
the first day at R143.16. The average savings on electricity cost for the
low demand electricity pricing period is 25%. The proposed strategy
shows versatility in dealing with variations in initial conditions for
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consecutive days for the week under evaluation.

5. Conclusion

The use of compressed natural gas for the propulsion of motor ve-
hicles can benefit greatly from optimization of the fuelling station op-
eration by minimizing the energy cost. The present introductory work
shows that 59.3% in electricity cost savings are achieved, while bal-
ancing the savings with a consideration for the life and reliability of the
compressor. The subsequent savings translate to a reduction in com-
pressor running cost by a 0.04 Rand cents margin per kilogram of gas
sold in the low demand electricity pricing period and 0.23 Rand cents in
the high demand electricity pricing period. These are significant mar-
gins that can allow compressed natural gas fuelling station operators to
adjust the price of gas per unit of sale in order to attract more custo-
mers.

The control approach developed in this study can be used in setting
operating schedules for compressors and priority panels in compressed
natural gas stations operating in a time-based electricity tariff en-
vironment to save cost while prolonging the lifespan of the compressor
by minimizing its frequent on/off switching. This can be done by
changing the algorithm on the existing programmable logic controller
that operates the compressor so that it is time-scheduled according to
the results of the optimization, instead of the pressure limit cycled
operation employed by the existing system. The main conditions arising
from assumptions in this study that could affect the performance of the
strategy in a real life scenario is a difference between the forecast and
actual minimum and maximum temperatures over a control horizon
which can result in unexpected changes in pressure. Safety interrupts
for the maximum and minimum pressure can be implemented in the
algorithm to deal with such cases where unpredictable events occur and
expected optimized operation is violated. The safety interrupts can also
deal with a variation in expected gas demand profile if it results in
pressure limits in storage being reached.

The optimization model leads to improved economic efficiency of
the compressed natural gas fuelling station and can reduce the con-
tribution of the transportation industry to the emission of green house
gases. This is because reduced costs have the potential to encourage
consumer uptake of lower emission compressed natural gas powered
vehicles over diesel and petrol vehicles. Further, the shifting of electric
loads has the potential to reduce overall green house gas emission from
the electricity generation infrastructure of the power utility. The out-
come of the study justifies further optimization of the individual com-
ponents of the fast-fill process to advance the goal of energy efficiency.
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A B S T R A C T

Green ships with hybrid renewable energy systems become important resources of demand side management,
when ships in port have the grid connection. Variance of electricity tariff has influenced the optimal solutions to
power management. Current power management methods for stand-alone green ships cannot be applied to this
new situation. To enable tariff-driven power management, a unified model is proposed for a green ship under
different time-of-use (TOU) tariffs. In the proposed model, diesel generation, solar energy, and battery storage
could support auxiliary power demand, and the surplus of solar energy could be sold to grid when the ship is
connected to grid. A power flow dispatching problem is then formulated as the optimization of operational cost.
To cope with variance of tariff, solar energy, and on-board load demand, a receding horizon control approach is
employed to ensure a closed-loop control mechanism. Experimental results indicate the tariff-driven model can
effectively reduce the overall cost of green ships, and the receding horizon control can improve the performance
in terms of fuel consumption and greenhouse gas emission.

1. Introduction

Over 90% of cargoes are transported by ships over the world, while
greenhouse gas (GHG) emission and fossil fuel consumption are two
critical problems in the shipping industry. In 2007, international ship-
ping is responsible for approximately 3% global GHG emission, and
277million tons of diesel/gasoline, in which the dry bulk shipping is
the first contributor with about 52million tons (Buhaug et al., 2009).
To suppress the continuous increase of GHG emission and fossil fuel
demand in the international shipping, international maritime organi-
zation (IMO) has issued strict regulations for shipping energy efficiency
and GHG emission. Therefore, green ship technologies become urgent
to improve shipping energy efficiency and reduce GHG emission. One of
the most popular technology is to find clean energy to take the place of
fossil fuel (Diab et al., 2016). Renewable energy (RE) resources have
played increasingly significant roles to reduce fuel consumption and
GHG emission in the green ship. Among available RE resources, solar
energy is the most promising option of green ship, as solar is clean, safe,
omnipresent, and freely available.

In general, photovoltaic (PV) panels have to be equipped together
with storage components (battery, ultra-capacitor, and so on) for pro-
viding stable and sustainable power. Multiple renewable sources and
storage components are usually combined in a hybrid renewable energy
system (HRES). In the stand-alone application, e.g., remote

communities, the HRES is able to supply electricity for off-grid custo-
mers (Tazvinga et al., 2013, 2015; Nema et al., 2009; Shaahid and El-
Amin, 2009). In the grid-connected application, e.g., the berthing green
ship, the HRES can also serve as distributed generation to sell the sur-
plus of renewable energy on grid, which can bring financial profits on
the electricity market (Palma-Behnke et al., 2013; Wu et al., 2015; Wu
and Xia, 2015). Researchers have studied many theoretical and prac-
tical issues arisen in HRES applications, including optimal design (Arun
et al., 2009), scheduling and control (Gabash and Li, 2013; Kanchev
et al., 2011), maximum power point tracking (MPPT) (Soto et al.,
2006), and economic analysis (Wies et al., 2005; Esen et al., 2007).

In recent years, the HRES has been applied to hybrid-electric ships
and all-electric ships (Zahedi and Norum, 2013). On the one hand, new
green ships are built with electric power systems, including PV, diesel
generators (DGs), and battery (Lan et al., 2015; Wen et al., 2016; Banaei
and Alizadeh, 2016). On the other hand, existing fossil fuel ships are
undergoing energy efficient retrofit, and the HRES is installed to meet
the axillary demand, such as loading, unloading, lighting, heating,
cooling, and other on-board hotel services (Lee et al., 2013; Ovrum and
Bergh, 2015). Compared with the fossil-fuel ships, the hybrid-electric
ships are less dependent on fossil fuel, and have more integration of
solar or wind energy. The use of renewable energy can improve energy
efficiency of ship, enhance reliability and quality of power supply, and
reduce shipping cost and GHG emission. The hybrid power system on
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the green ship is usually regarded as a special case of mobile microgrid,
which appears more complicated characteristics than the microgrid on
land. System configurations are different when the ship is on voyage
and berth, respectively. Environmental conditions are also extremely
varying for the mobile microgrid. For the green ship, the mobile power
system works on two modes, i.e., off-grid mode (stand-alone mode), and
on-grid mode (grid-connected mode).

For the off-grid mode, many results have been reported in terms of
optimal sizing (Lan et al., 2015; Wen et al., 2016; Yao et al., 2017), and
power management (Banaei and Alizadeh, 2016; Ovrum and Bergh,
2015; Tsekouras and Kanellos, 2013). In Lan et al. (2015), an optimal
sizing problem of stand-alone green ship has been formulated to
minimize investment cost, fuel cost, and GHG emission, in which sea-
sonal and geographical variation is considered for different routes. In-
terval optimization and clustering-based optimization methods have
been proposed to determine the optimal size of energy storage system
with uncertain PV power and load (Wen et al., 2016; Yao et al., 2017).
To improve operational efficiency, power management has been stu-
died for an electric ship with fuel cell, battery, PV panels, and diesel
generators (Banaei and Alizadeh, 2016; Tsekouras and Kanellos, 2013).
For crane ships, lithium-ion batteries have been employed to take part
into power management, in which a hybrid control strategy is devel-
oped to reduce fuel cost and GHG emission (Ovrum and Bergh, 2015).

Other than the off-grid mode, green ships sometimes work on the
grid-connected mode, when the shore-side grid power is available (Lee
et al., 2013; Kanellos et al., 2017). As reported in Kökkülünk et al.
(2016), average harboring time of bulk carrier ship is about 2months
per year. As the shore-side power is usually cleaner than the power
generated on board, the use of shore-side power, called cold ironing,
can effectively reduce annual fuel cost and GHG emission, when the
green ship is on berth. With the help of HRES, solar energy can be used
to supply the on-board demand instead of the shore-side electricity, and
electricity cost can be significantly reduced. In Lee et al. (2013), a green
cruise ship has been studied for delivering PV power to grid, and a rule-
based strategy has been developed to satisfy auxiliary demand with
batteries. In Kanellos et al. (2017) and Kanellos et al. (2014), a unit
commitment problem has been studied to optimally allocate power
output of each diesel generator, in which cold ironing is considered.

Considering bidirectional power flow between green ship and shore-
side grid, electricity tariffs must influence electricity cost of cold ir-
oning, and possible reward from selling renewable energy to grid. Thus,
the change of electricity tariff will drive a different optimal solution to
power management. To our best knowledge, very limited studies have
evaluated tariff effects on power management of hybrid-electric ship.
As a kind of demand side resources, on-grid green ships could take part
into demand response programs, such as, time-of-use (TOU), and real
time pricing tarrifs (Aalami et al., 2010). In this paper, the TOU tariff is
studied as an instance of tariff-driven demand side management (DSM)
of green ship. In the DSM, the HRES on a green ship can help owners to
reduce electricity cost, and also can help utilities to enhance grid se-
curity and efficiency. Tariff-driven DSM of on-grid ship is more

complicated than usual power management of off-grid ship, as demand-
side management is required to consider the variance of electricity
price and incentive reward, as well as the variance of renewable gen-
eration and load demand. One challenge of tariff-driven power man-
agement is to find an optimal control strategy for consuming grid power
at the low-price period, and for selling renewable energy at the high-
price period, while physical constraints have to be satisfied. Another
challenge is to integrate the new capability of tariff-driven DSM into
existing power management systems, which mainly focused on the off-
grid management. The green ships often switch between on-grid and
off-grid modes, especially for short-route ships, such as ferry and cruise.
For this purpose, these challenging problems will be responded in the
tariff-driven power management of green ship.

The contributions of this paper include three aspects. Firstly, tariff
effects are studied for the power management of green ship with HRES,
which is formulated as an optimal power dispatching problem to
minimize the operational cost. Secondly, a unified tariff-driven power
management system for off-grid and on-grid modes is proposed to op-
timally schedule the ship all the time. Thirdly, receding horizon control
is proposed in the green ship application, so that system disturbances on
solar energy and load demand can be detected and corrected. The re-
sulted performance is promising with respect to energy efficiency and
robustness. This paper is organized as follows. A HRES is introduced for
the green ship in Section 2. Optimal power management problem of off-
grid green ship is formulated in Section 3. A tariff-driven power man-
agement model is proposed in Section 4. Receding horizon control is
proposed to control power flows for the minimization of operational
cost in Section 5. Results and discussions are presented in Section 6,
while the last section is the conclusion.

2. Hybrid renewable energy system of green ship

PV-DG-battery (PDB) hybrid systems are successfully applied to
green ships (Banaei and Alizadeh, 2016; Tsekouras and Kanellos, 2013).
The PDB system is made up of three main subsystems, i.e., PV panels,
battery storage, and DG. The ship load includes propulsion load and
auxiliary load. Auxiliary load consists of lights, water heating, air
conditioners, plug-in devices, and other on-board hotel facilities. For
the PDB hybrid system of green ship, the basic requirement is to keep
the power balance, and to reduce operational cost and GHG emission.

Regarding to different volume and rated power, the hybrid electric
ship can be categorized into two types. The first kind of ships, such as,
bulk cargo vessels, which has large volume and rated power, only de-
pends on DGs for the propulsion power. The solar energy is used to
meet the hotel and auxiliary load, as shown in Fig. 1(a). The second
kinds of ships, such as, cruises and ferries, usually have small volume
and rated power. Both DG and solar energy are integrated to supply
power for the propulsion load and auxiliary load, as shown in Fig. 1(b).

In this paper, we study the power management of a retrofitted green
ship, which belongs to the first type, as shown in Fig. 1(a). The pro-
pulsion load is directly supplied by the DG. For the auxiliary load, the

Nomenclature

P t( )1 power flow from diesel generator to internal bus (kW)
P t( )2 power flow from internal bus to battery (kW)
P t( )3 power flow from battery to internal bus (kW)
P t( )4 bidirectional power flow between grid and internal bus

(kW)
P t( )pv power output of PV panels (kW)
P t( )pl propulsion load of green ship (kW)
P t( )al auxiliary load of green ship (kW)
P t( )D power output of diesel generator (kW)
PD

max maximal power output of diesel generator (kW)

PD
max minimal power output of diesel generator (kW)

Pi
m allowable maximal power on the ith line (kW)

v status of switch on the grid connection
v inverse status of switch on the grid connection
S t( ) state of charge (SOC) of battery (%)
Smax allowable maximum SOC (%)
Smin allowable minimum SOC (%)
Q capacity of battery (kWh)
ηC charging efficiency of battery (%)
ηD discharging efficiency of battery (%)
ρ t( ) price of electricity ($/kWh)
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PV power has the first priority of usage, and the battery takes part in the
power supply when the PV output is not enough to meet the auxiliary
load. Only when both PV and battery cannot meet the ship load, the DG
eventually comes in due to its highest cost.

Note that there is an internal bus in the hybrid electric ship, as
shown in Fig. 1. The shore-side grid can be connected with the ship
internal bus for the cold ironing. The propulsion load is denoted as Ppl,
and the auxiliary load is denoted as Pal. The power flows from the DG,
battery and PV to the bus are denoted as P P,1 3 and Ppv, respectively. P2
represents the power flow from the bus to battery. The subsystems, i.e.,
PV, DG, and battery, are introduced as follows.

2.1. PV panel

A solar panel usually consists of several solar cells to convert solar
irradiation into direct current power. In the application of green ship,
the PV panels installed in different parts of ship can be categorized as
different groups, e.g., the PV panels installed on the top deck, the lower
deck, the vertical surface, and some discontinuous space. These groups
may have different irradiance and shading characteristics during the
long-term voyage. The power output of each PV panel can be simply
formulated as:

=P t η I t A( ) ( ) ,pv pv pv c (1)

where t is the time of day; Ppv is the power output from the PV panel; ηpv
is the efficiency of solar generation; Ipv is the solar irradiation incident
on the PV panel; Ac is the size of PV panel.

The hourly solar irradiation incident on the PV panel has compli-
cated relations with time of a day, season of a year, tilt, location, global
irradiation, and diffuse fraction. In this study, the simplified isotropic
diffuse formula is used according to Tazvinga et al. (2014) and Collares-
Pereira and Rabl (1979). The solar irradiation incident can be expressed
as

= + +I t I t I t R t I t( ) [ ( ) ( )] ( ) ( ),pv B D B D (2)

where IB is the beam component of global irradiation, and ID is diffuse
irradiation. RB is a geometric ratio of actual irradiation on the tilted
plane to the standard irradiation on the horizontal plane.

The efficiency of solar generation can be expressed as a function of
the irradiation Ipv and the ambient temperature TA as

=
⎡

⎣
⎢

−
−

− −
⎤

⎦
⎥

η η
βI T T

I
β T T1

0.9 ( )
( ) ,pv R

pv C A

pv
A R

0 0

0 (3)

where ηR is the PV generation efficiency that is measured at the refer-
enced cell temperature TR (25 °C); β is the temperature coefficient for
cell efficiency (typically 0.004–0.005/°C); TC0 (typically 45 °C) and TA0
(typically 20 °C) are cell temperature and ambient temperature at the
nominal operating cell temperature (NOCT) test, respectively; Ipv0 is the
average solar irradiation on the array at the NOCT test.

2.2. Diesel generator

Diesel generators are commonly used as engines in green ships.
They are also incorporated in the PDB hybrid system to supply the
auxiliary demand, when solar power and battery storage are in-
sufficient. It is a common sense that the fuel consumption is determined
by the power output. This relation is usually expressed as a quadratic
model (Kanellos et al., 2017; Kanellos et al., 2014). The fuel con-
sumption can be formulated as

= + +μ t d P t d P t d( ) ( ) ( ) ,DG D D1
2

2 3 (4)

where μDG is diesel consumption rate (the volume of diesel consumed
per hour); P t( )D is the power output of DG; d d,1 2, and d3 are generation
coefficients. When the power output is large, the DG efficiency is large
(the fuel cost per kWh is small). According to Eq. (4), the hourly fuel
cost can be calculated. DG’s power output has to be restricted between
the rated power and specified minimum value as

⩽ ⩽P P t P( ) ,D
min

D D
max (5)

where PD
max is the rated power and PD

min is the minimum requirement of
power output.

2.3. Battery bank

Many kinds of battery, such as Lead-acid, Nickel-based, and
Lithium-ion cells, have been used in the PDB hybrid system. In general,
the battery storage is closely related with maximum capacity and state
of charge (SOC). Note that SOC is defined as the percent of remained
storage.

The SOC could change dynamically due to possible charge or dis-
charge. Let S t( ) denote the SOC of battery at time t, and S(0) denote the
original SOC. The change of SOC can be formulated as

∫ ∫− = −
= =

QS t QS η P τ dτ
η

P τ dτ( ) (0) ( ) 1 ( ) ,C τ

t

D τ

t

0 2 0 3
(6)

where Q is the maximum capacity of battery; P t( )2 is the power for
charging the battery at time t P t; ( )3 is the power of discharge at time t.
The first component at the right-hand side means the total energy
stored to the battery, and the second component means the total energy
consumed. ⩽η 1C and ⩽η 1D are charging efficiency and discharging
efficiency (Wu and Xia, 2015; Wu et al., 2017). The charging/dis-
charging loss comes from the heat loss of cells and converters.

By the differentiation at both sides of Eq. (6), the dynamics of SOC
can be expressed as

= −S t
η
Q

P t
Qη

P ṫ ( ) ( ) 1 ( ).C

D
2 3

(7)

The battery has strict constraints on the upper and lower bounds of
SOC. The upper bound is defined as Smax , and the lower bound is de-
fined as Smin in this paper. The SOC must be bounded within the scale
S S[ , ]min max .

3. Power management of off-grid mode

For the voyaging ship, how to minimize the fuel consumption for
each day is a critical issue of power management, which is referred to

(a)

(b)

Fig. 1. Schematic of the off-grid PDB hybrid system on green ships: (a) DG
propulsion and (b) electric propulsion.

Z. Wu, X. Xia Solar Energy 170 (2018) 991–1000

993



power flow dispatching. Optimal dispatching will be studied to de-
termine daily schedule of PDB hybrid system for minimizing the fuel
cost. The daily fuel cost is formulated as

∑= + +

=

−

C p d P k d P k d[ ( ) ( ) ],
k

N

D D1
0

1

1
2

2 3
(8)

where N denotes the evaluation period. The sampling period is an hour
for instant, so =N 24 for a day. Note that the sampling period can be
determined by users. C1 is the fuel cost over the evaluation period; p is
the fuel price. P k( )D is the diesel’s power output over the period

+[k, k 1), which can be expressed as

= +P k P k P k( ) ( ) ( ),D pl 1 (9)

where P k( )pl is the propulsion load over +[k, k 1).
Furthermore, each component of PDB hybrid system suffers from

continuous wearing over the rated lifetime (Tazvinga et al., 2015).
According to (Wu et al., 2015; Yang and Xia, 2017), the daily wearing
cost of system can be simplified as

∑= + +

=

−

C τ P k P k Nτ[ ( ) ( )] ,
k

N

2 1
0

1

2 3 2
(10)

where the first component is the wearing cost of battery, and the second
component is the wearing cost of other subsystems, such as DG and
solar panel. τ1 is the coefficient of battery wearing, and τ2 is the hourly
wearing cost of other components. ( =τ 0.0011 and =τ 0.0022 in the
studied system.) Note that the first component can indicate the amount
of charging/discharging cycle, as the battery usually works in full cycles
due to SOC boundary. In the second component, we assume the con-
stant wearing cost, as the wearing rate rarely changes for a given
transportation task, e.g., the fixed propulsion load and the fixed fre-
quency of start/stop.

Considering fuel cost and wearing cost, the objective of optimal
power flow dispatching is to minimize off-grid operational cost Jf as

= +J C C .f 1 2 (11)

For the application of green ship, several physical and operational
constraints have to be satisfied.

(1) Power balance constraint: The PV power, battery power, and pos-
sible DG power output must exactly match the auxiliary demand Pal.
Power imbalance may harm all electric components in the PDB
system. The power balance can be formulated as

+ + = +P k P k P k P k P k( ) ( ) ( ) ( ) ( ).pv al1 3 2 (12)

(2) DG output constraint: The DG power output must be less than the
rated power and larger than the specified minimum.

⩽ + ⩽P P k P k P( ) ( ) .D
min

pl D
max

1 (13)

(3) Power flow constraint: For safety and other physical reasons, power
flow on each line must be bounded by a maximum value as

⩽ ⩽ =P k P i0 ( ) , 1, 2, 3,i i
m (14)

where Pi
m is the allowable maximum power delivered on the ith

line.
(4) SOC boundary constraint: During charging or discharging, SOC has

the upper and lower bound for ensuring state of health.

⩽ ⩽S S k S( ) .min max (15)

(5) SOC terminal state constraint: For the convenience of daily dis-
patching power, the terminal SOC of battery must be no less than
the initial SOC as

⩽S S N(0) ( ). (16)

For the off-grid mode, the power flow dispatching problem is
modeled as a standard quadratic programming problem with equality
and inequality constraints. In this optimization model, the objective
function is (11), and the constraints include (12)–(16). The control
variables are P k P k( ), ( )1 2 , and P k( )3 for each hour. Like other off-grid
power flow dispatching models (Kanellos et al., 2017; Kanellos et al.,
2014), PV output and auxiliary load are assumed known as priory
knowledge in this study. Short-term deviations can be taken over by the
ship real time control system through certain adjustment mechanisms
(Kanellos et al., 2014). In a day, load demand and PV power are series
of data indexed by time, which can be forecasted based on historical
data. Time series analysis models, including autoregressive (AR)
(Powell et al., 2014) and neural networks (Bacher et al., 2009; Mellit
and Pavan, 2010; Suganthi and Samuel, 2012), have been studied for
short-term and long-term forecast of future PV and load profiles. Note
that electricity tariffs have no effects on power management for the off-
grid mode.

4. Tariff-driven power management

When the green ship has stopped in the harbor for loading, un-
loading, or maintenance, the propulsion load is zero, and the green ship
has the grid connection. Electricity tariffs at harbor have great effects
on the solution to power management. For this on-grid mode, power
management requires a tariff-driven power dispatching method, and
the off-grid dispatching method is not able to suit the on-grid mode. The
structure of on-grid green ship is given in Fig. 2. In this paper, the TOU
tariff is considered as a typical incentive policy for studying the tariff-
driven power management.

In the TOU tariff, electricity price changes over different periods
according to the imbalance situation between power supply and de-
mand. For example, a high price is paid for the peak load period; a
medium price is paid for the standard period; and a low price is paid for
the off-peak period. In this study, electricity price at the target harbor is

=

⎧

⎨

⎩

∈

∈

∈

ρ t
ρ t T
ρ t T
ρ t T

( )
, ,
, ,
, ,

k k

o o

s s (17)

where ρk is the price of peak load period T ρ;k o is the price of off-peak
period T ρ;k s is the price of standard period Ts.

Let P4 denote the bi-directional power flow between the grid and
green ship. Define >P 04 when the grid power flows to the ship, and

<P 04 when the ship supplies power to grid. It can be noticed that the
role of ship, as load or distributed generation, determines the sign of P4.
For safety, the bi-direction power flow has to be bounded as

− ⩽ ⩽P P k P( ) ,m m
4 4 4 (18)

where Pm
4 is the allowable maximum of power flow on this connection.

Fig. 2. A unified structure of green ship.
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The daily cash flow, associated with buying and selling electricity,
can be formulated as

∑=

=

−

C ρ k P k( ) ( ),
k

N

3
0

1

4
(19)

where C3 represents the daily cash flow driven by the TOU tariff. Note
that >C 03 means cash-out, i.e., electricity cost. <C 03 means cash-in,
i.e., electricity reward. For the on-grid situation, the minimization of
daily cash flow is expected in the tariff-driven power management.

The capability of tariff-driven dispatching will be integrated in the
existing power management system. In this paper, a unified dispatching
model will be studied to handle both off-grid and on-grid modes in an
automatic manner. For the unified model, power flow dispatching has
to consider the optimization of fuel cost, wearing cost, and possible
electricity cost caused. The optimization problem is closely related with
the status of switch. Based on the on/off status, the objective function
can be expressed as

= + +J C C vC .u 1 2 3 (20)

where Ju is the daily cost of the unified model. v is the status of switch.
=v 0 means off-grid mode, and =v 1 means on-grid mode. C1 is the fuel

cost expressed as Eq. (8); C2 is the wearing cost expressed as Eq. (10); C3
is the electricity cost expressed as Eq. (19). If =v 1, grid connection is
introduced, and tariff-driven power management is enabled.

Based on the status of switch, constraints, e.g., power balance and
boundary, also have to be re-formulated as
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(21)

For the unified model, three main characteristics are essential.
Firstly, when the switch is off, the model must be equivalent with the
proposed off-grid dispatching model. The optimal solution ensures
minimal fuel cost and wearing cost during the voyage. Secondly, when
the switch is on, the surplus of PV power can be sold to grid, and the
hybrid system serves as a role of distributed generation. This could help
release the peaking burden of grid, and earn possible incentive reward
that depends on the policy of harbor. Thirdly, for taking advantage of
incentive policies, battery can store the grid power at the off-peak time,
and can be discharged during the peak time.

As a result, the unified model successfully covers off-grid and on-
grid modes. In Fig. 2, two modes are changed by a switch V. The green
ship is on-grid if the switch V is on (i.e., = =v v1, 0). If V is off (i.e.,

= =v v0, 1), the green ship is off-grid. For the off-grid situation, the
system structure is the same as Fig. 1(a). In a unified model, the status
of V is a variable detected in real time, and then the optimization of
power flow is re-conducted periodically. If =v 0, it is obvious that the
unified model is equivalent with the off-grid model studied in the
previous section. If =v 1, the unified model can reflect all essential
characteristics of the on-grid mode.

5. Receding horizon control

Based on current status, optimal schedule over next 24 h can be
obtained via the optimization of the unified model. However, the status
of switch and the SOC of battery could change over next 24 h due to
uncertain solar generation and traveling time. This happens when the
green ship is about to approach the harbor or to leave. Then, the ori-
ginal scheduling results cannot be used to control the PDB hybrid

system. For this purpose, receding horizon control is proposed based on
periodic optimization, as shown in Fig. 3.

In the proposed receding horizon control, the optimization proceeds
iteratively to utilize the real-time feedback information, i.e., the SOC
and the status of switch. For each time, only the first component of
optimal solution is employed to control the hybrid system. For example,
a voyaging green ship will arrive at the harbor and connect to grid after
20 h. After detection of current state, the unified optimization model is
an off-grid model, and the daily schedule of off-grid ship can be ob-
tained by the optimization over the prediction horizon, i.e., 24 h. The
first component of optimal solution is the power flow for the 1st hour,
which is employed as the control input. The SOC may be changed due
to possible charging or discharging. After 1 h, the switch is still off, and
the same procedure is repeated, until the green ship is connected to
grid. After 20 h, the status of switch is on. The unified optimization
model is an on-grid model, and optimal dispatching can be obtained by
the optimization of operational cost. The first component of optimal
solution is the power flows for the 21th hour. This procedure is re-
peated till any stopping criterion is satisfied.

The procedure of receding horizon control for the green ship has
been given in Algorithm 1. An optimization problem over the prediction
horizon is repeatedly solved ( = …k 0, 1, ). The optimization variable is
the power flows over the following N intervals. At the kth sample, based
on current states detected, an optimal solution denoted as

+ … + −
∼ ∼ ∼P k k P k k P k N k[ ( | ), ( 1| ), , ( 1| )]i i i

T can be obtained. Only the first
component of solution, i.e., ∼P k k( | )i , is used as the control input over

+k k[ , 1). Note that the receding horizon control has the mechanisms of
feedback and real-time control.

Algorithm 1. Pseudo-code of the receding horizon control approach

Receding horizon control is also called model predictive control
(MPC) (Xia et al., 2011; Zhang and Xia, 2011). The key concept of re-
ceding horizon control is that control variables are calculated by using
the optimization approach, but only the first component is taken as the
control input at the current stage. As the optimization is conducted
based on the current observation of state variables, state feedback is
inherently incorporated in the receding horizon control. For the next
interval, the prediction over the receding horizon is recalculated. As the
close-loop control is implemented based on real-time updated in-
formation, the disturbance can be detected and corrected in the pro-
posed approach.

In the receding horizon control, each optimization problem is a
quadratic programming problem. Let =u k P k P k P k P k( ) [ ( ), ( ), ( ), ( )]1 2 3 4
denote the control inputs. Then the minimization of function (20) can

Fig. 3. Illustration of receding horizon control.
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be converted into a standard form of quadratic programming as

∗ ∗ + ∗U H U f Umin 1
2

( ),T
(22)

where = + … + −U u k u k u k N[ ( ), ( 1), , ( 1)]T . H and f are parameters
that can be deduced according to (20).

For power flow dispatching, there are mainly two types of methods,
i.e., ruled based and optimization-based methods. The proposed re-
ceding horizon control is an optimization-based method. For the pur-
pose of comparison, a rule-based control is referred to fulfilling the
satisfaction of constraints. In the rule-base control, the solar power has
the highest priority of usage. The solar power is employed for satisfying
the load demand or charging the battery. If the load demand cannot be
satisfied by the solar power, the battery power is used. If the batter is
over-discharged, the grid power or diesel is then integrated. For time t,
the control input is decided as the following steps:

(1) If ⩽ =P t P t P t( ) ( ), ( ) 0al pv 1 and =P t( ) 03 . In this case,
= −P t P t P t( ) ( ) ( )pv al2 and =P t( ) 04 if <S t S( ) max; otherwise
=P t( ) 02 and = −P t P t P t( ) ( ) ( )pv al4 .

(2) If >P t P t( ) ( )al pv and >S t S( ) 0.7 max, then
= = = −P t P t P t P P t( ) 0, ( ) 0, ( ) ( )al pv1 2 3 , and =P t( ) 04 .

(3) If >P t P t( ) ( )al pv and < ⩽S S t S( ) 0.7min max , then =P t( ) 02 , and
=P t( ) 03 . In this case, =P t( ) 01 and = −P t P P t( ) ( )al pv4 if =v t( ) 1,

otherwise = −P t P P t( ) ( )al pv1 and =P t( ) 04 .
(4) If >P t P t( ) ( )al pv and <S t S( ) min, then = −P t S S t( ) ( )min

2 , and
=P t( ) 03 . In this case, =P t( ) 01 and = − +P t P P t P t( ) ( ) ( )al pv4 2 if

=v t( ) 1, otherwise = − +P t P P t P t( ) ( ) ( )al pv1 2 and =P t( ) 04 .

6. Results and discussions

6.1. Experimental results

A certain hybrid electric green ship with maximum power 500 kW is
evaluated in this section. Note that the studied ship has been properly
designed for matching its rated volume and power. Some advanced
methods, such as optimal sizing and economic analysis (Arun et al.,
2009; Lan et al., 2015; Yang et al., 2009), can be considered at the
design stage of new green ships. As the scope of this paper is the power
management for scheduling the operation of green ship, the issues on
system design are excluded in this study.

Voyage tests at the ocean area of South Africa, are reported in the
paper. Note the voyage schedule is calculated via other motion plan-
ning methods, while traveling constraints must be satisfied in the re-
sulted voyage schedule. For the given route, the operational cost of ship
will be evaluated under different seasons (summer vs. winter) and
weather (sunny vs. cloudy). The structure of PDB hybrid system is the
same as Fig. 2. In the application, the PV panels are installed in dif-
ferent parts of the ship, i.e., top deck, lower deck, vertical surface, and
other discontinuous space. For the PDB hybrid system, configurations
are mainly introduced here.

The storage bank consists of 272 Lithium-ion batteries. 4 batteries
are serially connected as a set, and 68 sets, connected in parallel, form
the bank. For each battery, the voltage is 12 V, and the capacity is
150 Ah. Therefore, the nominal capacity of storage bank is 489.6 kWh.
The PV module consists of 240 PV panels, each of which has the ca-
pacity 250W, so the rated PV output is 60 kW. The maximal power
point tracking is integrated in each PV adapter. AC/DC and DC/AC
inverters are also employed for each line. The parameters of this system
are listed in Table 1. Note that charging and discharging efficiency are
regarded as 85% and 95% in this paper for the target system. During the
lifetime, energy efficiency may decrease due to system performance
deterioration. This factor of efficiency decrease will be evaluated in the
discussion part.

For regular cruising, the propulsion load is 100 kW. For berthing,
the propulsion load is 0 kW. the daily profiles of auxiliary load and PV

power are regarded as the average values over the past week before the
test day (July 28, 2017, Cape Town), as shown in Fig. 4. Given known
profiles of auxiliary load and PV output, optimal power dispatching can
be obtained in the proposed control approach. Note that actual profiles
of the test day could have small differences with the average profiles,
differences will be corrected in the proposed receding horizon control,
as evaluated in the discussion part.

Remark 1. Although solar irradiation mainly depends on time of day, it
changes intensively under different environment, such as, location,
season, orientation, and weather. For specific environmental
conditions, daily profiles of overall PV generation on the ship show
certain periodical characteristics. Advanced prediction methods can
ensure promising accuracy, when environment change is trivial.

Remark 2. In some simple operating situations, ship load and PV
output are fixed and known. For example, propulsion and axillary load
is the same as historical days. The proposed model can deliver stable
performance of minimal fuel cost and GHG emission. For complicated
situations, the propulsion load is determined by the mass of ship and
cargo, and auxiliary load is time-varying due to human behavior and
external environment. Thus, system identification methods, such as
model-based and data-driven methods, are required to determine
propulsion and auxiliary load.

As the focus of this paper is system model and receding horizon
control, the profiles of auxiliary load and PV power are regarded as the
average historical values for simplicity. More advanced forecast
methods (Kanellos et al., 2017; Kanellos et al., 2014; Powell et al.,
2014; Li et al., 2018) can be utilized as preliminary steps of the pro-
posed approach.

For the 24-h and 3-day tests, the TOU tariff (denoted as TOU-1) is

=

⎧

⎨

⎪

⎩
⎪

∈ ⋃

∈ ⋃

∈ ⋃ ⋃

ρ t
t
t
t

( )
0.157, [7, 10) [18, 20),
0.077, [0, 6) [22, 24),
0.113, [6, 7) [10, 18) [20, 22),

1

(23)

(1) 24-h test
The 24-h test is conducted for both off-grid and on-grid modes. For
each mode, optimal power flows obtained in the receding horizon
control are plotted in Fig. 5. For the off-grid mode, the DG is the
main power supplier. Battery is discharged at midnight, and is
charged when the solar irradiation is sufficient at noon. For the on-
grid mode, the grid is the main power supplier. However, battery is
charged at midnight due to low electricity price, and discharged for
selling electricity at the peak period. Although the DG power
sometime decreases, i.e., the DG turns less efficient, energy effi-
ciency of the whole system is improved. The reason is that the re-
duction of DG power is taken place by the cheap PV power or
battery power.
The daily cost, including fuel cost and wearing cost, is evaluated.

Table 1
Parameters of PV-battery system.

Nominal battery capacity 489.6 kWh
Battery charging efficiency 85%
Battery discharging efficiency 95%
Initial SOC 60%
Minimum of SOC 40%
Maximum of SOC 100%
PV array’s capacity 60 kW
fuel price 0.67 $/L
Rated power of diesel 500 kW
Regular cruising propulsion load 100 kW
Minimal output of diesel 5 kW
d1 0.000036
d2 0.1728
d3 76.8
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Without the integration of hybrid system, the daily cost is $1604.2.
In the rule-based control, the daily cost is $1571.3. In the receding
horizon control, the daily cost can be reduced to $1566.9. If the

green ship is stopping in port with the grid connection, the daily
cost includes electricity cost and wearing cost. Without the in-
tegration of hybrid system, the daily cost is $81.0. In the rule-based
control, the daily cost is $47.2. In the receding horizon control, the
daily cost can be reduced to $29.0. It can be noticed that the
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Fig. 4. Daily profiles of auxiliary load and solar energy in the test.
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Fig. 5. Power flows of green ship in 24 h: (a) off-grid and (b) on-grid.
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Fig. 6. Experimental results of green ship in 3 days: (a) power flows of receding
horizon control and (b) SOC profiles.

Table 2
Daily cost under different environment.

Cloudy
winter

Sunny
winter

Cloudy
summer

Sunny summer

Off-grid cost
($)

1589.4 1566.9 1581.4 1557.9

On-grid cost
($)

55.63 29 47.37 13.05

Table 3
Daily cost under different charging efficiencies.

ηC 95% 85% 75% 65% 55%

Off-grid cost($) 1562.8 1563.7 1564.6 1565.5 1566.4
On-grid cost ($) 25.87 29.04 32.67 35.08 37.48

Z. Wu, X. Xia Solar Energy 170 (2018) 991–1000

997



integration of hybrid system can effectively reduce the expense of
ship, and the receding horizon control can achieve the minimal
cost.

(2) 3-day test
The 3-day test is conducted to verify the power management for
complicated situations. The change of off-grid and on-grid modes
will be evaluated in a 3-day route. The green ship is off-grid at 0am
of the first day, and gets the grid connection since 8 pm of the first
day.
Based on the unified model, results of power flow and SOC are
plotted in Fig. 6. Before the arriving time, the results of receding
horizon control are similar with those of the 24 h off-grid experi-
ment. The main power supplier is the DG, and the battery is charged
at noon. In contrast, the results after arrival are similar with the
24 h on-grid experiment. The main power supplier turns to be the
grid, and the battery is charged at midnight.

The overall cost over 3 days will be evaluated. Without the in-
tegration of hybrid system, the overall cost is $1519.7. With the
help of hybrid system, the daily cost is $1392.5, and the SOC is
71.5% for the rule-based control. For the receding horizon control,
the overall cost is $1368.4, and the SOC is 65%. The difference of
residual energy in the bank, worth about $3, can be negligible. It is
obvious that receding horizon control can result in an optimal
strategy with the minimal cost.
It can be concluded that the unified model can effectively handle
two different modes, and that the overall cost can be minimized by
the receding horizon control regardless to the change of mode. If
the harboring period is 2months per year, the operational cost of
green ship can be reduced by about $14300 per year. Compared
with fuel ships without PV generation, fuel consumption and GHG
emission of green ship can be reduced by about 3% for each year.

6.2. Discussions

The aforementioned results are reported based on tests during sunny
winter days. However, the environmental change must influence the
solar energy on the green ship, and the operational cost as well. Firstly,
environmental effects on the green ship will be discussed in this part.
Secondly, charging and discharging efficiency must change month by
month due to system deterioration. Effects of varying parameters on the
green ship will also be discussed. Thirdly, effects of forecast error are
discussed, as it has influenced the control performance. At last, effects
of different TOU tariffs are evaluated in the tariff-driven approach.

(1) Effects of environmental conditions
The green ship is tested on 4 kinds of environment, i.e., a sunny
winter day (July 28, 2017, Cape Town), a cloudy winter day
(August 3, 2017, Cape town), a sunny summer day (January 29,
2017, Cape Town), and a cloudy summer day (February 18, 2017,
Cape Town). Different environmental conditions mainly influence
daily profiles of PV power. Other parameters are assumed the same
as listed in Table 1.
The daily cost under different environment is listed in Table 2. For a
sunny summer day, solar energy generation is the largest, so the
green ship has the smallest operational cost for each mode. For a
cloudy winter day, solar energy generation decreases the most, so
the operational cost is the largest. In the same season, solar gen-
eration on a sunny day is larger than a cloudy day, so the opera-
tional cost on a sunny day is smaller than a cloudy day. In the
comparison of summer and winter, daily solar generation in
summer is larger than winter, so the daily cost in summer is usually
smaller than winter for the sunny and cloudy weather, respectively.

(2) Effects of charging and discharging efficiency
To test effects of charging efficiency, the charging efficiency is set as
95%, 85%, 75%, 65%, and 55%, respectively. The other settings are
kept the same as listed in Table 1. Note that the initial SOC is 60%
and the discharging efficiency is 95%.
For the receding horizon control, the daily cost under different
charging efficiency is listed in Table 3. It can be observed that high
charging efficiency is preferred to reduce the daily cost. When the
battery gets old with low charging efficiency, the daily cost will
increase. Especially for the on-grid ship, more reward can be earned
when the charging efficiency is larger. It is suggested to retrofit a
new battery when the charging efficiency is lower than 70%.
To test the discharging efficiency, the discharging efficiency is set as
95%, 85%, 75%, 65% and 55% respectively. The other settings are
kept the same as listed in Table 1. Note that the initial SOC is 60%
and the charging efficiency is 85%.
The daily cost under different discharging efficiency is given in
Table 4. Effects of discharging efficiency are similar with those of
charging efficiency. The cost increases, as the battery has relatively
low discharging efficiency. A new battery is suggested for

Table 4
Daily cost under different discharging efficiencies.

ηD 95% 85% 75% 65% 55%

Off-grid cost ($) 1563.7 1564.5 1565.3 1566.1 1566.9
On-grid cost ($) 29.04 32.42 34.57 36.72 38.15
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0 5 10 15 20 25
Time (hour)

-50

-40

-30

-20

-10

0

10

20

30

40

50

P
ow

er
 (k

W
)

P1

P2

P3

P4

Fig. 8. Optimal power dispatching under the TOU-2 tariff.
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retrofitting when the discharging efficiency is lower than 80%.
(3) Effects of forecast error

To test effects of forecast error, the actual load demand is assumed
as 90% of the forecast of load, and the actual solar power is as-
sumed as 110% of the forecast of solar power at the first day. There
is no forecast error in the next two days in this test. The SOC sen-
sitivity on uncertain forecast errors is analyzed as shown in Fig. 7.
When no forecast error exists, the SOC profile is a baseline for the
sensitivity analysis. It can be observed that forecast errors of load
and solar cause variance of SOC. More power is stored in the battery
when the system has less load and more solar power than the
predicted values. The SOC profiles keep close and converge in finite
time, which can indicate the proposed receding horizon control has
good robustness when the forecast errors exist.
In comparison, the actual load demand is also assumed as 110% of
the load forecast, and the actual solar power is assumed as 110% of
the forecast. When the load demand is 90% and the PV power is
110%, the electricity cost decreases to $1356.1, because more solar
power is stored in the battery and less grid power is consumed.
When the load demand is 110% and the PV power is 90%, the
electricity cost increases to $1379.3, because the actual load de-
mand is larger than the forecast value. Note that the electricity cost
is $1368.4 if forecast error is zero.

(4) Effects of tariff change To test effects of different tariff, another TOU
tariff (denoted as TOU-2) is considered as

=

⎧

⎨

⎩

∈

∈ ⋃

∈ ⋃

ρ t
t
t
t

( )
0.132, [11, 17),
0.065, [19, 24) [0, 7),
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For the 24-h test of on-grid mode, the daily cost under TOU-1 tariff
is $29, but the daily cost under TOU-2 tariff is $-125.4. In other
words, the hybrid electric system can earn $125.4 under TOU-2
tariff. Fig. 8 shows the optimal solution to power dispatching.
Comparing Figs. 5(b) and 8, it can be observed that the optimal
solutions under different TOU tariffs are also different, as peak/off-
peak period and electricity price changes.

7. Conclusion

Considering effects of different tariff, power management of green
ship, with the PDB hybrid system, is studied in the receding horizon
control approach. Both the stand-alone and grid-connected modes are
considered in a unified power flow dispatching model. The receding
horizon control is proposed to iteratively optimize operational cost,
including possible fuel cost, wearing cost, and electricity cost.
Regardless of variant environmental conditions, optimal dispatching
strategies of green ship can be obtained to reduce fuel consumption and
GHG emission by about 3% per year.

Experimental results have indicated several conclusive points.
Firstly, the green ship is an effective resource to join in demand side
management. Under TOU tariffs, optimal power management of green
ship can contribute energy efficiency improvement on shipping in-
dustry and electricity market. Secondly, the capability of tariff-driven
dispatching is successful integrated in the unified model of power
management. Two working modes, i.e., off-grid management and on-
grid management, can be handled in an automatic way. Thirdly, re-
ceding horizon control is a robust approach to power management of
green ship. With the feedback mechanism, forecast errors and other
disturbance have been detected and corrected in the control, and the
performance of energy efficiency and cost saving is lasting.

The green ship studied in this paper is a retrofitted ship with hybrid
electrification. The proposed model can be extended to all-electric
green ships as future work. Multiple generation resources, such as dif-
ferent kinds of distributed energy and energy storage systems, will be
studied in the green ship in future.
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H I G H L I G H T S

• A power dispatching model is developed for a heat recovery cogeneration system.

• The model maximizes plant owner benefits considering power export to the grid.

• The cogeneration system designed generates both electrical and cooling power.

• Operation of furnaces is modeled to determine the waste heat available for recovery.

• Energy and cost savings obtained are used to evaluate feasibility of the system.

A R T I C L E I N F O

Keywords:
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Organic Rankine Cycle
Economic power dispatching
Optimal power flow

A B S T R A C T

A Organic Rankine Cycle waste heat recovery cogeneration system for heat recovery and power generation to
relieve grid pressure and save energy cost for a ferrochrome smelting plant is investigated. Through the recovery
and utilization of previously wasted heat from the facility’s internal smelting process off-gases, the cogeneration
system is introduced to generate electrical power to supply the on-site electricity demand and feed electricity
back to the utility grid when it is necessary and beneficial to do so. In addition, the cogeneration system gen-
erates cooling power through a lithium bromide-water solution absorption refrigeration cycle to meet the
cooling requirements of the plant. The heat recovery process for power generation is modeled and the optimal
power dispatching between the on-site loads and the utility grid is formulated as an economic power dispatching
(EPD) problem, which aims to maximize the plant’s economic benefits by means of minimizing the cost of
purchasing electricity from the utility and maximizing revenue from selling the generated electricity to the grid.
Application of the developed model to a ferrochrome smelting plant in South Africa is presented as a case study.
It is found that, for the studied case, more than $1,290,000 annual savings can be obtained as a result of the
proposed heat recovery power generation system and the associated EPD model. In addition to this, more than
$920,000 annual savings is obtained as a result of the generated cooling power via the proposed absorption
refrigeration system. The combined cogeneration system is able to generate up to 4.4 MW electrical power and
11.3 MW cooling power from the recovered thermal energy that was previously wasted.

1. Introduction

The world is in the midst of an energy crisis where a limited energy
generation capacity is struggling to keep up with a continuously in-
creasing demand for energy. This is particularly the case in South
Africa. It has therefore never been more crucial to look towards and
embrace renewable energy resources and new energy technologies to
aid in the alleviation of this energy crisis. In conjunction with tech-
nology development, the recovery and utilization of waste energy have
shown significant potential in the management of this crisis by

introducing considerable energy savings [1,2]. One such energy saving
opportunity exists in the mining and smelting industry, for example in
the ferrochrome (FeCr) industry, in the form of furnace off-gas thermal
energy recovery.

It was estimated that around 80% of the world’s chromium deposits
can be found in the Bushveld Complex in South Africa, which spans an
estimated cumulative diameter of almost 300 km [3,4]. Because of the
sheer size of the area and the overwhelming deposits of precious metals,
such as chromium, in the Complex rock, the mining and smelting of these
metals form a vital and influential sector of South Africa’s economy [4].
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The smelting of chrome is an energy-intensive production process
requiring approximately 3.3–3.8 MWh of electrical energy per ton of
FeCr produced [5]. Of the country’s 40 GW supply capacity, Ferro-Alloy
smelting industries account for almost 5%, a staggering 2 GW of re-
quired power.1 FeCr industries in South Africa have become severely
constrained nowadays because of their high energy intensity and the
increasing electricity price in the country. As a result, these industries
need to seek solutions for more efficient utilization of the limited en-
ergy supply, which involves improving operational technologies and
processes, and the potential recovery and re-use of wasted energy.
Through such improvements, the efficiency of energy utilization can be
improved and an overall improvement in the country’s economy can be
achieved by allowing the FeCr industries to be competitive on a global
scale once again.

Various methods and techniques for increasing energy efficiency in
the chrome smelting industry have been reported [6–8]. An important
topic, the utilization of waste thermal energy for the generation of
useful energy, has recently come under scrutiny.

The smelting processes of chrome involve the separation and fusion
of materials according to process-specific chemical reactions inside a
molten material bath in order to produce FeCr. The chemical processes
and reactions require a carbonaceous reductant and extremely high
temperatures for the extraction of iron (Fe) and chromium (Cr) metals
from the raw feed material, which ultimately fuse to form FeCr
[9,5,10].

The two most important furnace internal chemical reactions are
therefore the reduction of iron and chromium oxides in the raw mate-
rial, FeO and Cr2O3 respectively, to produce the Fe and Cr. A byproduct
of the smelting process and the chemical reactions, along with heat, is
carbon monoxide (CO) gas. Because of the open nature of the furnaces

and the extremely high temperatures, the CO gas exiting the top of the
furnace auto-ignites, using oxygen in the surrounding air to produce
carbon dioxide (CO2). The heat, CO2 gas and dust particles thrown up
from the raw material feed process are extracted from the furnaces and
treated at the bagplant section of the facility. Currently, these off-gases
are extracted by induced draft fans (ID fans) and passed through
trombone coolers, which utilize vast surface areas and ambient tem-
perature to cool the hot material. The cooled off-gasses then flow to the
bagplant where they are combined with water and pumped to slimes
dams for treatment.

Significant waste of energy occurs in the current cooling process
because the thermal energy of the extracted hot material is simply
dissipated into the atmosphere. The implementation of a cogeneration
system instead of the trombone coolers will allow for the recovery and
utilization of the wasted thermal energy for the generation of elec-
tricity. In the literature, many applications of waste heat recovery
technologies to industrial processes have been published. For example,
application of a waste heat recovery system to a company manu-
facturing large ship and offshore oil-platform chains was reported in
[11], with the focus on determining the size of the main cogeneration
equipment. A similar study on the recovery of multiple waste heat
streams in a refinery was done by [12], in which the procedures for
designing the heat recovery network were presented in detail. Only
preliminary studies on the application cogeneration systems utilizing
furnace off-gasses in FeCr smelting plants have been reported [13].
According to the literature, a waste heat recovery system is most sui-
table for implementation in a FeCr smelting industry that rejects heat
from the furnaces at medium to high temperatures via the off-gas ex-
traction system [14–16]. In addition to electricity generation, an ab-
sorption refrigeration cycle can be used to generate cooling power by
utilizing the byproduct of the electricity generating system, low-grade
thermal energy, which is traditionally directed to the power generation
cycle cooling system [17,18]. Therefore, a combined cogeneration

Nomenclature

AD maximum installed access demand for consumption in
MVA

CACr consumption administration charge rate in $/day
COP coefficient of performance of the cooling system
CRC consumption reliability charge in $
CRCr consumption reliability charge rate in $/kWh
CSCr consumption service charge rate in $/day
Cph specific heat of hot material in kJ/kg·K
DLF distribution loss factor
E electrical power generated by the cogeneration system in

MW
ERCr electricity and rural subsidy charge rate in $/MWh
GACr the generation administration charge rate in $/day
GRC generation reliability charge in $
GRCr generation reliability charge rate in $/kWh
GSCr the generation service charge rate in $/day
NACr consumption network access charge rate in $/MVA
NDCr network demand charge rate in $/MVA
Pi j

load
, active power consumption of the plant, including con-

sumptions of furnaces and induced draft fans, in MW
Qh

k heat transfer of the k-th furnace in kW
Qcool cold, cooling power generated by the cooling system in MW
Qcool low, available low temperature power in MW
Qh total, total extracted heat in MW
Si j

load
, apparent power consumption of the plant, including con-

sumptions of furnaces and induced draft fans, in MVA
TLF transmission loss factor
TNCr transmission network charge rate in $/MVA

Tcold temperature of hot material outlet from heat exchanger in
°C

Thot temperature of hot material inlet to heat exchanger in °C
ULVSCr the urban low voltage subsidy charge rate in $/MVA
% sCr O ,2 3 the mass percentages of the Cr2O3 in a dry sample of the

ore
% sFeO, the mass percentages of the FeO in a dry sample of the ore

in kg/s
%H O2 the required moisture percentage in the feed ore to a

furnace
ηne net efficiency of the ORC electricity generation system
gAD maximum installed access demand for generation in MVA
gNACr the generation network access charge rate in $/MVA
mh

k hot material mass flow rate of the k-th furnace in kg/s
mCO2 the mass flow rate of CO2 extracted from the off-gas of a

furnace in kg/s
mCr O2 3 the mass flow rate of Cr2O3 to a furnace in kg/s
mFeO the mass flow rate of FeO to a furnace in kg/s
mN2 the mass flow rate of N2 in the extracted hot material from

a furnace in kg/s
mO2 the mass flow rate of O2 in the extracted hot material from

a furnace in kg/s
more the mass flow rate of the raw material ore to a furnace in

kg/s
n number of furnaces
p p p, ,p s o the price for energy consumed in $/MWh during peak,

standard and off-peak periods, respectively
p p p, ,p

g
s
g

o
g the price for energy sold in $/MWh during peak, standard

and off-peak periods, respectively

1 Rodney Jones. Electric Smelting in Southern Africa. http://www.mintek.co.za/
Pyromet/Files/2013Jones-ElectricSmelting.pdf.
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system is proposed for the recovery and utilization of thermal energy
rejected from the smelting process for the generation of additional
electrical and cooling energy in this study.

The facilities required for the cogeneration system are widely
available today [19,20,17,21]; a waste heat recovery system using
Organic Rankine Cycle (ORC) [22–25] as working fluid is identified as
the most suitable waste heat recovery system for the specific applica-
tion. A waste heat recovery cogeneration system from Turboden s.r.l.
was considered for electricity generation and a lithium bromide-water
solution absorption refrigeration system recommended by Voltas
Technologies was adopted as the core equipment for cooling power
generation. The interest of this study is, in particular, the optimal op-
eration of this system when applied to FeCr smelting plants. Existing
studies on heat recovery cogeneration systems either do not consider
the power management of such facilities or only study stand-alone
operations of such systems. No study on the operation optimization of
such systems in a grid-tied environment has been reported so far. Lack
of such operating strategies leads to poor performance of the system in
terms of both operating efficiency and financial benefits to the plant
owner. This is evidenced by many studies concluding that the proper
operation and planning of the equipment and facilities are some of the
key factors affecting the effectiveness of systems in both the industrial
and residential sectors [26–31]. For instance, energy and associated
cost savings were achieved by optimal operation of mining facilities,
such as conveyor belts, crushers, coal washing plants and so on
[32–40]. Moreover, existing studies on the application of heat recovery
cogeneration systems to mineral processing plants, such as [41], are
centered around the detailed modeling of the heat recovery efficiency
instead of looking into the availability of the thermal energy for re-
covery and optimal operation of the cogeneration systems.

The heat recovery cogeneration system studied in this paper pro-
duces on-site electricity and cooling power supply for the plant and
provides support and assistance to the utility grid by feeding the gen-
erated energy back into the grid during severely high demand periods.
This not only helps the national grid but also enables the mine to obtain
savings either through the substitution of electrical energy consumed
directly from the utility grid or through the export of the generated
electrical energy to the utility grid. Optimal operation of the proposed
combined cogeneration system in such a grid-connected environment is
a challenging task that depends heavily on the operating status of both
the on-site smelting processes and the utility grid. The main function of
the operation strategy is similar to the traditional economic power
dispatching (EPD) problem [42,36,43–46] and the power flow man-
agement problem of hybrid renewable energy systems [47–51]. How-
ever, the EPD for the studied cogeneration system is even more chal-
lenging. Firstly, unlike the traditional power dispatching for power
plants, the power generated by the cogeneration system is not con-
trollable because it is directly affected by the process generating the
waste heat. Secondly, the amount of waste heat available from the FeCr
smelting plant is difficult to determine because of the chemical reac-
tions involved. Therefore, this study focuses on the development of an
EPD algorithm that optimizes the operation of an on-site cogeneration
system tied to the national grid in order to maximize the benefits of the
plant and help to relieve grid strain by feeding electricity back into the
grid during peak demand periods. This will make an already im-
plemented cogeneration system more efficient and help to reach the
potential benefits of introducing a new cogeneration system to the plant
from the plant owner’s perspective. From the utility’s point of view, the
cogeneration system, together with its optimal operation strategy, helps
to deal with peak demand and reducing the its generating costs.

The rest of this study is organized as follows: Section 2 presents the
modeling process of the waste thermal energy carried in the furnace off-
gas together with the efficiencies of the cogeneration system to de-
termine its potential electricity and cooling power generation capacity.
The EPD problem is formulated in Section 3. Section 4 provides a case
study based on a real world mine in South Africa, followed by some

further discussions on the results achieved in Section 5. Finally, con-
clusions are given in Section 6.

2. Modeling of the cogeneration system

In order to determine the electrical and cooling power generation
capacity of the cogeneration system, the available heat from the in-
ternal material smelting process and the efficiencies of the cogeneration
system must be determined first. A brief description the FeCr smelting
process, the determination of the available waste heat for cogeneration,
and modeling of the electrical and cooling power generation systems
are given in the following subsections. In particular, the furnace process
is modeled from first principles to determine the available heat for
recovery. After that, the efficiencies of the electrical and cooling power
generation facilities are estimated based on manufacture supplied in-
formation. Finally, an EPD model is developed to optimally control the
power flows between the cogeneration system, the on-site load, and the
utility grid in pursuit of maximizing the plant owners benefits.

2.1. Description of the FeCr smelting process

The FeCr smelting plant studied utilizes three-phase AC submerged-
electrode arc furnaces for the smelting of raw materials to form a
molten bath. This bath is tapped off from the furnaces at regular in-
tervals throughout the day and separated into waste slag and molten
FeCr using a density separator. After the cooling, crushing and treat-
ment processes, the FeCr is stored in a range of rock sizes for dispatch.
The product FeCr is used in the manufacture of stainless steel.

The furnaces operate at a temperature around 1500 °C. Hot dust and
gas are extracted from the furnaces via extraction vents and stacks, at
trend-based temperatures from 250 °C to 600 °C, which are determined
by the operating conditions of the furnaces. The hot material is then
transferred via the extraction ducts to a bagplant, where it is com-
pressed into a fine powder and mixed with water to produce sludge.
This sludge is pumped to slimes dams around the facility for treatment.
In the existing system, an intermediate cooling process using trombone
coolers is implemented between the furnaces and the bagplant to bring
the temperature of the hot materials below the maximum temperature
rating of the bags to ensure safety. It is proposed to implement a waste
heat recovery cogeneration system, consisting of a heat exchanger for
thermal energy recovery and a turbine generator for electricity gen-
eration, instead of the trombone coolers to generate electricity from the
waste heat, while still performing the required cooling of the extracted
hot material.

2.2. Calculation of available recovered heat

The calculation of the total available heat from the furnace off-gases
requires the temperatures of the hot materials before and after the
proposed heat recovery cogeneration system. The temperatures before
and after the trombone coolers are used to determine the available heat
per furnace and then combined into total available heat for the co-
generation system. The available heat from each furnace is calculated
by:

= −Q m C T T( ),h
k

h
k

ph hot cold (1)

where mh
k is the sum of the flow rates of CO2, N2 and O2 gasses de-

termined according to the furnace feed receipt and the relevant che-
mical reactions.

The calculations of mh
k begin with the calculation of the actual mass

flow rates of FeO and Cr2O3 in the raw feed material by

= −m m% (1 % ),s oreFeO FeO, H O2 (2)

= −m m% (1 % ).s oreCr O Cr O , H O2 3 2 3 2 (3)

Thereafter, the constitution of the off-gas is then calculated according
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to the following chemical reactions:

+ = +FeO C Fe CO, (4)

+ = +Cr O 3 C 2Cr 3CO,2 3 (5)

+ =2CO O 2CO .2 2 (6)

Using Eqs. (4)–(6), the mass flow rate of CO2, mCO2, in the hot material
can be obtained. The total mass flow rate of hot materials mh

k is then
obtained by

= + +m m m mh
k

CO N O2 2 2

considering the excess air flows, consisting of N2 and O2 gases, caused
by the operation of ID fans.

To account for the operational status of the system, such as the
furnaces being off at certain time intervals for maintenance, potential
faults in the temperature sensors and the minimum temperature re-
quired for the recovery of heat via the ORC cogeneration system, two
vital assumptions are made to facilitate the estimation of the overall
available heat. These assumptions, which apply to each furnace in-
dividually, are:

• If the furnace outlet extracted off-gas temperature is below 200 °C at
a time instant, the actual furnace itself is assumed to be off, and the
overall heat recovery cogeneration system will not consider this
specific furnace during this time interval.

• If the measured bagplant inlet off-gas temperature is higher than the
measured furnace outlet off-gas temperature, the heat recovery
process cannot occur, and the overall heat recovery cogeneration
system will once again not consider this specific furnace during this
time interval.

In particular, the above assumptions are realized by means of the
flow control of ID fans used to extract the off-gasses for each furnace,
i.e. if a furnace is off, the flow rate of the corresponding ID fan will be
set to zero. With the aforementioned assumptions, the overall extracted
heat available for cogeneration can be calculated using (7).

∑=

=

Q Q0.001 .h total
k

n

h
k

,
1 (7)

2.3. Systems for electrical and cooling power generation

For the specific application, Turboden s.r.l., an Italian leading
company in the production and development of ORC heat recovery and
turbo generator solutions,2 was consulted and a specialised heat re-
covery ORC power generation system was recommended based on the
information on the plant shown in Table 1.

The most appropriate working fluid selected by Turboden s.r.l. was
Hexamethyldisiloxane. The proposed indirect exchange ORC heat re-
covery cogeneration system is shown in Fig. 1, in which the thermal
energy is transferred from the furnace off-gases to the power generation
ORC working fluid via the intermediate heat exchanger which utilizes
thermal oil as the heat transfer medium. The ORC working fluid absorbs
the heat transferred and is vaporized. The fluid vapor then expands
through the turbine which drives an electric generator. The ORC
working fluid in the vaporous phase that leaves the turbine passes
through the regenerator component, where it is condensed utilizing the
condenser and water cooling subsystems. Finally, the working fluid,
pre-heated by an internal heat exchanger, cycles back at the required
pressure by means of the flow control pressurizing pump and is passed
back to the main heat exchanger where the cycle begins again.

Therefore, the power generation cycle in Fig. 1 produces electricity
and low temperature heat through the closed thermodynamic cycle that

enforces the working fluid to change as defined by the working fluid’s
characteristic ORC. From the evaluation performed by Turboden s.r.l.
utilising the data and descriptions shown in Table 1, the proposed
system and performance calculations are shown in Table 2. The net
electricity produced by the Rurboden TD40 ORC unit is obtained by

=E η Q ,ne h total, (8)

where ηne = net electrical output power/net available thermal
power × 100% = 23% for the specific unit.

Traditionally, the low-temperature heat from the ORC cogeneration
system is dissipated into the atmosphere via the cooling subsystem. The
utilization of the absorption refrigeration cycle allows for the use of this
low-grade heat for cooling and refrigeration applications, thereby fur-
ther improving the overall system energy utilization efficiency. The
amount of low-temperature thermal power available, 12.78 MW in the
system design case (shown in Table 2), is calculated using

= − −Q η Q(100% 2%) .cool low ne h total, , (9)

The low-temperature thermal power calculated in (9) is in the form
of hot water. This is because it is the water in the cooling subsystem
that picks up the low-grade heat from the power generation cycle via
the condenser component. For the suitable operation of an absorption
refrigeration cycle, the cooling system fuel or supply heat must be in the
form of hot water around 92 °C. Although the proposed power gen-
eration system usually operates with condenser design inlet and outlet
cooling water temperatures of 23 °C and 30 °C respectively, these de-
sign values can be altered with a relatively small reduction in the net
efficiency of the electricity generating cogeneration system (about a
2%) in order to obtain a condenser cooling water outlet at approxi-
mately 90 °C. Therefore it is assumed that the cooling water exiting the
condenser of the power generation system, hot water at approximately
92 °C, will be an acceptable fuel source for the absorption refrigeration
system. The utilization of this low-grade thermal energy results in a net
efficiency decrease of 2% for the electrical power-generating unit.

A lithium bromide-water solution absorption refrigeration cycle

Table 1
Customer supplied and assumed system data descriptions.

Data description Source Data value Unit

Thermal energy source Customer Smelting off-
gases

–

Number of furnaces Customer 4 –
Total exhaust gas flow rate Customer 73.5 kg/s
Average exhaust gas temperature Customer 413 °C
Minimum exhaust gas temperature Customer 200 °C
Average air temperature (dry bulb) Assumed 23 °C
Average cooling water temperature (tower

water)
Assumed 30 °C

Grid voltage connection for unit Assumed Medium voltage –

Process off gas

Intermediate heat 
exchanger with 
thermal oil loop

Evaporator/
Main Heat 
Exchanger

Turbine

Electrical 
Generator

Regenerator

Condenser

Pump

Water Cooling 
System

Fig. 1. Turboden s.r.l. indirect exchange ORC heat recovery cogeneration system.

2 Turboden s.r.l.: http://www.turboden.eu/en/home.index.php.
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recommended by Voltas Technologies is chosen for the cooling power
generation. Fig. 2 shows the diagram of this cooling power generating
unit. The coefficient of performance (COP) of this cooling system is 0.7.
Therefore Eq. (10) is used to calculate the cooling power output.

= × =Q COP Q Q0.7 .cool cold cool low cool low, , , (10)

The equations from (1)–(10) will be used to determine the available
heat from the smelting process, the generated cooling power, and the
generated electrical power, which is then used by the EPD algorithm to
develop the optimal power dispatch schedule in the following section.

3. EPD model development

The cogeneration system and the energy flow diagram is shown in
Fig. 3. As mentioned earlier, the EPD model determines the optimal
dispatching of the generated electricity, E, between the on-site loads
and the utility grid so that the maximum possible overall savings can be
obtained.

The decision variable of the EPD problem is thus the amount of
generated electricity, denoted by Ci j, in MW, that is dispatched back to
the furnace loads. In = …C i m, 1,2, ,i j, is the index of days in a month and

= …j 1,2, ,48 is the index of hours in a day. To account for the maximum
demand charge cost of the plant, which is determined by the recorded
maximum power drawn by the plant in a month, the EPD problem is
formulated over the period of a month. The sampling period of the EPD
problem is taken as half an hour, which is the integrating period of the
utility for energy and demand charges, to ease calculations of the
overall cost.

The system’s overall cost to be minimized is the sum of the system-
related energy costs/incentives, use-of-service (UoS) charges and costs,
and costs associated with the generation of energy via the cogeneration
system. The overall energy cost represents all costs associated with the
consumption of energy from the utility grid less the financial incentives
obtained through the sell-back of cogeneration generated power to the
utility grid. The UoS charges and costs account for all costs and rebates
associated with the power supply from the utility grid, including ad-
ministration and network reliability costs. Lastly, the power generation
costs include all costs that are incurred through the process of gen-
erating the additional useful electricity via the cogeneration system. To
be specific, the cost of power generation includes two parts. The first
part is the captive power consumed by the cogeneration system, which

is accounted for by (8). The second part is the energy cost of the op-
eration of the ID fans, which is part of the on-site loads.

The overall objective function of the EPD model is therefore sum-
marised in the following equation:

=

− +

Overall Cost cost of on-site energy consumption

total incentive from sold energy UoS charges. (11)

According to the consumption and generation tariff structures set by the
local utility, Eskom, overall energy consumption and generation costs
are to be determined according to the time-of-use (TOU) tariff [52,53]:

=

⎧

⎨

⎪

⎩
⎪

∈ … ∪ …

∈ ∪ … ∪

∈ … ∪

p
p j
p j
p j

, if {15,16, ,20} {37,38, ,40};
, if {13,14} {21,22, ,36} {41,42,43,44};
, if {1,2, ,12} {45,46,47,48}.

j

p

s

o (12)

Therefore the cost function must account for these TOU periods
using peak, standard and off-peak TOU period flag variables. The peak,
standard and off-peak flag variables take values of either one or zero
and are defined by =P 1i j, if = ∈ … ∪ … =D i j S( ) 1, {15, ,20} {37, ,40}; 1i j, if

= ∈ ∪ … ∪ …D i j( ) 1, {13,14} {21, ,36} {41, ,44} or = ∈ ∪D i j( ) 2,
… ∪ …{15 ,24} {37 ,40}; and =O 1i j, if D = ∈ ∪ …i j( ) 1, {1,12} {45, ,48} or

= ∈ ∪D i j( ) 2, … ∪ … ∪ …{1 ,14} {25 ,36} {41, ,48} or D = ∈ ∪ …i j( ) 3, {1 ,48}
with D i( ) defined by

=

⎧

⎨

⎩

D i
i
i
i

( )
1, if day is a Weekday;
2, if day is a Saturday;
3, if day is a Sunday. (13)

With the optimization variables and TOU periods defined, the
overall system costs for the plant can be determined. The relevant costs
under the MEGAFLEX tariff structure [52,53] are discussed in the fol-
lowing subsections.

3.1. Energy consumption-related costs

3.1.1. Network demand charge
A consumption network demand charge (NDC) for the plant’s

maximum demand is shown in (14).

⎜ ⎟=
⎡

⎣
⎢

× ⎛

⎝

− ⎞

⎠

× +
⎤

⎦
⎥

×

SNDC P S

NDC i j

max | | 1 ( )

, for all and

i j
load C

P i j i j

r

, , ,
i j

i j
load

,

,

(14)

3.1.2. Active energy consumption charges
The peak, standard and off-peak active energy consumption

charges, PEC, SEC and OEC, respectively, for the total amount of energy
consumed, are shown in (15)–(17).

∑ ∑= − ×

= =

PEC p P C P0.5 [( ) ]p
i

m

j
i j
load

i j i j
1 1

48

, , ,
(15)

Table 2
Turboden s.r.l. system and calculated performance characteristics.

Data description Source Data value Unit

Heat source calculations
Output temperature from exchanger Turboden 200 °C
Exhaust gas average specific heat

capacity
Turboden 1.1 kJ/kg.K

Heat losses from heat exchanger Turboden 2 %
Net available thermal power Calculated 17,060 kW

ORC power generation unit
ORC unit type Turboden TD40 –
Heat exchange configuration Turboden Indirect exchange –
ORC gross power output at generator

terminals
Calculated 4130 kW

ORC captive power consumption Calculated 195 kW
ORC net output power Calculated 3935 kW
Thermal power to cooling source Calculated 12,700 kW

Electrical generator
Generator type Turboden Asynchronous –
Generator frequency Turboden 50 Hz
Generator voltage Turboden Medium voltage –

Cooling subsystem (if required)
Cooling type (ORC condenser) Turboden Dry WCC –
Cooling system internal consumption Calculated 180 kW

Strong Solution

Weak Solution

Fuel heat in

Generator

Absorber

Condenser

Evaporator

Hot water in

Chilled water out

1
2

3
4

5

67

8

Fig. 2. System incorporated lithium bromide-water solution absorption refrigeration
cycle.
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∑ ∑= − ×

= =

SEC p P C S0.5 [( ) ]s
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1 1
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(16)

∑ ∑= − ×
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OEC p P C O0.5 [( ) ]o
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j
i j
load

i j i j
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48

, , ,
(17)

3.1.3. Consumption network related charges
A consumption network access charge (NAC) based on the voltage

of power supply and the annual utilised capacity is shown in (18).

= ×NAC AD NACr (18)

A transmission network charge (TNC) is shown in (19).

= ×TNC AD TNCr (19)

An urban low voltage subsidy charge (ULVSC) is determined by
(20).

= ×ULVSC AD ULVSCr (20)

3.1.4. Electrification and rural subsidy charge
An electrification and rural subsidy charge (ERC), applied to the

total amount of active energy consumed, is shown in (21).

∑ ∑= − × + +

= =

ERC ERC P C P S O0.5 [( ) ( )]r
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1 1

48

, , , , ,
(21)

3.1.5. Reactive energy charge
A reactive energy charge (REC) based on the total amount of excess

reactive energy required by the plant is shown in (22).
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3.1.6. Consumption service and administration charges
A consumption administration charge (CAC) and a consumption

service charge (CSC) for the utilisation of the utility grid are shown in
(23) and (24).

= ×CAC m CACr (23)

= ×CSC m CSCr (24)

3.2. Energy generation related costs

3.2.1. Generation network access charge
A generation network access charge (gNAC) for the cogeneration

system to sell electricity back to the grid is shown in (25).

= ×gNAC gAD gNACr (25)

3.2.2. Active energy generation charges and total rebate
Peak, standard and off-peak active energy generation incentives,

PEI, SEI and OEI respectively, for the total amount of active energy sold
to or wheeled through the utility grid to third party customers, and a
rebate to be subtracted from the gNAC, shown in (26)–(29).
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∑ ∑= − ×
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1 1

48

, , ,
(28)

= + + × × −PEI SEI OEI DLF TLFRebate ( ) ( 1) (29)

The distribution and transmission loss factors, DLF and TLF, in Eq.
(29) are given in [52,53]. The rebate is to be subtracted from gNAC only
if this charge is applicable. If the gNAC is not applicable, the rebate will
be 0.

3.2.3. Generation service and administration charges
A generation administration charge (GAC) and a generation service

charge (GSC) for the utilisation of the utility grid are shown in (30) and
(31).

= ×GAC m GACr (30)

= ×GSC m GSCr (31)

3.3. System network reliability service charge

A combined reliability service charge (RSC) based on the supply
voltage of the utility grid for both energy consumption and generation
is shown in (32)–(34).

∑ ∑= − × + +
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∑ ∑= − × + +
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=RSC CRC GRCmax( , ). (34)

3.4. The final cost function

Considering all costs discussed in Sections 3.1–3.3, the final cost
function of the EPD problem is re-written as:

= + + + + +

+ + + +

+ + − + +

+ + +

Cost NDC PEC SEC OEC ERC REC
CAC CSC TNC NAC gNAC

ULVSC PEI SEI OEI
GAC GSC RSC

( )
max( : (

Rebate)) ( )
. (35)

The EPD optimization problem is eventually formulated as mini-
mizing system associated cost (35) subject to the available heat for
cogeneration (7), the efficiencies of the electrical and cooling power
generating units detailed in Sections 2.2 and 2.3, and the energy con-
sumption of the plant.

Fig. 3. Waste heat recovery cogeneration system and EPD model energy flow diagram.
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4. Case study and result analysis

4.1. EPD model data requirements

A case study of a chrome smelting plant in South Africa that utilizes
four AC submerged electrode arc furnaces is presented. The EPD algo-
rithm utilizes the raw facility and process-related data in order to cal-
culate the energy generation capacity of the proposed cogeneration
system. In particular, the raw data required include the real and ap-
parent load powers of all four furnaces and the associated induced draft
fans, in MW and MVA respectively, and the extracted off-gas tem-
peratures before and after the cogeneration system. All data were ob-
tained with corresponding date-time stamps (yyyy/mm/dd hh:mm)
with a sampling period of half an hour.

The EPD algorithm utilizes a monthly-based cost function and
therefore requires an entire month’s data for the optimal power dis-
patch schedule development. However, the EPD model is expected to
operate in real-time, generating a current optimal power dispatch
schedule for any time interval in a given month. A forecast model based
on historical data is developed to facilitate the real-time operation of
the EPD model. The forecast model developed predicts the average
daily load profile data array using historical data acquired. This forecast
data array is then used by the EPD model and updated every 30 min by
the most recent measurement.

The main objective of the EPD model is to provide the facility with
energy and cost savings. Therefore, the primary and most important
result is the overall system associated energy and cost savings from the
heat recovery cogeneration system and the associated EPD model. In
addition, this study also serves to investigate the overall capacity of the
previously wasted thermal energy from the off-gasses and the cooling
power capacity that can be additionally generated using the byproduct,
low-grade thermal energy, of the waste heat recovery system.

Process and facility-related raw data were obtained for the time
period from 2014/08/01 00:00 to 2014/11/12 12:30. The EPD model
was tested using a winter and a summer month, August 2014 and
October 2014 respectively, to investigate the effect of seasonal varia-
tions.

4.2. Potential of the cogeneration system

Fig. 4 shows the combined on-site loads of the plant studied and the
corresponding available thermal powers that can be used by the co-
generation system for a winter month (August) and a summer month
(October).

Making use of the raw data and the characteristics of the combined
cogeneration system, Fig. 5 depicts the average daily profiles of gen-
erated electricity and cooling power from the combined cogeneration
system for the studied winter and summer months. In addition, Table 3
shows statistics on the profiles in Figs. 4 and 5 and the overall waste
thermal energy recovery efficiency of the cogeneration system.

4.3. EPD developed optimal power flow schedule

The EPD optimization problem is solved by the sqp algorithm built
into Matlab. The optimal power dispatch schedule is generated for each
half hour interval in the given month. In real-time operation, as time
goes by and the following time interval is reached, a new optimal power
dispatch schedule is calculated according to the most recent measure-
ment. This process continues until the end of the given month and starts
again at the beginning of the following month.

Because of the relatively recent nature of feeding electrical power
back to the utility grid in South Africa, no specific feed-in energy tariff
structure has been implemented. Currently, a facility feeding electrical
power back into the grid obtains a financial incentive from a third-party
customer, or Eskom itself, which buys this electrical power. The rates
that are implemented for this transaction are the base or wholesale
electricity pricing system (WEPS) energy rates. It is noticed that the
WEPS energy rates have a significant impact on the EPD model sche-
dule and the overall system associated savings. The WEPS energy rates
set by the local utility [52] were found to be too low to allow for or
encourage the feed of electrical power back into the utility grid. Con-
sequently, the EPD schedule that was developed dispatched all gener-
ated electricity to the on-site loads. For the purpose of this research, the
WEPS energy rates are adjusted in order to fully investigate the benefits
of the cogeneration system under competitive feed-in tariffs. Table 4
shows the adjusted WEPS energy rates.

The schedules generated by the EPD model for a winter day, 05
August 2014, and a summer day, 10 October 2014, under the adjusted
WEPS rates are presented in Figs. 6 and 7, in which different color
backgrounds represent the peak (red3), standard (yellow) and offpeak
(green) periods of the TOU tariff. From these figures, it can be seen that
if the WEPS rates encourage this, the EPD would feed the cogeneration
generated power back to the grid to support the utility during critical
periods.

4.4. System and facility associated savings

To investigate the financial benefits and viability of the proposed
cogeneration system, the final system associated cost savings are cal-
culated by subtracting the energy costs of the plant after implementa-
tion of the cogeneration system and the associated EPD algorithm from
that of the existing system. This is in line with standard protocols on
measurement and verification of energy savings (theory and case stu-
dies of measurement and verification can be found in [54,55]).

For the chosen winter and summer months the final calculated cost
savings obtained are shown in Table 5. Assuming these cost savings are
similarly achieved for each winter and summer month respectively, an
approximate annual energy cost savings figure of $1351282.80 can be
obtained for the plant.

Fig. 4. Average on-site load and recovered heat.

Fig. 5. Average daily generated electricity and cooling power.

3 For interpretation of color in Figs. 6 and 7, the reader is referred to the web version of
this article.
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4.5. Additional savings from generated cooling power

There are many requirements for cooling throughout the plant, the
most prominent being the cooling plant that provides cooling water for
the furnace shells. Additional cooling requirements include cooling fans
throughout the plant in numerous plant rooms such as the transformer
rooms and the hydraulic rooms, office buildings, and so on. The studied
plant requires a total facility-wide cooling power of 1.81 MW. The total
combined average available cooling power generated via the combined
cogeneration system is significantly more than the required cooling
capacity of the facility as shown in Section 4.2.

Additional cost savings can be calculated by applying the
MEGAFLEX active energy charges to the cooling demand of the plant
that is now supplied by the combined cogeneration system. Also, the
furnace load can be further reduced because of the reduction in the
cooling power required by the furnaces. Utilizing the chosen winter and
summer months to calculate additional savings, the overall additional
savings are obtained:

• $46742.37 and $30007.80 savings from reduction of the furnace
load for August and October 2014, respectively.

• $43658.72 and $45502.95 savings from substituted cooling power
for August and October 2014, respectively.

Again assuming these savings are similarly achieved for each
summer and winter month, an approximate annual cost savings of
$2302082.93 can be obtained for the plant, an increase of $950800.13
due to the utilization of the available cooling power from the proposed
absorption refrigeration system.

5. Further discussion of the EPD model results

5.1. Projected payback period

The cogeneration and power generation technologies are still rela-
tively expensive and the success of such a system or project is often
determined by its payback period, which is the time it takes for the
savings to pay back the capital or project start-up costs. A summary of
the potential costs required for the implementation of the proposed
combined system is shown in Table 6. Taking into account additional

costs for installation and labor, the payback period for the entire system
is found to be from 4 to 5 years, which is acceptable for industrial
projects.

5.2. Seasonal variations

The results obtained for winter and summer months are compared
with each other to identify the seasonal performance variations. It is
found that, although the results do not differ significantly, the comfort
cooling required throughout the facility is considerably less in winter.
In fact, heating is required rather than cooling in winter. Therefore, an
improvement in the system could be made to provide the facility with
comfort heating during winter months. In general, it is noticed that
slightly more, about 0.18%, cost savings are obtained during winter
months. This is because of the much higher active energy consumption
rates during winter months, especially during peak and standard TOU
periods. Being able to significantly reduce the amount of active energy
consumed from the utility grid by the cogeneration system allowed for
the slight increase in the overall system associated cost savings during
winter months.

5.3. Potential improvements

A number of improvements are identified with regards to this re-
search. The most significant improvements identified are:

Table 3
Statistics on the combined averaged daily profiles.

Results Winter: August 2014 Summer: October 2014

Minimum Average Maximum Minimum Average Maximum

Average daily load: Pload (MW) 84 92.81 100 100 109.5 118
Average daily recovered heat: Qh total, (MW) 11 12.85 14 13 14.26 16
Average daily generated electricity: E (MW) 2.4 2.71 2.9 2.7 3 3.3
Average daily generated cooling power: Qcool cold, (MW) 6.2 6.92 7.4 7.1 7.68 8.3

Average overall waste energy utilization (cooling + electrical) efficiency (%) 74.94 74.89

Table 4
Initial and adjusted WEPS energy rates.

Peak (c/kWh) Standard (c/kWh) Off-Peak (c/kWh)

Adjusted rates for high demand season
Initial WEPS rates 17.16 5.20 2.82
Adjusted WEPS rates 19.45 6.27 3.61
% Increase 13.39 20.61 28.05

Adjusted rates for low demand season
Initial WEPS rates 5.60 3.85 2.44
Adjusted WEPS rates 6.69 4.75 3.19
% Increase 19.50 23.43 30.69
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• The thermal energy recovery efficiency can be improved by al-
lowing for a lower bagplant inlet temperature.

• The thermal energy recovery efficiency can be improved by convert
the open furnaces to closed ones. This will allow for the direct
burning of the CO gas in a gas combustion engine, which is much
more efficient than the proposed power generation system.

• The excess cooling power, more than 5 MW, can be sold and dis-
patched to outlying or adjacent facilities to meet additional cooling
requirements and to allow for additional financial incentives.

6. Conclusion

Obtaining an optimal operation strategy for cogeneration systems in
a grid-connected environment is a challenging task, which has not been
well studied in the literature. In this study, the optimal operation of a
grid-tied cogeneration system aiming at maximizing the benefits of a
ferrochrome smelting plant and aiding the utility grid during peak de-
mand periods is formulated into an optimization problem. The raw
material smelting processes and the characteristics of the cogeneration
system are modeled first to determine the available process waste heat
and the corresponding electrical and cooling power generation capa-
cities of the cogeneration system. The optimization model is designed to
make use of the process models and the consumption and feed-in tariffs
determined by the utility to dispatch the generated electricity between
the on-site loads and the utility grid optimally. The effectiveness of the
model is demonstrated by a case study. Further, the optimization model
developed can be adapted for similar grid-connected cogeneration
systems to improve their efficiency. It can also be used to evaluate the
financial viability of new cogeneration projects.
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H I G H L I G H T S

• Two simplified optimization models for whole-building retrofit planning are proposed.

• The models reduce the complexity of systematic building retrofit planning problems.

• The models eliminate a costly detailed bottom-up energy audit process.

• The models consider green building policy based on EPC and the tax incentive.

• The models can be of great help for retrofit plans for a building portfolio.

A R T I C L E I N F O

Keywords:
Whole-building retrofit
Energy performance certificate
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Notch test data
Green building

A B S T R A C T

Determining a systematic whole-building retrofit plan for envelope components and indoor appliances to
achieve targets such as cost savings and policy compliance is a challenging task. To be specific, the systematic
whole-building retrofit problem, when solved by an optimization approach, is highly complicated. It is some-
times even impossible to find a solution with given computation resources and algorithms. In addition, a costly
comprehensive bottom-up audit is required to establish the parameters of the problem. This study presents two
models to reduce the complexity of the systematic whole-building retrofit optimization problem. Firstly, the
proposed models use the grouping concept to optimize the retrofit of subsystems in a building instead of in-
dividual components/appliances, which reduces the dimension of the problem effectively. Secondly, the models
use so-called ‘notch test’ data, which are sampled and verified savings of an intervention, to eliminate the need
for bottom-up energy audits. This further simplifies the retrofit optimization problem and reduces the retrofit
cost. The models are based on our previous work and aim at energy savings maximization and payback period
minimization, considering the green building policy and tax incentive initiatives. A case study shows that about
2530MWh energy savings and an A rating from the energy performance certificate standard can be obtained
with a payback period of 59months, which verifies the feasibility and effectiveness of the models proposed.

1. Introduction

Globally, the building sector accounts for around 30–40% of total
energy consumption [1]. Statistics show that this number is even higher
in the European Union [2]. This high energy usage by the building
sector is mainly attributed to existing buildings [3] and still keep in-
creasing, because of the low construction rate of new buildings and the
fact that new buildings are more energy-efficient owing to tighter en-
ergy regulations introduced [4]. In view of this, retrofitting existing
buildings with energy-efficient technologies to bring down their energy
intensities is an effective and common approach to facilitate the

transition to a green building sector, which is proved by the in-
vestigation on building retrofit potential in [5], the studies on office
building retrofit in [6] and sustainable building retrofit decisions in [7].
For instance, energy-efficient lightings are useful to reduce the energy
usage of artificial lighting [8], good window technologies promote
better energy-saving ventilation [9], and heating, ventilation and air
conditioning (HVAC) help to reduce the energy consumed by cooling
[10], heating and ventilation [11] and to promote a healthy indoor
environment [12].

Many policies around the world are implemented to promote a
green building sector that utilizes energy efficiently, such as the
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Leadership in Energy and Environmental Design (LEED) certification
program [13], Building for Environment and Economic Sustainability
[14], the Green Star rating system [15], the Canadian green building
tool [16], the Italian regulation [17], etc. The South African govern-
ment has also released a green building rating policy based on the
energy intensity of buildings, namely the energy performance certifi-
cate (EPC) for buildings [18]. The purpose is to compel building owners
or managers to reduce the energy demand of their buildings by im-
plementing energy-efficient interventions. The green building policy is
proposed to be applied to public buildings first and to all kinds of
buildings at a later stage. Seven energy intensity ratings, ranging from
grade A (most energy-efficient) to grade G (most energy-inefficient), are
available from the EPC system. The effectiveness of the EPC standard
depends on two aspects. One is the effective implementation and
monitoring of the EPC. South African government has published a
policy that prohibits the use of buildings not complying with the re-
quired EPC level to promote implementation and monitoring of build-
ings’ energy usage. The other is the accuracy of energy performance
evaluation [19]. The evaluation is addressed by a scientific measure-
ment and verification (M&V) approach [20]. The uncertainty of the
energy performance evaluation depends on many factors, such as
measurement uncertainty, modeling uncertainty etc. [21]. In this study,
real-world ‘notch test’ data are used to improve accuracy and hence
uncertainty of the EPC certification process. Given the aforementioned
background, it is essential to develop methods to retrofit buildings in a
cost-effective manner, not only to achieve energy and cost savings, but
also to adhere to the green building policy introduced.

In the literature, studies on the economic perspective of green
building rating and building energy performance contracting projects
were reported recently. For instance, Qian and Guo [22] built a rev-
enue-sharing bargaining model for energy performance contracting
projects. Castro-Lacouture et al. [23] developed an optimal design
model for buildings for the purpose of maximizing the credits under the
LEED rating system and [24] proposed an optimization model aiming at
maximizing the economic benefits, energy and water savings as well as
LEED points. However, no study that can be used to support decision
makers technically, considering building retrofit investment for the
purpose of EPC compliance, can be found in the literature. In particular,
the EPC standard requires the energy intensity of the whole building to
be reduced, which calls for a whole-building retrofit approach, con-
sidering both indoor appliances and the envelope components and in-
teractions between them.

Existing studies relevant to building retrofit from the literature can
be categorized into two general types, namely studies on the building
envelope system and indoor appliances. With respect to the envelope
system, Asadi et al. [25] proposed a multi-objective optimization
method to help decision makers to determine intervention measures for
the purpose of minimizing building energy consumption in a cost-ef-
fective manner. Güçyeter and Günaydın [26] evaluated and optimally
determined retrofit strategies for a building envelope system by a ca-
librated simulation method based on energy audit and monitoring.
Edeisy and Cecere [27] investigated envelope retrofit as a tool to in-
crease comfort levels and decrease cooling loads in hot, arid climates.
Fan and Xia [28] developed an optimization method for building en-
velope retrofit planning, considering a roof-top photovoltaic (PV)
system, for energy efficiency improvement. Regarding indoor appli-
ances, Kang and Liu [29] proposed a multi-objective optimization
model on a heat exchanger network retrofit with a heat pump for si-
multaneously minimizing the retrofit cost and maximizing the CO2

emission reduction. Cartens et al. [30] developed a model for reducing
the cost and energy consumption in clean development mechanism
lighting retrofit projects. Wang and Xia [31] introduced a control
system framework to tackle the retrofit planning problems for indoor
appliances to reduce energy intensity.

Very few studies on determining systematic retrofit plans for a
whole building have been reported. To this end, our previous work [32]

presented an approach to identifying systematic whole-building retrofit
plans for existing buildings considering both the envelope components
and the indoor appliances with the purpose of maximizing energy
savings and green building policy compliance. However, determining
such a systematic whole-building retrofit plan with the approach pro-
posed in [32] is quite complex. Firstly, the large numbers of items to be
retrofitted and those of the available alternatives for retrofit result in a
high-dimensional optimization problem. This makes the problem dif-
ficult to solve when coupled with the mixed integer decision variables
involved. Secondly, the conflicting objectives, such as maximizing en-
ergy savings and minimizing the payback period, and the nonlinear
characteristics of the optimization problem make it even more chal-
lenging to find the optimal solution. This situation is further worsened
especially when the building to be retrofitted has a large number of
floors (or similar functional areas) that cause a linear increase in the
dimension of the decision variables. The same problem is experienced
by managers investigating retrofit options for a building portfolio
consisting of multiple buildings. Thirdly, there are a large number of
parameters to be obtained for the systematic whole-building retrofit
problems. This usually requires a detailed energy audit of the buildings
to be retrofitted, which is an expensive bottom-up modeling exercise.

Therefore, this study puts forward two methods to reduce the
complexity of the systematic whole-building retrofit optimization pro-
blem and to eliminate the need for a bottom-up energy audit. These
methods are based on the concept of grouping and measured energy
savings data from sample retrofits.

The grouping method is used to categorize items to be retrofitted
into several homogeneous groups [33]. Items are considered to be
homogeneous and assigned to a group if they have a similar energy
performance, inherent properties, working environment and operating
schedules. This is motivated by the fact that energy-consuming systems
in a building can be classified into lighting systems, HVAC systems,
envelope systems, etc., and each of these systems usually consists of
items that have the same characteristics. On a larger scale, each of these
systems in a big building or building group can be treated as a virtual
‘item’ because of their similar functionality and characteristics.

Given the large number of items in a building for possible retrofit, it
is very difficult to evaluate all the possibilities of retrofitting each en-
ergy-consuming item. In contrast, the dimension of the decision vari-
ables can be reduced significantly [34] by making use of the grouping
method, because the solution will only determine whether a group of
items should be retrofitted or not and which retrofit option should be
chosen for the group instead of determine this for each single item. This
is also in good agreement with the expectations of the decision makers
because they will usually retrofit the whole group of similar units to
facilitate easy maintenance and retrofit labor cost, etc.

In this study, items with the same energy performance and cost
implications are grouped together. In addition, it must be pointed out
that this study considers buildings with a large number of similarly
designed and operated floors or functional areas. All homogeneous
items within the boundary of a floor or a functional area comprise a
subset of the overall homogeneous group of items for the whole
building and will be termed an ‘item’ of the overall group in the rest of
this study. For example, all light bulbs in a building belong to the same
group and lambs on one floor constitute a virtual ‘item’ of the lighting
group. After dividing the retrofitted items of the building into several
homogeneous groups, the overall retrofit performance of the building,
such as energy savings and cost, can be evaluated by investigating the
performance of retrofitting an individual member and the number of
retrofitted members of each homogeneous group.

The whole-building retrofit problem is further simplified by making
use of measured energy savings achieved by retrofitting items of a
homogeneous group. This is supported by the large number of energy
conservation initiatives implemented across the world. In South Africa,
for example, many building retrofit projects have been implemented
and the energy savings of these projects have been quantified by the M&
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V approach [35]. The verified energy savings of retrofitting different
systems in a general building, including an envelope system, lighting
system, HVAC system, etc., are the so-called ‘notch test’ data, which can
be used to simplify the optimization problem. To be specific, knowing
the potential energy savings and corresponding cost of retrofitting each
subsystem on one floor of the building with a certain alternative, one
can determine the best combination of subsystems and alternatives that
could be used for the whole building retrofit so that the given objectives
of the optimization problem are achieved.

In summary, the two models proposed categorize the items of target
buildings into several homogeneous groups. Knowing the available
energy savings of retrofitting an item of each group from existing ret-
rofits, the models can work out systematic optimal retrofit plans for
buildings by optimizing the numbers of virtual ‘items’ of each group
and the retrofit options for them. The difference between the two
methods is that the first one limits the retrofit options for the ‘items’ in
the same group to be the same, while the second one does not.

The main contributions of this paper are listed as follows:

• Two simplified optimization models are proposed to reduce the
complexity of systematic whole-building retrofit planning problems.

• The simplification is based on grouping method and ‘notch test’
data, which decreases the dimension of the optimal building retrofit
planning problem and eliminates the need for a costly detailed
bottom-up energy audit process.

• The models developed can help decision makers to determine en-
ergy-efficient and cost-effective whole-building retrofit plans in a
computationally less expensive manner.

• The models take into account the South African green building
policy based on EPC and the tax incentive initiative program for
energy saving projects such that all possible benefits of the building
retrofit project are explored and all constraints are considered in the
planning phase.

• The proposed models can be of great help to decision makers to
investigate retrofit plans for a building portfolio consisting of mul-
tiple buildings.

• The simplified models developed can be applied to similar building
retrofit optimization projects that aim at reducing complexity and
eliminating a comprehensive energy audit.

It is also noted that although the models presented are developed
with particularly the South African environment in mind, they are ap-
plicable to general green building retrofit projects where energy in-
tensity reduction and cost-effectiveness are the main concerns.

Because the systematic whole-building retrofit problem is a non-
linear mixed integer programming problem, modern optimization
methods must be employed to solve this problem. Given the wide
variety of modern optimization approaches, the literature has been
investigated and it was found that the genetic algorithm is proved to be
a better method to solve this type of problem [36]. In [37], a real coded
genetic algorithm is proposed for solving integer and mixed integer
optimization problems. Juan et al. [38] also chose a genetic algorithm
to solve office building renovation problems considering energy per-
formance improvement. The genetic algorithm is a method for solving
optimization problems based on natural selection and evolutionary
biology. It reflects the process of natural selection, which is that the
fittest individuals are chosen for reproduction, aiming at producing
offspring of the next generation. Genetic algorithms are capable of
solving a variety of optimization problems, which cannot be dealt with
by standard optimization algorithms, such as discontinuous, non-
differentiable, mixed integer or highly nonlinear issues [39].

The remaining part of this paper is organized as follows. Two
models for the simplification of the systematic whole-building retrofit
problems are presented in Section 2. Section 3 provides a case study and
results analysis. Conclusions are drawn in Section 4.

2. Optimization models

In this section, the aforesaid two simplified optimization models for
systematic whole-building retrofit planning considering both the en-
velope components and the indoor appliances are developed. The
purposes of the two optimization models are the same as those given in
[32], which is to maximize the energy savings, minimize the payback
period of building retrofit projects and make sure the buildings can
obtain a good energy rating from the EPC standard for green building
policy compliance.

The two simplified optimization models are built under the premise
given below:

• The building to be retrofitted has the same structure for each floor.

• The intention is to retrofit energy consumption subsystems, such as
lighting envelope, etc. on each floor of the building rather than
single items. For instance, all the luminaries rather than part of them
on one floor will be replaced with new ones if the lighting system on
that floor is to be retrofitted.

• Proper maintenance for the items retrofitted during the project
period is implemented so that the energy savings of the retrofit
project are persistent.

In this study, the energy consumption in a building is divided into
lighting systems, envelope systems (window and wall), HVAC systems
(chiller and heat pump) and the roof system for upgrading with energy-
efficient interventions. In addition, a PV power supply system is con-
sidered to be installed to reduce the building’s energy demand from the
grid [40] and ensure better life quality for occupants [41] owing to the
rich solar resource in South Africa. Because the structure of each floor
of the building is the same, the energy performance, inherent proper-
ties, working environment and operating schedules of the lighting
subsystems and envelope subsystems of each floor are considered to be
the same. According to grouping, all the lights within the building can
be grouped into a homogeneous group, with all the lights installed on
each floor as a virtual item of this group. The same is done for the
envelope systems. The roof only has one item because for each building,
there is only one roof structure. The HVAC systems in this study are of a
centralized type. With this grouping and notch test data for retrofitting
an item in these homogeneous groups, one can determine the impact of
retrofitting a homogeneous group of items (subsystems) on the whole
building.

Assume that there are I alternatives of windows and J alternatives of
wall insulation materials for retrofitting the envelope systems, K al-
ternatives of roof insulation materials for retrofitting the roof, C alter-
natives of chillers and H alternatives of heat pumps for retrofitting the
HVAC systems, and P alternatives of solar panels for the PV system
installation. For the lighting systems, assume that there are m types of
existing lighting to be retrofitted and there are Lm alternatives for ret-
rofitting the m-th type. It follows that there are + +I J( 1)( 1) retrofit
options for the envelope systems, + +C H( 1)( 1) retrofit options for the
HVAC systems, + + … +L L L( 1)( 1), , ( 1)m1 2 retrofit options for the
lighting systems, +K( 1) retrofit options for the roof, and +P( 1) op-
tions for the PV system installation. Let e v, and u denote that the e-th
option for the envelope systems, the v-th option for the HVAC systems
and u-th option for the lighting systems are chosen to replace the cor-
responding existing components, respectively. The values of e v, and u
take integer values defined in (1)–(3).

∈ … + +e I J{1, 2, , ( 1)( 1)}, (1)

∈ … + +v C H{1, 2, , ( 1)( 1)}, (2)

∈ … + + … +u L L L{1, 2, , ( 1)( 1) ( 1)}.m1 2 (3)

There is strong coupling between the envelope and the HVAC sys-
tems in their energy performance because the thermal performance of
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the envelope systems affects the load of the HVAC systems. As a con-
sequence, these two subsystems are considered together to achieve
energy savings. In this case, there are + + + +I J C H( 1)( 1)( 1)( 1)
retrofit options for the combined system. Let r, defined in (4), denote
the r-th option for the combined system, i.e., the e-th option for the
envelope systems and the v-th option for the HVAC systems, are chosen
for the retrofit. The selection of the envelope, HVAC and lighting sys-
tems can thus be represented by the values of r and u.

∈ … + + + +r I J C H{1, 2, , ( 1)( 1)( 1)( 1)}. (4)

With the above information, the detailed formulations of the two
models considering the retrofit of a building with F floors over the
project period of T years are given in the following subsections.

2.1. Optimization model I

Optimization model I solves the whole building retrofit problem by
assuming that the optimal retrofit options for each floor of the building
are the same to simplify the problem further. For instance, if the e-th
option for the envelope system and the u-th option for the lighting
system are chosen by the optimization model, each floor of the building
will use these options for its retrofit. Because the structure and func-
tions of all the floors are the same, the optimization determines the
optimal retrofit options r u, and the number of floors to retrofit their
subsystems with these optimally selected options. In addition, the op-
timization will, at the same time, optimally determine the option of the
PV system, the number of PV panels to be installed, and the optimal
solution for the roof retrofit.

2.1.1. Decision variables of optimization model I
The decision variable of the systematic building retrofit optimiza-

tion problem following optimization model I is given by:

=X r u N N k p N[ , , , , , , ],env f lig f pv1 , ,

where Nenv f, denotes the number of floors to retrofit the envelope sys-
tems, Nlig f, denotes the number of floors to retrofit the lighting systems,
Npv is the number of solar panels to be installed; ∈ … +k K{1, 2, , ( 1)}
and ∈ … +p P{1, 2, , ( 1)} mean that the k-th roof alternative is chosen
and the p-th solar panel alternative is installed, respectively.

2.1.2. Objectives of optimization model I
The objectives of the building retrofit project include energy savings

and the payback period, which are important indicators to evaluate the
profitability of an investment [42].

The energy savings of the building retrofit project in year t ES t, ( )1 ,
can be calculated by

= + + +

+ − − +

ES t N ES u ES k v ES p N N ES r

F N ES r e

( ) ( ) ( , ) ( ) ( )

( ) ( 1),

lig f lig rof pv pv env f mix

env f mix

1 , ,

, (5)

where ES r( )mix is the energy savings on one floor after retrofitting the
floor’s envelope and the building’s HVAC system with the r-th option
measured in Wh, ES u( )lig is the energy savings of retrofitting one floor’s
lighting system with the u-th option measured in Wh, ES k v( , )rof is the
energy savings of retrofitting the roof of the building with its k-th op-
tion when the HVAC systems are retrofitted with the v-th option,
measured in Wh and ES p( )pv is the energy production of one solar panel
of the p-th option measured in Wh. The second term in (5) represents
the energy savings achieved by retrofitting the centralized HVAC sys-
tems on the floors whose envelope systems are not retrofitted.

Taking into account the discount rate and the tax incentive pro-
gram, the payback period of the building retrofit project Tp1 is calcu-
lated by the following equations:

= +
+

T t
C t

C t
| ( )|

( 1)
,p

f

f
1

(6)

=
+

+
−C t

p t ES t R t
d

C( )
( ) ( ) ( )

(1 )
,f t r

1
1 (7)

=
⎧

⎨
⎩

− =
R t

E E ζ ζ t
( )

( ) , 1,
0, otherwise.

pre post a t

(8)

In Eqs. (6)–(8), t is an integer and is the last period with a negative
cumulative discounted cash flow, C t( )f is the absolute value of cumu-
lative cash flow at the end of period t measured in Dollar ($), +C t( 1)f
is the discounted cash flow in the period after t measured in $, p t( ) is
the electricity price in year t measured in $/Wh, d is the discount rate,
R t( ) is the tax incentive measured in $, Epre and Epost are the total en-
ergy consumption of the building before and after the retrofit, respec-
tively, measured in Wh/year, ζa is the allowance rate and ζt is the tax
rate for general businesses in South Africa.Cr1 is the retrofit cost making
use of optimization model I measured in $ and can be calculated by

= − +

+ + +

C N C r C v N C u
C k C p N C v

( ( ) ( )) ( ))
( ) ( ) ( ),

r env f mix hva lig f lig

rof pv pv hva

1 , ,

(9)

where C r( )mix is the cost of retrofitting one floor’s envelope systems and
the building’s HVAC systems with the r-th option measured in $, C u( )lig
is the cost of retrofitting one floor’s lighting system with the u-th option
measured in $, C v( )hva is the cost of retrofitting the HVAC systems of the
building with the v-th option measured in $, C k( )rof is the cost of ret-
rofitting the roof of the building with the k-th option measured in $,
C p( )pv is the cost of one solar panel of the p-th option measured in $.

In the literature, the weighted sum method was widely used to solve
multiple objective optimization problems [43]. For instance, Kim and
de Weck [44] investigated adaptive weighted sum method for multi-
objective issues and [45] employed this approach for energy-efficient
investment decision problems. Therefore, the weighted sum method is
chosen to solve the optimization problem formulated, resulting the
following objective function:

∑= − +

=

J w ES t w T( ) .
t

T

p1
1

1 2 1
(10)

2.1.3. Constraints of optimization model I
The constrains of the optimal retrofit problem include three parts,

which are the EPC limit, budget limit and physical limits.
The EPC rating system assigns a rating to a building based on its

energy intensity compared to a reference value set by the South African
national standard [46]. The requirements of getting a certain rating
from the EPC are detailed in Table 1. The item Er is the reference energy
intensity, which depends on the occupancy class and location of the
building.

Based on the requirements of different ratings in Table 1, the EPC
limit used to ensure that the building obtains the desired rating from
the EPC standard for the purpose of green building policy compliance,
can be described by the following general formulas [18]:

<E δE ,p r (11)

Table 1
Energy performance scale.

Grade Requirement

A Energy intensity< 0.3Er
B 0.3Er ⩽ Energy intensity< 0.6Er
C 0.6Er ⩽ Energy intensity< 0.9Er
D 0.9Er ⩽ Energy intensity< 1.1Er
E 1.1Er ⩽ Energy intensity< 1.4Er
F 1.4Er ⩽ Energy intensity< 1.7Er
G Energy intensity⩾ 1.7Er
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=E
E
A

,p
post

g (12)

where Ep denotes the energy intensity of the building measured in
AkWh/m , g

2 is the gross area of the building measured in δm ,2 is a
coefficient, taking the values from Table 1. For instance, =δ 1.1 means
that at least a D rating must be obtained for the building.

The budget limit for the retrofit can be described with the following
formula:

⩽C β,r1 (13)

where β is the retrofit budget measured in $.
The physical limits include the available roof area for the PV system

installation, given as follows:

⩽A p N A( ) ,pv pv eff (14)

where A p( )pv is the area of one solar panel of the p-th option measured
in m2 and Aeff is the usable area of the roof for PV system installation
measured in m2.

All the decision variables must satisfy the following integer con-
straints:

∈ …

∈ …

∈ … + + + +

∈ … + + … +

∈ … +

∈ … +

N F
N F
r I J C H
u L L L
k K
p P

{0, 1, , },
{0, 1, , },

{1, 2, , ( 1)( 1)( 1)( 1)},
{1, 2, , ( 1)( 1) ( 1)},
{1, 2, , ( 1)},
{1, 2, , ( 1)}.

env f

lig f

m

,

,

1 2

(15)

2.2. Optimization model II

Based on optimization model I and on [32], which allows each item
to flexibly choose desired alternatives for retrofit, one can naturally
think of a second simplified method, which might find better solutions
compared with model I. The differences between the two methods are
detailed as follows.

• Method II makes it possible for each floor to have different retrofit
options, i.e. the same subsystem on all floors can be retrofitted with
different options.

• It might be capable of making more complete use of investment and
finding better retrofit plans owing to the flexibility of retrofit op-
tions.

• It might make a relatively small compromise in the complexity re-
duction of the retrofit optimization problem.

Since each floor of the building can determine whether its sub-
systems are to be retrofitted or not, the aim of second optimization
model is to prepare an optimal retrofit plan for the whole-building
retrofit with a given budget by determining the retrofit states and ret-
rofit options for the energy-consuming subsystems of each floor and the
roof and HVAC systems of the building, the installation option for the
PV system and the number of solar panels to be installed.

2.2.1. Decision variables of optimization model II
The decision variable of the building retrofit optimization following

model II is described by:

= … … … …X v e e e u u u k p N[ , , , , , , , , , , , , , ],f F f F pv2 1 1

where ef and uf denote that the ef -th option for the envelope system and
the uf -th option for the lighting systems are chosen for retrofitting the f-
th floor.

2.2.2. Objectives of optimization model II
The same objectives, including energy savings and the payback

period, are considered.

The energy savings of the building retrofit project in year t ES t, ( )2 ,
can be calculated by the following equation:

∑= + + +

=

ES t ES v e ES u ES k v ES p N( ) ( ( , ) ( )) ( , ) ( ) ,
f

F

mix f lig f rof pv pv2
1

(16)

where ES v e( , )mix f is the energy savings of the f-th floor after its en-
velope systems retrofitted with the ef -th option and the building’s HVAC
systems have been retrofitted with the v-th option, measured in Wh,
ES u( )lig f is the energy savings of the f-th floor after its lighting systems
have been retrofitted with the uf -th option, measured in Wh.

The resulting retrofit cost of the second model, Cr2, can be calcu-
lated by

∑= − + + +

+

=

C C v e C v C u C k C p N

C v

[ ( , ) ( ) ( )] ( ) ( )

( ),

r
f

F

mix f hva lig f rof pv pv

hva

2
1

(17)

where C v e( , )mix f is the cost of retrofitting the building’s HVAC systems
with the v-th option and the envelope systems of the f-th floor with the
ef -th option, measured in $, C u( )lig f is the cost of retrofitting the lighting
systems of the f-th floor with its uf -th option, measured in $.

The payback period of the building retrofit project Tp2 can be cal-
culated following Eqs. (6)–(8).

Taking advantage of the Eqs (16) and (17), the objective function of
this model is given by

∑= − +

=

J w ES t w T( ) .
t

T

p1
1

2 2 2
(18)

2.2.3. Constraints of optimization model II
The budget limit can be described with the following in equation:

⩽C β.r2 (19)

The EPC rating limit can be described with formulas (11) and (12).
The PV installation area limit is described by formula (14). The limits
on the design variables are:

∈ … +

∈ … +

∈ … + +

∈ … + +

∀ ∈ …

∈ … + + … +

∀ ∈ …

k K
p P
v C H
e I J

f F
u L L L

f F

{1, 2, , ( 1)},
{1, 2, , ( 1)},
{1, 2, , ( 1)( 1)},
{1, 2, , ( 1)( 1)},

{1, 2, , },
{1, 2, , ( 1)( 1) ( 1)},
{1, 2, , }.

f

f m1 2

(20)

3. Case study

3.1. Case information

In this section, an existing office building is used as a case study to
verify the viability of the two optimization models. The building stu-
died comprises six floors with the same structure, shown in Fig. 1. The
area of each floor is 266m2. Before the retrofit, the EPC rating of the
building under study is grade E. Therefore, this building has to improve
its energy efficiency to achieve a D rating at least to comply with the
green building policy. The information on the alternatives for retro-
fitting the envelope, lighting, HVAC and roof systems and installing the
PV system are detailed in Tables 2–8, (The data in this paper are ob-
tained from manufactures product datasheets, data obtained from
hundreds of M&V projects, published technical reports, and the South
African national standards, etc.). For example, Table 8 gives the in-
formation of the alternative lighting technologies used to retrofit the
corresponding existing lighting technologies. The economic parameters
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involved in the optimization models include the discount rate and the
increased rate of the electricity price, which are determined as 6% and
12.69%, respectively, according to South Africa’s economic statistics
and the largest utility, Eskom, in South Africa.

3.2. Data collection

According to Section 2, there are 144 retrofit options for the com-
bined envelope and HVAC systems, 64 retrofit options for the lighting
systems, 36 retrofit options for the roof considering the HVAC systems
and four options for the PV system installation. The notch test data on
retrofitting the envelope, lighting, HVAC and roof of the building and
installing a roof-top PV system on the building obtained following the
M&V method are detailed in Tables 11–14, which are presented in the
appendix. For instance, the resulting energy savings and the corre-
sponding cost of retrofitting the envelope of one floor and the HVAC
systems of the building with different combined options are detailed in
Table 11. The numbers in the row corresponding to =r 103 of Table 11
detail the 103-rd retrofit option for this floor’s envelope and the
building’s HVAC systems. Specifically, the data mean that the heat
pump in the HVAC is not retrofitted, the chiller is retrofitted with its
second alternative listed in Table 6, the windows are replaced with the
first alternative listed in Table 2 and the walls are fitted with the second
insulation alternative given in Table 3. Retrofitting one floor with this
option results in 5349 kWh energy savings and costs $14335.

In this study, the building retrofit optimization problem is solved by
a genetic algorithm. To investigate the impact of investments on the
optimal retrofit plans, the results of applying the optimal plans obtained
by the two optimization models proposed in Section 2 with different
budgets are presented in the following sections. Optimization results
with different budgets set to $10,000, $25,000, $45,000 and $200,000
are analyzed.

The two optimization models are both solved using the weighted
sum method to give decision makers a convenient way to obtain a de-
sired retrofit plan according to their preferences on different objectives

Fig. 1. Floor design of the office building under study.

Table 2
Window alternatives.

i Alternatives Ui (W/m °C) Cwin i, ($/m2)

1 Double glazing, tinted uncoated air-filled
metallic frame

0.49 50.00

2 Double glazing, tinted coated air-filled metallic
frame

0.38 80.00

3 Double glazing, low-e window, air-filled
metallic frame

0.32 97.00

Table 3
Wall insulation material alternatives.

j Alternatives dj (m) λj (W/m °C) Cwal j, ($/m2)

1 Glass wool 0.05 0.038 16.32
2 EPS 0.08 0.033 21.10
3 Cork 0.30 0.040 69.38

Table 4
Roof insulation material alternatives.

k Alternatives dk (m) λk (W/m °C) Crof k, ($/m2)

1 SPF 0.020 0.042 8.23
2 EPS 0.060 0.033 10.49
3 Stone wool 0.105 0.037 44.84

Table 5
Chiller alternatives.

c Alternatives SEER Cchi c, ($)

1 Trane chiller type 1 17.0 8580
2 Trane chiller type 2 15.0 7590

Table 6
Heat pump alternatives.

h Alternatives HSPF Cpum h, ($)

1 Trane heat pump type 1 9.5 7920
2 Trane heat pump type 2 8.6 7425

Table 7
Solar panel alternatives.

p Alternatives Cpv p, ($) ηl (%) Apv p, (m2)

1 YL190P-23B 592.62 14.7 1.297
2 CS6X-300P 870.33 15.6 1.919
3 SW 275 MONO 1042.50 16.4 1.593

Table 8
Lighting technology alternatives.

lm Existing lighting Nlm Alternatives Cligm lm, ($)

l1 2-lamp 4′ T8 fixture 70W 80
2-lamp 4′ T5 14W 19.0
2-lamp 4′ T5 18W 20.5
2-lamp 4′ T5 36W 10.0

l2 PAR 38–65W 48
CFL lamp 7W 35.4
CFL lamp 14W 37.1
CFL lamp 20W 27.6

l3 Incandescent 100W 32
LED bulb 12W 79.5
LED bulb 17W 53.0
LED bulb 20W 42.4
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by tuning the weighting factors. In order to verify this, the effectiveness
of tuning the weighting factors is studied. The impact of the tax in-
centive program on the optimal retrofit plan is also analyzed.

3.3. Results analysis

3.3.1. Results analysis of optimization model I
To verify the feasibility of the first optimization model for sys-

tematic whole-building retrofit planning, the optimal solutions with
different budgets based on the method are presented in Table 9.

In Table 9, the detailed optimal retrofit plans for the building with
different investments are indicated by the contents from the fourth
(starting with Cr1 ($)) to the tenth row. r represents the retrofit options
for the envelope systems of each floor and the HVAC systems of the
building. u represents the retrofit option for the lighting systems of each
floor. Nenv f, and Nlig f, indicate the numbers of floors to retrofit their
envelope systems and lighting systems, respectively. v k( , ) represents
the retrofit options listed in Table 13 for the roof system of the building
considering the HVAC systems. p and Npv indicate the option and
number of installed PV panels shown in Table 14. For instance, the
number ‘85’ for r means that the 85-th option for the envelope systems
and the HVAC systems is chosen for retrofit with a budget of $200000.
The number ‘49’ for r means the 49-th option is chosen, which indicates
that the envelope systems of the building are not retrofitted. Only the
HVAC systems of the building are retrofitted with the budget of
$45000. ‘2’ for Nenv f, means that the envelope systems of two floors of
the building are retrofitted. The number ‘23’ for u and ‘6’ for Nlig f, in the
fourth column represent that the lighting systems of all six floors are
retrofitted with the 23-rd option with a budget of $45000. The numbers
‘13’ and ‘21’ for v k( , ) both represent that the roof system of the
building is not retrofitted, referring to Table 13. The number ‘2’ for p
and ‘16’ for Npv in the fourth column mean that the second option in
Table 14 is chosen for setting up the PV system and 16 of the selected
solar panels are installed.

When investigating the optimal retrofitting solutions in Table 9, it is
observed that the proposed methods do not simply choose the cheapest
options or the most energy-efficient ones. For instance, the optimal
retrofit plan with a budget of $10000 selects the 52-th option from
Table 8 for retrofitting the lighting systems, which is not the cheapest or
the most energy-efficient option among the alternatives in Table 8.

The items ES1 and Tp1 represent the resulting energy savings and
payback period of the building retrofit project making use of optimi-
zation model I. It can be seen that the energy savings and payback
period keep increasing with growing budgets. The reason for this
phenomenon is that more investments allow more systems to be ret-
rofitted, thereafter resulting in more energy savings and longer payback

periods. One also finds that the growth rate of the payback period in-
creases with growing budgets. This is because more and more systems
with long payback are retrofitted when the budget increases. For in-
stance, only the lighting systems are retrofitted with the budget of
$25,000. However, 16 solar panels are installed with the budget of
$45,000. When the budget increases to $200,000, more solar panels are
installed and the envelope systems of some floors are also retrofitted.

An interesting phenomenon is that the payback period with a
budget of $10,000 is the same as that with a budget of $25,000. This
can be explained by the cost-effectiveness of retrofitting different sub-
systems with different options. Retrofitting the lighting systems is the
most cost-effective method to save energy, followed by retrofitting the
HVAC systems. Installing a PV system and retrofitting the envelope
systems require long payback periods. With the budget of $25000, all
the investment is used to retrofit the lighting systems, while part of the
investment is used to install a PV system with the budget of $10,000. In
addition, the 24-th option chosen for retrofitting the lighting systems
with the budget of $25,000 is more energy-efficient compared with the
52-nd one and results in a relatively shorter payback period. This ex-
plains the nearly identical payback periods of the two investments.

When investigating the optimal retrofit actions with different bud-
gets, one finds that the lighting systems of four floors of the building are
retrofitted with the 52-nd option and two solar panels of its second
option in Table 14 are installed with the budget of $10,000. However,
the lighting systems of all the floors are retrofitted while no PV panel is
installed when the budget increases to $25,000. When the investment
grows to $45,000, all the lighting systems of the building are retrofitted
with a more energy-efficient option and the HVAC systems are also
retrofitted. In addition, 16 solar panels of the second option are in-
stalled. With an even higher budget, $200,000, available, the envelope
systems of some floors are retrofitted, better options are selected for
retrofitting other subsystems, and more solar panels are installed. In
view of the above, a conclusion can be drawn that the investment gives
priority to the subsystems of the building in the order of the lighting,
HVAC, PV, envelope and the roof. This is because retrofitting the
lighting systems is the most cost-effective choice to save energy, fol-
lowed by the HVAC systems. Retrofitting the envelope and roof systems
and installing a PV power supply system take a long time to pay back
the cost in spite of their large energy saving potentials.

One of the purposes of this study is to improve the energy efficiency
of the building to achieve a good EPC rating for green building policy
compliance. In Table 9, Ep represents the energy performance of the
building after applying the optimal retrofit plan obtained from opti-
mization model I. Compared with the reference value in Table 1, one
finds that the four optimal retrofit plans obtained with budgets of
$10000, $25000, $45000 and $200000 can help the building to get a D,
C, B and A rating from EPC, respectively.

Because the problem is solved by a genetic algorithm, which is es-
sentially a metaheuristic method, the variance of the solutions must be
investigated. In Table 9, the RSD values [47] of T ES,p1 1 and Ep re-
present the relative standard deviations of the payback period, energy
savings of the building retrofit project and the energy performance of
the building achieved by the retrofit calculated from 20 runs of the
genetic algorithm, respectively. It can be seen that the RSD values of
these items are less than 5%, which means the results obtained with
optimization model I are stable.

To demonstrate the effectiveness of weighting parameter tuning, the
optimization problem is solved with two more sets of weighting factors
and the results obtained are presented in Fig. 2. For convenience of
comparison, other factors that affect the retrofit project remain the
same. In particular, the budget is kept at $10000 and the tax incentive
program is taken into account during these optimization processes. In
Fig. 2, it can be seen that the energy savings increase and the payback
period decreases when their corresponding weighting factors grow. For
instance, the percentage of energy savings of the building retrofit pro-
ject increases from 1.9% to 17.2% when the value of its corresponding

Table 9
Results of applying optimization model I with different budgets.

Description Budget1 Budget2 Budget3 Budget4

β ($) 10000 25000 45000 200000
Cr1 ($) 9263 24586 44683 196490
r 1 1 49 85
Nenv f, 0 0 0 2
u 52 24 23 22
Nlig f, 4 6 6 6

v k( , ) 1 1 13 21
p 2 2 2 3
Npv 2 0 16 163

Tp1 (month) 22 22 27 59
ES1 (kWh) 561286 1501978 1873954 2530403
Ep 0.927 0.617 0.494 0.278
RSD of Tp1 2.67% 2.65% 0.83% 3.55%
RSD of ES1 3.40% 4.46% 0.14% 0.16%
RSD of Ep 0.68% 3.29% 0.18% 0.48%
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weighting factor w1 changes from zero to one. The payback period of
the project decreases from 22months to 18months when the value of
its corresponding weighting factor w2 increases from zero to one. In
view of the results in Fig. 2, it can be concluded that optimization
model I gives decision makers the flexibility of obtaining the desired
result according to their preferences on energy savings or payback
period.

To investigate the impact of the tax incentive program on the
building retrofit project, the optimization problem is solved by opti-
mization model I without considering the tax incentive and the results

are presented in Fig. 3. In Fig. 3, one finds that considering the tax
incentive program in the optimization process results in a slightly
shorter payback period and higher net present value. This verifies that
the tax incentive program is capable of further shortening the payback
period of the building retrofit project.

3.3.2. Results analysis of optimization model II
The optimal solutions obtained by optimization model II with dif-

ferent budgets are provided in Table 10, in which r r r r r, , , ,1 2 3 4 5 and r6
represent the retrofit options from Table 11 for the envelope systems of
the six floors and the HVAC system of the building. u u u u u, , , ,1 2 3 4 5 and
u6 represent the retrofit options from Table 12 for the lighting systems
of the six floors.

The same trend reported in Section 3.3.1 is observed in Table 10.
For example, retrofit plans obtained by optimization model II with
budgets of $10000, $25000, $45000 and $200000 can help the building
under study to get a D, C, B and A rating from the EPC, respectively. The
RSD values of T ES,p2 2 and Ep are less than 5%, which verifies the sta-
bility of optimization model II in finding optimal retrofit plans for
buildings.

3.4. Comparison of the two models

Following the two simplified methods, the number of decision
variables of compiling a systematic retrofit plan for a whole building is
reduced from hundreds (even more) to a small value compared with
that of [32]. Both methods reduce the complexity of solving whole-
building retrofit problems and eliminate the need for a comprehensive
energy audit.

From a theoretical point of view, model I and model II differ in
resolution of the grouping of items to be retrofitted. Model I essentially
groups all items on a floor as a virtual item, whereas model II treats
subsystems such as lighting systems and HVAC systems, as individual
items. More detailed grouping in model II contributes to better utili-
zation of the available investment, as discussed earlier. It must be
pointed out at this stage that the differences in the grouping method
adopted by the two models will be studied further in future research on
how to design an optimal model and a corresponding grouping method
that results in an acceptable precision and confidence level of the model
predicted energy savings while effectively reducing the complexity of
the retrofit optimization problem. This is particularly relevant because
it was shown by researchers from the same research group that similar
grouping methods will not affect the final performance of the retrofit
planning problem significantly [33]. In other words, theoretical com-
parison of the two simplification models presented in this study is still
an open research question and the design of a method to select an
optimization model considering its precision and complexity at the
same time is being actively investigated currently.

For practical applications, conclusions on how to select the two
developed models for a specific application are drawn as detailed
below, according to the findings of the case study.

For small-scale building retrofit problems, model II is more accurate
and performs better than model I. This is because model II allows the
retrofit options for all the subsystems in the building to be different. Its
flexibility promotes better utilization of the available investment. This
can be verified by dividing the Cr by β in Tables 9 and 10. The results
show that the utilization rate of the budget is between 98.6% and
99.8% with model II, while the same rate ranges from 92.6% to 99.3%
with model I. In fact, the results in Tables 9 and 10 indicate that model
II produces better results than model I in terms of absolute energy
savings. For instance, 33 MWh extra energy is saved by model II with a
budget of $10000 compared to model I.

With respect to building retrofit problems with a large number of
floors involved, model I is simpler and more effective than model II.
This is because the dimension of the optimization problem is much less
for model I compared with that of model II, especially when a large

Fig. 2. Optimal results obtained by optimization model I with different
weighting factors.

Fig. 3. Impact of tax incentive on the optimal results obtained by optimization
model II with = = =w w β0.8, 0.2, "$"10, 0001 2 .

Table 10
Results of applying optimization model II with different budgets.

Description Budget1 Budget2 Budget3 Budget4

β ($) 10000 25000 45000 200000
Cr2 ($) 9860 24925 44936 199593
r1 1 1 49 69
r2 1 1 49 65
r3 1 1 49 69
r4 1 1 49 65
r5 1 1 49 65
r6 1 1 49 69
u1 56 23 23 23
u2 1 24 23 22
u3 1 24 24 22
u4 64 24 23 22
u5 1 24 23 22
u6 64 24 23 22
v k( , ) 1 1 13 17
p 4 2 2 3
Npv 0 0 17 163

Tp2 (month) 22 22 27 60
ES2 (kWh) 594086 1504742 1875121 2531403
Ep 0.916 0.616 0.494 0.277
RSD of Tp2 2.00% 1.95% 3.55% 2.69%
RSD of ES2 1.74% 3.47% 3.64% 0.64%
RSD of Ep 0.36% 2.54% 3.62% 1.79%
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number of floors are involved. There are only five decision variables in
optimization model I, whereas the number of decision variables in
optimization model II is +F2 4, which depends on the number of floors
in the building. When the number of floors increases, the number of
decision variables of model I will remain unchanged, while that of
model II will increase rapidly. Therefore, solving retrofit problems for
buildings with a large number of floors using model II is relatively more
difficult compared to using model I. In addition, the solution obtained
with method II might sometimes be very poor when a large number of
decision variables are involved because of the inefficiency of existing
algorithms to solve integer programming problems.

In practical applications, one first need to obtain information of the
target building to be retrofitted, such as its existing energy-consuming
systems, and conduct a notch test of retrofitting a certain item by a
particular alternative (this can also be taken from similar projects).
Then, the developed models in this paper can be directly used with the
obtained parameters to solve for the optimal retrofit plan. The idea of
the simplified models has already been used in hundreds of M&V energy
saving projects undertaken by the Center of M&V at the University of
Pretoria, such as the energy efficiency lighting projects [8]. In addition,
the proposed models are useful to help decision makers obtain optimal

retrofit plans for a building portfolio consisting of multiple buildings,
which is a common challenge in practice.

4. Conclusion

In this study, two simplified optimization models are proposed to
reduce the complexity of systematic whole-building retrofit planning
problems considering both the envelope components and indoor ap-
pliances. The two retrofit models aim at saving energy and achieving
desired green building ratings by implementing energy-efficient inter-
ventions in the most cost-effective way. The simplification is done by
using a grouping method and measured and verified energy savings of
sample retrofits. The simplification not only reduces the complexity of
the retrofit optimization problem in terms of technical difficulty and
computational load of solving the problem, but also helps to obviate the
need for an expensive detailed energy audit to support the retrofit
planning. The two models proposed are tested with a case study and
both are shown to be effective in achieving the objectives of this study.
The simplified optimization methods are suitable for reducing com-
plexity and eliminating a detailed energy audit of all building retrofit
optimization problems.

Appendix A

Tables 11–14.

Table 11
Notch test data of retrofitting a floor’s envelope and the building’s HVAC system.

r(v e, ) Chiller Heat pump Window Wall ES r( )mix (kWh) C r( )mix ($)

1 0 0 0 0 0 0
2 0 0 0 1 67 2544
3 0 0 0 2 75 3289
4 0 0 0 3 83 10815
5 0 0 1 0 2393 3456
6 0 0 1 1 2460 6000
7 0 0 1 2 2468 6745
8 0 0 1 3 2476 14271
9 0 0 2 0 2018 5530
10 0 0 2 1 2085 8074
11 0 0 2 2 2093 8819
12 0 0 2 3 2101 16345
13 0 0 3 0 2144 6705
14 0 0 3 1 2211 9249
15 0 0 3 2 2219 9994
16 0 0 3 3 2227 17520
17 0 1 0 0 290 7920
18 0 1 0 1 320 10464
19 0 1 0 2 323 11209
20 0 1 0 3 327 18735
21 0 1 1 0 2656 11376
22 0 1 1 1 2685 13920
23 0 1 1 2 2689 14665
24 0 1 1 3 2693 22191
25 0 1 2 0 2280 13450
26 0 1 2 1 2309 15994
27 0 1 2 2 2313 16739
28 0 1 2 3 2317 24265
29 0 1 3 0 2406 14625
30 0 1 3 1 2435 17169
31 0 1 3 2 2439 17914
32 0 1 3 3 2443 25440
33 0 2 0 0 279 7425
34 0 2 0 1 310 9969
35 0 2 0 2 314 10714
36 0 2 0 3 318 18240
37 0 2 1 0 2646 10881
38 0 2 1 1 2677 13425
39 0 2 1 2 2681 14170
40 0 2 1 3 2684 21696
41 0 2 2 0 2270 12955

(continued on next page)
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Table 11 (continued)

r(v e, ) Chiller Heat pump Window Wall ES r( )mix (kWh) C r( )mix ($)

42 0 2 2 1 2301 15499
43 0 2 2 2 2305 16244
44 0 2 2 3 2308 23770
45 0 2 3 0 2396 14130
46 0 2 3 1 2427 16674
47 0 2 3 2 2431 17419
48 0 2 3 3 2434 24945
49 1 0 0 0 4870 8580
50 1 0 0 1 4924 11124
51 1 0 0 2 4930 11869
52 1 0 0 3 4937 19395
53 1 0 1 0 5391 12036
54 1 0 1 1 5445 14580
55 1 0 1 2 5452 15325
56 1 0 1 3 5458 22851
57 1 0 2 0 5315 14110
58 1 0 2 1 5369 16654
59 1 0 2 2 5376 17399
60 1 0 2 3 5382 24925
61 1 0 3 0 5342 15285
62 1 0 3 1 5396 17829
63 1 0 3 2 5402 18574
64 1 0 3 3 5409 26100
65 1 1 0 0 5160 16500
66 1 1 0 1 5177 19044
67 1 1 0 2 5179 19789
68 1 1 0 3 5181 27315
69 1 1 1 0 5655 19956
70 1 1 1 1 5671 22500
71 1 1 1 2 5673 23245
72 1 1 1 3 5675 30771
73 1 1 2 0 5577 22030
74 1 1 2 1 5594 24574
75 1 1 2 2 5596 25319
76 1 1 2 3 5598 32845
77 1 1 3 0 5604 23205
78 1 1 3 1 5620 25749
79 1 1 3 2 5622 26494
80 1 1 3 3 5624 34020
81 1 2 0 0 5149 16005
82 1 2 0 1 5167 18549
83 1 2 0 2 5169 19294
84 1 2 0 3 5171 26820
85 1 2 1 0 5645 19461
86 1 2 1 1 5663 22005
87 1 2 1 2 5665 22750
88 1 2 1 3 5667 30276
89 1 2 2 0 5568 21535
90 1 2 2 1 5586 24079
91 1 2 2 2 5588 24824
92 1 2 2 3 5590 32350
93 1 2 3 0 5594 22710
94 1 2 3 1 5612 25254
95 1 2 3 2 5614 25999
96 1 2 3 3 5616 33525
97 2 0 0 0 4701 7590
98 2 0 0 1 4756 10134
99 2 0 0 2 4762 10879
100 2 0 0 3 4769 18405
101 2 0 1 0 5288 11046
102 2 0 1 1 5342 13590
103 2 0 1 2 5349 14335
104 2 0 1 3 5355 21861
105 2 0 2 0 5201 13120
106 2 0 2 1 5256 15664
107 2 0 2 2 5262 16409
108 2 0 2 3 5269 23935
109 2 0 3 0 5231 14295
110 2 0 3 1 5286 16839
111 2 0 3 2 5292 17584
112 2 0 3 3 5299 25110
113 2 1 0 0 4992 15510
114 2 1 0 1 5009 18054
115 2 1 0 2 5011 18799
116 2 1 0 3 5013 26325

(continued on next page)

Y. Fan, X. Xia Applied Energy 228 (2018) 2140–2152

2149



Table 11 (continued)

r(v e, ) Chiller Heat pump Window Wall ES r( )mix (kWh) C r( )mix ($)

117 2 1 1 0 5551 18966
118 2 1 1 1 5568 21510
119 2 1 1 2 5570 22255
120 2 1 1 3 5572 29781
121 2 1 2 0 5463 21040
122 2 1 2 1 5481 23584
123 2 1 2 2 5483 24329
124 2 1 2 3 5485 31855
125 2 1 3 0 5493 22215
126 2 1 3 1 5510 24759
127 2 1 3 2 5512 25504
128 2 1 3 3 5514 33030
129 2 2 0 0 4981 15015
130 2 2 0 1 4999 17559
131 2 2 0 2 5001 18304
132 2 2 0 3 5004 25830
133 2 2 1 0 5541 18471
134 2 2 1 1 5560 21015
135 2 2 1 2 5562 21760
136 2 2 1 3 5564 29286
137 2 2 2 0 5454 20545
138 2 2 2 1 5472 23089
139 2 2 2 2 5474 23834
140 2 2 2 3 5477 31360
141 2 2 3 0 5483 21720
142 2 2 3 1 5502 24264
143 2 2 3 2 5504 25009
144 2 2 3 3 5506 32535

Table 12
Notch test data of retrofitting the lighting system of one floor.

u Light 1 Light 2 Light 3 ES u( )lig (kWh) C u( )lig ($)

1 0 0 0 0 0
2 0 0 1 8110 2544
3 0 0 2 7649 1696
4 0 0 3 7373 1357
5 0 1 0 7016 1487
6 0 1 1 15126 4031
7 0 1 2 14665 3183
8 0 1 3 14388 2844
9 0 2 0 6169 1558
10 0 2 1 14279 4102
11 0 2 2 13818 3254
12 0 2 3 13542 2915
13 0 3 0 5443 1158
14 0 3 1 13553 3702
15 0 3 2 13092 2854
16 0 3 3 12816 2514
17 1 0 0 10644 1254
18 1 0 1 18755 3798
19 1 0 2 18294 2950
20 1 0 3 18017 2611
21 1 1 0 17660 2741
22 1 1 1 25770 5285
23 1 1 2 25309 4437
24 1 1 3 25033 4098
25 1 2 0 16813 2812
26 1 2 1 24924 5356
27 1 2 2 24463 4508
28 1 2 3 24186 4169
29 1 3 0 16088 2412
30 1 3 1 24198 4956
31 1 3 2 23737 4108
32 1 3 3 23460 3768
33 2 0 0 9884 1354
34 2 0 1 17994 3898
35 2 0 2 17533 3050
36 2 0 3 17257 2711
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Table 12 (continued)

u Light 1 Light 2 Light 3 ES u( )lig (kWh) C u( )lig ($)

37 2 1 0 16900 2841
38 2 1 1 25010 5385
39 2 1 2 24549 4537
40 2 1 3 24273 4198
41 2 2 0 16053 2913
42 2 2 1 24163 5457
43 2 2 2 23702 4609
44 2 2 3 23426 4269
45 2 3 0 15327 2512
46 2 3 1 23437 5056
47 2 3 2 22977 4208
48 2 3 3 22700 3869
49 3 0 0 6463 663
50 3 0 1 14573 3207
51 3 0 2 14112 2359
52 3 0 3 13836 2019
53 3 1 0 13478 2149
54 3 1 1 21588 4693
55 3 1 2 21128 3845
56 3 1 3 20851 3506
57 3 2 0 12632 2221
58 3 2 1 20742 4765
59 3 2 2 20281 3917
60 3 2 3 20004 3578
61 3 3 0 11906 1820
62 3 3 1 20016 4364
63 3 3 2 19555 3516
64 3 3 3 19279 3177

Table 13
Notch test data of retrofitting the roof considering the HVAC retrofit.

v,k Chiller Heat pump Roof ES k( )rof (kWh) C k( )rof ($)

1 0 0 0 0 0
2 0 0 1 81 2189
3 0 0 2 122 2790
4 0 0 3 131 11927
5 0 1 0 83 0
6 0 1 1 119 2189
7 0 1 2 137 2790
8 0 1 3 141 11927
9 0 2 0 80 0
10 0 2 1 118 2189
11 0 2 2 137 2790
12 0 2 3 141 11927
13 1 0 0 29 0
14 1 0 1 94 2189
15 1 0 2 128 2790
16 1 0 3 134 11927
17 1 1 0 112 0
18 1 1 1 132 2189
19 1 1 2 143 2790
20 1 1 3 145 11927
21 1 2 0 109 0
22 1 2 1 131 2189
23 1 2 2 142 2790
24 1 2 3 144 11927
25 2 0 0 28 0
26 2 0 1 94 2189
27 2 0 2 127 2790
28 2 0 3 134 11927
29 2 1 0 111 0
30 2 1 1 132 2189
31 2 1 2 142 2790
32 2 1 3 145 11927
33 2 2 0 108 0
34 2 2 1 130 2189
35 2 2 2 142 2790
36 2 2 3 144 11927
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a b s t r a c t

Energy efficiency of belt conveyors has recently gained in importance worldwide. While significant
research efforts were consecrated to the operational aspects, the literature study shows the design
optimization problem was scarcely investigated in the past. Among the various type of belt conveyors,
the multi-drive technology is now increasingly acknowledged as involving further cost saving oppor-
tunities as a result of the possible reduction of the belt weight. In this paper, a multi-drive belt conveyor
sizing model that aims to minimize the life cycle cost of the conveyor is presented. The effectiveness of
the proposed approach in improving their economic benefits over the single-drive conveyors has been
established through extensive simulations on a practical case study. The robustness of the best design
solution against the variation in the inflation rate have been also validated.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Energy shortage is a major concern to many countries around
the world. With 83% of electricity generated by coal-fired power
plants (Eskom, 2017), statistics from the largest South African en-
ergy company, Eskom, indicated that while the entire mining sector
consumed 15% of its annual electricity supply, approximately 23% of
this consumption was used for material transportation purposes
only (Eskom, 2010). Amongst the existing technologies, belt con-
veyors are largely used for bulk material transfer over short and
medium distances because of their low energy consumption per
tonne of material transported in comparison to other alternatives
(Zhang and Xia, 2010; Tapp, 2000; Darling, 2011). A significant
number of belt conveyors are, however, either oversized or inade-
quately operated, resulting in poor energy efficiency and economic
performances (Dalgleish and Grobler, 2003; Zhang and Xia, 2010;
Bindz�ar and Malind�z�ak, 2008). As a result, any improvement in
energy efficiency achieved at the design or operation stage of a
conveyor can reduce its capital investment and/or operating
expenditures.

Generally, energy efficiency activities can be clustered into four
categories, namely initiatives focusing on technology, operation,
equipment, and performance efficiencies (Xia and Zhang, 2010,
2011, 2016). With indicators such as feasibility, life cycle cost, and
return on investment, technology efficiency refers to the effi-
ciencies of energy conversion, processing, transmission, and usage.
Equipment efficiency is a measure of the energy output of isolated
individual equipment with respect to given technology design
specifications. Typical indicators include capacity andmaintenance.
Operation efficiency focuses on the degree of coordination of the
different components of an energy system. Physical coordination,
time coordination and human coordination are the indicators
usually considered at this level. Performance efficiency is a measure
of the global efficiency of the energy system, and is evaluated by
external but deterministic indicators such as the production, cost,
and environmental footprint. Readers interested in more detailed
definitions of technology, operation, equipment, and performance
efficiencies are referred to reference (Xia and Zhang, 2010).

Findings from the literature indicate that most of the previous
efforts to improve belt conveyor's energy efficiency were done at
the equipment level, operation level, and technology level. Equip-
ment efficiency activities include the development of energy-
efficient belting materials (Association for Rubber Products
Manufacturers Inc, 2011; Dejchanchaiwong et al., 2016), applica-
tion of energy-efficient motors and variable speed drives (de
Almeida et al., 2003), and monitoring and maintenance of
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Nomenclature
ai Wrap angle of drive pulleys in the i-th drive station [�]
b Equivalent angle of slope of the material [�]
gbelt Specific mass of the belt [kg/m2]
dj Inclination angle of the belt section j [�]
hgear;i Efficiency of gear reducers in the i-th drive station
hmot;i Efficiency of motors in the i-th drive station
l Troughing angle [�]
m Friction factor between the drive pulley and the conveyor belt
m1 Friction factor between belt and material conveyed
m2 Friction factor between the lateral chutes and the material

transferred
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conveyor components based on risks of failure and expert system
tools (Petrovi�c et al., 2014; Mazurkiewicz, 2015). At the operation
efficiency level, initiatives include cost-effective load shifting
(Middelberg et al., 2009), adaptive belt speed control (Jefteni�c et al.,
2010; Ristic et al., 2012; He et al., 2017), material scheduling under
the time-of-use electricity tariff (Zhang and Xia, 2010; Luo and
Shen, 2015; Luo et al., 2015) and critical peak pricing (Mathaba
et al., 2012), and the optimal power flow between the electric
drives (Windmann et al., 2015). The impacts of the settings of
certain design parameters on the future power consumption of a
belt conveyor were also investigated (Schützhold et al., 2014).
Technology efficiency activities involve strategies for selecting idler
rolls (Reicks and Alspaugh, 2008), advanced design of troughing
idler sets (Tapp, 2000; Maton, 2003), and modelling of motion
resistance components (Lodewijks, 2003; Reicks et al., 2012;
Wheeler, 2006).

In practice, for a given transportation task, different designs of
belt conveyor will usually result in different cost implications
regarding both investment and operation expenditures. Possibil-
ities to minimize the entire life cycle cost through the optimal
dimensioning of belt conveyor components were reported in the
literature for single drive conveyor belts (Roberts, 1981; Wheeler
and Alspaugh, 2008). Belt conveyors using multiple drive design
were, however, not covered in the studies previously reported.

Since the early applications in the United States and Germany in
the seventies, the distributed drive technology has today reached
maturity. Multiple drive conveyor systems are already widely used
in underground coal mines and are increasingly being considered
in the mining plan for future developments (Alspaugh, 2003). Fig. 1
illustrates the evolution of the belt tension profile before and after
one, and subsequently, two drive stations are inserted in the upper
stretch of a single drive conveyor. The decline of the maximum belt
tension achieved by increasing the number of intermediate drive
stations may allow conveyor designers to shift towards less resis-
tant belt products and thereby reducing the weight of the belt and
the supporting structure.

The resulting economic benefit of this practice is, however,
subject to the interactions between the various design parameters
relevant to the capital and operational costs of the belt conveyor
components. In particular, to achieve good performance for a
specified transportation task, the number of drive stations should
be set taking into account the influence of their respective sizes and
Fig. 1. Belt tension profile v.s. number of driving stations (adapted from Alspaugh
(2003)).
distribution along the belt path, and the belt speed, among others.
To the best of the authors' knowledge, no previous study dedicated
to the economic design of multiple drive belt conveyors was re-
ported in the literature. The rest of this paper presents a contri-
bution on the cost-effective component sizing model for multiple
drive belt conveyors. The proposed approach intends to optimally
determine the most important design parameters in order to
minimize the life cycle cost of such a conveyor system while
satisfying various design and operational constraints. This in-
troduces a method for economic design of multi-drive conveyors
for plant owners to make the best use of capital investments and to
reduce operating cost of the belt conveyors. In particular, solution
of the presented model yields the optimal sizes of components of a
multi-drive conveyor that will result in the minimum capital and
operating costs over the entire lifespan of the conveyor subject to
design constraints. Therefore, the model developed will be a handy
and powerful tool to help plant owners to design the most cost-
effective conveyor solutions to their needs. It can also be used as
a decision support tool for plant owners when comparing different
investment options for material transportation using belt
conveyors.

The rest of this paper is organized as follows. A brief introduc-
tion to multi-drive belt conveyor is given in Section 2. The cost-
effective design problem for multi-drive conveyors is formulated
in Section 3, followed by the detailed mathematical modelling of
the belt conveyor in Section 4. Section 5 presents a case study to
demonstrate the effectiveness of the optimal component sizing
model developed. The robustness of the cost-effective conveyor
designs against possible fluctuations in the inflation rate during the
project is also discussed. Section 6 concludes this study.
m3 Friction factor between the belt cleaning device and the belt
xo Number of idler rolls per set on the carry side
xu Number of idler rolls per set on the return side
r Material density [kg/m3]
a Constant factor for the calculation of clear width of lateral chutes
AGr Effective contact area between belt cleaning device and belt [m2]
Ath Theoretical cross section of fill [m2]
Aconveyor Annual equivalent cost of the belt conveyor [USD/year]
Abelt Annual equivalent cost of the belt [USD/year]
Acarryidler Annual equivalent cost of all the carry idler rolls [USD/year]
Aenergy Annual equivalent energy cost [USD/year]
Aeq Annual equivalent cost of an equipment [USD/year]
Agear;i Annual equivalent cost of each gear reducer in the i-th drive

station [USD/year]
Amotor;i Annual equivalent cost of each motor in the i-th drive station

[USD/year]
j Belt section index
Areturnidler Annual equivalent cost of all the return idler rolls [USD/year]
B Belt width [m]
B Set of the recommended width of belt
b Usable belt width [m]
Bf Dynamic load factor related to bearing life
bSch Clear width of lateral chutes [m]
Ceq;0 First cost of the item of an equipment purchased at the year zero

[USD]

(continued on next page)



(continued )

Cf Belt flap factor
CRank Rakine coefficient
CSchb Constant factor for additional resistance between material

transferred and lateral chutes
cTr Drive pulleys constant coefficient related to the type longitudinal

tension members of the belt
Cw;i Combined warp factor of the drive pulleys in the i-th drive station
c1;…;c22 Initial cost coefficients
D Set of the recommended diameters of idler roll
d Set of the recommended shaft diameters of idler roll
Dtr Set of the recommended diameters of drive pulley
dGk Thickness of the longitudinal tension members of the belt [m]
Dj Diameter of idler rolls in the belt section j [m]
dj Shaft diameter of idler rolls in the belt section j [m]
Do Diameter of idler rolls in the upper stretch [m]
do Shaft diameter of idler rolls in the upper stretch [m]
Du Diameter of idler rolls in the lower stretch [m]
du Shaft diameter of idler rolls in the lower stretch [m]
eo Unit cost of energy at the year zero of the project [USD/kWh]
fj Hypothetical friction factor in the belt section j

FAuf ;j Resistance due to the acceleration of the material in the loading
zone of the belt section j [N]

Fmin Minimum belt tension in steady-state operating conditions [N]
FG;j Gradient resistance in the belt section j [N]
FGr;j frictional resistance due to belt cleaning devices situated in the

belt section j [N]
FH;j Primary resistance in the belt section j [N]
F0 Belt tension at each side of the tail pulley [N]
FN;j Secondary resistance in the belt section j [N]
FS;j Special resistance in the belt section j [N]
Fs;o Static load on the central carry idler roll in a three-idler troughing

configuration [N]
Fs;u Static load on a flat return idler in the lower stretch [N]
FSchb;j frictional resistance between belt and lateral chutes in the

acceleration zone of the belt section j [N]
FT1;i Tight side tension of the first drive pulley in the i-th drive station

[N]
FT2;i Slack side tension of the second drive pulley in the i-th drive

station [N]
FTU Belt tension on both sides of the take-up device [N]
FW ;j Total resistance to movement in the belt section j [N]
F0 Belt tension at the conveyor tail [N]
g Gravitational acceleration [m/s2]
H Lifting height [m]
hrel Maximum belt sag related to spacing between idler rolls
i Integer index
id Interest rate on debt
ie After-tax return required on equity funds with zero inflation rate
if ;j Inflation modified rate of return of the year j of the project

i0f Time value of money with all cash flows converted from inflated
value to constant year zero value

j Integer index
K Total length of the belt along the conveyor path [m]
kb Constant factor for calculation of the total length of the

acceleration path
kN Nominal breaking strength of the belt related to belt width [N/m]
keq Equivalent annual cost coefficient of an equipment
kt;rel Relative reference endurance strength of the belt

k1;…;k6 Equivalent annual cost coefficients
L Horizontal transport distance [m]
lb Total length of the acceleration path [m]
Lf Dynamic load factor related to lump size of the material

transferred
lj Length of the belt section j [m]
Lo;j Length of the belt section j in the upper stretch [m]
lM;o Length of the shell of a carry idler roll [m]
lo Spacing between idler rolls in the upper stretch [m]
Lu;j Length of the belt section j in the lower stretch [m]
lu Spacing between idler rolls in the lower stretch [m]
M Expected lifetime of each item of an equipment [year]
m0

G Linear mass of the belt [kg/m]
m0

L;j Linear mass of the transferred material in the belt section j [kg/m]

mR;j Mass of the rotating parts of each idler situated in the belt section j
[kg]

(continued )

m0
R;j Linear mass of the rotating parts of idlers per runningmeter in the

belt section j [kg/m]
m1 Belt weight model coefficient [kg/m2]
m2 Belt weight model coefficient [s2/m2]
m3 Steelcord diameter model coefficient [m]
m4 Steelcord diameter model coefficient [m]
m5 Steelcord diameter model coefficient [m]
N Number of intermediate drive stations
No Number of belt sections in the upper stretch
Nu Number of belt sections in the lower stretch
n1 Dynamic speed load factor model coefficient
n2 Dynamic speed load factor model coefficient [s/m]
o Upper stretch
Pi Rated power of motors in the i-th drive station [kW]
PEDeq Present equivalent of depreciation of the items of an equipment

[USD]
PEFeq Present equivalent of all the first cost of an equipment [USD]
PEVeq Present equivalent of all the salvage value of an equipment [USD]
pGr Pressure between the belt cleaning device and the belt [N/m2]
Q Material flow rate [kg/s]
qf Remaining proportion of the initial value of an equipment at the

end of the expected lifetime
qi Remaining proportion of the initial value of the item i of an

equipment at the end of its actual lifetime
R Number of items of an equipment to be purchased over the

project lifetime
ravg Average general inflation rate over the project duration
rd Proportion of debt capital
re;j Annual escalation rate of energy during the year j
req;j Annual cost escalation rate of an equipment during the year j
rj General inflation rate during the year j
Sf Dynamic load factor related to belt speed
S0 Belt safety factor related to the splicing conditions
S1 Belt safety factor related to the expected lifetime and the

operation conditions
t Income tax rate
ta Operating hours per annum [h]
Ti Rated torque of gear reducers in the i-th drive station [kNm]
u Lower stretch
v Conveyor speed [m/s]
v0;j Initial speed of the material in the direction of belt travel in the

belt section j [m/s]
w Width of the contact area between belt and belt cleaning device

[m]
Xi Purchase year of the item i of an equipment
Yi Year of decommissioning of the item i of an equipment
y1, y2 Belt length model coefficients [m]
Z Project lifetime [year]
z1;…;z4 Idler roll mass model coefficients
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2. Description of multi-drive belt conveyors

Fig. 2 illustrates a typical modern uphill multi-drive belt
conveyor that aims to transfer a bulk material of density r with a
flow rate Q over a distance L with a lift height H. It consists
basically of an upper stretch and a lower stretch subsequently
identified by the subscripts o and u, respectively. The upper
stretch carries the bulk material from the loading point situated at
the tail pulley and along the conveyor path to the unloading
points positioned along the conveyor path and at the head pulley.
On the other hand, the lower stretch consists of the empty belt
that circulates from the head pulley to the tail pulley. Apart from
these two pulleys, one or several pairs of drive pulleys mounted in
tandem are positioned along the upper stretch of the conveyor.
One pair of drive pulleys and one pair of idler pulleys are posi-
tioned in the lower stretch as indicated in Fig. 2. Each drive pulley
is connected to a motor-gear reducer system mounted at its shaft.
The rest of pulleys rotate freely and are driven by the belt. The arc
of contact between the belt and a drive pulley is referred to as the
wrap angle and is denoted by a.
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The drive station is the unit comprising a pair of drive pulleys
mounted in tandem together with their associated motor-gear
reducer systems. In particular, the drive stations situated in the
upper stretch are identified as intermediate drive stations. Within a
drive station, the drive pulley 1 and drive pulley 2 refer to,
respectively, the first and second pulleys when following the belt
travel direction in Fig. 2. For illustration purposes, Fig. 2 shows a
conveyor system comprising 4 drive stations including 3 interme-
diate drive stations. A general design will comprise N þ 1 (N ¼ 1;2;
…) drive stations with N positioned as intermediate drive stations.
These drive stations will then be numbered from 1 to N þ 1 starting
at the drive station near the tail pulley and ending at the drive
station located in the lower stretch.

A belt section refers any portion of belt nestled between any two
different pulleys. Like in standard DIN 22101 (DIN 22101, 2011),
within each stretch, the edges of each belt section is identified by
means of a unique index specified in ascending order starting at the
tail pulley identified by default as edge 0. A belt section is subse-
quently designated by the greatest index between its two edges. For
example, the belt conveyor in Fig. 2 has 7 belt sections in the upper
stretch and 5 belt sections in the lower stretch. The belt sections 3
in the upper and lower stretches of the conveyor are also pointed
out ig. 2. In more general case, the number No of belt sections in the
upper stretch will depend on N, while the number Nu of belt sec-
tions in the lower stretch will be determined by the number of pairs
of idler pulleys installed. Although the number of idler pulleys can
vary from one conveyor system to another, this study only con-
siders multi-drive belt conveyors with a single pair of idler pulleys.
Nu will be therefore equal to 5 in the following. Thereafter, Lo;i and
Lu;j will denote the lengths of, respectively, the belt section i in the
upper stretch and the belt section j in the lower stretch.

For the purpose of supporting the belt sections that extend over
long distances, carrying and return idler rolls are mounted under-
neath the belt in these belt sections as described in Fig. 2. Fig. 3 (a)
also shows the carrying idler rolls also supporting the bulk material
in transit along the belt conveyor in the case of a three-idler roll
troughing configuration. In this figure, B denotes the belt width, b
denotes the usable belt width, b denotes the equivalent angle of
slope of the material, l denotes the troughing angle and lM;o de-
notes the length of the shell of a carry idler roll.

The resultant longitudinal force measured at a specific point
along the conveyor path is referred to as the belt tension at this
point and is noted by F. Fig. 3(b) shows the belt tension components
around a drive pulley. The belt tension at the belt run-on point on
the drive pulley is referred to as the tight side tension, and is noted
FT1. On the other side, the belt tension at the belt run-off point on
the drive pulley is referred to as the slack side tension, and is noted
FT2. Moreover, FTr denotes the peripheral force applied by the drive
pulley on the belt. Analogously, FT1;i, FT2;i and FTr;i will denote,
respectively, the tight side tension, the slack side tension and the
peripheral force of the i-th drive station. The belt strength is
Fig. 2. Multiple drive belt conveyor layo
specified by the nominal breaking strength of the belt related to
belt width, kN , which corresponds to the minimum rupture force of
the belt per unit of belt width. Lastly, long belt conveyors usually
require to be fitted with a tensioning equipment also referred to as
take-up device (not shown in Fig. 2) so as to prevent belt slipping
on drive pulleys. The belt tension on each side of the take-up device
is noted FTU .

3. Problem formulation

A given conveying operation can be described by L, H, Q, r and b.
For such a material transfer task, a large variety of multi-drive belt
conveyors can be envisaged, designs of which will generally lead to
different cost implications over the project lifetime. The goal is
therefore to identify the design solution that results in the lowest
life cycle cost. To facilitate the comparison of belt conveyor designs,
the equivalent annual cost of a belt conveyor Aconveyor is adopted as
the performance indicator instead of directly inspecting the life
cycle costs.

Therefore for a given N, the general formulation of the optimi-
zation problem that allows to determine the design solution with
the minimum Aconveyor is stated as

min
X

Aconveyor

s:t: GðXÞ ¼ 0;
HðXÞ � 0;

where X denotes the set of design parameters and G and H denote,
respectively, the functions of equality and inequality constraints
relating to the belt dynamics and design conditions as detailed in
subsection 4.3. Although N can be treated as a decision variable, it
adds much complexity of the model. The direct comparison of the
minimum Aconveyor obtained for different N will therefore lead to
the most cost-effective design solution in terms of N and X.

By keeping the two driving subsystems of each i-th drive station
(i ¼ 1;…;Nþ 1) identical in all respects, the set X considered in this
study includes: the rated power of each motor in the i-th drive
station Pi, the rated torque of each gear reducer in the i-th drive
station Ti; the diameter of each drive pulley in the i-th drive station
Dtr;i; the wrap angle of each drive pulley in the i-th drive station ai;
Lo;j of the belt sections j (j ¼ 1;3;…;No) not nestled between drive
pulleys, the belt width, B, the belt speed, v, the spacing between
idler rolls in the upper stretch, lo, the spacing between idler rolls in
the lower stretch, lu, the diameter of idler rolls in the upper stretch,
Do, the diameter of idler rolls in the lower stretch, Du, the shaft
diameter of idler rolls in the upper stretch, do, the shaft diameter of
idler rolls in the lower stretch, du, kN and FTU .

Regarding the calculation of Aconveyor , the various costs incurred
throughout the belt conveyor lifetime can be grouped into capital
costs and operating costs. Since each of these categories comprises
several expense items incurred at different points of time during
ut (adapted from Alspaugh (2003)).



Fig. 3. Cross section of fill and mechanic around the drive pulley.
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the project life, Aconveyor will therefore consist of the sum of the
equivalent annual costs of each cost item involved. The next sub-
sections give a brief discussion of the cost items relating to the type
of belt conveyor investigated in this study.

3.1. Operating costs

The operating costs of a belt conveyor include energy cost,
maintenance cost and labor cost. While the relationships between
the design parameters and the expenditures for maintenance and
labor were not investigated in the past, it can be expected that the
number and size of drive stations, the conveyor speed and belt size
will influence the maintenance cost. On the other hand, the wage
and number of workers in a mine are usually driven by the plant
size, the production, and the local legislation (Darling, 2011;
Roberts, 1981). Accordingly, no influence on the labor is expected
from the design parameters selected in this study. As a result of the
difficulties experienced in accessing modelling data for the main-
tenance part, only with the energy cost is subsequently considered.

The equivalent annual energy cost Aenergy of a multi-drive belt
conveyor with N intermediate drive stations, with each drive sta-
tion consisted of two drive pulleys and driving systems, is given by:

Aenergy ¼ k1eota
XNþ1

i¼1

2Pi
.
hmot;i; (1)

where k1 denotes the equivalent annual energy cost coefficient, eo
denotes the unit cost of energy at the year zero of the project, ta
denotes the operating hours per annum, and hmot;i denotes the
efficiency of motors of the i-th drive station. As detailed in
Appendix A.1, the calculation of k1 takes into account of several
factors, including the general inflation rate, the annual escalation
rate of energy during the project and the tax rate.

3.2. Capital costs

The capital costs of the conveyor components, including the
belting material, the electric motors, the gear reducers, the carry
idlers and the return idlers, are considered at this stage. Although,
in practice, the cost for the supporting structure is significant
among the conveyor components, it is not investigated because of
its high dependency on the geographic characteristics of the mine.

The initial cost function of belt conveyor components
considered in this study is derived from Roberts (1981) and
Wheeler and Alspaugh (2008). Further analysis on idler roller
purchase costs indicated that the shaft diameter affects the product
price in addition to the idler roller's diameter and length. The cost
functions of these items were revised accordingly. As a result, the
annual equivalent cost of the conveyor components are given as
follows

Abelt ¼ k2BK
�
c1 þ c2k

c3
N

�
; (2)

Amotor;i ¼ k3
�
c4 þ c5P

c6
i

�
; (3)

Agear;i ¼ k4
�
c7 þ c8T

c9
i

�
; (4)

Acarryidler ¼ xok5
X
j¼1

No Lo;j
lo

�
c10 þ c11d

c12
o þ c13D

c14
o þ c15B

c16
�
; (5)

Areturnidler ¼ xuk6
X
j¼1

Nu Lu;j
lu

�
c17þc18d

c19
u þc20D

c21
u þc22B

c23
�
: (6)

where K denotes the total length of the belt along the conveyor
path, k2 to k6 denote the equivalent annual cost coefficients of belt
conveyor components c1 to c23 denote the initial cost coefficients,
xo denotes the number of carry idler rolls per set (e.g. xo ¼ 3 a three-
idler troughing configuration), and xu denotes the number of return
idler rolls per set (e.g. xu ¼1 in a flat return configuration).

The values of c1 to c23 are determined based on suppliers' price
data. Besides the economic parameters relevant to k1, the calcula-
tion of the equivalent annual cost coefficient of a given belt
conveyor component implies taking into account also the annual
escalation rate of the initial costs of this equipment, the first costs of
the first item and its replacements purchased during the project
life, their related expected lifetimes, their respective annual
depreciation rates and their respective salvage values. k2 to k6 are
obtained using the procedure disclosed in Appendix A.2. For its
part, K in equation (2) can be approximated by

K ¼ 2L=cosdþ y1N þ y2;

where d denotes the inclination angle of the conveyor system, y1 and
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y2 denote constant coefficients that account for, respectively, the
wrapping of the belt around the drive pulleys and a reserve factor.

The equivalent annual cost of a multiple drive belt conveyor
with N intermediate drive stations is therefore given by
Aconveyor ¼ Aenergy þ Abelt þ 2
XNþ1

i¼1

Amotor;i þ 2
XNþ1

i¼1

Agear;i þ Acarryidler þ Areturnidler : (7)
The cost of the conveyor, Aconveyor , varies as a function of the
design parameters of the components that form parts of the sys-
tem. The system design must also accommodate any technical re-
quirements relevant to the technology and the intended
application. A multi-drive belt conveyor sizing model that aims to
minimize the life cycle of the conveyor is developed in Section 4.

4. Mathematical model of the multi-drive belt conveyors

The force analysis, the power balance requirement, and the
operational constraints that should be satisfied to ensure the
proper and safe operation of the multi-drive belt conveyor are
presented in this section.

4.1. Motion resistance modelling

According to DIN 22101 standard (DIN 22101, 2011), the overall
resistance to the belt movement FW;j that occurs within a belt
section j consists of the primary resistance, the secondary resis-
tance, the gradient resistance and the special resistance.

The primary resistance FH;j combines together the running
resistance forces caused by indentation of the belt cover on the
idler rolls, the flexure of the belt between the idler rolls, and the
rotational resistance of idler rolls. The resulting opposition force to
the belt movement in the section j is approximated by:

FH;j ¼ ljfj
h
m0

R;j þ
�
m0

G þm0
L;j

�
cosdj

i
g; (8)

where lj denotes the length of the belt section, fj denotes the hy-
pothetical friction factor, g denotes the gravitational acceleration,
m0

R;j denotes the total mass of the rotating parts of idler rolls per

running meter, m0
G denotes the linear mass of the belt,m0

L;j denotes

the linear mass of the material transferred, and dj denotes the belt
section inclination angle. Since the system is unloaded in the return
side, the resistance factor due to the conveyedmaterialm0

L;j will not

apply to the belt sections situated in the lower stretch. The total
mass mR;j of the rotating parts of a idler roll is approximated by:

mR;j ¼ z1D
z2
j Bz3 þ z4dj;

where z1 to z5 are the model coefficients, Dj denotes the shell
diameter of idler rolls in the belt section j, and dj denotes the shaft
diameter of idler rolls in the same belt section.

The secondary resistance FN;j in a belt section j entails the fric-
tional resistances FAuf ;j, FSchb;j, and FGr;j. These resistances are
modeled as follows:

FAuf ;j ¼
Q
r

�
v� v0;j

�
; (9)
FSchb;j ¼ CSchbCRank

"
2Q�

vþ v0;j
�
r2

�
�
b2Sch � l2M;o

� tan l

4

#2
rglbm2
b2Sch

;

(10)
FGr;j ¼ m3pGrAGr: (11)

In equations (9)e(11), v0;j denotes the initial speed of the ma-
terial in the direction of the belt travel, CSchb denotes a constant
factor for the additional resistance between material loaded and
lateral chutes, CRank denotes Rankine coefficient, bSch denotes the
clear width of lateral chutes, lb denotes the total length of the ac-
celeration path, l denotes the troughing angle, m2 denotes the
friction factor between lateral chutes and material transferred, m3
denotes the friction factor between belt cleaning device and belt,
pGr denotes the pressure between belt cleaning device and belt, and
AGr denotes the effective contact area between belt cleaning device
and belt. AGr , bSch and lb are determined as follows

AGr ¼ wB;

bSch ¼ alM;o;

lb ¼
kb
�
v2 � v20;j

�
2gm1

;

where w denotes the width of the contact area between belt and
belt cleaning device, m1 denotes the friction factor between belt and
material conveyed and a and kb are constant coefficients.

In addition to the normal distribution of the secondary resis-
tance components as in the single drive conveyor systems, the
inertia resistance and the frictional resistance between lateral
chutes and the belt given, respectively, by (9) and (10), also occur in
each belt section situated in the downstream of an intermediate
drive station.

The gradient resistance FG;j caused by the lifting of the belt and
the material in a belt section j is given by

FG;j ¼ lj sindj
�
m0

G þm0
L;j

�
g; (12)

in which dj >1 for uphill belt travel and dj <1 for downhill belt
travel.

The special resistance component FS;j concerns the remaining
resistances that apply only to particular conveyor designs. It in-
cludes the camber resistance, the resistance due to any lateral
transfer equipment positioned along the conveyor path and the
frictional resistance between lateral chutes and transferred mate-
rial beyond the loading zones.

The overall resistance to the belt movement in a belt section j is
therefore given by

FW;x;j ¼ FH;x;j þ FN;x;j þ FG;x;j þ FS;x;j;

where the subscript x is replaced by o for the upper stretch or by u
for the lower stretch. The overall resistance to the movement FW
can be therefore expressed as follows:
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FW ¼
XNo

j¼1

FW ;o;j þ
XNu

j¼1

FW;u;j:
4.2. Power balance of the belt conveyor

The following condition ensures the power balance over the
entire multi-drive conveyor system:

2
XNþ1

i¼1

Pihgear;i � vFW ¼ 0; (13)

where hgear;i denotes the efficiency of the gear reducers in the i-th
drive station.

The power balance within the driving subsystems of each drive
station is guaranteed by verifying:

2Tiv
Dtr;i

¼ hgear;iPi; i ¼ 1;…;N þ 1: (14)

Going a step further from equation (13), the force balance at the
drive stations can be determined. First, the minimum belt tension
need to be determined. For Nu ¼ 3 and depending on the magni-
tude of the gradient resistances in the belt sections 1 and 3 in the
lower stretch, the minimum belt tension Fmin will normally occur
either at the tail pulley or at the slack side the drive station situated
in the return side. In case the take-up device is fitted at the point of
minimum belt tension, the belt tension F0 at the tail pulley is given
by

F0 ¼
�
FTU ; if Fmin ¼ F0;
FTU þ FW ;o;1 þ FW;o;3; if Fmin ¼ FT2;Nþ1:
Ath ¼ �lM;o þ
�
b� lM;o

�
cosl

�2tan b

4
þ
	
lM;o þ

b� lM;o

2
cos l



b� lM;o

2
sin l:
Following the direction of the belt movement, the tight side
tension of a i-th drive station is calculated by subtracting the total
driving force due to all the drive stations located between the tail
pulley and this drive station from the sum of F0 and the total
resistance of all the belt sections situated between the tail pulley
and the tight side of the drive station concerned. The tight side
tension of each of the N þ 1 drive stations of a multi-drive conveyor
is therefore obtained by

FT1;i ¼

8>>>>>>><
>>>>>>>:

F0 þ FW;o;i; if i ¼ 1;

F0 þ
X2i�1

k¼1

FW;o;k � 2
Xi�1

k¼1

Pkhk=v; if 2 � i � N;

F0 þ
X2i�1

k¼1

FW;o;k þ FW;u;Nu
� 2

Xi�1

k¼1

Pkhk=v; if i ¼ N þ 1:

As shown in Fig. 1, the maximum belt tension under steady
operating conditions is reduced in multi-drive belt conveyors
through the equalization of the tight side belt tensions of all the
drive stations installed in the conveyor system (Alspaugh, 2003;
Nuttall, 2007). Hence, the following condition must be satisfied:
FT1;i ¼ FT1;1; i ¼ 2;…;N þ 1: (15)

Within a drive station, the slack side tension is equal to the
difference between the tight side tension and the total tensile force
transmitted by its gear reducers:

FT2;i ¼ FT1;i � 2Pihgear;i
.
v; i ¼ 1;…;N þ 1:

To guarantee the effective transmission of the driving forces
from the drive pulleys to the belt, the slack side tension of each
drive station should verify:

FT2;i � 2Cw;iPihgear;i
.
v � 0; i ¼ 1;…;N þ 1; (16)

where the combined wrap factor Cw;i of a i-th drive station can be
obtained by (Conveyor Equipment Manufacturers Assoc, 1997)

Cw;i ¼
1

e2mai � 1
; i ¼ 1;…;N þ 1;

by assuming that the friction factor m between drive pulley and
conveyor belt is constant for the entire conveyor.
4.3. Design constraints

4.3.1. Material transportation requirements
The conveyor must transport a required flow rate of material

over a specific distance. The following equation ensures the
required material flow

Q ¼ rAthv; (17)

where the theoretical cross section of fill Ath for a three-idler
troughing configuration shown in Fig. 3(a) is given by
The following condition needs to be satisfied to ensure the
desired the transportation distance L of the material

XNo

k¼1;3;…

Lo;k �
XN
i¼1

Dtr;i ¼ L=cos d; (18)

4.3.2. Safety and endurance requirements
The design constrains relating to the operation safety and

endurance of the conveyor are discussed here. To ensure opera-
tional safety, the following conditions apply to the belt tension at
the tail pulley and the slack side tension of intermediate drive
stations in order to limit the belt sag in the upper stretch below a
specified value hrel (DIN 22101, 2011):

F0 � gðrAth þ BgbeltÞlo
8hrel

; (19)

F0 þ
X
j¼1

k

FW ;o;j � 2
X
r¼1

m hrPr
v

� gðrAth þ BgbeltÞlo
8hrel

; (20)
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for k ¼ 2;4; …; No � 1, m ¼
�
k�1
2

�
, and where gbelt denotes the

specific mass of the belt. The function Q:,S is the ceiling function
which rounds a real number upwards to the nearest integer.
Similarly, the belt sag in the lower stretch is maintained below the
same value by applying the following condition at the spot of the
minimum belt tension:

FTU � gBgbelt lu
8hrel

: (21)

Belt manufacturers' product datasheets provide the following
type of relation between gbelt and kN

gbelt ¼ m1 þm2kN;

where m1 and m2 are the model coefficients.
The nominal breaking strength of the belt related to belt width

and the maximum belt tension, which coincides with the tight side
tension of the drive stations, should satisfy

kt;relkN
S0S1

� FT1;1
B

: (22)

where kt;rel denotes the relative reference endurance strength of
the belt, S0 denotes the belt safety factor related to the splicing
conditions, and S1 denotes the belt safety factors related to the
expected lifetime, the operational conditions and the dynamics of
the conveyor.

The following condition ensures that the strength of the longi-
tudinal tensile members in the belt core endures over the expected
lifetime of the belt

Dtr;i � cTrdGk; i ¼ 1;…;N þ 1; (23)

where cTr denotes a constant factor that depends on the type of the
longitudinal tensile members and dGk denotes their thickness.

In case of steelcord belts, the manufacturers' product datasheets
provide the following relation between dGk and kN:

dGk ¼ m3 þm4k
m5
N ;

where m3, m4 and m5 are the model coefficients.
As per the SANS 1313 standard, the admissible load-carrying

capacities Fmax;o and Fmax;u of, respectively, the carry and return
idler rolls are specified in relation to the diameters of their shafts
and the belt width (Frittella and Curry, 2009). To further prevent
risks of premature failure, the idler rolls in the upper stretch are
also subjected to the following condition (Handling Sandvik
Materials, 2013):

Sf Bf Lf Fs;o � Fmax;o; (24)

where Sf , Bf , and Lf denote the dynamic load factors related to,
respectively, the belt speed, the bearing life, and the lump size of
the material transported. Fs;o denotes the static load on the central
idler roll, which is determined by
Fs;o ¼
�
gbelt lM;o þ

1
2
rlM;o


1
2
lM;o tan bþ �b� lM;o

�ðsin lþ cos l tan b
The variation of Sf with respect to v is described by (Handling
Sandvik Materials, 2013):

Sf ¼ n1 þ n2v;

where n1 and n2 are the model coefficients.
Similarly, the following condition applies to idler rolls situated

in the lower stretch

Sf Bf Cf Fs;u � Fmax;u; (25)

where Cf denotes the belt flap factor and the static load Fs;u on a flat
return idler is given by

Fs;u ¼ gbelt lM;uglu:

While complying again with the SANS 1313 standard, the rota-
tion speed of each idler roll should not exceed the limit of 750 rpm
(Frittella and Curry, 2009). This composes a constraint on the
following relationship between the conveyor speed v and the idler
roll diameters Do and Du

60v
pDo

� 750; (26)

60v
pDu

� 750: (27)

4.3.3. Standardization requirements
In case the use of identical equipment and settings is required

for supply chain and operational motivations, the following con-
straints will apply along with the previous design conditions:

Pi ¼ P1; (28)

Ti ¼ T1; (29)

Dtr;i ¼ Dtr;1; (30)

ai ¼ a1; (31)

for i ¼ 2;/;Nþ 1.
4.3.4. Boundary limits
Lastly, the design parameters are subject to the following

boundary limits:

0 � Pi � Pmax (32)

0 � Ti � Tmax (33)

Dtr;i2Dtr (34)

amin � ai � amax (35)
Þ
��

glo:
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Lmin � Lo;j � Lmax (36)

B2B (37)

0 � v � vmax (38)

0 � kN � kN;max (39)

0 � FTU � FTU;max (40)

lo;min � lo � lo;max (41)

lu;min � lu � lu;max (42)

Do2D (43)

Du2D (44)

do2d (45)

du2d (46)

In the above equations, the subscripts min and max denote,
respectively, the lower and upper limits of the related design pa-
rameters, Dtr denotes the set of recommended diameters of the
drive pulleys, B denotes the set of recommended belt width, D
denotes the set of recommended diameters of the idler rolls and d
denotes the set of recommended shaft diameters of the idler rolls.

Based on the above development, the optimization problem that
minimizes the life cycle cost of the multi-drive belt conveyors fitted
with N intermediate drive stations is

min
X

Eq. (7)

s.t. Eqs. (13)e(46)
Table 1
Technical parameters of the case study.

Parameter Value Unit

Transport parameters
L 2500 m
H 25 m
Q 3500 t/h
r 1280 kg/m3

b 20 �

Lf 1
hrel 1 %
Resistance parameters

a 1.25
CSchbCRank 1
f 0.03
g 9.81 m/s2

kb 1.1
v0;j 0 m/s
m1 0.6
m2 0.6
m3 0.65
pGr 0.065 N/mm2

e 0.031 mm
Belt parameters
l 35 �

cTr 145
kt;rel 0.45
m1 13.823
For readability reasons, the full optimization program is repro-
duced in Appendix B.
5. Case study

A simulation based case study is presented in this section to
demonstrate the effectiveness of the optimal multi-drive belt
conveyor design model proposed.
5.1. Simulation setup

The requirement is to design amulti-drive belt conveyor capable
of transporting a certain bulk material with a flow rate of 3500 t/h
over a distance of 2500m with an inclination of 1 in 100. The
description of this transportation task along with the technical
parameters are listed in Table 1. In practice, the value of the hy-
pothetical friction factor is affected by several factors, including the
belt tension, conveyor speed, diameters of idler rolls and their
spacing as explained in the DIN 22101 standard (DIN 22101, 2011).
While it usually varies between 0.010 and 0.040, no approach to set
f is mentioned in case its affecting parameters are independently
varied between their usual limits. Accordingly, a fixed value of 0.03
is adopted in this study asmentioned in Table 1. For a certain design
task, this should be picked by the plant designer who has knowl-
edge about this factor. Further, the case study assumes a unique
loading point at the tail pulley, a unique unloading point at the head
pulley and a single belt cleaning device installed downstream of the
head pulley. The standard values of Fmax;o and Fmax;u applicable to,
respectively, three-idler troughing configurations and flat return
idler rolls for common belt widths and shaft diameters as consid-
ered in this case study are disclosed in Frittella and Curry (2009).

The cost implications of the optimally designed multi-drive
conveyor is compared with that of an optimally designed single
drive conveyor for a fair comparison. In particular, an optimization
model for the design of single drive belt conveyors with a unique
head drive pulley was developed. This model is a modification of
the design model for multiple drive belt conveyors presented
Parameter Value Unit

m2 8.174,10�3

m3 1.002
m4 0.0124
m5 0.771
S0 1.1
S1 1.7
Drive station parameters
m 0.3
hgear 0.9
hmot 0.95
Idler roll parameters
n1 0.714
n2 0.089
Bf 0.80
Cf 1.25
Carry idler roll parameters
z1;o 139.39
z2;o 1.722
z3;o 1.025
z4;o 80.51 kg/m
Return idler roll parameters
z1;u 172
z2;u 1.287
z3;u 1
z4;u 124.99 kg/m



Table 3
Boundary limit values.

Parameter Unit Min Max Set

Parameter Unit Min Max Set
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earlier in this study with the number of intermediate drive stations
N set to zero. Certain design conditions among (17)e(14) and
(15)e(27) were also modified to reflect the absence of intermediate
stations and the use of a unique drive pulley in the belt conveyor.
Pi kW 0 2000 e

Ti kNm 0 950 e

Dtr;i m e e 0.1-0.16-0.2-0.25-0.315-0.4-0.5-0.63-
0.8-1-1.25-1.4-1.6-1.8-2-2.2

ai
� 180 240 e

Lo;j m 0 2500 e

B m e e 0.6-0.75-0.9-1.05-1.2-1.35-1.5-1.8-2-2.2-2.4
v m/s 0 10 e

kN kN/m 0 3000 e

FTU kN 0 500 e

lo m 1 2 e

lu m 1 4.5 e

Do , Du mm e e 63-76-89-102-108-127-133-152-159-194
do , du mm e e 25-30-35-40
5.2. Economic parameters and assumptions

Table 2 displays the economic parameters and assumptions
considered in the simulation study. The straight line depreciation
method is adopted for all the conveyor components and the
depreciation costs remaining at the end of the project lifetime are
written off. Further the annual cost escalation rate of the different
equipment is assumed equal to the inflation rate given in Table 1.
While the lifetimes of the belts, motors and gearbox follow the
recommendations of the US Bureau of Economic Analysis (BEA) (US
Bureau of Economic Analysis), that of the idler rolls is fixed at
40 000 h in accordance with SANS 1313 standard (Frittella and
Curry, 2009). The salvage values are however assumed by the au-
thors. Using the calculation method described in Appendix A, the
following equivalent annual cost coefficients were obtained:
k1 ¼ 1.653, k2 ¼ 0.138, k3 ¼ 0.055, k4 ¼ 0.055, k5 ¼ 0.148, k6 ¼ 0.148.

With regard to the equipment prices, the initial cost coefficients
indicated in Table 2 were determined from information provided by
suppliers in South Africa or abroad, with an estimate of the ship-
ping costs for the latter case. The interested reader is referred to
reference (Masaki, 2017) for calculation details. Note that while the
relative differences between the energy and component costs may
vary by country, this study aims to provide the basic principles by
which economic design of multiple drive belt conveyors may be
achieved.

The lower limits, upper limits, and set of possible values that
apply to the various design parameters are summarized in Table 3.
Table 2
Economic parameters of the case study.

Description

General parameters
project lifetime, Z
running time, ta
initial energy cost, eo
annual escalation rate of energy costs, re
inflation rate
tax rate
proportion of debt capital
after tax return required on equity funds with 0% inflation rate

Belt parameters
expected lifetime
salvage value
initial cost coefficients, c1; c2; c3
belt length coefficients, y1; y2

Motors
expected lifetime
salvage value
initial cost coefficients, c4; c5; c6

Gear reducers
expected lifetime
salvage value
initial cost coefficients, c7; c8; c9

Carry idler rolls
expected lifetime
salvage value
initial cost coefficients, c10; c11; c12; c13; c14; c15; c16

Return idler rolls
expected lifetime
salvage value
initial cost coefficients, c17; c18; c19; c20; c21; c22; c23
5.3. Results and discussions

The above optimization problems of the economic design of
single and multi-drive conveyors are formulated as mixed integer
non-linear programming (MINLP) problems and were solved using
the MIDACO solver, which is a general-purpose solver based on an
extended evolutionary ant colony optimization algorithm (Schlüter
et al., 2009). For a given N, an MINLP problem is generated and
subsequently solved by the optimizer in order to determine the
most cost-effective conveyor design for the considered number of
intermediate drive stations. Then, a different N is set and the
resulting MINLP problem is solved again. At the end, all solutions
are compared to each other to determine the best design in terms of
N and other parameters.
Value & Unit

20 years
12 h/day over 300 days par annum
0.071 USD/kWh
11.19%
5.6%
28%
0%
5%

16 years
0%
25.965; 0.0014; 1.313
3m; 20m

16 years
8%
248.12; 69.062; 1.013

16 years
10%
5699.3; 1563.1; 1.081

11 years
0%
�69.77; 1.312,10�5; 3.096; 4.828; 1; 1.079,10�4; 1.829

11 years
0%
�30.5; 0.565; 0.676; 0.571; 1.054; 0.567; 0.676



Fig. 4. Optimal belt conveyor cost vs Belt speed vs Intermediate drives.

M.S. Masaki et al. / Journal of Cleaner Production 201 (2018) 526e541536
Following Subsection 4.3.4, the design parameters Dtr;i, B, Do, Du,
do and du were specified as discrete variables in the solver because
of the limited number of recommended sizes (DIN 22101, 2011;
Frittella and Curry, 2009). Treated as of integer type during the
internal optimization process, the values of these parameters in
each of the solutions generated are first mapped to the corre-
sponding actual sizes of the sets prescribed in Table 3 prior to
evaluating the objective and constraint functions.

For illustration purposes, Fig. 4 displays the equivalent annual
cost of conveyors obtained for all the possible widths of belt and a
number of intermediate drive stations limited at 5. The conveyor
designs with zero intermediate drive station corresponds to the
single drive belt technology. This figure shows that, in general, the
economic benefits of the multi-drive technology will be more
effective at low conveyor speed, while the single drive design will
be the most beneficial option at high conveyor speed. A larger
impact of the conveyor speed is also noted on the multiple drive
conveyors compared to the single drive belt conveyors.

The synthesis of the lowest equivalent annual costwith respect to
number of intermediate drive stations fitted is shown in Fig. 5 along
with their respective energy and capital costs. This figure shows that
the belt conveyor fitted with three intermediate drive stations
operating at 1.69m/s constitutes the most cost-effective design for
the considered transport operation. By adopting the most economic
Fig. 5. Minimum belt conveyor cost pe
single-drive belt conveyor as the reference conveyor, the equivalent
annual cost savings expected from the most cost-effective multi-
drive conveyor is estimated at approximately 63131 $(USD) per
annum over the 20 years of the project lifetime.

Regarding operating and capital costs, Fig. 5 shows that the
observed decrease in cost in comparison with the reference
conveyor is primarily due to the lower energy expenses involved.
Especially, within the 63131 $(USD) of cost savings achieved,
62.44% savings come from energy costs and the other 35.56% from
the capital costs. With the increase in the number of drive stations,
the energy cost tends to decline, while a decrease in the capital cost
is first observed, followed by a progressive increase. The variation in
the energy cost is, however, slowed by the extra inertia resistance
and frictional resistance brought in by every additional drive sta-
tion fitted in the conveyor system. Fig. 5 also indicates that the
optimal conveyor speed decreases gradually as more drive stations
are fitted.

The breakdown of the power consumption per load component
shown in Fig. 6 suggests that every additional drive station can
assist to achieve higher energy efficiency in transportation, because
of the reduction in energy consumption from the belt and the idler
rolls. Accordingly, and given (8) and (12), higher cost savings can
therefore be expected for conveyors with longer transport
distances.
r number of intermediate stations.



Fig. 6. Power consumption per conveyor load component.
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To investigate the individual contributions of the conveyor
components in the capital costs, Fig. 7 is presented. It is observed
that the cost of the belt will generally form the largest portion,
followed by the gear reducers. Beyond a single intermediate drive
station, the cost savings induced by the use of lighter belts are
balanced and gradually defeated by the need for larger belts. For the
motors, Fig. 7 indicates that their cost is fairly stable, irrespective of
the number of drive stations. Lastly, the belt width has a greater
impact on the cost of carry idler rolls than that of the return idler
rolls.

In order to evaluate the validity of the previous simulation re-
sults in case of the inflation rate fluctuation throughout the project
lifetime, two additional scenarios were simulated. The first scenario
considers net decrease of 5% in the initial inflation rate accompa-
nied by a stochastic factor restrained at ±0.1%. An average inflation
rate of 5.2% with a minimum of 4.8% and a maximum 5.8% was
observed in this case, which resulted in the following equivalent
annual cost coefficients: k1 ¼ 1.716, k2 ¼ 0.138, k3 ¼ 0.053,
Fig. 7. Detailed capital cost per
k4 ¼ 0.052, k5 ¼ 0.145, k6 ¼ 0.145. The second scenario consisted of
a net increase of 5% in the initial inflation rate, accompanied by
another stochastic factor also restrained at ±0.1%. An average
inflation rate of 5.8% with a minimum of 5.4% and a maximum 6.4%
was observed in this case, which resulted in the following equiva-
lent annual cost coefficients: k1 ¼ 1.613, k2 ¼ 0.137, k3 ¼ 0.057,
k4 ¼ 0.057, k5 ¼ 0.147, k6 ¼ 0.147.

Fig. 8 shows a synthesis of the most economic results with
respect to the number of intermediate drive stations fitted in the
conveyor system. The optimal design solution that involves 3 in-
termediate drive stations with a belt speed at 1.694m/s appears to
remain the most advantageous option under the three scenarios.
Detailed performance of the optimal design under each scenario
are given in Table 4. The comparison of the three cost-effective
design solutions shows that, apart from ai, kN , FTU , lo and lu, the
rest of design parameters maintain the same values under the three
different scenarios. Further tests focusing on ai showed that greater
values can also apply to the original most cost-effective multi-drive
belt conveyor component.



Fig. 8. Variation of the cost-effective belt conveyors with the inflation rates.
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belt conveyor, that is under 5.6% inflation rate, and the cheapest
conveyor system under 5.2% inflation rate without affecting their
respective economic performance. Such an increase on ai will
benefit the design condition (16) on the slack side tension of drive
stations. Further the comparison of kN under the 5.2% and 5.8%
inflation rate fluctuation scenarios with the fixed inflation scenario
at 5.6% per year indicates a decrease of, respectively, 7.81% and
8.76% in this parameter in case the presumed fluctuations of
inflation rate occur in course of the project. Also in comparisonwith
the original most cost-effective multi-drive belt conveyor, it is
observed a decrease of lo by 19.01% and 21.13% and an increase of lu
by 15.38% and 15.38% under the 5.2% and 5.8% inflation rate
Table 4
Cost-effective belt conveyor designs under different inflation trends.

Parameter Average inflation rate

5.2% 5.6% 5.8%

N 3 3 3
Pi , kW 151.05 151.09 151.08
v, m/s 1.69 1.69 1.69
Ti , kNm 16.05 16.05 16.05
Lo;1, m 574.63 572.98 574.77
Lo;3, m 649.14 649.7 649.1
Lo;5, m 649.14 649.7 649.1
Lo;7, m 628.41 628.94 628.35
ai , rad 3.32 3.8 4.19
lo , m 1.15 1.42 1.12
lu , m 4.5 3.9 4.5
FTU , kN 67.67 86.95 65.26
kN , kN/m 526.68 571.28 521.22
B, mm 1800 1800 1800
Do , mm 63 63 63
Du , mm 63 63 63
do , mm 30 25 30
du , mm 30 25 30
Dtr;i , mm 400 400 400
Aenergy , � 1000 USD/year 556.16 535.79 522.84
Abelt , � 1000 USD/year 39.02 39.83 38.66
Amotor , � 1000 USD/year 4.82 5.04 5.22
Agear , � 1000 USD/year 15.51 16.24 16.82
Acarryidler , � 1000 USD/year 11.56 10.9 12.05
Areturnidler , � 1000 USD/year 1.27 1.19 1.28
Aconveyor , � 1000 USD/year 628.34 609.01 596.88
fluctuation scenarios, respectively. This suggests that the additional
expenses induced by the use of the original belt (greater kN) and the
original return idler roll spacing (smaller lu) under the fluctuating
inflation scenarios will be partially offset by gains resulting from
the reduction in the quantity of carry idler rolls installed (greater
lo). In view of the preceding analysis, the original most cost-
effective multi-drive belt conveyor is fairly robust in case of
limited fluctuations of the inflation rate.

Table 5 summarizes the operational environmental footprint of
the cost-effective conveyors in the event they are supplied by a
coal-fired power plant (Eskom, 2017). It shows that the design so-
lution with four intermediate stations will ensure the lowest
emission of CO2 and particulates and water consumption due to
electricity generation, followed by the multi-drive conveyors fitted
with five and three intermediates stations. In case priority is given
to the economic aspects, the implementation of the most cost-
effective system fitted with three intermediate station will result
in a yearly reduction of 333.56 kg in CO2 emissions, 101.07 ton in
particulate emissions and 471.69 kl in water consumption due to
electricity generation, with respect to the single drive contender.
This shows that the multi-drive technology can help reduce the
environmental nuisance of belt conveyors.
6. Conclusion

An original contribution to the cost-effective design of multiple
drive belt conveyors was presented in this paper. To achieve the
lowest life cycle cost for a specified material handling operation,
the proposed design approach takes into account a significant
Table 5
Environmental assessment of cost-effective belt conveyors.

Design Energy
(MWh/yr)

CO2 emiss.
(kg/yr)

Partic. emiss.
(ton/yr)

Water use
(kl/yr)

N¼ 0 4917.31 4868.14 1475.19 6884.23
N¼ 1 4718.73 4671.54 1415.62 6606.22
N¼ 2 4570.60 4524.89 1371.18 6398.84
N¼ 3 4580.38 4534.58 1374.12 6412.54
N¼ 4 4466.51 4421.85 1339.95 6253.11
N¼ 5 4517.56 4472.38 1355.27 6324.58
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number of parameters, including the number of intermediate drive
stations, their distribution along the conveyor path and the
conveyor speed. Simulations carried out on a practical transport
operation established the validity and effectiveness of the proposed
design approach. An expected annual cost saving of 63131 $(USD)
was achieved by the most cost-effective multi-drive conveyor over
the best single drive alternative. This was accompanied by a yearly
reduction of 333.56 kg in CO2 emissions, 101.07 ton in particulate
emissions and 471.69 kl in water consumption due to electricity
generation. The robustness of the most cost-effective conveyor
designs against the fluctuation of the inflation rate was also
confirmed. It is concluded that multi-drive belt conveyors are more
advantageous for long distance slow speed material transportation
while single drive technology is preferable for short distance fast
speed applications. The scope of future works includes adding the
capital costs of other conveyor components such as the supporting
structure, the pulleys and the take-up device, and also the substi-
tution of the simplified frictional resistance models from the DIN
22101 standard by advanced belt movement models.
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Appendix A. Calculation of the equivalent annual cost
coefficients of energy and equipment

Appendix A.1. Equivalent annual energy cost coefficient

This section presents the approach on the determination of the
equivalent annual energy cost coefficient in case the annual esca-
lation rate of energy re and the general inflation rate r can vary from
year to year. It therefore extends and also summarizes the pro-
cedure explained in the literature (Roberts, 1981; Eschenbach,
2003). In this context, k1 is given by:

k1 ¼
	
a
p


i0f

Z

XZ
i¼1

	
p
f


if

i

Yi

j¼1

�
1þ re;j

�
; (A.1)

where
	
a
p


i0f

Z
denotes the capital recovery factor of the project,

	
p
f


if

i
denotes the present equivalent cost factor over i-year period of
time, re;j denotes the annual escalation rate of energy during the
year j of the project, and Z denotes the project lifetime. The capital
recovery factor is obtained by:

	
a
p


i0f

Z
¼

i0f
�
1þ i0f

�Z
�
1þ i0f

�Z � 1
; (A.2)

where i0f , the time value of money when all cash flows are con-
verted from inflated value to constant year zero value, is given by:

i0f ¼ ð1� tÞrdid � rdravg
1þ ravg

þ ð1� rdÞie: (A.3)

Here, t denotes the income tax rate, rd denotes the proportion of
debt capital maintained constant by the company, id denotes the
interest rate on debt, ravg denotes the average general inflation rate
over the project duration, and ie denotes the after-tax return
required on equity fundswith zero inflation rate. In case the general
inflation rate can vary throughout the project, the present equiva-
lent cost factor over i-year period of time is given by:

	
p
f


if

i
¼ 1Qi

j¼1

�
1þ if ;j

�; (A.4)

where if ;j denotes inflation modified rate of return of the year j of
the project, which is expressed by:

if ;j ¼ ð1� tÞrdid þ ð1� rdÞ
��
1þ rj

�ð1þ ieÞ � 1
�
: (A.5)

Here, rj denotes the general inflation rate during the year j of the
project.

The substitution of (A.2) and (A.4) into (A.1), taking into account
(A.3) and (A.5), allows to determine the equivalent annual energy
cost coefficient.
Appendix A.2. Equivalent annual cost of equipment

Considering an equipment (e.g. belt), one or several items can be
required during the project as a function of the project duration and
the expected lifetime of the equipment as well. In the rest of this
section, the concept “equipment” will therefore refer to the set of
items purchased throughout the project. Let keq and Ceq;0 denote,
respectively, the equivalent annual cost coefficient of an equipment
and the first costs of the first item purchased at the year zero of the
project. The equivalent annual cost Aeq of this equipment can be
expressed as (Roberts, 1981):

Aeq ¼ keqCeq;0: (A.6)

It can be also obtained by multiplying the present equivalent of
the capital costs PECeq of the equipment by the capital recovery
factor of the project:

Aeq ¼
	
a
p


i0f

Z
PECeq: (A.7)

Taking into account the first item and the replacement items
purchased during the project period, the present equivalent of the
capital costs of an equipment is expressed by (Roberts, 1981):

PECeq ¼ PEFeq � PEVeq � tPEDeq

1� t
; (A.8)

where PEFeq denotes the present equivalent of the first costs of all
the items, PEVeq denotes the present equivalent of the salvage
values of all the items, and PEDeq denotes the present equivalent of
depreciations of all the items.

Denote M the expected lifetime of a given equipment, the total
number of items to be purchased over the Z years of the project,
denoted by R is given by:

R ¼ Z
M
;

The year Xi of the purchase of the i-th item (i ¼ 1;…;R) is given
therefore by:

Xi ¼ ði� 1ÞM:

In case the inflation-modified rate of return and the annual cost
escalation rate req of the equipment vary from year to year during
the project period, PEFeq is given by:
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PEFeq ¼ Ceq;0

0
@1þ

XR
i¼2

	
p
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if

Xi

YXi

j¼1

�
1þ req;j

�1A: (A.9)

The sum in parenthesis will vanish if the first item purchased is
used over the entire project duration.

On the calculation of the salvage of the equipment, let qf denote
the estimated remaining value in percentage of the first costs of the
equipment after it operates over the expected lifetime. Assuming
the value of equipment decreases linearly with time, the remaining
value qi of the i-th item purchased (i ¼ 1;…;R) after it operates over
its actual lifetime with respect to the project duration is given by:

qi ¼ 1� 1� qf
M

minðM; Z �Mði� 1ÞÞ;

The year Yi of the decommissioning of the i-th item should
correspond to the minimum between the year of the purchase of
the next item or the project end:

Yi ¼ minðiM; ZÞ; with i ¼ 1;…;R:

By taking into account all the items to be purchased during the
project lifetime and the annual increase on the first costs, the
present equivalent of the salvage value of the equipment is given
by:

PEVeq ¼ Ceq;0

0
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(A.10)

The sum in parenthesis will vanish if the first item purchased is
used over the whole project duration.

In order to formulate the present equivalent of depreciation

under varying inflation-modified rate of return, let
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This factor converts a uniform series of annual depreciation to a
future value for an item purchased at the year Xi of the project and
operated over M years

The present equivalent of depreciation of an equipment is ob-
tained by summing up the present equivalent of the future value of
the annual depreciation of all the items, taking into account the
annual cost escalation rate of the equipment. Adopting the straight-
line depreciation method and writing off the depreciation charges
remaining at the end of the project, this results in:
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In case a unique item operates over the entire project duration,
that is R ¼ 1, PEDeq is simplified as follows
PEDeq ¼ Ceq;0
M
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Keeping Ceq;0 factorized, the successive substitution of (A.9),
(A.10) and (A.11) or (A.12) into (A.8), and of (A.8) into (A.7) allows to
determine keq indicated in (A.6).
Appendix B. Optimization program for multi-drive belt
conveyors

The optimization problem that minimizes the life cycle cost of a
multi-drive belt conveyor equipped with N intermediate dive sta-
tions is given by

min
X

Aenergy þ Abelt þ 2
X
i¼1

Nþ1
Amotor;i

þ2
X
i¼1

Nþ1
Agearreducer;i þ Acarryidler þ Areturnidler

s:t: rAthv ¼ Q ;

X
k¼1;3;…

No

Lo;k �
X
i¼1

N

Dtr;i ¼ L=cosd;

2
X
i¼1

Nþ1
Pihgear;i � vFW ¼ 0;

2Tiv
Dtr;i

¼ hgear;iPi; i ¼ 1;…;N þ 1;

FT2;j �
2Cw;jPjhgear;j

v
; j ¼ 1;…;N þ 1;

F0 � g
�
m0

L þm0
G
�
lo

8hrel
;

FT2;j �
g
�
m0

L þm0
G
�
lo

8hrel
; j ¼ 1;…;N;

FTD � gm0
Glu

8hrel
;

FT1;i ¼ FT1;1;

kt;relkN
S0S1

� FT1;1
B

;

Dtr;j � cTrdGk; j ¼ 1;…;N þ 1;

Sf Bf Lf Fs;o � Fmax;o;

Sf Bf Cf Fs;u � Fmax;u;

Pi ¼ P1;

Ti ¼ T1;

Dtr;i ¼ Dtr;1;

ai ¼ a1;

60v
pDo

� 750;

60v
pDu

� 750;

with the design parameters subject to the boundary limits
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0 � Pi � Pmax; i ¼ 1;…;N þ 1;
0 � Ti � Tmax; i ¼ 1;…;N þ 1;
Dtr;i2Dtr; i ¼ 1;…;N þ 1;
amin � ai � amax; i ¼ 1;…;N þ 1;
Lmin � Lo;j � Lmax; j ¼ 1;…;No;
B2B;
0 � v � vmax;
0 � kN � kN;max;
0 � FTU � FTU;max;
lo;min � lo � lo;max;
lu;min � lu � lu;max;
Do2D;
Du2D;
do2d;
du2d:
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Abstract: In lighting retrofit projects, a lamp population is subject to decay, which results in significantly deteriorated energy
efficiency (EE) and reduced cost saving. Incremental retrofit and maintenance are studied to overcome the decay in the
population, so that EE performance can be sustained. Current models of natural decay cannot reflect the interactive dynamics
of incremental retrofit and maintenance, so a new decay model is proposed for these interventions. Using a control approach, a
multiple-input and multiple-output state equation is formulated. Adaptive control laws are designed to cope with unknown
parameters of the proposed model, and to achieve stable performance improvement. This new model is verified, based on
empirical data, and the results of adaptive control indicate that the number of working lamps can be maintained as a required
value.

1 Introduction
The deployment of energy efficiency (EE) programmes, as a kind
of demand-side management (DSM), is one of the most useful
alternative solutions for reducing power demand and greenhouse
gas emissions [1–3]. With around 40% of the total demand, the
building sector will have a great potential to reduce total demand,
therefore improving the building EE becomes urgent [3, 4]. Since
the start of this century, many policies and projects concerning
building retrofit (also referred to as innovation or refurbishment in
the literature) have been initiated all over the world to improve
building EE, as building retrofit is currently the most feasible and
practical way to reduce the demand of the building sector.

Many building retrofit projects are relevant to lighting retrofit
[5–7]. Due to easy accessibility and energy saving, light retrofit
projects are promoted in various EE incentive programmes, such as
clean development mechanisms (CDM) [8], white tradable
certificate schemes [9], DSM, and performance contracting [10]. In
lighting retrofit projects, energy-efficient lamps, such as compact
fluorescent light (CFL) and light-emitting diodes (LED), are used
to retrofit less efficient incandescent lights. In general, building EE
retrofit (BEER) refers to changing out-of-date facilities in existing
buildings through innovative and efficient technologies for
lighting, water heating, ventilation/cooling/heating, building
envelope, and other energy-consuming systems [11, 12]. There are
a large number of these energy systems, and their EE performance
has highly complicated correlations. Therefore, designing an
optimal retrofit strategy for minimal building energy consumption
is a difficult task of BEER, especially BEER on a large scale.

In a recent study [13], the large-scale BEER was defined,
modelled, and optimised in a time-building-technology framework.
The large-scale BEER was unveiled in three dimensions, i.e. time,
building, and technology. In the building dimension, different types
of building, such as, office, commercial/residential/industrial
buildings, school, and hospital, will be assigned different priorities
for retrofit in a large-scale BEER project. In the technology
dimension, different types of technology will have different
priorities for retrofit. In the time dimension, incremental retrofit
can be done every year, and investment is also assigned a different
amount each year. In this framework of large-scale BEER, there

remain several open issues that require further study, such as decay
and maintenance.

In this paper, decay and maintenance in lighting retrofit projects
will be studied, because lighting projects are representative and
relatively simple to model. Lighting projects involve large
populations that are suitable for statistical models. For example,
energy-saving control strategies are proposed to minimise the
energy consumption of multi-group lighting sources [14, 15]. For
the LED lighting systems, lumen depreciation is studied by
diagnosing individual LED failures using a photosensor system
[16].

For lighting retrofit projects, one practical issue in the time
dimension is to model the decay of the population with multiple
interventions, such as incremental retrofit and maintenance [17].
The decay model of once-off retrofit has been studied in lighting
retrofit projects, in which accurate decay models provide basis
knowledge to design retrofit plans, and cost-effective metering
plans [4, 18, 19]. In fact, the population of installed efficient lights
are subject to deterioration due to certain factors, such as
flickering, lamp burnout, and ballast failure, so the number of
working lamps is dynamically decreasing. Consequently, the
performance of energy saving, financial payback, and carbon
emission deteriorates over time. In many projects, maintenance is
essentially required in the contract, so that the failed facilities can
be repaired or replaced to overcome the deterioration in EE
performance. In case of both incremental retrofit and maintenance,
the population decay model should be re-formulated to solve
practical problems in EE applications, such as lighting retrofit,
measurement and verification [20–22], energy reliability [23–25],
and distributed generation [26]. Such kinds of decay become more
complicated than natural decay in the following three respects.

First, there is an aggregate population of installed lights with
different working time. For example, the population of installed
lights in the first year has a decay curve different from that of the
population of installed lights in the second and subsequent years.
Second, in the case of both incremental retrofit and maintenance,
interaction of multiple variables is involved in the decay model.
The new intervention of maintenance has brought new
characteristics to the decay model. Maintenance will change the
average EE performance and the average working time, and
consequently the decay curve will become non-singular. Third, the
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parameters of the decay model are usually unknown, although they
can be estimated through additional tests on a population of similar
lamps.

The other issue in the time dimension is making long-term
plans for incremental retrofit and maintenance even if the decay
model is known. The retrofit plans have been intensively studied
by using empirical [27] and multi-criteria methods [28, 29]. In
approaches to optimisation, several conflicting objectives, such as
EE, financial payback, carbon emission, and other technical,
economic, ecological, social, aesthetical concerns, have been
optimised in the design of retrofit plans. For stable performance
improvement, maintenance plans for lighting and other building
facilities have become a recent focus in this research area. For
lighting retrofit projects, optimal maintenance planning is proposed
to optimise the number of lights to replace the failed lamps, so that
the EE lighting project achieves sustainable performance in terms
of maximal energy savings and the cost-benefit ratio [30]. For
general BEER projects, corrective maintenance planning for
building energy systems, such as lighting, monitoring, water
heating, and oven, is proposed to design optimal maintenance plans
for maximising energy saving and minimising the internal rate of
return [31, 32].

However, current planning schemes in the literature cannot be
extended in retrofit projects with multiple interventions, as they
have neglected the interaction between incremental retrofit and
maintenance. To the best of our knowledge, there are few studies of
combined planning for incremental retrofit and maintenance,
especially in the large-scale BEER projects. As the parameters in
the decay model are unknown, the parameters should be estimated
at the early stage of implementation process, which brings extra
challenges for planning. Therefore, in this paper, adaptive control
is studied for the planning problem of lighting projects with
unknown parameters. The stability of adaptive control can ensure
stable EE performance of these retrofit projects. Due to the closed-
loop mechanism, uncertainty about lamp decay or lumen
degradation can be attenuated.

The contributions of this paper are three-fold. First, a
mathematical model is built for lighting projects with incremental
retrofit and maintenance. The decay of the lamp population has a
logistic-like curve that is related to the number of retrofitted lamps.
The proposed model is verified based on the empirical data and the
interactive dynamics can also be observed in the verification.
Second, the decay process is studied by using a control approach,
in which a multiple-input and multiple-output (MIMO) control
system is derived, based on the proposed decay model. Third, to
handle the unknown parameters in the system model, adaptive
control laws are designed for planning incremental retrofit and
maintenance. The stability of the proposed control laws is proven
with the Lyapunov theory, which ensures that the EE performance
can be sustained at a desired value.

The paper is organised as follows. Several models of natural
lighting decay are introduced in Section 2. In Section 3, the decay
of an aggregate population with incremental retrofit and
maintenance is modelled, and the MIMO state equation is
formulated. In Section 4, adaptive control laws are newly designed,
and the stability of the adaptive controller is proved. In Section 5,
the model is verified, and the adaptive control is tested and
analysed in the simulation. Then paper is concluded in Section 6.

2 Models of natural decay
System dynamics in lighting projects, such as the CFL project and
the LED project, is caused by the performance decay of the lamps.
The performance decay or deterioration of working lamps affects
the energy saving, financial profit, and carbon emission over the
evaluation period. An exact model of the population decay is
necessary to reflect the system dynamics. Irrespective of the types
of light used, three kinds of decay model are commonly applied.

Let N(t) denote the population size at the tth year. N(0) is the
size of initial population. In many natural phenomena, such as
population growth and radioactive decay, quantities grow or decay
at a rate proportional to their size. In other words, they satisfy the
following differential equation:

dN(t)
dt = kN(t), (1)

where k is the decay rate. Note that (1) is called the law of natural
growth if k > 0, and it is called the law of natural decay if k < 0.

The only solution of (1) is an exponential function

N(t) = N(0)ekt . (2)

 
Remark 1: Equation (2) satisfied the law of (1) as

dN(t)
dt = N(0)(ekt)′ = kN(0)ekt = kN(t) . (3)

The exponential decay model is commonly used in different
areas [33]. Normally a constant decay rate (failure rate) applies to
this model, but in certain cases, the decay rate changes over time.
In this lighting application, the lamp population exhibits ageing, so
that old lamps are more likely to fail at any time than newly
installed lamps.

As the second kind of decay model, a linear population decay,
suggested in CDM guidelines, is utilised in the lighting projects
[18]. In the linear model, the population is linearly decayed over
the rated lifetime L as

N(t) = N(0) 1 − t
L ∗ 100 − ρL

100 , t ≤ L

0, t > L
, (4)

where ρL is the percentage of surviving lamps left at the end of the
rated lifetime L (ρL = 50 is recommended) [18]. When t > L, all
lamps are deemed to have failed in this model.

In empirical studies on the useful life of facilities in retrofit
projects [34], the decay curves are found to have logistic shapes.
The Poland efficient lighting project (PELP), conducted by the
World Bank through the International Finance Corporation, also
indicates a logistic curve for a population of 1.2 million lamps [35].
According to studies in the South Africa context [36, 37], a general
form of logistic function is formulated to fit empirical data. As the
third kind of decay model, the general form is expressed as

N(t) = N(0)
γ + eβt − K (5)

where β and γ are two parameters related to characteristics of the
device, and K = − ln(1 − r). As stated, this general form of the
decay model is especially applicable to the engineering context.

According to the three models, the decay dynamics can be
obtained for each model as

dΦ1

dt = kΦ1 (6)

dΦ2

dt = − 100 − ρL
100L , t < L (7)

dΦ3

dt = − βΦ3(1 − γΦ3) (8)

where Φ = N(t)/N(0) is the proportion of working lamps surviving
at time t. Φ1, Φ2, Φ3 denote the proportion calculated in each model,
respectively. Note that (8) is deduced from the differentiation at
both sides of (5). For each model, an example of the decay curve is
plotted in Fig. 1.

 
In this figure, decay parameters are set as k = − 1, L = 5, K = 3,
β = 0.95, and γ = 1.05. Note that these models have been used to
approximate the decay of CFL and LED. These models only fit
essential factors of natural decay without any intervention, so these
decay curves are all non-increasing as shown in the figure.
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3 System dynamics with multiple interventions
When only considering natural decay in the lighting retrofit
project, system dynamics can be generalised as

Φ̇ = f (Φ), (9)

where f (Φ) is the decay function. With respect to model 3, it
follows that f (Φ) = − βΦ(1 − γΦ).

In the control approach, the number of working lamps is
regarded as a state variable, i.e. x(t) = N(t). Based on the logistic
decay models (5) and (8), the state equation can be expressed as

ẋ = − βx + βγ
x(0) x2, (10)

where x is the number of working lamps, and x(0) is the size of
initial population. Note that the control system studied is a non-
linear system.

 
Remark 2: The state equation (10) is obtained by the

differentiation at both sides of (5) as

ẋ = x(0) 1
γ + eβt − K ′

= −x(0) βeβt − K

(γ + eβt − K)2

. (11)

By substituting eβt − K = x(0)/x − γ in the above equation, (10) can
be obtained.

The dynamics of natural decay cannot fit the practical decay
dynamics well when there are multiple interventions, which
include incremental retrofit and maintenance. Incremental retrofit
means that retrofit does not only happen at the beginning, but also
happens subsequently at multiple times. Compared with once-off
retrofit, the number of retrofitted facilities in this case is
incremental over time, so we call this incremental retrofit. To
ensure stable performance of EE and cost saving, the broken or ill-
conditioned facilities should be repaired or replaced. Maintenance
means replacement or repair of retrofitted lamps that have
deteriorated, and maintenance will be conducted frequently every
year. It is obvious that both incremental retrofit and maintenance
have certain effects on the decay dynamics (10).

However, (10) cannot be applied, when retrofit and
maintenance are interacted during the whole evaluation period. At
time t, a new EE facility could be used for maintenance of a
retrofitted facility in a poor condition, and it could also be used for
retrofitting an existing old facility. In other words, incremental
retrofit will increase the population size and the number of working
lamps, but maintenance only increases the number of working
lamps. When different effects of incremental retrofit and

maintenance are included into (10), the number of working lamps
with incremental retrofit and maintenance can be expressed as

ẋ = − βx + βγx2

x(0) + ∫τ = 0
t u1 dτ

+ u1 + u2, (12)

where u1(t) is the number of retrofitted lamps at time t, and u2(t) is
the number of lamps undergoing maintenance. Note that when
there is no intervention, i.e. u1(t) = u2(t) = 0, (12) is equivalent
with (10). When only maintenance is done, i.e. u1(t) = 0, the
population size remains the same as x(0), and the number of
working lamps increases by u2(t). When only retrofit is done, i.e.
u2(t) = 0, the population size increases by the cumulative number
of retrofitted lamps, i.e. ∫τ = 0

t u1 dτ, and the number of working
lamps also increases by u1(t).

Define x1 = x(0) + ∫τ = 0
t u1 dτ and x2 = x. The state equation 12

can be transformed as

ẋ1 = u1,

ẋ2 = − βx2 + βγx2
2

x1
+ u1 + u2,

(13)

In the control approach, the system dynamics with incremental
retrofit and maintenance is a standard non-linear system. Actually,
x1(t) is the cumulative number of retrofitted lamps at time t, and
x2(t) is the number of working lamps at time t. Note that
x1(t) ≥ x2(t) is a practical constraint.

Given a sampling period t0, the continuous control system can
be written into a discrete form. The discrete system can be
formulated as (14), where k represents the index of sample and
x1(0) ≥ x2(0). u1(k) is the number of retrofitted lamps over the kth
interval. u2(k) is the number of lamps undergoing maintenance over
the kth interval. x1(k) is the cumulative number of retrofitted lamps
at the kth interval, and x2(k) is the number of working lamps at the
kth interval

x1(k + 1) = x1(k) + u1(k)t0,

x2(k + 1) = (1 − βt0)x2(k) + βγt0
x2(k)2

x1(k) + u1(k)t0 + u2(k)t0,
(14)

The average working time of the population is defined as the
working time of all lamps divided by the population size. The
average working time is related to the percentage of working lamps
and the working hours of each lamp. The average working time can
indicate the lumen level, which means that a lamp with more
working hours will be subject to more lumen deprecation.

 
Theorem 1: Given a population of energy efficient lamps,

maintenance will result in a shorter average working time than
incremental retrofit.

 
Proof: Assume that the average working hours of the

population at time t is Lt, and the population size of retrofitted
lamps is x1(t). If only n lamps is maintained, the average working
hours after maintenance can be calculated as (Lt(x1(t) − n))/x1(t).

If only n lamps is retrofitted, the average working hours after
the incremental retrofit is calculated as (Ltx1(t))/(x1(t) + n).

It is obvious that

Lt(x1
2(t) − n2) < Ltx1

2(t) . (15)

Divide both sides with x1(x1(t) + n), then

Lt(x1(t) − n)
x1(t) < Ltx1(t)

x1(t) + n . (16)

The proof is completed. □

Fig. 1  Decay curves in the three decay models (k = − 1, L = 5, K = 3,
β = 0.95 and γ = 1.05)
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4 Adaptive control
The controller is necessary to keep the number of working lamps in
the lighting retrofit, so the performance of EE and cost saving can
be stable. As shown in Fig. 2, the number of working lamps will
become 0, if there is no controller. 

Assume β and γ are known, a feedback controller is required to
achieve stable states, so that

lim
t → ∞ x1(t) = r1, lim

t → ∞ x2(t) = r2, (17)

where r1 is the reference value of the population size, and r2 is the
reference value of the working lamps. Note that r1 ≥ r2 holds.

Define the tracking error as

e1 = x1 − r1, (18)

e2 = x2 − r2 . (19)

Take the derivative of e1 and e2. It yields

ė1 = ẋ1 = u1, (20)

ė2 = ẋ2 = − βx2 + βγ x2
2

x1
+ u1 + u2

= ϕ[ − β, βγ]T + u1 + u2,
(21)

where ϕ = [x2, (x2
2/x1)] is the composite function used for

simplicity.
To cancel the non-linear items in (21), a feedback controller is

straightforwardly designed as

u1 = − k1e1, (22)

u2 = − k2e2 − u1 − ϕp, (23)

where k1 > 0 and k2 > 0 are the control gains. p is the parameter
vector to be determined in the controller design. In the assumption
of known parameters, p = [ − β, βγ]T can be used to achieve stable
control. In other words, the number of working lamps can be kept
as the required value with the above scheme according to Theorem
2.

 
Theorem 2: Assume β and γ are known, the closed-loop system

under the feedback controller (22) and (23) with p = [ − β, βγ]T is
Lyapunov stable.

The proof has been given in the Appendix. As shown in Fig. 2,
the feedback controller can drive the number of working lamps
towards the reference value (set as 1200 for illustration). However,
the parameters of the model must be known in the feedback
control.

If β and γ are unknown in practical applications, it is difficult to
determine proper values of p [38]. In this situation, it is necessary
to design an adaptive controller for ensuring stable EE
performance.

For the adaptive control, the following control scheme is
proposed:

u1 = − k1e1 (24)

u2 = − k2e2 − u1 − ϕp^ (25)

with the adaptive law for p^  given by

p^̇ = ηϕTe2, (26)

where η > 0 is the updating rate, and p^  is the estimate value of p.
When the parameters in the decay model are unknown, the
proposed adaptive control scheme can also keep the number of
working lamps as the required value according to the following
theorem.

 
Theorem 3: If the adaptive controller (24) and (25) with the

adaptive law (27) is used, then it is ensured that the tracking error
turns to zero as t → ∞

The proof has been given in the Appendix. As shown in Fig. 2,
the adaptive controller can also drive the number of working lamps
to the reference value, although the parameters of the model are
unknown.

For a discrete form, set p^(0) = 0, and the adaptive law for p^  can
be expressed as

p^(t + 1) = p^(t) + ηϕT(t)e2(t)t0 . (27)

The adaptive controller can be expressed as

u1(t) = − k1e1(t), (28)

u2(t) = − k2e2(t) − u1(t) − ϕ(t)p^(t) . (29)

5 Simulation verification
A lighting retrofit project for retrofitting 1500 incandescent lamps
is evaluated. After initial retrofit, the population size of retrofitted
CFLs is 1000. For each incandescent lamp, the rated power is 60 
W. For each CFL, the rated power is 14 W. Based on empirical
CFL data in Table 1, parameters in the proposed model are
assumed known as β = 0.921 and γ = 0.986 (reported in [19]) in
the first two case studies. In real applications, these two parameters
are usually unknown. In case 3, β and γ are unknown constants,
and the performance of adaptive control will be analysed.

As reported in [30], LED decay also follows the logistic curve
like that of CFL decay, so observations on the CFL project could
be expected to apply to the LED project too. For simplicity,
simulation verification on a LED project is omitted here.

5.1 Case 1: Comparison of different models

The proposed model is compared with existing models referred to
in Section 2. As known, model 1 is the natural decay model; model
2 is the linear decay model; and model 3 is the logistic decay
model. The main characteristic of the proposed model is its ability
to reflect different effects of incremental retrofit and maintenance.
However, models 1, 2, and 3 cannot be directly applied to describe
decay dynamics in such interventions. For fair comparison, the
CFL population of incremental retrofit or maintenance (at fourth
year) is regarded as an independent population in the three existing
models. Then decay curves of three existing models can be plotted
as shown in Fig. 3. In the first two tests, 200 CFLs are used for

Fig. 2  Performance of controller design (k1 = 1.5 and k2 = 0.5)
 

Table 1 PELP empirical data on surviving rates
Year 1 2 3 4 5 6 7 8 9 10 11
Surviving rate 0.97 0.97 0.91 0.83 0.77 0.4 0.29 0.08 0.02 0.02 0.02
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retrofit and maintenance, respectively. The decay curves are plotted
in Figs. 3a and b.

In comparison, another test is conducted where 100 CFLs are
used for retrofit and 100 CFLs are used for maintenance, as shown
in Fig. 3c. It can be noticed that decay curves of models 1, 2, and 3
are the same in the three tests, but decay curves of the proposed
model are different. The reason is the fact that the decay dynamics
change as incremental retrofit and maintenance are done. These
changes are not considered in existing models, but considered in
the proposed model. The detailed effects of incremental retrofit and
maintenance will be analysed in the following case studies.

5.2 Case 2: Comparison of intervention factors

In the second case, the effects of the intervention time are first
evaluated. Hundred new CFLs are used to replace the broken CFLs
for maintenance at the fourth, sixth, and eighth year, respectively.
The decay curves are plotted in Fig. 4a. It can be noticed that the
maintenance in the early years shows better results than in the
subsequent years. The maintenance at the fourth year results in the
slowest decay.

In comparison, 100 CFLs are used to replace another 100
incandescent lamps for incremental retrofit at the fourth, sixth, and
eighth year, respectively. As shown in Fig. 4b, the same conclusion
can be drawn that the incremental retrofit in the early years shows
better performance than in the latter years. However, the time
effects in the incremental retrofit are not as significant as those in
the maintenance. In the case of incremental retrofit, the decay
curves of the fourth and sixth years are overlapped after the sixth
year. One possible reason is the fact that the population of the
incremental retrofit is larger, so that the average effect is less.

Two kinds of interventions, i.e. maintenance and incremental
retrofit, are evaluated in the proposed model. In the fourth year,
100 CFLs are used to replace the broken CFLs for maintenance.
The decay curve is shown as ‘M’ in Fig. 5a. In comparison, 100

new CFLs are used to replace another 100 incandescent lamps for
incremental retrofit at the same time. The decay curve is shown as
‘R’ in the figure. The natural decay without any intervention is
shown as ‘N’ in the figure. It can be noticed that interventions can
postpone the decay process, as the post-intervention population of
CFLs has a slower decay rate than the pre-intervention population.
It can also be observed that the decay rate of maintenance is slower
than that of incremental retrofit as shown in the figure, and that the
overall population after maintenance has fewer average working
hours than the population after incremental retrofit, which matches
the statement of Theorem 1.

Furthermore, multiple interventions are also evaluated in this
case study. At the fourth and seventh years, maintenance and
incremental retrofit could be chosen by decision makers. The decay
curves of different combinations are plotted in Fig. 5b. In the
figure, ‘ M + M’ means that maintenance is conducted at the fourth
and seventh year, respectively; ‘ M + R’ means maintenance is
conducted at the fourth year and incremental retrofit is conducted
at the seventh year; ‘ R + M’ means that incremental retrofit is
conducted at the fourth year and maintenance is conducted at the
seventh year; ‘ R + R’ means that incremental retrofit is conducted

Fig. 3  Model comparisons
(a) Decay curves after the fourth-year retrofit, (b) Decay curves after the fourth-year
maintenance, (c) Decay curves after combined retrofit and maintenance

 

Fig. 4  Decay curves with intervention at the fourth, sixth, and eighth
years, respectively
(a) Maintenance, (b) Incremental retrofit

 

Fig. 5  Decay curves of different interventions
(a) Separate intervention, (b) Multiple interventions
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at the fourth and seventh years, respectively. According to
Theorem 1, the same observation can be made that the decay of
‘ M + M’ has the slowest rate, and that the decay of ‘ R + R’ has
the fastest rate.

5.3 Case 3: Performance of adaptive control

In the adaptive controller, the control gains are set as k1 = 0.5 and
k2 = 1.5, and the updating rate is η = 1 ∗ 10−7. The reference values

of x1 and x2 are r1 = 1500 and r2 = 1200, respectively. In other
words, the population size of CFLs is expected to be 1500, and the
number of working CFLs is expected to be 1200. The control laws
u1(t) and u2(t), i.e. retrofit and maintenance plans, follow (24) and
(25) designed in the adaptive control.

For the adaptive control, the profiles of state variables x1 and x2
are plotted in Fig. 6a. In the adaptive control, the steady-state
errors converge to 0 at finite time. As shown in the figure, it is
indicated that x1(9) = 1500 and x2(20) = 1200. In comparison, the
state profiles of feedback control, in which p = [ − 0.9, 0.81], are
also given in Fig. 6b. It can be noticed that the steady-state error is
present in the feedback control. For the adaptive control, the
profiles of input variables are plotted in Fig. 6c. It can be observed
that the maintenance has a constant value and no retrofit is required
when t ≥ 20.

The parameters in the controller are converging to
p1 = − 0.1210 and p2 = − 0.0919. With respect to EE, energy
saving is related with the number of working CFLs and daily
burning hours. If the average daily burning hour is 5 h, energy
saving in the first year is 83,950 kWh. Energy saving in the first 5,
10, and 20 years is 448,380, 915,730, and 1,920,700 kWh,
respectively. After 20 years, annual energy saving is constant at
100,740 kWh.

The robustness of control gains is also evaluated in this study.
When k2 and η are kept unchanged, k1 is set at 0.1, 0.3, 0.5, 0.7, and
0.9, respectively. With these different settings, the profiles of the
CFL population size are plotted in Fig. 7a. It can be observed that
all profiles converge to the reference value, which indicates the
robustness of k1. A large value of k1 causes x1 to converge rapidly.
When k1 and η are kept unchanged, k2 is set at 1.1, 1.3, 1.5, 1.7, and
1.9, respectively. With these different settings, the profiles of
working CFLs have been plotted in Fig. 7b. It can be observed that
the profiles converge to the reference value, which indicates the
robustness of k2. However, a small k2 (e.g. k2 < 1.1) causes x2 to
converge slowly with some oscillation.

The adaptive control is also tested in a case with state
uncertainty. Assume that state variables experience disturbance
during the first 5 years, and the disturbance values are random
numbers on the scale [ − 20, 20], as shown in Fig. 8a. As a result,
state profiles can also converge to reference ones, as shown in Fig.
8b. Therefore, it can be concluded that the designed adaptive
controller is stable to reject some uncertainty.

6 Conclusion
As an example of BEER, the lighting retrofit project is studied. In
consideration of incremental retrofit and maintenance, a new decay

Fig. 6  Comparison of adaptive control and feedback control
(a) State profiles in the adaptive control, (b) State profiles in the feedback control, (c)
Input variables in the adaptive control

 

Fig. 7  Effects of the control gains
(a) Population size under different k1, (b) Number of working CFLs under different k2

 

Fig. 8  Effects of the state uncertainty
(a) Profiles of the state disturbance, (b) Profiles of the state variables
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model is proposed for the lighting retrofit project. Based on the
characteristics of natural decay, the population decay with multiple
interventions is formulated in the proposed model. In the control
approach, a MIMO state equation is formulated to express the
interactive dynamics based on the proposed decay model. Retrofit
and maintenance plans are studied to stabilise the number of
working lamps and the size of the overall population. To cope with
unknown parameters of the system, an adaptive control approach is
proposed to design stable plans. The stability is proven
theoretically, and is tested in simulations.

Several observations were made in this study. First,
maintenance could contribute more to conquer performance decay
than incremental retrofit. Second, the early intervention
(maintenance or retrofit) was preferred to postpone performance
decay. Third, the adaptive control was robust to deliver stable EE
performance. This work is challenging and important in the field of
energy system and reliability. In future, stochastic models could be
studied for the economic analysis, efforts on novel LED models,
and control methods could also be made with regard to emergence
of LED.
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8 Appendix
 
8.1 Appendix 1: Proof of Theorem 2

Denote the Lyapunov function as V(x1, x2). A Lyapunov function
candidate is defined as

V = 1
2e1

2 + 1
2e2

2 . (30)

For ∀e1 ≠ 0, ∀e2 ≠ 0, it is obvious that V > 0. The derivative
function can be deduced as

V̇ = ė1e1 + ė2e2 . (31)

Substituting (20) and (23) into the above equation, the
derivative can be transformed as

V̇ = − k1e1
2 − k2e2

2 < 0. (32)

According to Lyapunov stability theory, the feedback controller
is stable. The proof is completed.

8.2 Appendix 2: Proof of Theorem 3

Choosing the Lyapunov function candidate as

V = 1
2e1

2 + 1
2e2

2 + 1
2η p~T p~ (33)

where p~ = p − p^ . The derivative of V w.r.t. time is

V̇ = e1ė1 + e2ė2 − 1
η p~T p^̇

= e1u1 + e2(ϕp + u1 + u2) − 1
η p~T p^̇

(34)
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Substituting the control laws (24) and (25) into (34), it can be
deduced that

V̇ = − k1e1
2 − k2e2

2 + e2ϕp~ − 1
η p~T p^̇ (35)

Inserting the adaptive law (27) into (35), it can be deduced that

V̇ = − k1e1
2 − k2e2

2 ≤ 0 (36)

which shows that V(t) is globally uniformly ultimately bounded
(i.e. V(t) ∈ L∞), which implies that e1 ∈ L∞, e2 ∈ L∞, and p~ ∈ L∞,

which further implies that x1 ∈ L∞, x2 ∈ L∞, and p^ ∈ L∞. From the
definition of ϕ, we have ϕ ∈ L∞. Then from (24) and (25) and
(27), it follows that u1 ∈ L∞, u2 ∈ L∞, and p^̇ ∈ L∞. From (20) and
(21) it is seen that ė1 ∈ L∞ and ė2 ∈ L∞. From (36) we have

k1∫
0

t
e1

2(τ) dτ + k2∫
0

t
e2

2(τ) dτ + V(t) = V(0) (37)

which implies that e1 ∈ L2 and e2 ∈ L2. According to Barbalat
Lemma, it shows that limt → ∞ e1(t) → 0 and limt → ∞ e2(t) → 0 as
t → ∞. The proof is completed.
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al modelling of the components in
supercapacitors for proper understanding of the
contribution of each parameter to the final
electrochemical performance†
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and Xiaohua Xiaa

Three dimensional (3D) modelling of supercapacitors (SCs) has been investigated for the first time to have

a better understanding of and study the effect of each parameter on the final electrochemical results. Based

on this model, the resistance of the electrolyte, membrane, current collectors and active materials have

effects on the first intersection points on the real axis (x-axis) of the Nyquist plots (equivalent series

resistance (ESR)). These results indicate inward shrinking of the cyclic voltammograms (CV) due to

a small change in the leakage resistance and resistance of the faradic component of materials, and they

also explain the parameters that lead to the deformation of the CV from ideal behaviour. The 3D model

was verified with experiments using activated carbon-based SC devices. The experimental results

confirmed the 3D model results and suggested that the proposed 3D model is reliable and can be used

for the proper design of SC devices.
Introduction

Storage systems with sufficient capacity and highly efficient
charge and discharge characteristics are of huge and strategic
importance for portable electronics and biomedical applica-
tions, as well as for short and medium-term stationary appli-
cations. For these purposes, different technologies are being
developed including mechanical, thermal, physical, chemical
and electrochemical energy storage systems.1 An advanced
solution is to use batteries with high energy densities, however,
they suffer from low power densities, short cycle lives, safety
risks and poor adaptability with exible systems.2 Electro-
chemical capacitors (ECs), also called supercapacitors, with
high power densities, good cycling stabilities, and fast charge–
discharge rates are new energy storage devices that have
attracted attention in the scientic community.3–5 Currently,
research in the eld of supercapacitors is focused on ne-
tuning electrodes, electrolytes and material sections to ach-
ieve the best performance.6–8 However, there are no studies on
ering Department, University of Pretoria,

barzegar@gmail.com

Materials, SARCHI Chair in Carbon

toria, Pretoria 0028, South Africa

eering, African University of Science and

tion (ESI) available. See DOI:

ly to this work.

hemistry 2018
the effect of the resistances of each parameter on the nal
electrochemical performance, which could help researchers to
develop and synthesize the best ECs depending on the usage.

For a better understanding of ECs, we need to understand
the full behavior of each component of the EC during charge
and discharge. Based on their charge storage mechanism, ECs
can be classied as electric double layer capacitors (EDLCs),
pseudo-capacitors or redox electrochemical capacitors (RECs)
and hybrid electrochemical capacitors.9 The EDLCs store energy
by a charge separation at the electrode–electrolyte interface,10

while REC materials not only store energy like EDLCs, but also
in the appropriate potential window undergo electrochemical
faradaic reactions between the electrode materials and ions.11

Until now most researchers have tried to explain the electrical
behavior of pure EDLCs12 for ECs, however, none of the reports
clearly explain the effects of the resistances of each component
of ECs and how this reects in their behavior that leads to the
nal stored energy. In this article, we study and provide a deep
understanding of the electrical behavior of ECs and the effect of
each component on the nal electrochemical performance.
Verication and conrmation of the proposed model was
carried out experimentally with activated carbon-based mate-
rials and a KOH aqueous electrolyte in the laboratory.
Modelling of the supercapacitor

The electrical behavior of ECs can be described by the lumped-
element impedance-based model. The most common models
J. Mater. Chem. A, 2018, 6, 17481–17487 | 17481
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for the description of EDLCs are in three categories, namely
a RC circuit model, a three branch RC circuit model, and
a transmission line model (Fig. 1). The simple RC circuit model,
as shown in Fig. 1(a), includes four ideal circuit elements: the RS
element represents series resistance which is due to the pres-
ence of an electrolyte and metallic conductors, the L element
represents the series inductance that is mostly inuenced by the
geometry of the connectors and electrodes, C is the ideal
behavior of a capacitor which stores energy by charge separa-
tion at the electrode–electrolyte interface and the RCT element is
present due to the process of charge transfer from the electrode
to the electrolyte and leakage current. The loss in energy of
EDLCs, during self-discharge, charging and discharging, gives
rise to leakage of current resistance caused by equivalent series
resistance (ESR).13,14 It is necessary to extend the simple RC
circuit model since it cannot be used to probe the porous nature
of electrodes or show the behavior of EDLCs accurately over
a frequency range.

The three branch RC circuit presented by L. Zubieta and R.
Bonert15 is shown in Fig. 1(b). It consists of the leakage resis-
tance RLK in parallel to three branches which correspond to
different time constants for charge transfer. The rst or
immediate branch is for the time range of seconds and it
consists of a resistance Ri in series with two capacitors: a voltage
dependent capacitor Ci1 and a normal capacitor Ci0. The
delayed branch, with parameters Rd and Cd, represents time
constants within the minutes range while the long term branch,
containing Rl and Cl, represents time constants greater than ten
minutes. The model shows a suitable connection with experi-
mental results, however, the model has a weakness in that the
circuit components lack physical meaning.16

The transmission line model is adopted in many reports17,18

to precisely represent the porous nature of the electrodes in
EDLCs as shown in Fig. 1(c). This model includes leakage
resistance RLK, solution resistance Rel, electrode resistance Red,
inductance LS which prevails at high frequency, and a resistance
RP that is in parallel with inductance LP which are observed
above resonant frequency.

All of the above mentioned models are incomplete models
for actual ECs and cannot be used to examine the resistances of
each parameter of ECs (the active material, the electrolyte, the
Fig. 1 EDLC: (a) a simple RC circuit model, (b) a three RC circuit model
and (c) a transmission line model.

17482 | J. Mater. Chem. A, 2018, 6, 17481–17487
separator etc.) individually and their focus is mostly on the
EDLC material. Thus, in this paper, we propose a realistic three
dimensional model to study and elucidate the resistances of
each component of ECs individually and the inuence of each
component on the nal behavior of ECs. Cyclic voltammetry
(CV) and galvanostatic charge–discharge (GCD) modeling and
measurements cannot be completely understood in the elec-
trochemical reaction at the electrode–electrolyte interface but
a complete description can be explained using electrochemical
impedance spectroscopy (EIS).19 EIS is oen represented by
a Nyquist plot which presents the real (x-axis) and imaginary
parts of the impedance (y-axis). The Nyquist plot takes into
account the different parameters (resistance, capacitance,
inductance etc.) that are all dependent on the frequency and it is
usually divided into three regions of low frequency, medium
frequency and high-frequency.20 For an ideal capacitor, the
Nyquist plot of impedance is represented by a vertical line
which is parallel to the imaginary axis (y axis), which is only
correct for liquid mercury electrodes. The impedance of most
solid electrodes deviates from purely capacitive behavior.21

To offer a realistic model close to the practical situation, the
behavior of ECs should be described by a complex network of
non-linear inductances, capacitances and resistances. Thus,
Fig. S1(a) and (b)† have been proposed for realistic and accurate
2D modelling of the ideal behavior of EDLC and REC material
respectively. The ECs shown in Fig. 2 and S1,† depend on
several parameters, such as the capacitors that present double
layer behavior (C1 and C2), the capacitors that present redox
electrochemical behavior (CF1 and CF2), inductance (L), resis-
tance of the electrolyte (Re), a current collector and the resis-
tance of the electrode material (RC), the membrane resistance
(Rm), the faradic part of the material resistance (Rf) and the
leakage resistance (Rlk) (that is dependent on packaging). The
suggested RECs model in our simulation is based on behavior
that is close to battery materials,22,23 due to the fact that most
oxide materials for RECs show a faradaic phenomenon. In
reality, the presence of functional groups at the surface of the
electrode materials for EDLCs cannot be overruled, and these
Fig. 2 3D electrical equivalent model of practical ECs.

This journal is © The Royal Society of Chemistry 2018
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materials show similar behavior to RECs during charge and
discharge, contributing a pseudo-capacitive effect to the total
electrochemical performance. Similarly, some oxide materials
such as RuO and MnO2 exhibit (pseudo) EDLC behavior 24 and
this makes their models complex. To resolve these issues, the
nal 2D model presented in Fig. S1(c)† considers a hybrid
model that takes care of all the functional groups and other
parameters, bringing the model close to the practical EC
behavior. Lastly, a 3D hybrid model in Fig. 2 (Fig. S1(d)†) was
suggested for a realistic simulation of the behavior of EDLCs.
Methods
Simulation of the full cell supercapacitor

In order to study the performance of the passive hybrid system
and to verify the analytical approach above, simulations in
Matlab/Simulink were conducted using Simpower GUI. A
sawtooth wave with the maximum voltage of 1 V and frequency
of 0.01 was used to charge and discharge the cell in order to
simulate its performance. Firstly, the 2D model was built in
Simulink as shown in Fig. S2.† The two 2D models in Fig. S2†
were then connected together through two resistor banks, each
comprising Re and RC, to form the 3D model shown on the right
hand side of Fig. S3.† The le hand side of Fig. S3† shows the
charge/discharge control and output voltage and current
measurement circuit, where Isc.mat and Vsc.mat store the
simulated current and voltage proles of the cell and Vchg.mat
provides the sawtooth voltage waveform of the charge/discharge
data given in Fig. S4.†
Experimental and electrode preparation of the full cell
supercapacitor

Polymer based activated carbon (AC) was used in the experi-
mental section and was prepared by the methods reported in
our previous work25 using hydrocarbons such as polyvinyl
alcohol (PVA)/polyvinylpyrrolidone (PVP) as a source of carbon,
through chemical activation with KOH as the active agent to
produce the desired porous carbons. The porous carbon (acti-
vated carbon (AC)) that was used for the electrochemical tests
had a surface area of 1063 m2 g�1 and had some functional
groups on the surface as explained in our previous work. The
electrodes were made by combining the active materials, the
conductive additive (carbon black) and polyvinylidene uoride
(PVDF) in N-methyl pyrrolidone (NMP) to make a slurry which
was coated on a nickel foam that was graphene coated as
a current collector and dried at 60 �C in an oven overnight. The
device was tested in a two-electrode conguration with
a microber lter paper (thickness of 180 mm with 11 mm pore
size (particle retention)) as a separator. Three set of devices were
made and tested numerous times to ascertain the reproduc-
ibility before coming to a conclusion. The reference cell and the
rst device consisted of the active material (activated carbon
with functional groups) derived from PVA\PVP, carbon black
and PVDF with weight ratios of 90%, 5% and 5% respectively,
6 M KOH, one glass microber lter paper separator and
a graphene coated nickel foam current collector. Furthermore,
This journal is © The Royal Society of Chemistry 2018
the resistance of the active material (RC) in the second device
was increased by increasing the binder by 10% without the
addition of a conductive agent (carbon black). The third device
was made with the intention of increasing the resistance of the
electrolyte (Re), where 5 ml of a 10 wt% PVA solution was added
to 5 ml of 6 M KOH. The number of the separators was also
increased so as to slow the movement of ions within the elec-
trodes which will result in increased membrane resistance (Rm).
It is worth stating that it is quite difficult to control all other
parameters in reality and thus all the test parameters were
repeated numerous times to conrm the results obtained.
Electrochemical measurements (electrochemical impedance
spectroscopy (EIS) and cyclic voltammetry (CV)) were carried out
using a Bio-logic VMP-300 potentiostat. The EIS measurements
were conducted in the frequency range from 0.01 Hz to 100 kHz
with the open circuit potential of �0 V.

Results and discussion

To study the effects of the resistances of each parameter sepa-
rately and how they reect in the nal electrochemical perfor-
mance, a reference cell was necessary. Aer the 3D model of the
supercapacitor was designed, each parameter of the cell was
assigned a specic value and the outcome of that was consid-
ered as the reference cell result. Then, to study the parameter
effects individually, each parameter was changed separately
while the rest of the parameters were xed at reference values.
To see the negative effect of each parameter compared to the
reference cell, some of the parameters were increased and some
were decreased. The modied value was just a number that was
high enough to see the effect of each parameter compared to the
reference cell. Fig. 3 displays the EIS plot, the phase angle versus
frequency and the CV curves of the simulation results aer
changing the resistance of each parameter compared to the
reference cell. In our simulation results, Re represents the
resistance of the electrolyte, Rm is the resistance of the
membrane, RC is the resistance of the current collector and the
electrode materials, Rlk is the leakage resistance and RCT is the
resistance of the faradic part of the material. It is clear that each
parameter had a different effect on the nal result of the
supercapacitor. For better understanding and clarity of the
results, each parameter was plotted and investigated separately
compared to the reference cell.

Fig. 4(a) and (b) present the effects of the electrolyte resis-
tance on the nal results of the EIS plot and CV curves. As
observed from Fig. 4(a) a change in the resistance of the elec-
trolyte (Re) by a factor of 100 led to an increase in the rst
intersection points on the real axis (x-axis) of the Nyquist plots.
This frequency plot corresponds to the typical time constants in
most high-power applications, and for intermediate frequen-
cies, the complex-plane plots form an angle of �45� with the
real axis as seen in the gure. This angle is explained by the
limited current penetration into the porous structures of the
electrodes.26 For lower frequencies, the spectra approach
a nearly vertical line in the complex plane, which is typical of
ideal capacitors. Similarly, a shi and increase in the high-
frequency area and the angle of the Nyquist plots for the
J. Mater. Chem. A, 2018, 6, 17481–17487 | 17483
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Fig. 3 (a) EIS plot, (b) the phase angle versus frequency and (c) CV curves of the simulation results.
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intersection of the high and medium-frequency regions was
also observed. The model has a highly dynamic load at the
beginning as well as deeper charging and discharging. The
corresponding CV and the calculated data show excellent
agreement. Fig. 4(b) shows the CV curves of the simulated
results based on the reference cell and the simulated cell aer
the Re was increased by 100 times indicating that there was no
change in the shape of the CV, and rather a small decrease in
current was observed which corresponded to a slight shrinkage
of the CV. This also indicates a decrease in the capacitance of
the device.

Several other components contribute to the overall perfor-
mance of the device, such as the membranes that prevent short-
circuiting within the device. Fig. 4(c) and (d) present the effect
of the membrane (separator) resistance on the nal perfor-
mance of the device. Fig. 4(c) shows an increase in the resis-
tance of the membrane (Rm) by a factor of 100 and shows that
the rst intersection points on the real axis (x-axis) of the
Nyquist plots increased and the whole plots shied by the same
length. The angle of the Nyquist plots for the intersection of the
high and medium-frequency regions did not change. The cor-
responding CV in Fig. 4(d) shows a similar result with
a shrunken CV indicating a capacitive decrease. It is clear that
the results obtained using the proposed model give similar
results to what was obtainable in the experiments that are
presented at the end of the paper. Therefore, the proposed
electric model can be used in designing a voltage controller and
in sizing a supercapacitor for storage applications.
Fig. 4 Simulation results of the EIS plot and CV curves (a) and (b) when inc
increasing the membrane resistance 100 times.

17484 | J. Mater. Chem. A, 2018, 6, 17481–17487
The resistances of the current collectors and active materials
(and resistance at the interface of them) also play a crucial part
in the performances of the devices. Such contributions are
presented in Fig. 5. Fig. 5(a) and (b) show the results of
increasing the resistance of the current collector and the elec-
trode materials (RC) by a factor of 2 (the parameter that was
chosen for RC for the reference cell was high at rst, so an
increase by a factor of 2 made it high enough to see the effect of
RC compared to the reference cell). From Fig. 5(b) which
provides an enlarged view of the Nyquist plot, the remarkable
deviations shown were attributed to the longer time taken for
charge to reach the surface of the active material. These devia-
tions could also affect the efficiency of the device which is
inuenced by the resistance of the electrodes which means that
increasing the real part of the impedance with a corresponding
decrease in frequency has to be taken into consideration.
However, the angle of the Nyquist plots for the intersection of
the high and medium-frequency regions remained the same.
Fig. 5(c) shows a clear shrinkage in the CV that explains
a decrease in the performance of the device, hinting that the
resistance of the active material and the current collector play
a crucial part in the performance of the electrochemical devices.
The shrinking might be attributed to a number of factors such
as, the conductivity, and the pore dimensions of the active
materials and the current collectors.

Fig. 6 presents the effect of leakage resistance (Rlk) on the
nal results. Fig. 6(a) and (b) show that by decreasing the Rlk by
100 times, the rst intersection points on the real axis (x-axis) of
reasing the resistance of the electrolyte 100 times, and (c) and (d) when

This journal is © The Royal Society of Chemistry 2018
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Fig. 5 Simulation result (a) and (b) of the EIS plots and (c) the CV curves when increasing the resistance of the current collectors and active
materials 2 fold.
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the Nyquist plots did not change. Decreasing the Rlk had
a negative effect on the capacitance of the supercapacitor. The
only part affected was the low-frequency region that showsmore
deviation from the vertical lines. Decreasing the Rlk meant that
the cell had an easier way to discharge than keeping the charge
at the surface. Fig. 6(c) and (d) show CV curves of the simulation
results of the reference cell and the cell aer decreasing Rlk by
100 times. For the rst time, this paper reports an upward shi
and a shape change (pushed inward) of the CV curve by
adjusting one parameter such as the leakage resistance (Fig. 6)
or the resistance of the faradic part of the materials (effect of
functional groups) (Fig. 7). The initial and nal points moved
up and the shape of the CV curve was pushed inward a little. The
shi in CV was more at the endpoint with the high current than
the rst point with the low current which was considered as
a shi to match the initial point. As the EIS results showed,
decreasing the Rlk had a negative effect on the capacitance of
the supercapacitor, thus, by decreasing the Rlk, the super-
capacitor needs more energy to charge than the energy given in
the discharge section.

Fig. 7 presents the effect of the resistance of the faradic part
of the material (RCT) on the nal results. As shown in Fig. 7(a)
and (b), a decrease in the RCT by 10 times led to no change in the
intercept value on the real axis (x-axis) of the Nyquist plots,
however, it introduced a negative effect on the faradic part of
the performance of the supercapacitor. The only part that was
affected was the low-frequency region that became more resis-
tive and deviated from the vertical lines. Fig. 7(c) shows CV
Fig. 6 Simulation results of the EIS plots (a) and (b) and CV curves (c) an

This journal is © The Royal Society of Chemistry 2018
curves of the simulation results of the reference cell and the cell
aer decreasing RCT by 10 times and it shows the same trend as
Fig. 6(c) and (d). The initial and nal points moved up and the
shape of the CV curves was pushed inward a little. A decrease in
the RCT reduced the potential capacity of the capacitor that
presented redox electrochemical behavior (CF) and had a nega-
tive effect on the capacitance of the supercapacitor so that the
EC needed more energy to charge than the energy given in the
discharge section. The RCT and CF had a very close relationship
to each other that was linked to the properties of the material.

Fig. 8 presents an enlarged view of the phase angle versus
frequency of the simulations. This gure shows the effect of
each parameter discussed above on the nal result of the phase
angle. The ideal capacitor phase angle should be �90�. The
closer the phase angle is to �90�, the more similarly the device
performs to an ideal capacitor.27 Fig. 8 shows that all the EIS
simulations showed a similar trend. Those parameters that
provide more resistive behavior that inuences the nal
capacity, move the phase angle far away from �90�.

For the purpose of verifying the analysis above and con-
rming the proposed model, experiments with an activated
carbon-based supercapacitor were tested in the laboratory. In
the experimental section, the parameters that it was possible to
control physically in our laboratory were investigated. An
investigation of the high-frequency region and effect of each
resistive component of the device was carried out experimen-
tally to ascertain and conrm the proposed three-dimensional
hybrid model. We detected the same trend in Fig. 9 as the 3D
d (d) when decreasing the leakage resistance 100 fold.

J. Mater. Chem. A, 2018, 6, 17481–17487 | 17485
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Fig. 7 Simulation result of the EIS plots (a) and (b) and CV curves (c) when decreasing resistance of the faradic part of the material 10 fold.

Fig. 8 An enlarged view of the phase angle versus frequency of the
simulations.
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simulation results proposed. However, as shown in Fig. 9(a), the
length of the EIS increased aer changing one parameter due to
the fact that the mass of the material was not as completely
uniform as that of the reference cell and the other cell.
Controlling the mass at such a scale was very difficult with our
Fig. 9 (a) EIS plot, (b) the phase angle versus frequency and (c) CV curv

17486 | J. Mater. Chem. A, 2018, 6, 17481–17487
equipment. The phase angles (Fig. 9(b) and S5†) and CV curves
(Fig. 9(c)) of the experiments also followed the 3D model results
that suggest that the proposed model was completely correct. By
disregarding the mass effect on the capacity, the CV shape aer
increasing the Re was almost the same as that of the reference
cell. By increasing the Rm and RC, clear shrinkage occurred in
the CV shape as the 3D model also suggested.

Conclusion

In conclusion, a novel 3D model of a supercapacitor was pre-
sented. The results report the effect of each parameter indi-
vidually for the rst time in electrochemical capacitors. Based
on the proposed 3D model, the resistance of the electrolyte, the
membrane resistance, and the resistance of the current collec-
tors and active materials can increase the rst intersection
points on the real axis (x-axis) of the Nyquist plots. Also, the
results revealed a novel phenomenon where the initial and nal
points of the CV curves shi up and the shape of CV curves is
pushed inward a little by changing the leakage resistance and
the resistance of the faradaic part of the materials. These results
can explain which parameters play a major role in deformation
of the CV shape from the ideal state. The experimental results
conrmed that the proposed model is completely correct, in
that the change of any of the aforementioned parameters
indeed increased the rst intersection point on the x-axis of the
es at a scan rate of 20 mV s�1 of the real material.

This journal is © The Royal Society of Chemistry 2018
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Nyquist plot and also affected the shape of the CV curves. To
improve the performance of ECs based on the reported results,
the selected electrolyte should have the highest ionic conduc-
tivity, the chosen membrane should have a sufficient size of
porosity based on the electrolyte to get the lowest ionic resis-
tivity, the current collector should have the highest conductivity
with good surface interactions with the active material and the
active material should have the highest electrical conductivity.
The leakage resistance depends on the packaging of the cell, so
packaging methods play an important role in the nal result.
Finally, the faradaic part of the active material can improve the
capacity of the EC by helping the choice of the best candidate
with high capacitance and low resistive behaviour (if RCT is high
in the material, it provides capacity with low resistive
behaviour).
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• A high-order differentiator is designed to approximate the unknown derivatives of time-varying elasticity coefficient.
• A simple observer is designed to reconstruct the un-measurable system states.
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a b s t r a c t

In this paper, a nonlinear partial-state feedback control is designed for a 3-DOF pantograph–catenary
system by using backstepping approach, such that the contacting force of the closed-loop system is
capable of tracking its reference profile. In the control design, the pantograph–catenary model is trans-
formed into a triangular form, facilitating the utilization of backstepping. Derivatives of virtual controls in
backstepping are calculated explicitly. A high-order differentiator is designed to estimate the unknown
time derivatives of elasticity coefficient; and an observer is proposed to reconstruct the unmeasurable
states. It can be proved theoretically that, with the proposed nonlinear partial-state feedback control, the
tracking error of the contacting force is ultimately bounded with tunable ultimate bounds. Theoretical
results are demonstrated by numerical simulations.

© 2019 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Pantograph–catenary system is prevailingly adopted inmodern
railway industry to supply electricity to high-speed trains. To guar-
antee that the high-speed train obtains stable electricity supply
from the wires, a solid contact between pantograph and catenary
is of great importance [1]. As pointed out in previous researches,
the loss of contact would lead to insufficient supply of energy
to the high-speed train, resulting in disfunctions in acceleration,
braking and communication. In another aspect, however, with
over-contacting force, there would be considerably arcing phe-
nomenon or rapidwear in both pantograph and catenary, reducing
significantly the duration of the entire system. Consequently, it is
significantly necessary tomaintain an appropriate contacting force
between pantograph and catenary.

∗ Corresponding author.
E-mail addresses: zhubing@buaa.edu.cn (B. Zhu), lngdrzl@163.com (Z. Ren),

xiewenjing@swu.edu.cn (W. Xie), fyguo64@126.com (F. Guo), xxia@up.ac.za
(X. Xia).

To maintain an optimal contacting force for the pantograph–
catenary system is a challenging task, since there exist couplings
and periodic nonlinearities in its dynamics [2] due to the high
speed of the train. Influences resulted from couplings and periodic
nonlinearities become especially negative, if the train speed is
large such that the frequency of catenary stiffness variation is
excessively high. The optimal contacting force between the pan-
tograph and catenary can be calculated experimentally [3]. Active
PID control strategy can be applied to maintaining a constant
reference contacting force [4]. Other advanced control technolo-
gies that can be employed to the pantograph–catenary system in-
clude robust optimal control [5], feedback linearization [6], output-
feedback regulation [7], output-feedback control with adaptive es-
timation [8], model predictive control [9], and an implementation-
oriented technique named wire-actuated control with contact
force estimation [10].

Some typical difficulties in active control design for panto-
graph–catenary system include that: (1) the elasticity coefficient
of the catenary is time-varying, and the parameters in its math-
ematical model are unknown; and (2) some system states, such

https://doi.org/10.1016/j.isatra.2019.01.033
0019-0578/© 2019 ISA. Published by Elsevier Ltd. All rights reserved.
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as displacement velocities of the pantograph, are unmeasurable.
For the time-varying elasticity coefficient of the catenary, it can
be assumed that it is periodic, and some approximations have
been proposed [10,11]; however, the approximatedmodels cannot
be directly used, because accuracy of the approximated model is
un-assured, and some parameters are difficult to determine. To
estimate the unmeasurable states, sliding mode observers have
been proposed [7]; however, typical problems in sliding mode
control (such as chattering) would arise.

Generally, there exist two types of pantograph–catenary system
modeling, namely 2-DOF modeling [7,11–14] and 3-DOF model-
ing [5,10,15,16]. The 3-DOF model contains more dynamics (thus
more accurate) than the 2-DOF model; however, it is compar-
atively complicated, and there exist more uncertain parameters
or un-measurable states. In this paper, based on backstepping
approach, a nonlinear partial-state feedback control is proposed
for a 3-DOF pantograph–catenary system. The linear time-varying
model of the pantograph–catenary system can be transformed into
a cascaded form, and backstepping can be applied to serve as the
fundamental structure of the proposed controller, such that the
controller can be designed in steps for reduced-order subsystems.
Another advantage of applying backstepping is to facilitate the
design of observers for unmeasurable states, and to guarantee the
stability of the closed-loop system. Main contributions of this paper
include: (1) the backstepping approach is firstly applied to control
3-DOF pantograph–catenary system; (2) by using backstepping
approach, the closed-loop system is capable of tracking not only
constant reference contacting force but also time-varying periodic
reference forces; (3) a high-order differentiator is designed to
approximate the unknown derivatives of time-varying elasticity
coefficient, such that usage of unknown time-varying elasticity
coefficient model can be avoided; and (4) a simple observer is
designed to reconstruct the unmeasurable system states. Ultimate
boundedness of tracking errors of the closed-loop system can be
proved. The theoretical results are validated by numerical simula-
tions.

The layout of this paper is arranged as following. In Section 2,
the mathematical model of the pantograph–catenary system is
presented, and the objectives of control design are stated. In Sec-
tion 3, a full-state feedback nonlinear backstepping control is de-
scribed in detail, and asymptotic stability of the tracking error
is proved theoretically. In Section 4, a high-order differentiator
is designed to estimate the time derivatives of elasticity coeffi-
cient, and an observer is designed to reconstruct the unmeasurable
system states; it is proved that the tracking error of the closed-
loop system with the proposed partial-state feedback control is
ultimately bounded with tunable ultimate bounds. In Section 5,
main theoretical results are demonstrated by numerical simula-
tions, and corresponding discussions are given. The final section
is the conclusion.

2. Problem statement

In this section, the pantograph–catenary system ismodeled into
a 3-DOF time-varying linear system. In the pantograph–catenary
system, as depicted by Fig. 1, the pantograph is fixed on the top
of the train, and runs in high-speed with the train. A supporting
force is exerted on the lower frame of the pantograph from some
actuators, and to generated a contacting force between the pan-
headof the pantograph and the catenary, such that electrical power
can be transferred from the catenary to the train through the
pantograph.

Due to the high speed of the train, there exist some considerable
vibrations in the catenary, and the contact force would be neg-
atively influenced. Excessively large contact force would lead to
extreme wear of the pan-head and the catenary, while too small

Fig. 1. Pantograph–catenary system equipped on a practical high-speed train.

Fig. 2. Approximate structure of the pantograph–catenary system.

contact force would result in arcing phenomenon or even lost
of contact. All of these situations will deteriorate the electricity
supply for the train. Consequently, the objective of this paper is
to design an active control for the pantograph, such that a proper
reference contacting force can be maintained.

2.1. Mathematical model of pantograph–catenary system

The 3-DOF pantograph–catenary system is composed by a head,
a plunger and frames. In this paper, the pantograph–catenary
model under consideration is an under-actuated one, and it is
different from the fully-actuated model in [5]. Its structure can
be approximated by a mass-elasticity model, as is given in Fig. 2,
where the active control u is only exerted on the lower frame. The
dynamic equations of the 3-DOF pantograph–catenary system can
be obtained by⎧⎨⎩ m1ẍ1 = k1(x2 − x1) + b1(ẋ2 − ẋ1) − k(t)x1,

m2ẍ2 = −k1(x2 − x1) − k2(x2 − x3) − b1(ẋ2 − ẋ1) − b2(ẋ2 − ẋ3),
m3ẍ3 = −k2(x3 − x2) − b2(ẋ3 − ẋ2) − b3ẋ3 + u,

(1)
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wherem1 andm2 denote the mass of the pantograph head and the
plunger, respectively;m3 denotes the gross mass of the frames; x1,
x2 and x3 are the positions of the pantograph head, the plunger and
the frames, respectively; k1 and k2 denote the elasticity constants
of the plunger and the frames; b1, b2 and b3 are the damping
constants of the pantograph head, the plunger and the frames, re-
spectively; t denotes the continuous time; k(t) is the time-varying
elasticity (or stiffness) coefficient between the pantograph head
and the wire; and u is the control input.

The output of the pantograph–catenary system is the contacting
force between the pantograph head and the wire:

Fc ≜ k(t)x1, (2)

where the contacting force Fc is assumed to be measured directly,
and the position x1 can be measured, indicating that the value of
the elasticity coefficient can be obtained by

k(t) =
Fc
x1
. (3)

However, it is supposed in this paper that the accurate physical
model of the time-varying elasticity coefficient k(t) is unknown.

The time-varying elasticity coefficient can be approximated by
a high-order periodic model [11]:

k(t) = K0 +

3∑
i=1

Ki cos(
2iπ
L

Vt) + K7 cos(
14π
L

Vt), (4)

where Ki (i = 0, 1, 2, 3, 7) are constant uncertain stiffness coeffi-
cients; V is the train speed; and L is the span length.

Remark 1. The contact force can be measured directly with strain
gages, accelerometers and strain gage position sensors, as pro-
posed in [17]. It has to be acknowledged that, the measurement
might be somehow inaccurate in harsh environment. The contact
force can also be estimated by using numerical methods, e.g., [11],
but with fully-known elasticity coefficient.

Remark 2. Nonlinearities in the pantograph are neglected in this
paper, and the pantograph is assumed to be a 3-DOFmass–spring–
damper system with constant elasticity and damping coefficients.
Please see [18] for more details.

Remark 3. The elasticity coefficient (4) of the catenary is time-
varying due to vibrations of the contacting wire, and it can be
expanded as Taylor Series. In quite a lot of previous researches,
higher-order terms in Taylor Series are neglected, and only the first
order periodic term is considered [5,6,8,13,14]. However, some
researches claim that it is inaccuracy to consider only the first
periodic term in the Taylor Series [11,16]. Consequently, more
higher-order terms in Taylor Series are considered in this paper to
improve the accuracy of the structure. In the Taylor Series of the
catenary, parameters are unmeasurable and to be estimated.

2.2. Linear time-varying representation

The system model (1) can be transformed into a linear time-
varying representation:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ż1 = z2,
ż2 = −

k1+k(t)
m1

z1 −
b1
m1

z2 +
k1
m1

z3 +
b1
m1

z4,
ż3 = z4,
ż4 =

k1
m2

z1 +
b1
m2

z2 −
k1+k2
m2

z3 −
b1+b2
m2

z4 +
k2
m2

z5 +
b2
m2

z6,
ż5 = z6,
ż6 =

k2
m3

z3 +
b2
m3

z4 −
k2
m3

z5 −
b2+b3
m3

z6 +
1
m3

u,

(5)

or

ż = A(t)z + bu,

where z = [z1, z2, z3, z4, z5, z6]T ≜ [x1, ẋ1, x2, ẋ2, x3, ẋ3]T , and

A(t)=

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
−

k1+k(t)
m1

−
b1
m1

k1
m1

b1
m1

0 0
0 0 0 1 0 0
k1
m2

b1
m2

−
k1+k2
m2

−
b1+b2
m2

k2
m2

b2
m2

0 0 0 0 0 1
0 0 k2

m3

b2
m3

−
k2
m3

−
b2+b3
m3

⎤⎥⎥⎥⎥⎥⎥⎦ ,

b =

⎡⎢⎢⎢⎢⎢⎣
0
0
0
0
0
1
m3

⎤⎥⎥⎥⎥⎥⎦ .
The output of the system can be given by

y = C(t)z, (6)

where y = Fc , and C(t) = [k(t), 0, 0, 0, 0, 0]. System (5) is time-
varying in existence of the time-varying elasticity coefficient k(t).

2.3. Optimal contacting force with respect to mechanical wear and
electrical resistance

The optimal contact force should achieve a tradeoff between
materialwear and electrical resistance of the pantograph–catenary
system. The material wear decreases as the contact force de-
creases; meanwhile, decrease of the contact force would lead to
larger electrical resistance between the pantograph and catenary,
impeding the reliable currency transmission.

Thematerialwear includes oxidationalwear andmeltwear. The
oxidational wear model [19] of the contact wire can be given by

wo(Fc) = fm

[
αwµPeq(Fc)

Lox
−

A0.5
n Kox

(
T ox
m − Tb

)
Peq(Fc)0.5n0.5

asp

LoxH0.5
0 lbv

]
,

(7)

where wo(Fc) denotes the wear of the contact wire, which is a
function of the contacting force; fm represents the volume fraction
of molten material; αw denotes the heat distribution coefficient;µ
is the sliding friction coefficient of the contact wire material; Lox
denotes the latent heat of fusion per unit volume of oxide; An is
the actual contact area; Kox represents the thermal conductivity of
oxide; T ox

m denotes the melting temperature of the material; Tb is
the bulk temperature; nasp is the number of asperity in contact; H0
denotes the hardness of material; lb denotes the equivalent linear
diffusion distance for bulk heating; and v is the actual velocity
of the train. Some values of the above parameters can be found
in [19,20]. The equivalent contact force Peq(Fc) is a function of the
contact force Fc :

Peq(Fc) = Fc + Pe = Fc +
Re

µv
I2, (8)

where Pe is the equivalent electrical contact force; Re denotes the
electrical resistance at the contact point; and I is the electrical
current transferred through the contact.

The melt wear model [19] of the contact wire is a function of
the contacting force Fc , and it can be given by

wm(Fc) = fm

[
αwµPeq(Fc)

Lm
−

AnKm (Tm − T0)
Lmlbv

]
, (9)

where Lm is the latent heat of fusion per unit volume for metal;
Km is the thermal conductivity of the metal material; Tm is the
melting temperature of the metal material; and T0 is the ambient
temperature.
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The electrical resistance with respect to contact force [21] can
be calculated by

Re(Fc) =
ρ1 + ρ2

4

√
πH
Fc
, (10)

where ρ1 and ρ2 are resistance rates of the pantograph and the
catenary; and H is the contact hardness of the materials.

Based on (7)–(10), the cost function to calculate the optimal
contact force can be constructed by

J(Fc) = q1wo(Fc) + q2wm(Fc) + q3Re(Fc), (11)

where q1, q2 and q3 are positive weight parameters for optimiza-
tion. The optimal contact force can be calculated by

F∗

c = argmin
Fc

J(Fc), (12)

subject to (7)–(10).
The value of optimal contacting force may vary from case

to case with respect to different values of parameters in vari-
ous pantograph–catenary projects. Detailed value of pantograph–
catenary parameters can be found in examples in [11,22,23] Gen-
erally, the optimal contacting force is often constant, and its value
is around 100–120 N [23].

Remark 4. It has to be admitted that, in this paper, no system-
atic way of selecting weight parameters can be given. Parameter
selecting has to be processed through trials. Different values of
weight parameters reflect different emphasis on electricity resis-
tance (contact force) or wear. For example, with the values of
parameters provided in [19] and the weight parameters q1 = 0.2,
q2 = 1 and q3 = 0.5, it can be calculated that the optimal
contacting force should be F∗

c = 109.7N.

Remark 5. The optimization (12) can be solved by using MATLAB
function ‘‘fmincon’’.

2.4. Control objective

Suppose that, in this research, the contact force (Fc) and the
positions (x1, x2 and x3, or z1, z3 and z5) can be measured directly.
However, in practical cases, the velocities (ẋ1, ẋ2 and ẋ3, or z2, z4 and
z6) are often unmeasurable.Moreover, the stiffness coefficients (Ki)
are uncertain constant parameters.

Remark 6. Although corresponding devices are fairly expen-
sive, the contact force is measurable indeed. There exist some
researches on estimation of contact forcewithout using the expen-
sive devices [10,11].

The objective of this paper is to design a nonlinear control
for the pantograph–catenary system with unmeasurable displace-
ment variations and uncertain stiffness coefficients, such that the
output of the system is capable of tracking a constant reference
contacting force with small tracking error:

lim
t→+∞

|y(t) − yr | < ϵ, (13)

where yr = F∗
c is the reference contacting force, and ϵ > 0 is a

small positive number.

3. Full-state feedback nonlinear control

In this section, a full-state feedback nonlinear control is de-
signed to give a fundamental structure of the proposed partial-
state feedback control. In the next section, differentiators and state
observerswill be designed to replace the uncertain parameters and
unmeasurable states.

To facilitate control design, the time-varying model is trans-
formed into a triangular form (the definition of triangular system
can be referred to [24]). The nonlinear control is designed through
backstepping [25], with derivatives of virtual controls calculated
explicitly. Asymptotic stability of tracking errors of the closed-loop
system is proved theoretically.

3.1. Model transformation

Define manifolds:

ξ1 = k1z3 + b1z4, (14)

ξ2 = k2z5 + b2z6. (15)

It follows from (5), (14) and (15) that the 3-DOF model can be
transformed into a triangular form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ż1 = z2,
ż2 = −

k1+k(t)
m1

z1 −
b1
m1

z2 +
1
m1
ξ1,

ξ̇1 = k1z4 + b1
(

k1
m2

z1 +
b1
m2

z2 −
k1+k2
m2

z3 −
b1+b2
m2

z4 +
1
m2
ξ2

)
,

ξ̇2 = k2z6 + b2
(

k2
m3

z3 +
b2
m3

z4 −
k2
m3

z5 −
b2+b3
m3

z6 +
1
m3

u
)
,

(16)

with internal dynamics given by{
ż3 = −

k1
b1
z3 +

1
b1
ξ1,

ż5 = −
k2
b2
z5 +

1
b2
ξ2.

(17)

Remark 7. It can be seen from (17) that the internal dynamics is
actually a linear stable system{

ż3 = −
k1
b1
z3,

ż5 = −
k2
b2
z5.

(18)

plus inputs 1
b1
ξ1 and 1

b2
ξ2.

In another aspect, based on (6), it holds that

x1 = z1 =
y

k(t)
.

Then, an auxiliary reference profile can be defined:

z1r ≜
yr
k(t)

.

The objective is then to design control for the triangular system
(16)–(17), such that

lim
t→+∞

|z1(t) − z1r (t)| <
ϵ

supt→+∞(|k(t)|)
. (19)

3.2. Control design by using backstepping

The nonlinear control for (16)–(17) is designed step by step via
backstepping in this section.

Step 1: Define tracking error e1 = z1 − z1r . It follows that

ė1 = ż1 − ż1r = z2 − ż1r = e2 + α1 − ż1r ,

where e2 ≜ z2 − α1, and α1 is the virtual control to be tracked by
z2. Design the virtual control

α1 = −c1e1 + ż1r , (20)

where c1 > 0 is a constant control gain. It then follows that

ė1 = −c1e1 + e2. (21)

Select the Lyapunov candidate L1 =
1
2 e

2
1. Its time derivative can

be calculated by

L̇1 = −c1e21 + e1e2, (22)
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where −c1e21 is negative definite, and e1e2 is to be canceled in the
next step.

Step 2: The time derivative of e2 can be calculated by

ė2 =ż2 − α̇1

= −
k1 + k(t)

m1
z1 −

b1
m1

z2 +
1
m1
ξ1 − α̇1

= −
k1 + k(t)

m1
z1 −

b1
m1

z2 − α̇1 + e3 + α2,

where e3 ≜ 1
m1
ξ1 − α2, and α2 is the virtual control to be tracked

by 1
m1
ξ1. Design the virtual control

α2 = −e1 − c2e2 +
k1 + k(t)

m1
z1 +

b1
m1

z2 + α̇1, (23)

where c2 > 0 is a constant control gain. It then follows that

ė2 = −e1 − c2e2 + e3.

Select the Lyapunov candidate L2 = L1+
1
2 e

2
2. Its time derivative

can be calculated by

L̇1 = −c1e21 − c2e22 + e2e3,

where −c1e21 − c2e22 is negative definite, e1e2 in (22) is canceled,
and e2e3 is to be canceled in the next step.

Step 3: The time derivative of e3 can be calculated by

ė3 =
1
m1
ξ̇1 − α̇2

=
b1
m1

(
k1
m2

z1 +
b1
m2

z2 −
k1 + k2

m2
z3 −

b1 + b2
m2

z4

)
+

k1
m1

z4 − α̇2 +
b1
m1

1
m2
ξ2

=
b1
m1

(
k1
m2

z1 +
b1
m2

z2 −
k1 + k2

m2
z3 −

b1 + b2
m2

z4

)
+

k1
m1

z4 − α̇2 + e4 + α3.

where α3 is the virtual control to be tracked by b1
m1m2

ξ2, and e4 ≜
b1

m1m2
ξ2 − α3.

Design the virtual control

α3 = − e2 − c3e3 + α̇2 −
k1
m1

z4

−
b1
m1

(
k1
m2

z1 +
b1
m2

z2 −
k1 + k2

m2
z3 −

b1 + b2
m2

z4

)
, (24)

where c3 > 0 is a constant control gain. It then follows that

ė3 = −e2 − c3e3 − e4.

Select the Lyapunov candidate L3 = L2+
1
2 e

2
3. Its time derivative

can be calculated by

L̇3 = −c1e21 − c2e22 − c3e23 + e3e4,

where e3e4 is to be backstepped in the next step.
Step 4: The time derivative of e4 can be calculated by

ė4 =
b1

m1m2
ξ̇2 − α̇3

=
b1b2
m1m2

(
k2
m3

z3 +
b2
m3

z4 −
k2
m3

z5 −
b2 + b3

m3
z6

)
+

b1k2
m1m2

z6 − α̇3 +
b1b2

m1m2m3
u,

where u is the control to be designed.

The control can be designed by

u =
m1m2m3

b1b2

(
−e3 − c4e4 + α̇3 −

b1k2
m1m2

z6

−
b1b2
m1m2

(
k2
m3

z3 +
b2
m3

z4 −
k2
m3

z5 −
b2 + b3

m3
z6

))
, (25)

where c4 > 0 is the control parameter. Select Lyapunov candidate
L4 = L3 +

1
2 e

2
4; it follows that

L̇3 = −c1e21 − c2e22 − c3e23 − c4e24, (26)

which ends the backstepping design.

3.3. Time derivatives of virtual controls

As can be seen from Section 3.2, the proposed control is given
by (25), where virtual controls are given by (20) and (23). It should
be noted in (23) and (25) that, before applying the proposed
backstepping-based nonlinear control, derivatives of virtual con-
trols (namely α̇1 and α̇2) should be calculated.

The time derivative of virtual control α1 can be calculated by

α̇1 = − c1ė1 + z̈1r = −c1 (z2 − ż1r)+ z̈1r , (27)

where

ż1r =

d
(

yr
k(t)

)
dt

=
ẏrk − yr k̇

k2
, (28)

z̈1r =
(ÿrk − yr k̈)k2 − 2kk̇(ẏrk − yr k̇)

k4
, (29)

k̇ = −

3∑
i=1

Kiωi sin(
2iπ
L

Vt) − K7ω7 sin(
14π
L

Vt), (30)

k̈ = −

3∑
i=1

Kiω
2
i cos(

2iπ
L

Vt) − K7ω
2
7 cos(

14π
L

Vt), (31)

ωi =
2iπ
L

V , i = 1, 2, 3, 7. (32)

The time derivative of virtual control α2 can be calculated by

α̇2 = −ė1 − c2ė2 +
k1 + k
m1

ż1 +
k̇
m1

z1 +
b1
m1

ż2 + α̈1, (33)

where ė1 can be calculated by

ė1 = (z2 − ż1r) , (34)

and ż1r is calculated by (28); ė2 can be calculated by

ė2 = −
k1 + k
m1

z1 −
b1
m1

z2 +
k1
m1

z3 +
b1
m1

z4 − α̇1, (35)

where α̇1 is calculated by (27)–(31); ż1 and ż2 can be obtained by

ż1 = z2, (36)

ż2 = ė2 + α̇1, (37)

where ė2 is calculated by (35), and α̇1 is calculated by (27); α̈1 can
be calculated by

α̈1 = −c1ë1 + z(3)1r = −c1 (ż2 − z̈1r)+ z(3)1r , (38)

where ż2 and z̈1r can be obtained respectively by (31) and (37).
Denote z̈1r in (29) by

z̈1r =
θ − φ

ψ
,

where

θ = (ÿrk − yr k̈)k2,
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φ = 2kk̇(ẏrk − yr k̇),

ψ = k4.

It follows that

z(3)1r =
(θ̇ − φ̇)ψ − (θ − φ)ψ̇

ψ2 ,

where

θ̇ =
(
y(3)r k + ÿr k̇ − ẏr k̈ − yrk(3)

)
k2 + 2kk̇

(
ÿrk − yr k̈

)
, (39)

φ̇ = 2kk̇
(
ÿrk − yr k̈

)
+
(
ẏrk − yr k̇

) (
2k̇2 + 2kk̈

)
, (40)

ψ̇ = 4k3k̇. (41)

...
k =

3∑
i=1

Kiω
3
i sin(

2iπ
L

Vt) + K7ω
3
7 sin(

14π
L

Vt). (42)

The time derivative of α3 can be calculated by

α̇3 = −ė2 − c3ė3 −
k1
m1

ż4

−
b1
m1

(
k1
m2

ż1 +
b1
m2

ż2 −
k1 + k2

m2
ż3 −

b1 + b2
m2

ż4

)
+ α̈2,

(43)

where ė2 can be calculated by (35); ė3 can be calculated by

ė3 =
b1
m1

(
k1
m2

z1 +
b1
m2

z2 −
k1 + k2

m2
z3 −

b1 + b2
m2

z4

)
+

k1
m1

z4

− α̇2 +
b1
m1

1
m2
ξ2;

(44)

żi (i = 1, 2, 3, 4) can be calculated by using the state equations in
(5).

In (43), the second-order derivative of α2 in (43) can be calcu-
lated by

α̈2 = −ë1 − c2ë2 +
k1 + k
m1

z̈1 +
k̇
m1

ż1 +
k̈
m1

z1 +
b1
m1

z̈2 +
...
α1, (45)

where

ë1 = ż2 − z̈1r , ż2 = ė2 + α̇1, (46)

ë2 = −
k1 + k
m1

ż1 −
k̇
m1

z1 −
b1
m1

ż2 +
k1
m1

ż3 +
b1
m1

ż4 − α̈1, (47)

z̈1 = ż2, z̈2 = ë2 + α̈1, (48)
...
α1 = −c1(z̈2 −

...
z 1r ) + z(4)1r , (49)

z(4)1r =
θ̈ − φ̈

ψ
−

2(θ̇ − φ̇)ψ̇ + (θ − φ)ψ̈
ψ2 +

2(θ − φ)ψ̇2

ψ3 . (50)

Remark 8. It is implied from (27)–(50) that the derivatives of
virtual controls can be explicitly calculated from system states and
the reference contacting force.

3.4. Analysis on closed-loop system

The control algorithm can be summarized as following.

Algorithm 1.

(1) Calculate the virtual control α1 with (20) and (28).
(2) Calculate the virtual control α2 with (23) and (27)–(31).
(3) Calculate the virtual control α3 with (24) and (33), where

ė1, ė2, ż1 and ż2 are calculated with (34)–(37), and α̈1 is
calculated with (38)–(42).

(4) Calculate the control uwith (25),where some relevant terms
can be calculated by (43)–(50).

Stability of the closed-loop system with the proposed control
algorithm can be given by the following proposition.

Proposition 1. Consider the pantograph–catenary system given by
(1)–(4). Its reference contacting force is constant or time-varying
continuous periodic. If the control is designed by Algorithm 1, then
tracking error of the closed-loop system are globally asymptotically
stable, and (13) is satisfied globally.

Proof. Consider Lyapunov candidate L4. It satisfies

β1∥e∥2
≤ L4 ≤ β2∥e∥2,

where e ≜ [e1, e2, e3, e4]T , β1 = β2 =
1
2 , and ∥ · ∥ denotes the

Euclidean norm of vector or co-vector. The time derivative of L4
along the closed-loop system with the control algorithm given in
Algorithm 1 can be calculated by

L̇4 = −c1e21 − c2e22 − c3e23 − c4e24 ≤ −β3∥e∥2, (51)

where β3 = min[c1, c2, c3, c4]. Moreover,∂L4∂e
 ≤ β4∥e∥,

where β4 = 1. Consequently, according to Theorem 4.10 in [25], L4
is a Lyapunov function, and e1, e2, e3 and e4 are globally asymptot-
ically stable.

Based on (51), it can be obtained that

L4(t) ≤ e−
β3
β2

tL4(0),

and therefore,

∥e1∥ ≤∥e∥ ≤

√
1
β1

L4(t) ≤

√
1
β1

e−
β3
β2

tL4(0), (52)

indicating that (13) and (19) are satisfied.
Moreover, according to Proposition 4 in Appendix, z3 and z5

track periodic trajectories z3r and z5r asymptotically, and tracking
errors ez3 ≜ z3 − z3r and ez5 ≜ z5 − z5r satisfy (70) in Appendix,
where L2(0) = 0 and ∥L2(e)∥ ≤ κz

3∥e∥ with κz
3 > 0.

Select a Lyapunov candidate L0 = L4 +
1

2γ z
3
ez3

2
+

1
2γ z

5
ez5

2 for the
full-state closed-loop system, where γ z

3 > 0 and γ z
5 > 0. Its time

derivative can be calculated by

L̇0 ≤ − β3∥e∥2
−

k1
b1γ z

3
ez3

2
+
κz
3

γ z
3
ez3∥e∥ −

k2
b2γ z

5
ez5

2
+
κz
5

γ z
5
ez5∥e∥

= −

(
1
2
β3 −

κz
3
2b1

4k1γ z
3

)
∥e∥2

−

(√
k1

b1γ z
3
ez3 −

κz
3

2

√
b1k1γ z

3 ∥e∥

)2

−

(
1
2
β3 −

κz
5
2b2

4k2γ z
5

)
∥e∥2

−

(√
k2

b2γ z
5
ez5 −

κz
5

2

√
b2k2γ z

5 ∥e∥

)2

≤0,

where γ z
3 and γ z

5 can be selected appropriately such that(
1
2
β3 −

κz
3
2b1

4k1γ z
3

)
> 0,

(
1
2
β3 −

κz
5
2b2

4k2γ z
5

)
> 0;

and L̇0 = 0 if and only if e = 0, ez3 = 0 and ez5 = 0.
Consequently, tracking errors of the closed-loop system with

the proposed control are globally asymptotically stable. □

Remark 9. Formore details about the principle and design process
of backstepping, please see [25].
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Remark 10. It should be noted that the system (1) (or (5)) is
linear time-varying; consequently, the criteria of stability for time-
varying system (e.g., Theorem 4.10 in [25]) should be used for
closed-loop system analysis.

Remark 11. As can be seen from (52), performances of the closed-
loop system can be tuned by control gains.

4. Partial-state feedback control

In practical applications, although its value can be obtained by
using (3), the elasticity coefficient model (4) are usually unknown,
indicating that k̇, k̈,

...
k and k(4) cannot be directly calculated through

the steps in Section 3. Moreover, velocities of the springs z2, z4
and z6 are un-measurable; they cannot be used directly for state
feedback.

In this section, it is supposed that the actual contacting force
y, displacements z1, z3 and z5 are measurable; differentiators and
observers are designed to estimate the uncertain k̇, k̈,

...
k and k(4),

and un-measurable z2, z4 and z6.

4.1. High-order differentiators for estimating k̇, k̈ and k(3)

It follows from (6) that k(t) can be obtained by

k =
y
x1
, (53)

where y = Fc and x1 can be directly measured.
A simple high-order differentiator can be introduced to esti-

mate time-derivatives of the elasticity coefficient:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ζ̇1 = ζ2,

ζ̇2 = ζ3,

ζ̇3 = ζ4,

ζ̇4 = ζ5,

ζ̇5 = R5
(
−a1(ζ1 − k(t)) −

a2
R ζ2 −

a3
R2
ζ3 −

a4
R3
ζ4 −

a5
R4
ζ5

)
,

(54)

where ai (i = 1, 2, 3, 4, 5) and R are positive differentiator param-
eters to be tuned. For some recent detailed researches in differen-
tiators, please refer to [26,27].

The time-derivatives of k are estimated by

k̂ = ζ1, (55)
ˆ̇k = ζ2, (56)
ˆ̈k = ζ3, (57)

k̂(3) = ζ4, (58)

k̂(4) = ζ5. (59)

Proposition 2. With the differentiator (54), the time derivatives of
the elasticity coefficient can be estimated by (56)–(59) with bounded
estimation errors.

Proof. It is obvious that (54) is an asymptotically stable linear sys-
temwith a periodic input k(t). Consequently, it can be claimed that
ζ1 tracks k(t) with bounded tracking errors, which can be tuned
arbitrarily small by assigning appropriate ai (i = 1, 2, 3, 4, 5) and
R. It can be seen that ζi (i = 2, 3, 4, 5) are time derivatives of ζ1,
and they are uniformly differentiable; as a result, they are capable
of tracking time derivatives of kwith bounded errors. □

Remark 12. Let ζ̃i ≜ ζi − k(i−1) (i = 1, 2, 3, 4, 5), and ζ̃ ≜
[ζ̃1, ζ̃2, ζ̃3, ζ̃4, ζ̃5]

T . It is apparent that estimation errors of the

differentiator are input-to-state stable (ISS [25]) with respect to
k(i−1) (i = 2, 3, 4, 5). Moreover, there exists a positive function
L5(ζ̃i) satisfying

δd1∥ζ̃∥
2

≤ L5 ≤ δd2∥ζ̃∥
2,

L̇5 ≤ −δd3∥ζ̃∥
2
+ βd(k̇, k̈, k(3), k(4)),

where δdi > 0, (i = 1, 2, 3), and βd is a positive scalar satisfying
βd(0, 0, 0, 0) = 0.

Remark 13. It should be noted that ˆ̇k, ˆ̈k, k̂(3), and k̂(4) are estimated
values of k̇, k̈, k(3), and k(4); they are different from derivatives ˙̂k, ¨̂k,
k̂(3), and k(4).

Remark 14. In this section, the high-order differentiator is applied
to estimate derivatives of k. More detailed analysis on high-order
differentiators can be found in [26] and [27].

4.2. Observer for z2, z4 and z6

The observer for z2, z4 and z6 can be designed by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂z1 = ẑ2 + l1(z̃1, z̃3, z̃5),

˙̂z2 = −
k1+k(t)

m1
ẑ1 −

b1
m1

ẑ2 +
k1
m1

ẑ3 +
b1
m1

ẑ4 + l2(z̃1, z̃3, z̃5),

˙̂z3 = ẑ4 + l3(z̃1, z̃3, z̃5),

˙̂z4 =
k1
m2

ẑ1 +
b1
m2

ẑ2 −
k1+k2
m2

ẑ3 −
b1+b2
m2

ẑ4 +
k2
m2

ẑ5

+
b2
m2

ẑ6 + l4(z̃1, z̃3, z̃5)

˙̂z5 = ẑ6 + l5(z̃1, z̃3, z̃5),

˙̂z6 =
k2
m3

ẑ3 +
b2
m3

ẑ4 −
k2
m3

ẑ5 −
b2+b3
m3

ẑ6 + l6(z̃1, z̃3, z̃5) +
1
m3

u,

(60)

where z1, z3 and z5 are outputs; ẑi (i = 1, 2, 3, 4, 5, 6) are estima-
tions of zi (i = 1, 2, 3, 4, 5, 6); z̃i ≜ ẑi − zi (i = 1, 2, 3, 4, 5, 6) are
estimation errors; and
l1(z̃1, z̃3, z̃5) = −ϖ1z̃1,

l2(z̃1, z̃3, z̃5) =

(
k1 + k(t)

m1
−ϖ2

)
z̃1 −

k1
m1

z̃3,

l3(z̃1, z̃3, z̃5) = −ϖ3z̃3,

l4(z̃1, z̃3, z̃5) = −
k1
m2

z̃1 +

(
k1 + k2

m2
−ϖ4

)
z̃3 −

k2
m2

z̃5,

l5(z̃1, z̃3, z̃5) = −ϖ5z̃5,

l6(z̃1, z̃3, z̃5) = −
k2
m3

z̃3 +

(
k2
m3

−ϖ6

)
z̃5,

whereϖi > 0 (i = 1, 2, 3, 4, 5, 6).

Proposition 3. With the observer designed by (60), observation
errors z̃i (i = 1, 2, 3, 4, 5, 6) are globally exponentially stable.

Proof. Subtracting (60) by (5) yields⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

˙̃z1 = −ϖ1z̃1 + z̃2,
˙̃z2 = −ϖ2z̃1 −

b1
m1

z̃2 +
b1
m1

z̃4,
˙̃z3 = −ϖ3z̃3 + z̃4,
˙̃z4 =

b1
m2

z̃2 −ϖ4z̃3 −
b1+b2
m2

z̃4 +
b2
m2

z̃6,
˙̃z5 = −ϖ5z̃5 + z̃6,
˙̃z6 =

b2
m3

z̃4 −ϖ6z̃5 −
b1+b2
m3

z̃6.

(61)
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Select a Lyapunov candidate

Lo6 =
ϖ2m1

2
z̃21 +

m1

2
z̃22 +

ϖ4m2

2
z̃23 +

m2

2
z̃24 +

ϖ6m3

2
z̃25 +

m3

2
z̃26 .

Its time derivative can be calculated by

L̇o6 = −ϖ1ϖ2m1z̃21 − b1z̃22 + b1z̃2z̃4 −ϖ3ϖ4m2z̃23 − (b1 + b2)z̃24
+b1z̃2z̃4 + b2z̃4z̃6

−ϖ5ϖ6m3z̃25 + b2z̃4z̃6 − (b2 + b3)z̃26

= −ϖ1ϖ2m1z̃21 − b1
(
z̃2 − z̃4

)2
−ϖ3ϖ4m2z̃23

−b2(z̃4 − z̃6)2 − b3z̃26 −ϖ5ϖ6m3z̃25
≤ 0

where L̇o6 = 0 if and only if z̃ ≜ [z̃1, z̃2, z̃3, z̃4, z̃5, z̃6]T = 0.
Consequently, the observation errors are globally asymptoti-

cally stable. It is apparent that (61) is a time-invariant linear sys-
tem; therefore, the observation errors are globally exponentially
stable. □

With the proposed observer (60), the un-measurable z2, z4 and
z6 can be re-constructed by ẑ2, ẑ4 and ẑ6.

Remark 15. According to Lyapunov converse theorem [25], there
exists a Lyapunov function L6 for the exponentially stable linear
system (61), such that

δob1 ∥z̃∥2
≤ Lo6(z̃) ≤ δob2 ∥z̃∥2,

L̇o6(z̃) ≤ −δob3 ∥z̃∥2,

where δobi > 0, (i = 1, 2, 3).

Remark 16. More detailed information of tracking by using ob-
servers can be found in [28].

4.3. Stability of the closed-loop system with observers

With the observer (54) and (60), the un-measurable k̇, k̈,
...
k , k(4),

z2, z4 and z6 can be reconstructed, and the control algorithm can be
summarized as following.

Algorithm 2.

(1) Calculate the virtual control α1 with (20) and (28), where k̇
should be replaced by ˆ̇k in (56), and k is calculated by (53).

(2) Calculate the virtual control α2 with (23) and (27)–(29),
where k̇ and k̈ should be replaced by ˆ̇k in (56) and ˆ̈k in (57),
respectively; and k is calculated by (53). z2 is reconstructed
by ẑ2 in (60).

(3) Calculate the control α3 with (25) and (33), where ė1, ė2,
ż1 and ż2 are calculated with (34)–(37); α̈1 is calculated by
(38)–(41); k is calculated by (53); k̇, k̈ and k(3) are replaced
by ˆ̇k in (56), ˆ̈k in (57) and k̂(3) in (58), respectively; and z2 and
z4 are reconstructed by ẑ2 and ẑ4 in (60).

(4) Calculate the controluwith (25),where derivatives of virtual
controls can be calculated by (43)–(50); k is calculated by
(53); k̇, k̈, k(3), k(4) are replaced by ˆ̇k, ˆ̈k, k̂(3), k̂(4) in (56)–(59),
respectively; and z2, z4 and z6 are reconstructed by ẑ2, ẑ4 and
ẑ6 in (60).

Stability of the closed-loop system with uncertain parameters
and unmeasurable states can be given by the following theorem.

Theorem 1. Consider the pantograph–catenary system given by
(1)–(4), where the elasticity coefficient model is unknown, and dis-
placement variations ẋ1, ẋ2, and ẋ3 are unmeasurable. Suppose that
the reference contacting force is constant or continuously periodic.
The control is designed by Algorithm 2, with time derivatives of k(t)
estimated by the differentiator (54), and with the unmeasurable z2,
z4, and z6 reconstructed by the observer (60). Then, tracking errors of
the closed-loop system are ultimately bounded with tunable ultimate
bounds, and (13) is satisfied.

Proof. Consider that k̇, k̈, k(3), k(4), z2, z4, and z6 are reconstructed
by (54) and (60), respectively. It follows that the tracking error
dynamics can be given by⎧⎪⎪⎨⎪⎪⎩

ė1 = −c1e1 + e2 + o1(z̃, ζ̃ ),
ė2 = −e1 − c2e2 + e3 + o2(z̃, ζ̃ ),
ė3 = −e2 − c3e3 + e4 + o3(z̃, ζ̃ ),
ė4 = −e3 − c4e4 + o4(z̃, ζ̃ ),

(62)

where ζ̃ ≜ [ζ̃1, ζ̃2, ζ̃3, ζ̃4, ζ̃5]
T ; o1(z̃), o2(z̃), o3(z̃) and o4(z̃) are

errors resulted from differentiator errors and observation errors,
and they satisfy

o1(0, 0) = 0, o2(0, 0) = 0, o2(0, 0) = 0, o2(0, 0) = 0.

Since k̇, k̈, k(3), k(4) are continuously bounded, and ζ̃ and z̃ are
bounded, there exist positive κij (i = 1, 2, 3, 4, j = 1, 2) such that
the following expressions hold locally:

∥o1(z̃, ξ̃ )∥ ≤ κ11∥z̃∥ + κ12∥ζ̃∥,

∥o2(z̃, ξ̃ )∥ ≤ κ21∥z̃∥ + κ22∥ζ̃∥,

∥o3(z̃, ξ̃ )∥ ≤ κ31∥z̃∥ + κ32∥ζ̃∥,

∥o4(z̃, ξ̃ )∥ ≤ κ41∥z̃∥ + κ42∥ζ̃∥. (63)

It follows that the time derivative of L4 can be calculated by

L̇4 = −c1e21 − c2e22 − c3e23 − c4e24 + e1o1 + e2o2 + e3o3 + e4o4

≤ −

4∑
i=1

(
cie2i + κi1∥eiz̃∥ + κi2∥eiζ̃∥

)
.

Select the Lyapunov candidate L7 = L4 + γdL5 + γobL6 with
γd > 0 and γob > 0. Its time derivative can be calculated by

L̇7 ≤

4∑
i=1

(
−cie2i + κi1∥eiz̃∥ + κi2∥eiζ̃∥

)
−γobδ

ob
3 ∥z̃∥2

− γdδ
d
3∥ζ̃∥

2
+ γdβd

= −

4∑
i=1

(ci − 2ηi) e2i + γdβd −

4∑
i=1

(
γobδ

ob
3 −

κ2
i1

4ηi

)
z̃2i

−

4∑
i=1

(
√
ηiei −

κi1

2
√
ηi
z̃
)2

−

4∑
i=1

(
γdδ

d
3 −

κ2
i2

4ηi

)
ζ̃ 2i −

4∑
i=1

(
√
ηiei −

κi2

2
√
ηi
ζ̃

)2

≤ −

4∑
i=1

(ci − 2ηi) e2i + γdβd −

4∑
i=1

(
γobδ

ob
3 −

κ2
i1

4ηi

)
z̃2i

−

4∑
i=1

(
γdδ

d
3 −

κ2
i2

4ηi

)
ζ̃ 2i

where 0 < 2ηi < c1 (i = 1, 2, 3); γob > 0 and γd > 0 can be
selected large enough, such that γobδob3 −

κ2i1
4ηi
> 0 and γdδd3−

κ2i2
4ηi
> 0.
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Then, it can be claimed that L7 satisfies

δ1∥ē∥2
≤ L7 ≤ δ2∥ē∥2, (64)

L̇7 ≤ −δ3∥ē∥ + γdβd(k̇, k̈, k(3), k(4)), (65)

where ē ≜ [eT , z̃T , ζ̃ T ]T , and

δ1 = min
[
1
2
, γobδ

ob
1 , γdδ

d
1

]
, δ2 = max

[
1
2
, γobδ

ob
2 , γdδ

d
2

]
,

δ3 = min
i=1,2,3,4

[
ci − 2ηi, γobδob3 −

κ2
i1

4ηi
, γdδ

d
3 −

κ2
i2

4ηi

]
.

Consequently, it can be concluded that ē is ISS with respect to
k(i) (i = 1, 2, 3, 4).

Since k(t) is periodic, it follows that k(i) (i = 1, 2, 3, 4) are
periodic and bounded, and it holds that

βd(k̇, k̈, k(3), k(4)) ≤ β̄d, (66)

where β̄d > 0 denotes the bound of βd. It can be solved from (64)
and (65) that

L7(t) ≤ e−
δ3
δ2

t
(
L7(0) −

δ2γdβ̄d

δ3

)
+
δ2γdβ̄d

δ3
,

and therefore,

∥e1∥ ≤

√
1
δ1

e−
δ3
δ2

t
(
L7(0) −

δ2γdβ̄d

δ3

)
+
δ2γdβ̄d

δ1δ3
, (67)

which can be tuned by assigning appropriate δi (i = 1, 2, 3).
Moreover, according to Proposition 5 in Appendix, z3 (and z5)

tracks a periodic trajectory z3r (and z5r ) asymptotically, and its
tracking error ez3 ≜ z3−z3r (ez5 ≜ z5−z5r ) satisfies (71) in Appendix,
where L3(0) = 0 and ∥L3(ē)∥ ≤ βz

3∥ē∥ with βz
3 > 0.

Select a Lyapunov candidate Lob0 = L7 +
1

2γ z
3
ez3

2
+

1
2γ z

5
ez5

2 for the
full-state closed-loop system with observers, where γ z

3 > 0 and
γ z
5 > 0. Its time derivative can be calculated by

L̇ob0 ≤ −δ3∥ē∥2
−

k1
b1γ z

3
ez3

2
+
βz
3

γ z
3
ez3∥ē∥

−
k2

b2γ z
5
ez5

2
+
βz
5

γ z
5
ez5∥ē∥ + γdβ̄d

= −

(
δ3 −

βz
3
2b1

4k1γ z
3

−
βz
5
2b2

4k2γ z
5

)
∥ē∥2

+ γdβ̄d

−

(√
k1

b1γ z
3
ez3 −

βz
3

2

√
b1k1γ z

3 ∥ē∥

)2

−

(√
k2

b2γ z
5
ez5 −

βz
5

2

√
b2k2γ z

5 ∥ē∥

)2

where γ z
3 and γ z

5 can be selected large enough such that(
δ3 −

βz3
2b1

4k1γ z
3

−
βz5

2b2
4k2γ z

5

)
> 0. As a consequence, tracking errors of

the closed-loop system with the proposed control and observers
are ultimately bounded with tunable ultimate bounds. □

5. Simulations and discussion

In the simulations, values of parameters of the pantograph–
catenary system are taken from [6,9,11], as listed in Table 1. The
train speed is set to V = 90m/s to test performances of the closed-
loop system with high speed. The reference contact force is set by
100N. Initial values of system states are given by

[x1(0), ẋ1(0), x2(0), ẋ2(0), x3(0), ẋ3(0)]T

Table 1
Values of parameters.
Notations Values Notations Values

k1 7015.9 Nm−1 L 65 m
m1 8 kg m2 12 kg
b1 120 Nsm−1 b2 30 Nsm−1

V 90 ms−1 K0 7000 Nm−1

K1 3360 Nm−1 K2 650 Nm−1

K3 160 Nm−1 K7 160 Nm−1

k2 1550.1 Nm−1

Table 2
Values of control gains and observer gains.
Notations Values Notations Values

c1 12 a1 128
c2 36 a2 128
c3 108 a3 64
c4 324 a4 32
R 200 a5 4
ϖ1 20 ϖ2 4
ϖ3 20 ϖ4 4
ϖ5 20 ϖ6 4

Fig. 3. Contact force with full-state feedback control: the tracking error is globally
exponentially stable.

= [0.005, 0, 0.01, 0, 0.01, 0]T .

Suppose that elasticity coefficient model is fully known in pri-
ori, and z2, z4 and z6 are measurable. In this case, Algorithm 1
is applied, with control gains listed in Table 2. The tracking per-
formance of the closed-loop system with respect to a constant
contacting force is illustrated by Fig. 3. As can be seen, the tracking
error is globally asymptotically stable, and the transient process is
satisfactory.

In more practical applications, the accurate model of elasticity
coefficient k(t) is unknown, and z2, z4 and z6 are unmeasurable,
implying that the elasticity coefficient model (4), as well as the un-
measurable z2, z4, and z6, cannot be used directly in control design.
In this case, Algorithm2 is appliedwith control gains, differentiator
parameters and observer gains listed in Table 2. Initial values of ob-
server states are all set to zeros. It can be seen from Fig. 4 that, with
the proposed partial-state feedback control algorithm, the closed-
loop system is capable of tracking the reference contacting force
with ultimately bounded tracking errors. The displayed bounded
tracking is in significant accordance with the theoretical results. It
can be seen from Figs. 5–7 that reconstructed signals ẑ2, ẑ4, ẑ6 are
capable of tracking their actual values exponentially. The control
signal is displayed in Fig. 8, where it can be seen that the controller
is fairly implementable.
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Fig. 4. Contact force with the proposed partial-state feedback control: the tracking
error is ultimately bounded.

Fig. 5. Observed z2: the observation error is globally exponentially stable.

Fig. 6. Observed z4: the observation error is globally exponentially stable.

The ultimate bound in (67) cannot be calculated explicitly,
since it is related to the differentiator error βd in (65). The train
is supposed to be operated in very high speed (90 m/s in this
simulation), such that the frequency of periodic catenary stiffness
k(t) is very high, and the tracking error of the differentiator would
be considerably large. The existence of βd is obvious; however,
its value is difficult to be determined explicitly. Even though we
cannot calculate the particular value of ultimate bound explicitly,

Fig. 7. Observed z6: the observation error is globally exponentially stable.

Fig. 8. Control signal of the closed-loop system with the proposed partial-state
feedback.

Fig. 9. Comparison of closed-loop performances with different control gains.

it can be tuned by control parameters. According to (67), δ1, δ2 and
δ3 are related directly to control gains c1, c2, c3 and c4. To illustrate,
a comparison of closed-loop performance with different control
gains is given in Fig. 9, where it can be seen that large control gains
would lead to smaller ultimate bounds.

Remark 17. In simulation, the closed-loop system is not ideally
continuous. Both themodel and the controller are discretized with
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small sampling intervals. Consequently, the control gains cannot
be increased to extremely large values to reduce the chattering. If
the control gains are extremely large and the trains speed is high,
there would be stability problems due to the discretization.

6. Conclusion

In this paper, a nonlinear partial-state feedback control is pro-
posed for a 3-DOF pantograph–catenary system, such that the
contact force between pantograph and catenary can track a con-
tinuous reference force. The proposed control is designed based on
backstepping approach, where time derivatives of virtual controls
are calculated explicitly. A high-order differentiator is designed for
estimating derivatives of time-varying elasticity coefficient, and an
observer is designed to reconstruct the unmeasurable spring veloc-
ities. Ultimate boundedness of tracking errors of the closed-loop
system with proposed control and observer is proved rigorously.
Theoretical results are demonstrated by numerical simulation.

It should be noted that the approach proposed in this paper
is open for further extensions (for example, adaptive control in
case of parametric uncertainties. For more details, please see the
canonical design process in [24]).
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Appendix. Tracking performance of z3 in Proposition 1 and
Theorem 1

Proposition 4. Suppose that the reference contacting force is con-
stant or continuously periodic. Then, in the closed-loop system with
Algorithm 1, z3 (and z5) tracks a periodic trajectory asymptotically.

Proof. It follows from definition of e3 that

ξ1 = e3 + α2

= e3 − e1 − c2e2 +
k1 + k
m1

(e1 + z1r ) +
b1
m1

(e2 + α1) + α̇1

= L1(e) +
k1
m1

z1r +
1
m1

yr +
b1
m1
α1 + α̇1

= L1(e) + P1 +
b1
m1

(−c1e1 + ż1r ) − c1ė1 + z̈1r

= L2(e) + P2,

(68)

where L1(e) and L2(e) are linear combinations of e1, e2 and e3, and
it holds that ∥L2(e)∥ ≤ κz

3∥e∥with some certain κz
3 > 0; P1 and P2

are continuously periodic terms.
Let z3r be the solution of the following system:

ż3r = −
k1
b1

z3r +
1
b1

P2, (69)

which is a stable linear time-invariant systemplus a periodic input.
It is apparent that z3r is ultimately periodic.

Let ez3 ≜ z3 − z3r . It follows from (17), (68) and (69) that

ėz3 = −
k1
b1

ez3 +
1
b1

L2(e), (70)

where e decreases exponentially according to (52). Consequently,
it can be claimed that ez3 → 0, indicating that z3 tracks a periodic
trajectory asymptotically.

With similar steps, it can be proved that z5 tracks a periodic
trajectory asymptotically. □

Proposition 5. Suppose that the reference contacting force is con-
stant or continuously periodic. Then, in the closed-loop system with
Algorithm 2, z3 (and z5) tracks a periodic trajectory asymptotically.

Proof. The proof is similar to that of Proposition 4. It can be proved
that ζ1 can be expressed as the sumofL3(ē) andP3, whereL3(ē) is a
linear combination of e and z̃, and P3 is composed by continuously
periodic terms. It holds that ∥L3(ē)∥ ≤ βz

3∥ē∥ with a certain βz
3 >

0. It follows that

ėz3 = −
k1
b1

ez3 + L3(ē), (71)

and ez3 → 0 (since ē vanishes), indicating that z3 tracks a periodic
trajectory asymptotically.

With similar steps, it can be proved that z5 tracks a periodic
trajectory asymptotically. □
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H I G H L I G H T S

• A hierarchical model predictive controller is developed.

• Little to no modification is required on the architecture of the existing system.

• A stable power exchange between the renewable system and the grid is achieved.

• Fast variations are completely removed from the battery power.

• Increased utilization of intermittent renewable energy is achieved.
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A B S T R A C T

This paper presents a two-layer control strategy designed for easy integration of supercapacitors in a grid-
integrated solar photovoltaic-battery hybrid renewable system, initially controlled by a typical model predictive
control method. To operate the upgraded energy system, either without or with little modifications of the pre-
existing architecture, an additional control layer is applied at the bottom of the original control system.
Considering the complementary characteristics of batteries and supercapacitors, the design of the new model
predictive control layer and its coordination with the original one help to deliver a stable power flow between
the hybrid renewable system and the utility grid, and remove fast variations from the battery power. Actual
measurements of solar radiation in South Africa are used to test the effectiveness of the proposed strategy.
Simulations carried out on a 1-MW photovoltaic plant confirm the benefits in terms of adherence to power
quality regulations, improved conditioning of the power generated by the intermittent renewable sources, and
lifetime extension of the battery.

1. Introduction

For more than a decade, grid-integration of intermittent renewables
such as wind turbines and solar photovoltaics (PVs) has proven to be an
effective means to achieve progressive decarbonization of power sys-
tems [1–3]. However, the increasing penetration of weather-dependent
generation poses risks to the reliability, stability, and economy of power
supply [4,5]. Among the proven solutions to this concern is the inclu-
sion of energy storage systems (ESSs) such as a battery, flywheel, su-
percapacitor, superconducting magnetic energy storage, fuel-cell and
pumped hydro [6–8].

Until recently, batteries were one of the most popular ESS due to
their high energy density, flexibility and scalability [8,9]. Accordingly,
a multitude of control strategies for grid-integrated hybrid renewable
systems (HRS) with a battery ESS were proposed in the literature.

Besides the routine energy and power constraints applied to batteries, a
few models were also presented to reduce wear of battery caused by the
current flow. This includes minimizing a battery aging factor [10],
penalizing the charge and discharge operations [11], keeping the state
of health of batteries above a threshold [12], and implementing state of
charge (SoC)-oriented control of the battery current [13]. The battery
wear process can be hastened through fast/large variations of current
flow that generate excessive heat and increase the internal resistance of
the battery, causing further heating by the Joule’s effect [14–16].
Presently, owners of grid-integrated renewable energy systems are
being increasingly required by regulatory authorities to maintain a
stable power profile at the point of common coupling (PCC) to the
power grid [17,18]. Therefore, despite the existence of wear control
schemes, must handle the fluctuations introduced by intermittent re-
newable sources such as PV panels.
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A cost-effective method to address the need for an EES that features
fast response and long-term energy support is to combine two or more
energy storage technologies into a hybrid ESS. Among the various
possible options, the battery-supercapacitor (SC) association is pre-
sently preferred for power supply due to feasibility and maturity rea-
sons [19–22]. Batteries have a high energy density, but low power
density and slow response speed. These characteristics are well ba-
lanced by the high power density, rapid response speed and low energy
density of SCs. The power peak enhancement, internal losses reduction
and lifetime extension achieved by a passive battery-SC hybrid ESS
(energy storage devices directly mounted in parallel) were previously
established under pulsed load [23] and pulsed charging sources [24].
However, in these works, the current sharing between the two energy
storage devices is only determined by their internal voltages and in-
ternal resistances. The power flows of the battery and the SC cannot be
controlled separately since their terminal voltages are forced to be
equal at all times.

Various control strategies for power sharing between the energy
storage components of a battery-SC ESS have been proposed in the
literature. DC-bus voltage-based control schemes that use the battery to
regulate the power balance in the DC grid and the SC to handle fast DC-
bus voltage dynamics were presented in [25]. A model predictive
controller (MPC) for battery-SC ESS that aims at supplying/absorbing
the power allocated to the hybrid ESS, while directing the fast and slow
current components to the SC and battery, respective, was proposed in
[26]. Energy losses in the SC result in increased stress levels for the
battery during power supply. An MPC scheme that minimizes the
magnitude/fluctuation of the battery current and the energy loss seen
in the SC was provided in [14]. A heuristic algorithm using a modified
active parallel hybrid ESS, with SC-only connected through the DC/DC
converter, was presented in [27]. In this strategy, the paths and di-
rections of power flow within the battery-SC ESS are determined by a
number of factors, including the power balance requirement, the
terminal voltages of energy storage devices and the battery SoC. A
variable two-stage rate-limit scheme for batteries was presented in
[28]. Two different rate-limits are designed to optimize the charge/
discharge rates and the amount of energy stored/released by the bat-
tery, taking the load requirement and the settling time into account.
The SC is used to complement the battery during the transient period.
Because only a few components of the energy system were involved in
the design, these controllers achieve local energy management.

Control strategies that aim to coordinate the power flow across the
entire renewable energy system have been proposed in the literature. A
rule-based power management scheme for the dispatch of a PV power
plant in compliance with the Australian grid regulation was proposed in
[18]. An improved model, more robust against forecasting errors, was
presented in [29]. A model predictive heuristic control that regulates
the charge/discharge power of the battery was presented in [30]. In this
study, wavelet theory is used to achieve a multi-layer decomposition of
the power output of a wind generator. A control scheme with dynamic
rate limiter designed for grid-connected wave energy park was provided
in [31]. The dynamic rate limiter allows direct control over the mag-
nitude of power variations of the battery. Ref. [32] proposed an energy
management framework for a grid-integrated concentration photo-
voltaic plant. A second-order filter is developed for power allocation
between the hybrid ESS components. A hierarchical dynamic optimal
model for real-time tracking of the grid power reference was proposed
in [33]. These strategies mainly focus on the control of utility-scale
renewable plants, with little attention paid to the case of smaller sys-
tems, where the presence of local demand plays a significant role in the
definition of operational objectives.

Among the previous research on this topic, a hierarchical energy
management framework for multiple distributed PV-SC-load HRS with
a centralized battery ESS was developed in [34]. First-order filters allow
to allocate the high-frequency power components of the net power to
the SC on site, while the low-frequency power components are direct to

the centralized battery ESS. This ESS component also helps to maintain
the power balance at the PCC. [35] proposed a heuristic designed to
regulate the DC-bus voltage and smooth the power profile at the PCC.
The power allocation between the ESS components is mainly de-
termined by their SoC. A heuristic algorithm that regulates the DC-bus
voltage, and the grid voltage and frequency, taking the grid availability
and the electricity price into consideration, was presented in [36]. A
heuristic algorithm that realizes the automatic selection of the opera-
tion mode of the battery among the pre-set modes was presented in
[37]. While the SC is directly connected on the DC bus, the suitable
operation mode, which depends on the direction and amplitude of the
battery current, is chosen on the basis of the PV power output, load
demand and the battery SoC. A dynamic power sharing of excess and
deficit powers between the grid and the EES components of a PV-based
HRS be means of a heuristic algorithm was proposed in [38]. The power
allocation considers the sign and magnitude of the net power, the SoC
of the battery and the SC.

The main drawback of the various methods presented so far is that,
in the case of pre-existing HRS equipped with batteries, a complete
restructuring of the control system is required in order to implement the
new controller for battery-SC ESS. This may raise concerns from plant
owners with respect to technical (shut-down, decommissioning pro-
cess), financial (decommissioning and disposal costs) and environ-
mental (disposal of material) implications. In the literature, available to
the authors, only a filtration-based control strategy for hybrid ESS
retrofit in autonomous PV/battery domestic HRS was proposed in [39].
In this control model, the high-frequency components filtered from the
measured battery current are used as the set-point for the SC, which
absorbs from/feeds into the common bus through a DC-DC converter.
Immediate benefits, particularly, decreased fluctuations in the battery
current and reduction in battery health cost, were reported in this
study. While the proposed solution can be also applied to grid-in-
tegrated PV-battery HRS, significant fluctuations remained in the bat-
tery current profile despite the presence of SC. The failure to account
for the predictions of the battery current during the control of the SC
can be cited among the reasons for this situation. Moreover, no control
was conducted over the current flow and the energy level of the SC.
Finally, by focusing on the battery alone, the SC provides no substantial
advantage at the system level.

This paper presents a hierarchical predictive control of a grid-in-
tegrated PV/battery HRS retrofitted with SC. Under the existing system
considered in this study, the control strategy presented in this paper has
the following advantages: (1) no re-programming is required on the
existing controller, since the SC is supervised by a new controller added
in the control system; (2) reduces sudden variations in the power flow
of the battery; (3) increased utilization rate of the renewable energy; (4)
Stable power flow at the PCC; and (5) better tracking of the grid power
reference.

2. Modelling of the grid-integrated hybrid power system

The HRS evaluated in this paper is illustrated in Fig. 1, where the
shaded area indicates the retrofitted equipment. It comprises solar PV
panels, a battery bank, a supercapacitor bank and loads. Electric power
can be absorbed from or fed into the utility grid at the PCC. Before the
retrofit, the power management unit 1 (PMU-1) ensures the control of
the solar PV and the battery via their respective DC-DC converters and
the utility grid via an AC-DC inverter. A circuit breaker (CB) allows
PMU-1 to connect and disconnect the power network. After the addition
of the new equipment, the command signal of the PV and the grid is
transferred to PMU-2, while the measurements are sent to both control
units. Only the battery remains under control of PMU-1. Both PMUs are
supplied with forecast data of the load demand and the PV generation.
In practice, a single PMU, with sufficient computing power and memory
resources, can play the role of PMU-1 and PMU-2. In that case, no
modification is required to the architecture of the original control

M.S. Masaki, et al. Applied Energy 242 (2019) 393–402

394



system.
In this study, we assume that the original HRS is controlled by an

MPC scheme, designed for the purpose of either the minimization or the
maximization of an objective. An example might be to increase the self-
sufficiency and to encourage the use of solar energy, which implies
minimizing the power consumption from the grid and maximizing the
power supply by the PV system. In this context, because of both the
relatively “large” control step (affecting the sampling rate of forecast
data), necessary to prevent rapid variations of the battery power, and
the limited degree of freedom offered by the HRS at this stage, little
attention can be paid to the actual power quality at the PCC and the

battery. The proposed retrofit with the SC aims to address this problem
and to further increase the use of solar energy. The mathematical
models of the HRS components are presented below.

2.1. Solar photovoltaic system

The solar PV system consists of solar arrays that harvest solar ra-
diation and convert it into DC power. The solar radiation that strikes
the surface of collectors of a solar panel has three components: direct-
beam radiation, diffuse radiation and reflected radiation.

The PV power output Ppv BC, due to beam radiation I k( )BC that strikes

Fig. 1. Layout of the grid-integrated HRS.

Fig. 2. Collector azimuth angle k( )S , tilt angle , solar azimuth angle k( )S and altitude angle k( ).
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the active surface of the PV panel at sample time k is given by [40]:

=P k I k A( ) ( ) ,pv BC pv BC c, (1)

where pv denotes the conversion efficiency of the solar panels, and Ac
denotes the total active area of the panels. Beam radiation is translated
from the direct-beam radiation I k( )B (normal to the rays) by

=I k I k k( ) ( )cos ( ),BC B (2)

with the incident angle k( ) given by

= +k k k k kcos ( ) cos ( )cos( ( ) ( ))sin sin ( )cos .S C (3)

In (3), k( ) denotes the altitude angle, k( )S denotes the solar azi-
muth angle, k( )C denotes the azimuth angle of the panels, and de-
notes the tilt angle of the PV panels as shown in Fig. 2.

In the absence of actual measurements of diffused radiation, an
estimation of the PV power output Ppv DC, due to this component is given
by [40]

= +P k CI k A( ) ( ) 1 cos
2

,pv DC pv B c, (4)

with the sky diffuse coefficient C is approximated by [40]

= +C n0.095 0.04sin 360
365

100 ,
(5)

where n denotes the number of the day in the year.
In the absence of actual measurements of reflected radiation, an

estimation of the PV power output P k( )pv RC, due to this component is
given by [40]

= +P k I k k C A( ) ( )(sin ( ) ) 1 cos
2

,pv RC pv B c, (6)

where denotes the ground reflectance.
The total power generation of the PV panel at sample time k, de-

noted by P k( )pv , can be obtained by the summation of the components
given in (1), (4) and (6):

= + +P k P k P k P k( ) ( ) ( ) ( ).pv pv BC pv DC pv RC, , , (7)

Depending on the operating conditions, the net power supply of the
solar panels to the power system, denoted by P1 in Fig. 1, can vary
between zero and the generated power

P k P k0 ( ) ( ),pv1 1 (8)

where 1 denotes the efficiency of the DC-DC converter of the PV
system. The excess portion of Ppv is dumped in a dissipative load (not
shown in the Fig. 1) whenever the set-point sent to the converter of the
PV system is such as >P k P k( ) ( )/pv 1 1.

2.2. Battery bank

The battery power P2 can be decomposed into charging power +P2
and discharging power P2 . The variation of the battery SoC induced by
charging and discharging operations can be approximated by

+ = + + ++SoC k SoC k P k T P k T1 ( ) 1 1 1 ,b b b c
b d

2 , 2
2 ,

2

(9)

where +SoC k( 1)b and SoC k( )b denote the battery SoC at, respectively,
sample times +k 1 and k, 2 denotes the conversion efficiency of the
DC-DC converter of the battery, b c, and b d, denote charging efficiency
and discharging efficiency, respectively, and T represents the sam-
pling step. Based on (9), the battery SoC at sample time k is expressed as
a function of the initial value SoC (0)b by

= +
=

+

=
SoC k SoC P T P T( ) (0) ( ) 1 ( ) ,b b b c

k

b d

k

2 ,
0

2
2 , 0

2
(10)

At any sample time k, the battery SoC is subject to

SoC SoC k SoC( ) ,b b b (11)

where SoCb and SoCb are respectively the lower and upper bounds.
The battery must be operated so that the charging and discharging

do not exceed their respective upper bound Pb ch, and Pb disch,

+P k P0 ( ) / ,b ch2 , 2 (12)

P k P0 ( ) .b disch2 2 , (13)

The following constraint prevents simultaneous charging and dis-
charging of batteries

=+P k P k( ) ( ) 0.2 2 (14)

The resulting battery power P2 is given by (15)

= +P k P k P k( ) ( ) ( ).2 2 2 (15)

2.3. Supercapacitors

The SC power P3 can be decomposed into charging power +P3 and
discharging power P3 . Similarly to the battery, the SC SoC at sample
time k is expressed of in terms of the initial value SoC (0)sc by

= +
=

+

=
SoC k SoC P T P T( ) (0) ( ) 1 ( ) ,sc sc sc c

k

sc d

k

3 ,
0

3
3 , 0

3

(16)

where +SoC k( 1)sc and SoC k( )sc are the SC SoC at, respectively, sample
times +k 1 and k, 3 denotes the conversion efficiency of the DC-DC
converter of the SC, and sc c, and sc d, are, respectively, charging effi-
ciency and discharging efficiency of the SC.

At any sample time k, the SC SoC is subject to

SoC SoC k SoC( ) ,sc sc sc (17)

where SoCsc and SoCsc denote, respectively, the lower and upper
bounds.

The charging and discharging powers of the SC cannot exceed their
respective upper bounds Psc ch, and Psc disch, , and neither take place si-
multaneously

+P k P0 ( ) / ,sc ch3 , 3 (18)

P k P0 ( ) ,sc disch3 3 , (19)

=+P k P k( ) ( ) 0.3 3 (20)

The resulting SC power P3 is given by (21)

= +P k P k P k( ) ( ) ( ).3 3 3 (21)

2.4. Utility grid

The power flow P4 between the HRS and the utility grid is composed
of the power absorbed from the grid P4 and the power fed into to it +P4 .
The thermal capacity of the power link between the HRS and the grid,
denoted by Ptie , should not be exceeded at all times:

+P k P( ) ,tie4 (22)

P k P( ) .tie4 (23)

Simultaneous power consumption from and supply to the utility
grid is also prevented by

=+P k P k( ) ( ) 0.4 4 (24)

The resulting power exchange between the utility grid and the HRS
is given by

= +P k P k P k( ) ( ) ( ).4 4 4 (25)
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3. Model predictive controllers

In order to present the proposed retrofit control approach, an MPC
strategy is assumed to be implemented on the existing grid-integrated
HRS, which consists of PV panels, batteries, AC and DC loads. This MPC
model is provided first. The design of the new control system is con-
ducted afterwards.

3.1. MPC of grid-integrated PV-battery HRS

In this paper, the existing HRS is managed by an MPC strategy
implemented on the control unit PMU-1 as shown Fig. 1. In this context,
the coordination of power flow across the HRS is performed for the
purpose of either the maximization or the minimization of a perfor-
mance index J that can be technical (e.g. energy autonomy), economic
(e.g. operation cost), environmental (e.g. carbon footprint), social (e.g.
comfort level), or a combination of these, and taking into consideration
the various operation constraints (e.g. power balance, power and en-
ergy bounds). In this study, we assume that the control strategy aims to
maximize both the self-sufficiency and the use of solar energy, which
implies the minimization of the energy supplied by the utility grid and
the minimization of the energy dumped in the dissipative load of the PV
systems. To limit the thermal stress of the battery power, the sampling
time T is in the range of minutes.

In view of this and the system modeling detailed earlier, the dis-
crete-time formulation of the MPC strategy for the existing HRS is as
follows:

= + + + +
=

J k P k i P k i P k imin ( ) [ ( ) ( ( ) ( ))],
i

N

pv
1

4 1 1
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(27d)

+ +P k i P k i0 ( ) ( ),pv1 1 (27e)

+P k i P0 ( ) ,b disch2 2 , (27f)

++P k i P0 ( ) / ,b ch2 , 2 (27g)

++P k i P0 ( ) ,tie4 (27h)

+P k i P0 ( ) ,tie4 (27i)

with =i N1, , p. Here, Np denotes the prediction horizon, 4 denotes
efficiency of the inverter situated at the PCC, and the power demand

+P k i( )L at time sample +k i is given by

+ = + + +P k i P k i P k i( ) ( ) ( )/L L dc L dc, , 4 (28)

Due to the nonlinearity of (27b) and (27c), the optimization pro-
blem (26) and (27) is categorized as a nonlinear programming (NLP) to
be solved at each sample time k.

3.2. Unified MPC of grid-integrated PV-battery-SC HRS

In this paper, the goals pursued by the addition of SC to the HRS are
threefold: (1) to reduce the impact of the short-term fluctuations of

solar energy and load demand upon the attainment of the operational
objective expressed by the performance index; (2) to deliver a stable
power profile at the PCC; (3) to prevent frequent variations of the
battery power. At the control level, one approach to operate the up-
graded HRS considering these goals and the SC characteristics is to
replace the previous MPC strategy presented earlier by a new MPC
strategy purposefully designed. In that case, a higher sampling rate of
forecast data and a shorter control step T are necessary to allow the SC
to play an effective role despite its limited energy capacity.

The proposed MPC strategy for grid-integrated PV-battery-SC HRS is
indicated from (29) to (30p). Besides the update of the power balance in
(30a) and the addition of constraints that control the power and energy
flows of the SC ((30d), (30i), (30m) and (30n)), a few new constraints
are also added to the previous MPC. Particularly, (30b) forces the grid
power to remain constant over Ng consecutive control intervals. On the
other hand, constraints (30f) and (30g) maintain the battery power
between the ramp-rates limits P2 and P2 .
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When compared with the MPC strategy implemented on the existing

HRS in Section 3.1, the above MPC ensures a longer service life for the
batteries and a better power profile at the PCC. However, because of the
long prediction horizon Np required for energy management reasons (in

M.S. Masaki, et al. Applied Energy 242 (2019) 393–402

397



the range of 24 h or more), the relatively short control step T required
for power quality reasons (in the range of tens of seconds), and the
nature and size of the new MPC strategy, the indicated benefits can be
achieved only at the expense of significant increase in computing power
and memory resources to allow the implementation of such a controller.
A less resource-intensive alternative to this control approach is pro-
vided in the next Section.

3.3. Hierarchical MPC of grid-integrated PV-battery-SC system

3.3.1. Architecture and design
Fig. 3 shows the general architecture of the proposed two-layer

control framework. Using the MPC of the existing PV-battery HRS as the
upper layer, a second MPC strategy implemented in the control unit
PMU-2 (see Fig. 1) operates at the bottom layer to achieve a finer
control. As mentioned earlier, a single PMU with sufficient resources
can be used to execute the two controllers, thus avoiding a partial
modification of the original control architecture.

The MPC at the upper layer is used the same way as before the
addition of the SC (see Section 3.1), with the only difference being that
the optimal control sequences obtained for the PV and the grid are
discarded. As shown in Fig. 3, the first element +P k( 1)2 in the optimal
sequence of the battery is used to control the device and is passed on to
PMU-2 for further optimization at the bottom layer. As indicated ear-
lier, the prediction horizon of the existing MPC is in the range of 24 h or
more to account for the cycles of solar energy and local demand.
Moreover, a sampling step in the range of minutes is applied to extend
the service life of the battery. Accordingly, the MPC executed at the
upper layer is provided in Section 3.3.2, and is derived from that of the
existing HRS in Section 3.1.

At the bottom layer stage, the next upper layer control step +k 1 is
divided into even subintervals in the lower control layer, as shown in
Fig. 3. At the time instant +k l( 1, ), which marks the end of the current
subinterval, the SC SoC, the power set-point +P k( 1)2 of the battery,
and short-term forecast data of solar energy and load demand are used
as input to the MPC at the bottom layer. The short-term forecast data
supplied to PMU-2 are in the range of minutes, with a sampling rate in
the order of seconds. While keeping P2 as provided by the upper layer
helps address the thermal stress of the battery, relevant constraints are
included in the bottom layer MPC to deliver a smooth power profile at
the PCC, as detailed in Section 3.3.3. Upon completion of the compu-
tation process, the first Ng elements of the control sequences of P P,1 3
and P4 computed at the bottom layer controller are sent to the power
conditioning units for implementation.

3.3.2. Upper layer MPC model
Since this control strategy is directly inherited from the existing

HRS, Eqs. (31)–(32i) is taken from Section 3.1. Let the t subscript de-
note the upper layer variables, the MPC implemented at the upper layer
ca be formulated as follows
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=
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with =i N1, , p t, .

3.3.3. Lower layer MPC model
Let the b subscript denote the lower layer variables, the MPC im-

plemented at the bottom layer can be formulated as follows
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Fig. 3. Control architecture of the hierarchical MPC strategy.
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with = + + + =
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l N N M N M T T N j
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, and

= + + +s r r r N1, 2, , 1g . As before, Ng denotes the number of
control steps over which the grid power should be kept constant. The
Algorithm 1 summarizes the operation of the hierarchical control
strategy.

Algorithm 1. Hierarchical Model Predictive Control

4. Case study

Considering the load profile shown in Fig. 4(a) and the grid con-
nection of the HRS [40], a 1-MW solar PV is considered to test and
compare the control strategies presented in this study. Historical mea-
surements of the direct and diffuse solar radiations are collected from
the solar radiometric station at the University of Pretoria (25° 45′S and
28° 13.72′ E) [41,42]. The solar radiation data are applied to the PV
arrays oriented South-North and tilted at 36°. The PV power output due

to reflected radiation is estimated using Eq. (6), and the contributions
due to direct-beam and diffused radiations are determined by Eqs. (1)
and (4), respectively. The conversion efficiency of solar panels is pro-
vided in Table 1.

The prediction horizon and the control horizon are set at 24 h and
30min, respectively, at the upper layer, and 30min and five minutes,
respectively, at the bottom layer. The sampling times are respectively
set at 30min and 10 s. The solar radiation during a sampling interval of
the upper layer is set equal to the average of actual measurements

Fig. 4. Demand profile and control inputs of original MPC strategy (upper layer).

Table 1
Parameters of the hybrid renewable system.

Parameter Value Unit

Solar PV
pv 0.124

0.20
Battery bank

b c, 0.85

b d, 1

Pb ch, & Pb disch, 250 kW

SoCb 0.9 p.u
SoCb 0.50 p.u
Supercapacitors

sc c, 0.80

sc d, 1
Psc ch, & Psc disch, 4 857 kW

SoCsc 1 p.u
SoCsc 0.25 p.u
Utility grid
Ptie 1 200 kW
DC-DC converters

1 0.90
,2 3 0.85

AC-DC inverter
4 0.95

1. For time k, minimize (31) subject to (32)
2. for =m 0 to M 1 do
3. Set = +l mN 1g
4. Minimize (33) subject to (34)
5. for =n 0 to N 1g do
6. Implement

+ + + + ++ + + +P k l n P k P k P k l n P k l n P k l n P k l n( , ), ( ), ( ), ( , ), ( , ), ( , ), ( , )b t t b b b b1, 2, 2, 3, 3, 4, 4,

7. End for
8. End for
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sampled at a one-minute interval. The presumed impact of the forecast
errors and the difference of sampling rates between the upper layer
(one minute) and the lower layer (ten seconds) is mimicked by adding a
white Gaussian noise to the actual solar radiation data, with a signal-to-
noise ratio (SNR) of 25 dB. Similarly, the load profile at the bottom
layer (sampled at 5-min intervals) is derived from that of the upper
layer (sampled at 30-min intervals) by the addition of a white Gaussian
noise, with a SNR of 35 dB. When compared to the solar radiation, a
higher SNR is applied to the load since, at a facility level, the fluctua-
tions of the load are usually less deep than those of the solar radiation,
which is directly affected by the movement of clouds.

The energy storage system consists of a 250-kW/1464-kWh bank of
lead-acid batteries [43] and a 13.1-MW/5.74-kWh bank of electrostatic
double-layer capacitors (supercapacitors) [44]. The rest of the simula-
tion parameters are provided in Table 1.

5. Simulation and discussion

A PC Core(TM) i5, 3.00 GHz, with 8 GB of RAM running Windows
10, was used to simulate the control strategies presented in this paper.
Classified as nonlinear programmings (NLPs), the optimization pro-
blems were solved in MATLAB using the “fmincon” function. Because of
the limited resources of the PC, the short sampling period (10 s) and the
long prediction horizon (24 h), the unified MPC of grid-integrated HRS
provided in Section 3.2 takes far too long to simulate and is therefore
impractical for real-time applications. Consequently, the discussion is
limited to comparing the MPC of PV-battery HRS and the hierarchical
MPC of PV-battery-SC HRS. Moreover, because the former is identical in
all respects to the upper layer of the latter, we discuss the performances
of the upper layer against those of the full hierarchical MPC.

5.1. MPC of grid integrated PV-battery power system (Upper layer)

Fig. 4(a) shows the forecasted load profile PL t, , the forecasted PV
generation Ppv t, and the resulting PV power supply P t1, and grid power
P t4, . The power and SoC of the battery are shown in Fig. 4(b). It is ob-
served that during night hours and before sunrise, the utility grid covers
most of the energy needs in the HRS, while the remaining part is locally
supplied by the battery until the minimum SoC is reached. During
daylight hours, the power generated by the solar PV is primarily used to
supply the load and charge the battery. Only excess power is fed into
the utility grid.

A superimposition of the PV generation based on forecast during the
upper layer and the bottom layer is shown in Fig. 5(a), and that of the
load demand is shown in Fig. 5(b). To maintain the power system ba-
lanced, the excess and deficit induced by the fluctuations of the PV
generation and the load demand should be handled either by the grid or
the battery. The resulting power profiles at the PCC and the battery are

presented in Fig. 6(a) and (b), respectively. In Fig. 6(a), P ac4, denotes the
actual power profile at the PCC when the fluctuations are handled by
the utility grid alone. Similarly, P ac2, denotes the actual battery power
when this device handles the fluctuations alone. It is worth reminding
that any excess power from the PV is dumped to the dissipative load
connected to the PV system. Fig. 6 shows that, unless appropriate ac-
tions are taken, the large peaks observed may pose a risk either to the
safety of the network system (frequency stability) or the safety and
lifetime of the battery (overheating).

5.2. Hierarchical MPC of grid integrated PV-battery-SC system

Fig. 7 presents the power profile at the PCC before and after the
implementation of the bottom layer. The new layer proves to be ef-
fective in both regulating the power exchanged with the power network
and conditioning the PV generation to maximize its supply to the HRS.
The increase observed in the amount of renewable energy fed into the
grid contributes to creating eco-friendly networks for little extra in-
vestment.

The comparison between the battery power and the SC power in
Fig. 8(a) shows that the fluctuations are fully handled by the SC so that
the battery power is perfectly stable. Fig. 8(b) shows that, like the
battery, the SC get discharged after sunset as a result of an attempt to
reduce the power consumption from the utility grid.

5.3. Comparison of power and energy performances

A quantitative comparison between the existing control strategy and
the proposed one can be carried out using the performance indicators
shown in Table 2. Here, the second and third columns correspond to the
existing MPC before and after considering the impact of the fluctua-
tions, respectively. The last column corresponds to the hierarchical
MPC control strategy. It is worth mentioning that the losses in the DC-
DC converter of the PV contribute, with the dumping load, to the dif-
ference between the PV energy generation and the PV energy supply.
Comparing the first two columns Table 2, it shows that failing to handle
the fluctuations of PV power and load demand prevents the HRS to
benefit from the increase in PV generation over the implementation
stage. With regard to the use of the energy generated by the PV system,
a smaller part of it is effectively supplied to the HRS, while an increased
quantity (+12.13%) is dumped in the dissipative load. Moreover, an
increase in energy consumption from the grid without a significant
counterpart is also noticed. Depending on which system component
provides support for power balance in this condition, the frequency
stability of the network system or the health of the battery may be
jeopardized.

Comparing the last two columns in Table 2, a net increase in the use
of solar energy is observed, with only 3.08% wasted in the dissipative

Fig. 5. Upper vs. bottom layer predictions of the PV generation and the load demand.
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load. Despite the operation of the SC leads to a direct increase in energy
absorbed from the utility grid (+53.49 kWh), a net diminution
(−245.12 kWh) is finally achieved thanks to the additional electricity
fed into it. Moreover, the hierarchical control ensures the stability of
the power profile at the PCC. The hybrid ESS also provides greater
power support to the HRS without further involvement of the battery.

5.4. Setting of the duration of the prediction horizon at the bottom layer

Table 3 presents the average and maximum computation times and
the selected energy indicators as functions of the length of the predic-
tion horizon at the bottom layer. In general, long prediction horizons
lead to better energy performances than short ones, i.e., increase in
energy supply by the solar PV, decrease in consumption from the utility
grid, and increase in energy fed into it can be observed. However, this is
achieved at the cost of extra computation time, which negatively affects

the implementability of the optimal control sequences. Accordingly, a
trade-off is necessary between the energy benefit and the extra com-
putation time incurred. In that regard, Table 3 shows that ten-minute
prediction horizon leads to energy performances fairly close to those of

Fig. 6. Optimized vs. actual power flows at the PCC and the battery.

Fig. 7. Power flow at the PCC: MPC PV-battery vs. Hierarchical MPC PV-batt-SC

Fig. 8. Comparison of power and SoC profiles of the ESS components.

Table 2
Comparison between existing MPC and hierarchical MPC.

Performance indicator MPC
(optimized)

MPC (actual) Hierarchical MPC

PV energy generation (kWh) 5796.93 6153.18 6153.18
PV energy supply (kWh) 5217.24 4866.26 5348.00
PV energy dissipated (%) 0.00 12.13 3.41
Total energy import (kWh) 5187.26 5540.97a 5594.46
Total energy export (kWh) 0.00 14.86a 313.47
5-min intervals with stable P4

(%)
100 66.67a 100

+max P P( )2 3 (kW) 176.00 329.08a 509.03

a Fluctuations handled by the utility grid.

Table 3
Duration of the lower layer prediction horizon vs energy performances.

Predic.
horiz.

Avg timea Max. timea PV supplyb Grid importb Grid
exportb

5min. 0.09 0.88 5301.84 5668.60 331.42
10min. 0.42 9.39 5349.00 5594.46 313.47
15min. 1.09 31.17 5380.64 5591.11 347.50
20min. 3.45 125.07 5388.33 5591.42 352.72
30min. 8.68 237.88 5387.80 5590.56 351.83

a In seconds.
b In kWh.
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longer duration, with an acceptable timing in average. However, five-
minute prediction horizon might be preferred, since the computation
time under the ten-minute prediction horizon can reach up to 9 s.

6. Conclusion

This paper has presented a hierarchical model predictive strategy
designed to facilitate the addition of supercapacitors to a pre-existing
grid-integrated hybrid renewable system equipped with batteries, in-
itially controlled by a typical model predictive controller. By means of a
second control layer, this control strategy uses the supercapacitor to
deliver a stable power profile at the point of common coupling.
Moreover, the variable components of the power requested from the
hybrid energy storage system are fully handled by the supercapacitor,
so that the battery power remains stable. Simulations carried out on a
practical case study have shown the validity and effectiveness of the
proposed control strategy. Opportunities in terms of adherence to
power quality regulations, improved conditioning of the power gener-
ated by the intermittent renewable sources, and lifetime extension of
the battery have been also established.
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Abstract: Compressed natural gas stations serve customers who have chosen compressed natural
gas powered vehicles as an alternative to diesel and petrol based ones, for cost or environmental
reasons. The interaction between the compressed natural gas station and electricity grid requires
an energy management strategy to minimise a significant component of the operating costs of the
station where demand response programs exist. Such a strategy when enhanced through integration
with a control strategy for optimising gas delivery can raise the appeal of the compressed natural
gas, which is associated with reduced criteria air pollutants. A hierarchical operation optimisation
approach adopted in this study seeks to achieve energy cost reduction for a compressed natural gas
station in a time-of-use electricity tariff environment as well as increase the vehicle fuelling efficiency.
This is achieved by optimally controlling the gas dispenser and priority panel valve function under
an optimised schedule of compressor operation. The results show that electricity cost savings of up
to 60.08% are achieved in the upper layer optimisation while meeting vehicle gas demand over the
control horizon. Further, a reduction in filling times by an average of 16.92 s is achieved through a
lower layer model predictive control of the pressure-ratio-dependent fuelling process.

Keywords: optimal scheduling; demand response; model predictive control; hierarchical control;
compressed natural gas

1. Introduction

1.1. Background

Global efforts to minimise environmental pollution have become a priority of many governments,
with the transport industry targeted to replace diesel and petrol fuels with less polluting alternatives
such as compressed natural gas (CNG) [1]. The use of CNG correlates with the lowest emissions of
particulate matter, non-methane organic gases (NMOG), nitrogen oxides (NOx), carbon monoxide (CO)
and other air toxics, among hydrocarbon fuels [2] as well as lower carbon dioxide emission for the
same quantity of energy delivered [3]. The availability of the infrastructure to deliver CNG to vehicular
customers is a major success factor in the growth of CNG as an alternative fuel for the transportation
sector [4] because of fuelling convenience considerations [5]. There has been steady growth in the
number of commercial fuelling stations in both developing [6] and developed [7] countries, which has
corresponded to the increase in number of CNG vehicles on roads. For commercial fuelling stations,
vehicles needing refuelling arrive randomly and are required to be filled quickly, hence the fast-fill
CNG fuelling configuration has been the prominent design of choice [8]. In fast-fill stations, gas from
the utility line is compressed into a pressurised cascade storage consisting of gas tanks in three pressure
levels, from which arriving vehicles are filled [9]. In this type of operation, the compressor is cycled
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between the upper and lower limits of the cascade storage capacity [10]. Given that the compressor is
the main electrical load in a CNG fast-fill station, the cycling of the compressor and its potential for
being scheduled present opportunities for the improvement of operation efficiency.

1.2. Improving the CNG Station Operation Efficiency

The improvement of operation efficiency encompasses both energy cost reduction and ensuring
performance levels in product delivery are sustained or improved, under the optimised energy cost
operation. Operation optimisation for energy cost efficiency through equipment scheduling is a
major area of consideration in demand response research [11]. Given the significant consequences
of compressor energy consumption on the operating costs of the CNG station [12], it is necessary to
study how proposed interventions for energy cost reduction, interact with other operation efficiency
improvements at the gas dispensing level. Vehicle fuelling time has been studied as one of the major
factors customers consider when deciding whether or not to transition to alternative fuels [13].

Kountz et al. [14] initiated the evaluation of the fast-fill CNG station with a study which involved
the development of a model for the flow of gas from one of the cascade storage tanks into the target
vehicle tank. Kountz [15] further developed an approach to the design of dispenser algorithm, to
ensure correct quantities of gas are dispensed into the target vehicle tank with compensation for
temperature effect [16]. Studies of the effects of other components of the CNG station on gas flow
such as the hoses [17] and dispensers [18], have aided in developing a basis for their standardisation.
Farzaneh et al. [19] developed a numerical method of analysing thermodynamic characteristics of gas
flow in the reservoir filling process. The ratio of target vehicle tank pressure to the pressure of the
storage tank and the evolution of this ratio as the vehicle tank gets filled are shown to have an effect
on the vehicle filling time and profile [20]. Further, studies to determine the optimal location of CNG
stations in a network that also includes petrol and diesel fuelling stations [21] have been carried out.
Kuby [5] took a deeper look at evaluating the location problem for stations serving alternative fuel
vehicles (AFVs) by reviewing the state of relevant research work, and thereby concluded that drivers
of AFVs exhibit deliberate behaviour in choosing where to refuel within sparse refuelling networks,
with convenience weighing more significantly than price.

Bang et al. [22] modelled the CNG residential refuelling system, and demonstrated the potential
effects of an increase in the number of such systems on the existing electricity grid. The study of these
effects is especially important, given the significant size of the compressor motor as an electric load in
comparison with regular loads of petrol and diesel fuelling stations [23]. Cycling of the compressor in
a fast-fill station to replenish the cascade storage may present an opportunity to minimise the energy
cost of the CNG station, if the CNG station is located in an area where demand response programs
have been implemented through time differentiated pricing [24]. Demand response programs are
implemented with an overall goal of achieving lower fluctuations in electricity demand which has
been shown to lead to more efficient operation of the grid [25] and to increase the reliability and
stability of the grid network [11]. Electricity consumption patterns are modified by raising the price
charge per unit of electricity at times when the system reliability is compromised by high demand [26].
This encourages consumers to shift their flexible loads to times when the rates charged are favourable,
achieving for them lower overall energy costs [27].

In [12,28], a strategy to minimise electricity cost for a CNG fast fill station was undertaken for
a station operating under a time-of-use (TOU) electricity tariff. The station was modelled as a mass
balance system where the storage was modelled as a single reservoir with an outflow from a known
demand profile and inflow from an optimally scheduled compressor. Further, in [29], an optimal
control to determine the operation of the priority panel valves under a known demand profile for each
of the three reservoirs of the cascade storage was carried out. These studies considered only the flow of
quantity of gas in mass from the compressor to satisfy mass of gas demand at the dispenser. Without
evaluating and optimising the pressure conditions during the flow of gas from the cascade storage to
the vehicle tanks, it is impossible to guarantee that the level of fuelling time performance is maintained
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after energy cost saving operation interventions. Disruption of fuelling time performance threatens
convenience and could sour consumer sentiment on use of CNG, even when costs are lowered [5].

In the present work, a novel study for the efficient operation of a CNG fast-fill station is presented.
The hierarchical model includes an upper layer, which is an optimisation of compressor scheduling
to minimise energy cost, and a lower layer to control the valves of the priority panel and the gas
dispenser so as to achieve desirable conditions of pressure for minimum vehicle filling time. On the
upper layer, the scheduling of the compressor operation to minimise electricity cost incurred under
a TOU tariff is realised while minimising compressor switching frequency and meeting the gas
demand in the control horizon. The compressor operation schedule obtained is implemented on
the lower layer as an input for the optimal control of vehicle fuelling to achieve minimum filling
time using a model predictive control strategy (MPC). MPC strategies are popular in modern control
applications with demonstrated benefits of their closed loop robustness and stability [30,31], and the
ability handle constraints in complex applications [32]. This study presents the first attempt to combine
the optimal minimisation of CNG station energy cost through compressor scheduling, with the optimal
control of the vehicle filling pressure conditions from the cascade storage to achieve minimum filling
times. This proposed approach will safeguard the gains from energy cost savings, by ensuring a
simultaneous improvement in gas transfer performance which is of great importance to fuelling
convenience. The current work and case study highlight how adoption of alternative fuels intersects
with electricity demand response programs, and how the operation optimisation for demand response
must be enhanced with performance optimisation to secure the resulting complementary benefits.

This article is laid out as follows: In Section 2, the models for the upper and lower layers are
presented. The case study considered for the proposed strategy is described in Section 3. Results and
discussions for the outcomes of the study are reported in Section 4. Section 5 concludes the study.

2. System Modelling and Formulation

2.1. The Energy Cost Minimisation Layer

Figure 1 shows the configuration of the CNG fast-fill station. Under normal operation, the
compressor receives natural gas from the utility’s distribution pipeline at low to medium pressure,
approximately 4–15 bar [20], and compresses it into a three level cascade storage system. The gas being
compressed passes through a priority panel valve system that alternates the flow of CNG between the
three levels of the cascade storage usually called the high pressure, medium pressure and low pressure
levels according to their minimum allowed operating pressures [18]. The series of valves vhp, vmp

and vlp in the priority panel represent the inlet valves to the high pressure, medium pressure and low
pressure tanks of the cascade storage respectively. When the upper pressure limit for all the cascade
storage level is achieved, the compressor switch u is turned off so that no more gas flows into the
cascade storage. Vehicles arriving at the dispenser have their tanks filled through the dispenser valves
vohp, vomp and volp for the high pressure, medium pressure and low pressure cascade storage tanks,
respectively. The gas flow is alternated so that a lower limit of flow rate determines the tank from which
the vehicle is filled, starting with the lowest pressure tank to the medium pressure tank as the vehicle
tank fills up and topping off with the high pressure tank [33]. As CNG leaves the cascade storage,
the pressure in storage drops and when the minimum pressure limits are reached, the compressor
switch u comes on to replenish the storage [34] and the cycle is repeated. The gas demand at the
dispenser, mo, determines the cycling of the compressor and thus the total cost of electricity incurred in
a TOU electricity tariff [24]. The energy cost minimisation layer is formulated as a mass flow problem,
as we proposed in our previous study [29]. This means that the scheduling of the compressor operation
is optimised around mass inflow to the cascade storage from the municipal supply line and mass
outflow as determined by mass of gas demand at the dispenser over the control horizon.
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Figure 1. Layout of the fast-fill CNG station.

2.1.1. Objective Function

The objective of this layer is to minimise the cost of electricity incurred by the compressor
operation over the control horizon so that the following objective function is used:

J =
N

∑
t=1

PcoPe(t)tsu(t), (1)

where t is the counter for the sampling instants, N is the total number of sampling instants over the
control horizon, Pco is the compressor power rating, Pe(t) is a vector of the price of electricity per kWh
in a TOU tariff, ts is the sampling period and u(t) is the status of the compressor switch which is the
control variable such that

u(t) ∈ {0, 1} for 1 ≤ t ≤ N. (2)

It is important to modify the objective function so that the switching frequency of the compressor
is minimised as well. This is because the frequency of on/off instances positively correlates to increased
wear and tear of moving components of the compressor [35,36]. For the optimised minimum cost
of electricity incurred over the control horizon, this study seeks to achieve the lowest number of
switching instances for the compressor. One of the methods considered is the one used in [12], where
the approach involves the reduction of the ramp rate between successive instances of the switch so
that the element of the objective function dealing with minimising compressor frequency is

Jq =
N−1

∑
t=1

(
u(t + 1)− u(t)

)2

. (3)
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Elsewhere, in [29], the approach is based on the introduction of an auxiliary variable s(t) [37,38]
that assumes a value of 1 when a switch-on occurs and tries to minimise the summation of the auxiliary
variable over the control horizon such that

Jpr =
N

∑
t=1

s(t), (4)

and
u(1)− s(1) ≤ 0, (5)

u(t)− u(t− i)− s(t) ≤ 0. (6)

Although both methods have been found to be effective, in the present study, we propose to
introduce a new method where the operation is optimised to prefer the occurrence of on-instances in
succession of each other by minimising the summation of the negative product of successive instances
of the solution to the control variable u, so that the objective function becomes

JU = $
N

∑
t=1

PcoPetsu(t) + (1− $)
N−1

∑
t=1
−
(

u(t)u(t + 1)
)

, (7)

where $ is a weighting factor. The weighting factor can be set to reduce the number of switching
instances so that the minimum number possible is attained for the same energy cost incurred such
as was the case in [29]. The method proposed in the current study for minimising the frequency of
compressor switching involves a single mathematical operation and no additional constraints which
reduces the computational complexity of the problem when compared with Equations (3) and (4).

2.1.2. Constraints

The constraints for this upper layer minimising energy cost are based on the total mass storage
capacity of the cascade storage as well as the terminal conditions so that

mmin ≤ m(t) ≤ mmax, (8)

where mmax is the maximum mass limit of gas for the cascade storage corresponding to the maximum
pressure limits, mmin is the minimum mass limit of gas for the cascade storage at the minimum pressure
limits and the mass of gas in the cascade storage m(t) is

m(t) = m(0) + ts

t−1

∑
i=0

ṁcou(i)−
t−1

∑
i=0

mo(i), (9)

where mo(i) is the gas flowing out of the cascade storage into a vehicle in a sampling instant and ṁco is
the mass flow rate of the compressor which is obtained as [39]

ṁco = ρstd ×Qstd = (
Mwg

Mwa
)× ρa,std ×Qstd, (10)

where ρstd is the density of CNG under standard conditions (0 ◦C temperature and 105 pascals
pressure) [40], Mwg is the molecular weight of the CNG, Mwa is the molecular weight of air, ρa,std
is the air density under standard conditions and Qstd is the capacity of the compressor under
standard conditions.

The mass limits of gas for the cascade storage capacity constraints mmin and mmax are derived
from working pressure limits of the cascade storage and the physical properties of the gas

PV = znRT, (11)
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where P is the value of the pressure rating, V is the total volume of the cascade storage, z is the
compressibility factor, R is the ideal gas constant and n the quantity of gas in moles which is correlated
with the mass as

n =
m
M

, (12)

where M is the molar mass. The working mass limits for the cascade storage therefore become

mmax =
MVPmax

zRT
mmin =

MVPmin
zRT

. (13)

2.1.3. Algorithm

To solve the problem using OPTI toolbox SCIP solver interfaced in Matlab, the upper layer energy
cost minimisation layer problem is formulated in the form

minimisex f (x), (14)

subject to Ax ≤ b, (15)

lb ≤ x ≤ ub, (16)

x ∈ {0, 1}. (17)

The objective function in Equation (1) is expressed as

f (x) =

(
$PcoPets ×

(
u(1) + u(2) + · · ·+ u(N)

))
−
(
(1− $)×

(
u(1)× u(2) + u(2)× u(3) + · · ·+ u(N − 1)× u(N)

))
. (18)

From the constraint in Equation (8) and the dynamic equation of mass in Equation (9), these linear
inequalities can be expressed as

Ax ≤ b1, (19)

−Ax ≤ b2, (20)

where

A =


−tsṁco 0 · · · 0
−tsṁco −tsṁco · · · 0

...
...

. . .
...

−tsṁco −tsṁco · · · −tsṁco


N×N

, (21)

b1 =


m(0)−mmin−mo(1)

m(0)−mmin−
(

mo(1)+mo(2)
)

...

m(0)−mmin−
(

mo(1)+mo(2)+· · ·+mo(N)
)


N×1

, (22)

b2 =


mmax−m(0)+mo(1)

mmax−m(0)+
(

mo(1)+mo(2)
)

...

mmax−m(0)+
(

mo(1)+mo(2)+· · ·+mo(N)
)


N×1

. (23)

The linear inequality constraints in the form of Ax ≤ b become

A =

[
A
−A

]
2N×N

, b =

[
b1

b2

]
2N×1

. (24)
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The control vector for the problem, x, can be written in the standard form

x = [u(1), u(2) · · · u(N)]TN×1. (25)

2.2. Gas Flow Optimisation Layer

A model predictive control (MPC) strategy is implemented on the lower layer with a prediction
horizon Np and the sampling time tss. The status of the compressor switch u is obtained from the
solution of optimisation of the upper layer. Whenever switch u is on, gas flows into the three tank
storage via valves vhp, vmp and vlp of the priority panel. The gas flows in from the compressor at a
constant mass flow rate ṁco. Each of the three tanks has maximum and minimum pressures, pmax

hp ,

pmax
mp , pmax

lp and pmin
hp , and pmin

mp and pmin
lp , respectively. Gas flows into the vehicle from the storage tanks

via the dispenser valves vohp, vomp and volp. The initial pressure for each vehicle tank pveh is a known
quantity from the demand data while the initial pressure for the high pressure tank php, medium
pressure tank pmp and low pressure tank plp are measured from the final conditions after the previous
control action.

2.2.1. Objective Function

The objective of this layer is to minimise the difference between the vehicle tank pressure
pveh(k + j) and the target pressure pT(k + j) which corresponds to the quantity of gas ordered by the
customer for the vehicle at step j based on the current sampling instant k. This ensures continuous flow
of gas from the cascade storage tanks to the vehicle tank. Additionally, we minimise the summation of
dispenser valve action instances, which ensures minimisation of filling time. This is because lowering
the total number of instances required for the dispenser valves to be on in order to fill the vehicle tank,
corresponds to a shorter filling time of the vehicle tank. Therefore, the controller prefers the cascade
filling profile with the least number of total dispenser valve open instances. The objective function
based on the current sampling instant k is therefore to minimise

JL(k) = (ς)
Np−1

∑
j=0

(
pT(k + j)− pveh(k + j)

)
+ (1− ς)

Np−1

∑
j=0

(
vohp(k + j) + vomp(k + j) + volp(k + j)

)
, (26)

where ς is a weighting factor and vohp(k + j), vomp(k + j) and volp(k + j) are the dispenser statuses for
the high pressure, medium pressure and low pressure cascade storage tanks, respectively. Gas flow
from the cascade storage tanks to the vehicle tank, ṁveh(k + j) ensures that the vehicle pressure
approaches the target pressure value and is the sum of flow rates from the three tanks, so that based
on the current sampling instant k

ṁveh(k + j) = ṁhp(k + j)vohp(k + j) + ṁmp(k + j)vomp(k + j) + ṁlp(k + j)volp(k + j). (27)

The equations for the instantaneous flow rates ṁhp(k + j), ṁmp(k + j) and ṁlp(k + j) between
the high, medium and low pressure tanks of the cascade storage, respectively, and the vehicle tank,
are based on the ideal gas model for an adiabatic system [41] and are governed by the pressure ratios
between the storage tanks and the vehicle tank. i.e.,

ṁhp(k + j) =Cdρhp(k + j)Aori f ice

(
pveh(k + j)
php(k + j)

) 1
γ

{
(

2γ

γ− 1
)(

php(k + j)
ρhp(k + j)

)

(
1− (

pveh(k + j)
php(k + j)

)
γ−1

γ

)} 1
2

for
pveh(k + j)
php(k + j)

≤
(

2
γ + 1

) γ
γ−1

,

(28)

and

ṁhp(k + j) = Cd

√
γphp(k + j)ρhp(k + j)Aori f ice

(
2

γ + 1

) γ+1
2(γ−1)

for
pveh(k + j)
php(k + j)

≥
(

2
γ + 1

) γ
γ−1

, (29)
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and similarly for the ṁmp(k + j)

ṁmp(k + j) =Cdρmp(k + j)Aori f ice

(
pveh(k + j)
pmp(k + j)

) 1
γ

{
(

2γ

γ− 1
)(

pmp(k + j)
ρmp(k + j)

)

(
1− (

pveh(k + j)
pmp(k + j)

)
γ−1

γ

)} 1
2

for
pveh(k + j)
pmp(k + j)

≤
(

2
γ + 1

) γ
γ−1

,

(30)

and

ṁmp(k + j) = Cd

√
γpmp(k + j)ρmp(k + j)Aori f ice

(
2

γ + 1

) γ+1
2(γ−1)

for
pveh(k + j)
pmp(k + j)

≥
(

2
γ + 1

) γ
γ−1

, (31)

and for ṁlp(k + j)

ṁlp(k + j) =Cdρlp(k + j)Aori f ice

(
pveh(k + j)
plp(k + j)

) 1
γ

{
(

2γ

γ− 1
)(

plp(k + j)
ρlp(k + j)

)

(
1− (

pveh(k + j)
plp(k + j)

)
γ−1

γ

)} 1
2

for
pveh(k + j)
plp(k + j)

≤
(

2
γ + 1

) γ
γ−1

,

(32)

and

ṁlp(k + j) = Cd

√
γplp(k + j)ρlp(k + j)Aori f ice

(
2

γ + 1

) γ+1
2(γ−1)

for
pveh(k + j)
plp(k + j)

≥
(

2
γ + 1

) γ
γ−1

, (33)

where γ is the ratio of specific heats

γ =
cp

cv
, (34)

and cp is the specific heat capacity of the gas at constant pressure while cv is specific heat capacity
of the gas at constant volume. Cd is the coefficient of discharge of the dispenser valve orifice, Aori f ice
is the area of the dispenser valve orifice and ρhp, ρmp and ρlp are the densities of the gas in the high
pressure ,medium pressure and low pressure reservoirs, respectively.

2.2.2. Constraints

The valves at the dispenser and the priority panel, as the control variables, are subject to
operational constraints. The valves of the priority panel open one at a time when the compressor
is filling the cascade storage reservoirs which gives the constraint in Equation (35). The valves of
the dispenser also open one at a time during the filling of the vehicle from the cascade storage as
represented by the constraint in Equation (36).

vhp(k + j) + vmp(k + j) + vlp(k + j)− u(k + j) = 0, (35)

vohp(k + j) + vomp(k + j) + volp(k + j) ≤ 1, (36)

vohp(k + j), vomp(k + j), volp(k + j), vhp(k + j), vmp(k + j), vlp(k + j), u(k + j) ∈ {0, 1}.
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Further, the vehicle tank pressure pveh and the pressure in the three cascade reservoirs php, pmp

and plp, as the states of the gas flow optimisation layer, are also subject to operational constraints.
The limits of pressure for the vehicle tank and each of the reservoirs of the cascade storage are such that

pmin
hp ≤ php(k + j) ≤ pmax

hp , (37)

pmin
mp ≤ pmp(k + j) ≤ pmax

mp , (38)

pmin
lp ≤ plp(k + j) ≤ pmax

lp , (39)

pveh(k + Np + 1− j) ≥ pT(k), (40)

Equations (37)–(39) ensure that the maximum and minimum working pressures of the cascade
storage tanks are not exceeded, while Equation (40) ensures that, at the end of the control horizon,
the vehicle tank is filled to the target pressure corresponding to the requested quantity of gas by
the customer.

Based on the described flow of gas for the proposed approach, the general differential equations
for pressure change in the vehicle and cascade storage reservoirs are

d
dt

pveh(t) = ṁveh(t)K1, (41)

d
dt

php(t) = −ṁhp(t)Khpvohp(t) + ṁcovhp(t), (42)

d
dt

pmp(t) = −ṁmp(t)Kmpvomp(t) + ṁcovmp(t), (43)

d
dt

plp(t) = −ṁlp(t)Klpvolp(t) + ṁcovlp(t), (44)

where the constants K1, Khp, Kmp and Klp are

K1 = T
(

cp

cv

R
Vveh

)
, Khp = T

(
cp

cv

R
Vhp

)
, Kmp = T

(
cp

cv

R
Vmp

)
and Klp = T

(
cp

cv

R
Vlp

)
, (45)

where Vveh, Vhp, Vmp and Vlp are the volumes of the vehicle tank, high pressure reservoir, medium
pressure reservoir and low pressure reservoir, respectively. This yields the following discrete equations
of pressure, for the current sampling instant k

pveh(k + j) = pveh(k) + tssK1

k+j

∑
τ=k

ṁveh(τ), (46)

php(k + j) = php(k)− tssKhp

k+j

∑
τ=k

ṁveh(τ)vohp(τ) + tssṁco

k+j

∑
τ=k

vhp(τ), (47)

pmp(k + j) = pmp(k)− tssKmp

k+j

∑
τ=k

ṁveh(τ)vomp(τ) + tssṁco

k+j

∑
τ=k

vmp(τ), (48)

plp(k + j) = plp(k)− tssKlp

k+j

∑
τ=k

ṁveh(τ)volp(τ) + tssṁco

k+j

∑
τ=k

vlp(τ). (49)
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2.2.3. Algorithm

To solve the gas flow optimisation layer problem using the Mixed Integer Distributed Ant Colony
Optimisation (MIDACO) solver, the components of the problem have to be formulated as

minimise f (x) (objective function) (50)

subject to g(x) = 0 (equality constraints) (51)

h(x) ≥ 0 (inequality constraints) (52)

The control vector consists of the conditions of the three priority panel valves and the three
dispenser valves, and for each sampling instant k, x can be written in the standard form

x = [vhp(k + 1), vhp(k + 2), · · · vhp(k + Np), vmp(k + 1), vmp(k + 2), · · · vmp(k + Np), vlp(k + 1),

vlp(k + 2), · · · vlp(k + Np), vohp(k + 1), vohp(k + 2), · · · vohp(k + Np), vomp(k + 1),

vomp(k + 2), · · · vomp(k + Np), volp(k + 1), volp(k + 2), · · · volp(k + Np), ]T6Np×1.

(53)

The objective function in Equation (26),

f = [ς×
(

PT − Pveh(k + 1) + PT − Pveh(k + 2) · · · PT − Pveh(k + Np)
)
+ (1− ς)×

(
vohp(k + 1)+

vomp(k + 1) + volp(k + 1) + vohp(k + 2) + vomp(k + 2) + volp(k + 2) · · ·

vohp(k + Np) + vomp(k + Np) + volp(k + Np)
)
].

(54)

The equality constraint in Equation (35) yields the g(x) = 0 set for the algorithm so that

g(x) =


vhp(k+1)+vmp(k+1)+vlp(k+1)−u(k+1)
vhp(k+2)+vmp(k+2)+vlp(k+2)−u(k+2)

...
vhp(k+Np)+vmp(k+Np)+vlp(k+Np)−u(k+Np)


Np×1

, (55)

while the inequality in Equation (36) yields the first set of h(x) ≥ 0 such that

h1(x) =


1−
(

vohp(k+1)+vomp(k+1)+volp(k+1)
)

1−
(

vohp(k+2)+vomp(k+2)+volp(k+2)
)

...

1−
(

vohp(k+Np)+vomp(k+Np)+volp(k+Np)
)


Np×1

. (56)
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The next set of inequality constraints is derived from Equations (37)–(39) such that

h2(x) =



pmax
hp −php(k+1)

...
pmax

hp −php(k+Np)

pmax
mp −pmp(k+1)

...
pmax

mp −pmp(k+Np)

pmax
lp −plp(k+1)

...
pmax

lp −plp(k+Np)

php(k+1)−pmin
hp

...
php(k+Np)−pmin

hp
pmp(k+1)−pmin

mp
...

pmp(k+Np)−pmin
mp

plp(k+1)−pmin
lp

...
plp(k+Np)−pmin

lp


6Np×1

. (57)

The final element of the inequality constraints is derived from Equation (40), yielding

h3(x) =
[

pveh(k+N+1− j)−pT(k)
]

1×1
. (58)

The combined set of inequality constraints therefore becomes

h(x) =

 h1(x)
h2(x)
h3(x)


(7Np+1)×1

. (59)

At the current sampling instant k, an open loop optimisation problem is solved by the controller
for the prediction horizon Np. Only the first elements of the control variables vhp, vmp, vlp, vohp, vomp

and volp are implemented on the CNG filling station plant. The vehicle pressure pveh and the pressure
in the cascade storage tanks php, pmp and plp, which are the system states, are measured and the values
fed back to the MPC controller, forming the initial states for the following sampling instant k + 1.
The input variables are then updated and the cycle repeated until all control actions for the intended
period are implemented.

The MPC controller workflow is such that:

1. For the current sampling instant k, the controller minimises the objective function in Equation (26)
and finds an optimum solution for the control variables vhp, vmp, vlp, vohp, vomp and volp, subject
to the constraints set out in Section 2.2.2.

2. From the solution, only the first elements of the solution vhp(k|k), vmp(k|k), vlp(k|k), vohp(k|k),
vomp(k|k) and volp(k|k) are implemented.

3. The states pveh(k + 1), php(k + 1), pmp(k + 1) and plp(k + 1) are measured to be fed back.
4. The value of k is set to k = k + 1 and system states, inputs and outputs are updated.
5. Steps 1–4 are repeated until k reaches a value predetermined to mark the end of the control period.
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3. Case Study

The case study involves a roadside vehicle fuelling station based in Johannesburg South Africa,
that is currently in operation, located in an industrial zone, as shown on the map in Figure 2.
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Industrial 

Industrial 
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100m 

Figure 2. Station location and land use map.

The average hourly demand profile for a 24-h period, which is the upper layer control horizon
N, is shown in Figure 3. The station serves vehicles mainly in the public transportation sector and
fleets of courier and security firms. Both individual and fleet customers arrive one by one on their
individual need basis, and there is currently no scheduled fleet refuelling at this station. Vehicles
serviced by the fuelling station are hybrid fuelled, with combined CNG and diesel/petrol powered
engines. The vehicles are run on CNG and resort to diesel and petrol power when the CNG in their
tanks runs out. The station itself obtains gas from a municipal line, which is compressed by a 132 kW
motor powered compressor, into three levels of the cascade storage, which are 2000 L each. The three
level tanks have a maximum operating pressure of 250 bar and are in the baseline operated at minimum
pressures of 75 bar, 150 bar and 210 bar for the low pressure, medium pressure and high pressure
reservoirs, respectively. The compressor pumps gas into the storage at a rate of 900 m3/h. Although the
station has two installed compressors and three dispensers, the station only operates one compressor
and fills vehicles from one dispenser, since the current number of customers visiting the station is
modest and no congestion or queuing problem has arisen. The station compressor operates between
the limits of the quantity of gas in storage with the compressor being switched on at the lower limit to
fill the cascade storage, and once the compressor is on, stays on to fill the cascade storage to the upper
limit. The compressed natural gas station purchases electricity from South Africa’s national utility firm
Eskom based on a time-of-use tariff known as the Miniflex tariff (http://eskom.co.za/tariffs) which is
priced in South African Rands as

pe(t) =


po f f peak = 0.5157R/kWh if t ∈ [0, 6] ∪ [22, 24]

pstandard = 0.9446R/kWh if t ∈ [9, 17] ∪ [19, 22]

ppeak = 3.1047R/kWh if t ∈ [6, 9] ∪ [17, 19]

(60)

The tariff is divided into peak, offpeak and standard times during the day, reflecting the times
during the day when electricity demand is high, low and intermediate, respectively.

http://eskom.co.za/tariffs
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Figure 3. Average hourly gas demand profile for the Johannesburg CNG fuelling station.

A sampling time of 15 min is used for the upper layer of this study with a control horizon of 24 h.
For the lower layer MPC problem, a sampling time of 20 s for a receding prediction horizon Np of
five minutes is used. During existing baseline operation, vehicle tank filling starts at the low pressure
reservoir and the transfer to medium and high pressure reservoir occurs when the flow rate between
the reservoir and the vehicle tank falls to a set point. This study seeks to allow the flexibility of the
transfer of vehicle filling between the reservoirs through optimised control of the dispenser valves
in the lower layer. The priority panel valves and the dispenser valves are modelled as binary valves
with orifice diameters of 5 mm each. There are two sizes of vehicle cylinders for the vehicles fuelled in
the 24 h control horizon at 80 and 100 L respectively. The initial vehicle tank pressure is assumed to
be 1 bar since the vehicles are hybrid CNG and petrol/diesel powered and typically refill CNG tanks
on empty.

The solution of the upper layer compressor schedule obtained from optimisation for the average
24-h demand is applied to the MPC receding horizon control of vehicle filling, for a day in which 143
vehicles fuel at the CNG station with gas demand as shown in Figure 4. Table 1 shows additional
parameters and constants

Table 1. Additional parameters and constants.

Parameter Value

ρa,std 1.225 kg/m3

Cd 0.61
γ 1.304
Mwa 0.028966 g
Mwg 0.0164 g
R 0.083145 LbarK−1mol−1

T 294.15 K
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Figure 4. Individual vehicle gas demand over 24 h.

Figure 5 demonstrates the functioning of the compressor under the baseline cycling operation.
The compressor cycles between the minimum and maximum limits of the storage to maintain the
level of gas within designed operation limits. Indeed, in Figure 5a, it is clear that the compressor
operates during the peak electricity pricing period in the morning, as well as during the standard
electricity pricing period during the rest of the day. This means that, under baseline operation, the
station does not take advantage of the low electricity prices of the offpeak electricity pricing periods.
The total cost of electricity incurred as a result of this baseline operation profile is R440.23. The main
component of this cost is the cost of electricity consumed as a result of the compressor-on status during
the significantly expensive peak electricity pricing period and an optimal avoidance of this occurrence
should lower the cost considerably.
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Figure 5. Baseline Operation profile.

4. Results

4.1. Energy Cost Minimisation Layer Results

The optimised results for the operation schedule of the compressor are shown in Figure 6.
The proposed approach is successful in preventing compressor-on instances during both peak electricity
demand periods for the average 24-h gas demand of the control horizon. Preceding the first peak
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demand period between 06:00 and 09:00, the compressor switches on to replenish the gas in storage so
as to sustain demand during the peak electricity pricing period during which the compressor stays
off. There are two instances when the compressor is turned on during the standard electricity pricing
period to meet the gas demand as well as to refill the cascade storage before the second peak electricity
demand period of the 24 h. Prior to the second peak, the cascade storage is refilled. The level of gas is
thereafter enough to sustain the demand until the end of the second standard electricity pricing time
at 22:00.
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Figure 6. Optimised compressor operation result for the average 24-h horizon.

The delay in switching on the compressor after the second peak demand period is a desirable
outcome of the optimisation strategy. This is in response to the pricing of the standard electricity
demand period that is higher than the pricing during the offpeak electricity demand period, which
causes the controller to prefer delaying compressor-on status beyond the peak electricity demand
period [42]. The delay is an important quality of the realised schedule as it reduces the contribution of
the CNG station to the grid comeback load associated with the surge in electricity demand immediately
following the end of the peak pricing period [43,44]. A total of four switching instances occur over
the control horizon, which is comparable with observed results for alternative strategies observed
in [12,29]. This implies the superiority of the current method as it matches the performance of
previously proposed techniques with the added benefit of fewer mathematical operations, thereby
achieving the goal of reducing computational complexity of the problem. The computing time achieved
for the upper layer using the proposed approach was 15.15 s, compared to 20.22 s for the method using
Equation (3) and 35.58 s for the method in Equation (4). The strategy reduces the cost of electricity
over the 24-h horizon from the baseline R440.23 to R175.74, which represents a 60.08% reduction in
energy cost. This is a significant reduction in cost of operation through a strategy that involves only a
change in the operation schedule, without additional investment in new hardware.

4.2. Gas Flow Optimisation Layer Results

The compressor scheduling results from the energy cost minimisation layer are passed onto
the lower layer, for the implementation of the MPC strategy in the vehicle tank filling for each of
143 vehicles fuelled over 24 h. These upper layer results determine the status of the compressor switch
for a particular sampling instant in the lower layer. In the lower layer problem, four scenarios emerge,
with each having a different priority panel and dispenser status combination. To ascertain the validity
of the proposed approach, the system operation must remain valid and consistent with the system
constraints under the four scenarios. These four scenarios are, vehicle tank filling with compressor off,
vehicle tank filling with compressor on, compressor on without a vehicle filling at the dispenser, and
compressor off without a vehicle filling at the dispenser.
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4.2.1. Vehicle Filling with the Compressor Off

The results of optimised MPC filling process when a vehicle is at the dispenser and the compressor
is off is shown in Figure 7. The results show the filling profile of the fourth vehicle of the 143 filled
over the 24-h control horizon of the upper layer. The priority panel remains inactive since no gas flows
into the cascade storage from the compressor given the off-status of the compressor switch, which is
scheduled from the optimisation of the upper layer. All levels of cascade storage are utilised in the
implemented control actions of the filling process to attain the pressure corresponding to the target
level of gas to be filled in the vehicle.

The dispenser valves from the three cascade storage tanks switch between each other to fill the
vehicle’s tank, as shown in Figure 7b, producing the optimal pressure profile of the filling shown in
Figure 7c. In Figure 7b, the MPC controller shuffles the operation of the dispenser valves between
the three levels of the cascade storage in the filling process which is dependent on the pressure ratio
between the vehicle tank and the reservoirs. This is different from the baseline operation where filling
is sequentially scheduled and switching occurs at the set point of the dropping flow rate. A comparison
of the pressure increase in the vehicle tank under the optimal control strategy and the baseline can be
seen in Figure 7c. A filling time of 200 s is achieved, which is shorter than the 220 s achieved under the
baseline operation.
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Figure 7. Vehicle filling without the compressor off (fourth vehicle of 143).

4.2.2. Vehicle Filling with the Compressor On

When the vehicle is filled as the compressor is filling the cascade storage, the profile of operation
is shown in Figure 8. The results show the profile of the filling process for 38th vehicle of the 143 filled



Energies 2019, 12, 2165 17 of 24

over the 24-h control horizon. A smooth filling profile is obtained with a filling time of 200 s, which is
shorter by 20 s from the baseline filling profile.

Similar to the filling of the vehicle while the compressor is off, the dispenser valves switches
between levels of cascade storage to produce the optimal filling profile of the vehicle tank so that the
targeted quantity of gas is transferred. The priority panel valves alternate the filling of the gas from
the compressor into the cascade storage between the three levels.

For both cases in Sections 4.2.1 and 4.2.2, the proposed control strategy produces an efficient
accelerated filling of the vehicle tank by switching optimally between the dispenser valves to achieve
the minimum possible number of total dispenser valve-on instances to reach the targeted transfer of
gas to the vehicle, which corresponds to the shortest possible filling time under the given constraints.
This filling profile represents the optimal increase in pressure in the vehicle tank as achieved through
the MPC strategy of the lower layer.
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Figure 8. Vehicle filling with the compressor on (38th vehicle of 143).

Under this novel optimised MPC filling approach, the improvement in filling time is achieved
with a median of 20 s reduction in filling time for an average saving of 16.92 s for the 143 vehicles.
This outcome confirms that, by altering the operation of the dispenser valves through optimisation,
better CNG fuelling performance can be achieved, which would further justify the optimisation of the
CNG station operations, beyond the minimising of electricity costs.
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4.2.3. Cascade Reservoir Filling without Vehicle Fuelling

As dictated by the energy cost optimisation layer schedule, during the interval when there is
no vehicle fuelling at the dispenser but the compressor is on, the profile for the filling of the cascade
storage from the compressor is shown in Figure 9.
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Figure 9. Compressor operation without vehicle being filled.

A preference to keep the high pressure reservoir of the cascade storage at high pressure is observed
under the MPC strategy for the lower layer. The pressure level is flexibly controlled to fulfil the optimal
control goals of vehicle filling and meet the conditions of the operation constraints. By successfully
keeping the dispenser valves in the off position, the strategy demonstrates feasibility under this
condition and achieves the expected performance profile for the given operational constraints.

4.2.4. Control Action during Idle Time

It is necessary to report on the system performance during idle time when the compressor is off
and there is no vehicle fuelling at the dispenser. The state of the control variables and the pressure
in the cascade storage for the lower layer is shown in Figure 10. The results show that the dispenser
valves and priority panel valves remain in the off position over the entire control period demonstrating
that the MPC strategy for the lower layer remains feasible when there is no inflow or outflow of gas
from the cascade storage of the filling station. This indicates that the strategy is sufficiently constrained
for all operation scenarios of the CNG filling station.
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Figure 10. Profile with compressor off and no vehicle at the dispenser.

The proposed two-layer optimisation for the reduction of energy cost and improvement filling
efficiency shows a feasibility demonstrated in the results with a significant reduction in energy cost
and vehicle filling times. The achieved reduction in the cost of electricity for the CNG fast-fill station
by 60.08% can be passed on to consumers on cost per unit because of the lowered cost of gas delivery.
Further, shorter filling times are achieved for vehicles fuelling at the station with a median reduction
in filling time of 20 s and an average reduction by 16.92 s for all the vehicles through the MPC strategy
for the lower layer. Reduced fuelling time is a welcome improvement in fuelling convenience that
could serve to maintain existing CNG vehicle customers and lower the level of concern for new CNG
vehicle users. The benefits from the optimisation of the two layers can be viewed as complementary
to one another, given the cascaded improvement in financial and technical performance of the CNG
station that has been realised.

4.3. Sensitivity Analysis

An analysis was carried out to scrutinise the validity of the model’s output under disturbances,
which originate from scenarios that alter the input parameters. A random change in the gas demand,
which is an important parameter for compressor scheduling, is the most probable source of disturbance
for the proposed optimal operation approach and could affect the feasibility of the compressor schedule
solution. Consequently, an inspection of the possible effects of random disturbances, implemented as
random percentage increase or decrease in hourly gas demand, on the quantity of gas in storage was
done. The disturbance demand profiles are shown in Figure 11a.
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Figure 11. System performance under random gas demand disturbances.

It is evident in Figure 11b that the solution of the compressor schedule obtained through the
optimal scheduling remains valid through the series of variations in hourly gas demand of up to
20%. This means that the limits of the quantity of gas stored in the cascade storage are not violated
if the schedule obtained is implemented, even if some variation in demand occur. However, when
effecting the optimal schedule solution to the existing station controller, it is necessary to include
safety interrupts to tackle circumstances where large disturbances cause a violation of operating limits,
as shown in Figure 11b for the 25% variation in demand. These interrupts would correct the violation
by either shutting off the compressor outside of schedule when the maximum quantity of gas limit in
the cascade storage is reached, or by turning on the compressor outside of schedule when the minimum
limit is reached as a result of unexpected gas demand circumstances. The feedback characteristic of
the MPC strategy in the lower layer allows for the controller to adapt to disturbances in the system
inputs [32], which means that when disturbances in the quantity of gas condition in the cascade storage
occur, the controller updates operation control to attain the lower layer objectives.

Table 2 shows the fuelling time for each of the two vehicles in Sections 4.2.1 and 4.2.2 when gas
level disturbances in one of the three cascade storage cylinders are implemented. By feeding back the
conditions of the system states to the controller input, the approach allows for new calculation of future
control action so as to meet the set optimisation goals. The solutions from the proposed approach to
optimal CNG station operation have thus been shown to be valid for the predicted operating conditions
as well as under some variations to these conditions.

Table 2. Vehicle filling time.

Gas Level Disturbance 4th Vehicle(s) 38th Vehicle(s)

5% 200 200
10% 200 200
15% 200 200
20% 200 200

5. Conclusions

Participation of CNG delivery infrastructure in demand response programs not only saves cost
for the station operators and CNG users, but it is also a participation in contributing to the wider
goals of such programs in increasing grid reliability and efficiency for all electricity users in society.
Cities seeking to expand the use of alternative fuels as cleaner means of transportation also need
the associated infrastructure to develop responsibly with regard to use of electricity, which is an
indispensable resource.
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This study provides an expansive perspective of the operation profile of an optimised CNG
fast-fill station, which is the major component of gas delivery infrastructure, incorporating both energy
savings and pressure conditions management. The proposed approach achieves a huge reduction in
the cost of electricity for the CNG fast-fill station, and delivers on shorter filling times for vehicles
fuelling at the station. The results demonstrate savings of up to 60.08% in electricity cost for the upper
layer as well as average savings of 16.92 s in vehicle fuelling times for the lower layer. Further, the
sensitivity analysis shows an ability of the solutions obtained to withstand some disturbances in the
inputs, which is important for the station operation reliability.

Implementation of energy cost reduction strategies by energy users should remain sensitive to
other performance considerations that may affect the business under consideration. For compressed
natural gas vehicle users, vehicle fuelling time cannot be jeopardised as it is one of the main
consideration consumers make when deciding on adoption of cleaner gaseous alternative fuels.
The study demonstrates that benefits associated with adoption of CNG can be amplified by
optimally operating delivery infrastructure with respect to existing demand response programs while
simultaneously improving customer convenience. As an introductory study on the implementation of
a combined energy cost and filling time optimisation, this study is a timely highlight to an important
intersection between different approaches to better use of energy and system performance.
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Nomenclature

Aori f ice Area of dispenser valve orifice (m2)
Cd Co-efficient of discharge of dispenser valve orifice
cp Specific heat capacity of CNG at constant pressure (J/KgK)
cv Specific heat capacity of CNG at constant volume (J/KgK)
JU Objective function of the upper layer
JL Objective function of the lower layer
m Mass of gas (kg)
mmax Maximum mass of gas for the cascade storage (kg)
mmin Minimum mass of gas for the cascade storage (kg)
mo Gas demand (kg)
ṁmax

hp , ṁmax
mp , ṁmax

lp Instantaneous mass flow rate from high pressure, medium pressure and low

pressure reservoirs to vehicle tank (kg/h)
ṁveh Instantaneous total mass flow rate from cascade storage to vehicle tank (kg/h)
ṁco Compressor outlet mass flow rate (kg/h)
M Molar mass (kg)
Mwa Molecular weight of the air (g)
Mwg Molecular weight of the gas (g)
N Upper layer control horizon
Np Lower layer model predictive control prediction horizon
n Gas quantity (moles)
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P Pressure (bars)
pco Compressor motor power rating (kW)
pe Price of electricity under TOU tariff (currency/kW h)
Php, Pmp, Plp Pressure in high, medium and low pressure reservoirs (bars)
Pmax

hp , Pmax
mp , Pmax

lp Maximum pressure for high pressure, medium pressure and low pressure reservoirs (bars)

Pmin
hp , Pmin

mp , Pmin
lp Minimum pressure for high pressure, medium pressure and low pressure reservoirs (bars)

PT Target vehicle pressure (bars)
Pveh Vehicle pressure (bars)
Qstd Capacity of the compressor under standard conditions (Nm3/h)
R Universal gas constant (L bar/K mol)
ts Sampling period (s)
T Absolute temperature (K)
u State of compressor switch
vhp, vmp, vlp State of priority panel valves for high pressure, medium pressure and low pressure reservoirs
vohp, vomp, volp State of dispenser valves for high pressure, medium pressure and low pressure reservoirs
V Volume of cascade reservoir tanks (L)
Vhp, Vmp, Vlp Volume of high, medium and low pressure reservoirs (L)
z Compressibility factor of CNG
$ Weighting factor for the upper layer
ς Weighting factor for the lower layer
γ ratio of specific heats
ρa,std Density of air under standard conditions (kg/m3)
ρhp, ρmp, ρlp Density of gas in high pressure, medium pressure and low pressure reservoirs (kg/m3)
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A technoeconomic optimization problem for a domestic grid-connected PV-battery hybrid energy system is investigated. It
incorporates the appliance time scheduling with appliance-speci�c power dispatch. �e optimization is aimed at minimizing
energy cost, maximizing renewable energy penetration, and increasing user satisfaction over a �nite horizon. Nonlinear objective
functions and constraints, as well as discrete and continuous decision variables, are involved. To solve the proposed mixed-integer
nonlinear programming problem at a large scale, a competitive swarm optimizer-based numerical solver is designed and
employed. �e e�ectiveness of the proposed approach is veri�ed by simulation results.

1. Introduction

Making best use of renewable energies has been a topic that
receives continuous attention [1]. �e photovoltaic (PV)
energy is one of the most concerned renewable energy
because of the ubiquity of solar irradiation and very low
carbon emission [2]. �e PV energy generation is therefore
integrated into power grids in many countries [3]. However,
because of PV energy’s intermittent nature, it is di�cult to
use PV energy alone to support sustained power demands in
the complicated context, such as domestic electrical loads. A
popular paradigm to utilize the PV power source is to in-
tegrate the PV energy into hybrid energy systems, where
multiple power sources are adopted and dispatched co-
operatively [4]. �ere were an enormous number of studies
on hybrid system optimization over the past twenty years.
Advanced technologies have been applied to the economic
power dispatch problem in hybrid energy systems [5–7].
Most of such studies focused on power ¡ow control

strategies where the demand side was rather considered
constraints in the system. �ere were also studies that in-
troduced demand-side management into hybrid energy
system management [8, 9], whereas these studies hardly
explored the potentials of controlling both power ¡ows and
load behaviors. In general, the potentials of incorporating
the power dispatch with demand-side management remain
to be explored at the current stage. Indeed, such a problem is
di�cult because of the complex correlations between power
sources and loads and its large-scale nature.

In this paper, a technoeconomic optimization problem is
extended and improved to investigate further energy e�-
ciency and economic potentials in such a domestic grid-
connected PV-battery hybrid energy system, based on a
series of previous studies by Tazvinga et al. [10–15].�ere are
two parts of the interventions: the power dispatch that
decides which power is to be supplied to which load and
appliance time scheduling that decides when to activate a
speci�c domestic appliance to ful�ll the user requirements.
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(e optimization is implemented over a finite time horizon.
(ere are three objectives involved in the optimization.
Firstly, the overall energy cost over the horizon has to be
minimized. (e energy cost mainly comes from the con-
sumed grid power, based on the time-of-use (TOU) tariff
[16]. (e battery wear cost is also integrated into the overall
cost. Secondly, the usage of renewable energy has to be
maximized. Given that the overall power demand from the
loads is considered constant, this objective is transformed
into the grid power consumption minimization. (irdly, the
user satisfaction has to be maximized. An inconvenience
indicator has been proposed by Setlhaolo and Xia [12] so that
the overall difference between the scheduled appliance
operation and the baseline appliance operation is calculated.
(e objective is thus introduced by minimizing such an
inconvenience indicator. A weighted sum approach is
employed to simultaneously optimize the three objectives,
subject to a series of system constraints.

(emain contributions of this study are listed as follows:
Firstly, the hybrid system design is improved. (e major
improvement from the design perspective is that separate
power dispatch is introduced to each connected appliance,
instead of considering the electrical load (consisting of a
variety of appliances) as a whole. (is is realized by in-
troducing additional power lines between each pair of the
appliances and power sources. (e power dispatch is thus
managed in a more flexible way. In the previous model, all
appliances are compelled to choose the same power source at
one time. In the improved system design, additional power
lines and switches are deployed such that appliances can
choose the power sources themselves. (e supply that
combines various power sources provides the system more
flexible power dispatch choices. For example, at peak hours,
the battery bank cannot support heavy loads independently
because of its capacity limitation. According to the previous
design, the battery bank can only work for a short time in the
late evening; otherwise, the power demands cannot be
matched. In the new design, the battery bank has a much
longer possible working time by only supporting a part of the
loads, which leaves more space for the load scheduling.
Improved flexibility brings more energy efficiency poten-
tials, and thus, more economic benefits can be achieved.

Secondly, the mathematical formulation of the tech-
noeconomic optimization is improved, as the dimension of
decision variables is minimized. (e aforementioned flexi-
bility improves at the cost of additional decision variables,
i.e., the ON/OFF states of the additional switches. (e
number of decision variables grows largely as the problem
scale grows spatially with the number of switches and
longitudinally with the number of control intervals, in
comparison with the previous system design. To reduce the
resulting computational burden, the interplay among the
switch behaviors is identified. Some switch behavior con-
straints are involved; for example, the battery can only
charge or discharge at one time, and the appliance can only
have one active power line connection. (e correlated
switches manifest finite states; as a result, a set of discrete
state variables are introduced. (e values of the discrete
variables indicate the combination of ON/OFF states of the

correlated switches. Given the constraints, the state variables
choose values from a limited range. In this way, the number
of variables to describe the complex and interacting switch
behaviors is minimized. As the ON/OFF states of the
switches are a major part of the decision variables, the di-
mension of the decision variables is largely reduced;
therefore, the computational burden is smaller such that the
problem is more promising to be solved within limited time.

(irdly, an advanced numerical solver is designed for the
proposed problem. A major difficulty to implement the
technoeconomic optimization is the solver. (e investigated
problem involves nonlinear objective functions and con-
straints, as well as continuous and discrete decision vari-
ables. It is thus a mixed-integer nonlinear programming
(MINLP) problem. Furthermore, as mentioned above, the
decision variable can be a large number, e.g., over 700. A
proper solver to such a complicated and large-scale opti-
mization problem is thus required. An intelligent optimi-
zation algorithm, namely, the competitive swarm optimizer
(CSO), is employed to design the numerical solver. Cheng
and Jin firstly proposed the CSO algorithm to solve large-
scale optimization problems [17]. (e CSO algorithm is
designed on the basis of the particle swarm optimization
(PSO) algorithm with a very different searching mechanism.
In the PSO algorithm, the term “particle” is employed to
refer to the individual solutions. (e particles are charac-
terized with two vectors, namely, the position and velocity
vectors. (e position vector describes the value of a solution
and the velocity vector the incremental of the value.(e PSO
updates the position vector with the velocity vector via
interacting with the global best position in the swarm (the
population of individuals) and the personal best position in
history [18]. (e CSO algorithm adopts the position and
velocity vector modelling from PSO but employs a random
pairwise competition mechanism such that the loser particle
can learn from the winner particle to update its position and
velocity. In this way, the CSO algorithm can reduce the
opportunity of convergence to local optimum, thereby
manifesting better and satisfying overall performances than
large-scale PSO algorithms.(e numerical solver is designed
on the pairwise competition concept basis and modified to
better match the investigated scenarios.

A case study is employed to test and verify the effec-
tiveness of the proposed approach, where the power dispatch
and appliance time scheduling on a daily basis are applied to
a typical South African household hybrid system. To
thoroughly investigate the effectiveness, results from three
cases, where different objective functions are applied with
the new flexible power dispatch and the previous dispatch
method, are illustrated and analyzed. For all cases, the CSO-
based numerical solver is employed, and thus, the power
dispatch methods are focused and compared.

(e remainder of this paper is structured as follows:
Section 2 introduces the hybrid system component mod-
elling. Section 3 takes advantage of the component mod-
elling to formulate the technoeconomic optimization
problem. Section 4 describes the CSO-based numerical
solver. Section 5 shows the case study with simulation results
and analysis. Section 6 draws the conclusion.
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2. Domestic PV-Battery Hybrid System

A domestic grid-connected PV-battery hybrid system is
hereby employed as the investigated hybrid system. (e
general layout of the PV-battery hybrid system is illustrated
in Figure 1. (e main purpose of such a system is to supply
the daily activities of a number of domestic appliances, e.g.,
electrical water heater (EWH), stove, television set, and
washing machine. (e involved appliances are connected to
both the power grid and the PV system. A battery bank is
also introduced to facilitate the power dispatch. (e battery
bank is able to charge from the power sources, which in this
case are the power grid and PV system, and discharge to
supply the appliances. In order to make use of all possible
power sources in the system, a power management unit
(PMU) is thereby introduced to implement the energy
conversion and the power dispatch. In this way, the PMU
manages the operation of the system, including (1) the se-
lection of energy flow to support the active appliances, (2)
the time scheduling of the appliances, and (3) the energy
conversion and voltage/current matching. It is clear that the
PMU is the central piece of the hybrid system that manages
from power quality to energy balance. An assumption is
employed that the voltage/current matching is well main-
tained by the PMU. Our investigation focuses on the power
scheduling.

(e power management diagram is depicted in Figure 2.
(ere are several components in the PMU. From the PV
side, there are a solar charge controller and inverter. (e
charge controller integrates a DC/DC converter to tune the
PV output to match the DC loads, including the battery. (e
inverter receives input from the charge controller and
battery and converts the DC power inputs into the AC loads,
which in this case refer to the appliances. From the grid side,
there is an AC charger integrating an AC/DC converter that
allows the battery be charged by the grid. (ere are also a
number of controllable switches to implement switching
control strategies. As Figure 2 depicts, there is one switch for
each power line. (e ON/OFF states of the switches control
the power flows in the system, i.e., the pair of the appliance
and its supplier. For each connected appliance, there are a set
of switches that control whether the appliance is supplied by
the PV, the battery, or the power grid. (e arrows on each
power line indicate the direction of the power flow. As
mentioned above, the additional switches are deployed such
that any connected appliance can choose among multiple
power sources by adjusting the ON/OFF status of switches.
Taking advantage of the developing smart grid and smart
building technologies, appliances are equipped with open
communication interfaces, which allow the PMU to
schedule the activities of the appliances and switches si-
multaneously, in both wired and wireless manners. As a
result, the system design in Figure 2 becomes feasible in
practice.

Remark 1. (ere are more and more domestic loads that
can be made DC in the modern daily life; for example, an
AC light bulb can be replaced with a DC light-emitting
diode (LED) bulb. In the future, it is possible to connect

the DC loads directly to the DC power sources, e.g., the
PV and battery bank. Such a system may reduce the
operational cost of renewable energy resources. How-
ever, currently, most domestic appliances are made AC
for the sake of standardization. Consequently, the system
design mainly focuses on the AC loads at the current
stage; therefore, all involved power sources are tuned to
be AC suppliers. Direct connections between the DC
suppliers and the DC loads can be involved in the future
design.

Assume that there are n appliances connected to the
system. A set of binary variables are employed to denote the
ON/OFF state of the switches. Let k denote the time instant
during operation, g1(k) denotes the ON/OFF state of the
switch between the PV charge controller and the battery,
g2(k) the charge controller and the inverter, g3(k) the AC
charger and the battery, and g4(k) the battery and the in-
verter. g21(k), g22(k), . . . , g2n(k) denote the switches be-
tween the PV and the appliances, g41(k), g42(k), . . . , g4n(k)

the battery and the appliances, and g51(k), g52(k), . . . , g5n(k)

the grid and the appliances. t denotes the time instant over the
operation. P1(k) and P4(k) denote the charging power from
the PV and the grid, respectively. P2(k), P4(k), and P5(k)

denote the power outputs of the respective power sources.
In this system, the operation of appliances is managed

together with the power flows. In this study, the operation
management is actually time scheduling, as the powers of
appliances are considered known a priori and invariable. (e
time scheduling is implemented simultaneously with the
power flow management such that the supply can match the
demand and achieve higher energy efficiency potentials.

(e mathematical formulations of the behavior for each
component in the system are introduced as follows.

2.1. PV Systems. (e PV consists of arrays of solar cells such
that the solar energy is converted into electrical power. (e
converted power is proportional to the solar irradiation and
the size of PV panels. As an alternative power source to the
power grid, the power output is a major concern of the PV
system. It is formulated as follows:

Power grid

Power
management

unit

Energy storage

Photovoltaic
system

Appliance

+–

Figure 1: General layout of the hybrid system.
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Ppv � ηpvIpvAc, (1)

where Ppv denotes the hourly PV power output (kW), ηpv

denotes the efficiency of the solar cells, Ipv denotes the
hourly solar irradiation per unit area (kW/m2), and Ac

indicates the area of the PV panels that receive solar irra-
diation (m2). (ere is an intermittent nature of the PV
system; that is, Ipv can be absent at some sampling instants.
An output profile of the PV system is therefore required.
Usually, the PV outputs over succeeding 24 hours are pre-
dictable [19]. Qpv denotes a time period where Ppv > 0. For
k ∉ Qpv, Ppv is considered to be zero given a very small Ipv. A
PV output profile is usually employed to indicate the hourly
PV power outputs in a day . Qpv can be identified via the PV
output profile.

2.2. Battery Bank. (e battery bank charges from other
power sources and discharges to support electrical load
activities. (e battery bank behaviors are dynamic owing to
the complicated scheduling of both power sources and
appliances. (e state of charge (SOC) is employed to
characterize the battery bank status. (e dynamics of the
SOC can be formulated as follows:

Soc(k + 1) � Soc(k) + ηBg1(k)P1(k) + ηBηcg3(k)P3(k)

− g4(k)P4(k),

(2)

where Soc(k) denotes the SOC at sampling instant k; g1(k),
g3(k), and g4(k) are binary variables that denote the ON/
OFF state of the respective switches at instant k, as depicted
in Figure 2; P1(k), P3(k), and P4(k) are the aforementioned
power outputs; ηc denotes the energy conversion efficiencies
of the AC charger; and ηB denotes the battery charging
efficiency during operation. Given the current-stage battery
system limitations, the simultaneous charging from two

different sources or simultaneous charging and discharging
are considered unpermitted. A constraint of the switches
must be taken into account:

g1(k) + g3(k) + g4(k)≤ 1 (3)

such that only one of the switches g1, g3, and g4 can be
turned on at the same time. Following (2), the SOC at a given
time τ can be formulated as follows:

Soc(τ) � Soc(0) + ηB 

τ

k�0
g1(k)P1(k) + ηBηc 

τ

k�0
g3(k)P3(k)

− 
τ

k�0
g4(k)P4(k),

(4)

where Soc(0) denotes the initial state of the battery bank.
Soc(k) is subject to the following constraint:

C
min ≤ Soc(k)≤C

max
, (5)

where Cmin and Cmax denote the minimum and maximum
available capacity (kWh), respectively.

(e battery wear level is also evaluated. (e wear cost is
formulated as follows:

JB(τ) � φbCD(τ)
BC

TH
, (6)

where CD(τ) � 
τ
k�0P4(τ) denotes the overall throughput of

the battery bank until instant τ and BC/TH denotes the
battery wear cost per 1 kWh from throughput energy, in
which BC denotes the battery cost and TH denotes the
overall throughput energy. (e calculation of BC/TH can be
found from previous studies [15, 20, 21].

2.3. Power Grid. From the hybrid system viewpoint, the
grid supplies infinite and stable electricity at an alternative

AC charge

BT

pv Charge controller

Inverter

Inverter

Appliance_1

Appliance_2

Appliance_n

P1 P2

P3

P4

P5 g51

g52

g5n

g41

g42

g4n

g21

g22

g2n

g3

g1

Load

Figure 2: Schematic of the investigated power management system.
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voltage level of 220 V. (e grid power comes with a price,
which results in the major operational costs. As men-
tioned above, a TOU tariff is introduced such that the
demand response can be implemented. Let ρ(k) denote the
TOU electricity price at time k of a day. ρ(k) changes
according to which period the time k lies within. (e
overall operational cost at a given time τ can be formu-
lated as follows:

Cost(τ) � 
τ

k�0
ρ(k) P3(k) + P5(k) . (7)

2.4. Appliances. (e electrical loads consist of the load
profiles of all appliances connected to the hybrid system.
(e boundary identification must be conducted before
system design. Given the domestic scenario of the in-
vestigated system, several reasonable simplifications are
made to characterize the demand-side activities. Firstly,
all appliances within the system require standard AC
power. Secondly, each appliance is subject to a respective
constant operation duration. Control strategies can be
involved to determine the operation of such appliances
[22, 23].

According to previous studies [12–14], from the time-
scheduling perspective, domestic appliances can be cate-
gorized into three types: the flexible loads, the shiftable loads,
and the fixed loads. (e flexible loads’ working times can be
scheduled freely, at any favorable working time. (e shift-
able loads’ working times can be scheduled within a pref-
erable but limited time period. (e fixed loads’ working
times are fixed, unchangeable in any case. For an arbitrary
appliance from any type, the operation duration is constant
such that the time scheduling can be characterized as the
selection of the starting instant.

In the investigated system, an appliance is connected to
the PV, battery bank, and grid. An appliance i from the n
appliances is given. As depicted in Figure 2, there is one
switch for each power source connection. (e ON/OFF
states of the three switches at instant k are denoted by g2i(k),
g4i(k), and g5i(k). (e simultaneous supply from multiple
power sources is unpermitted; therefore, a switch constraint
is introduced as follows:

g2i(k) + g4i(k) + g5i(k)≤ 1, i � 1, 2, . . . , n. (8)

Let Sti denote the starting instant of the appliance i and
Di the operation duration. (e appliance continuously
operates until the end instant, denoted by Eni � Sti + Di − 1.
A continuous operation constraint is introduced as Xia and
Zhang proposed [24]:



N− Di+1

k�0
ui(k)ui(k + 1)ui(k + 2) . . . ui k + Di − 1(  � 1,

i � 1, 2, . . . , n,

(9)

where ui(k) is a binary variable that indicates whether the
appliance i is active at time k, i.e., the time schedule, and N

denotes the length of a finite scheduling period. In this
case, ui(k) � 1 if Sti ≤ k≤Eni, and ui(k) � 0 if otherwise. It
is notable that the continuous operation constraint is
associated with the actual switch behavior in the following
way:

g2i(k) + g4i(k) + g5i(k) � 1, if ui(k) � 1,

g2i(k) + g4i(k) + g5i(k) � 0, if ui(k) � 0.
 (10)

Let pi(t) with t � 0, 1, 2, . . . , Di − 1 denote the load
profile over the operation period (0, Di − 1) of the appliance
i. Assuming that pi(t) are known a priori, the power demand
pi(k) can thus be determined: if k � Si + t, pi(k) � pi(t);
otherwise, pi(k) � 0.

2.5. System Constraints. A series of constraints must be
introduced to the system such that the operation re-
quirements are all satisfied and none of the physical laws is
violated.

(a) (e energy balance must be fulfilled anytime during
operation, as indicated by the following equation:

ηI2P2(k)

ηI4P4(k)

P5(k)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 
n

i�1

g2i(k)

g4i(k)

g5i(k)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦pi(k), (11)

where P2(k), P4(k), and P5(k) are the power flows
from the PV output, battery bank discharge, and
power grid supply and ηI2 and ηI4 denote the in-
verter efficiency of the PV and battery bank, re-
spectively. For the convenience of calculation, a
logical state variable swi(k) is employed to describe
the combination of g2i(k), g4i(k), and g5i(k). swi(k)

chooses a value from 0, 1, 2, 3{ }. swi(k) � 0 indicates
the state that all switches are turned off and the
switch states equal to 0. swi(k) � 1 indicates that
only g2i(k) � 1, swi(k) � 2 that only g4i(k) � 1, and
swi(k) � 3 that only g5i(k) � 1.

(b) (e capacity constraints must be followed such that
the power flow is kept within the range of the
component capacity. (e power flows in the system
are thus limited. (e power flows P1(k) and P2(k)

are subject to the following constraint:

0≤P1(k) + P2(k)≤ ηsPpv(k), (12)

where Ppv(k), as mentioned above, is the PV output at
time k and ηs denotes the charge controller efficiency.
(e power flows P2(k) and P4(k) as the supplier are
subject to the following constraints:

0≤ ηI2P2(k)≤PI2(k),

0≤ ηI4P2(k)≤PI4(k),
 (13)
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where PI2(k) and PI4(k) denote the inverter capacity of
the PV and battery bank, respectively. (e power flows
P3(k) and P5(k) are subject to the following constraint:

0≤g3(k)P3(k) + P5(k)≤P
max
G , (14)

where Pmax
G denotes the allocated grid maximum

power for this grid-connected system. (e power
flows P2(k), P4(k), and P5(k) are obtained from the
energy balance equation (11). P1(k) and P3(k) are
decided by the scheduling algorithm, and they are
part of the decision variables.

(c) (e switch control strategies are also subject to
constraints that prevent infeasible switch behaviors.
(ese constraints are formulated in preceding sec-
tions along with the system component modelling,
i.e., constraints (3) and (8)–(10). Some further as-
sociations of the switch behaviors are identified as
follows:

g1(k) � 1, if P1(k)> 0,

g1(k) � 0, if P1(k) � 0,

g3(k) � 1, if P3(k)> 0,

g3(k) � 0, if P3(k)> 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)

g2(k) � 1, if 
n

i�1
swi(k) − 1(  � 0,

g2(k) � 0, if otherwise,

g4(k) � 1, if 
n

i�1
swi(k) − 2(  � 0,

g4(k) � 0, if otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

In this way, the states of g1(k)− g4(k) at time k can be
identified from the values of P1(k), P3(k), and swi(k) with
i � 1, 2, . . . , n.

3. Problem Statement

(e primary management objective of the investigated
optimization problem is cost minimization. Secondly, the
renewable energy penetration is involved; that is, the usage
of grid power should be minimized as well. Owing to the
TOU tariff, the two objectives manifest certain differences
and must be equally considered in scheduling. Furthermore,
the user satisfaction in time scheduling is taken into account.
All these objectives are evaluated on a finite horizon basis.
Let T denote the number of sampling instants. (e opti-
mization problem is formulated as follows.

3.1. Decision Variables. (e involved decision variables
consist of three parts: (1) the switch control strategy decision
variables, (2) the charging power control variables, and (3)
the appliance time-scheduling decision variables. It is given
that i � 1, 2, . . . , n in the following discussion.

(e switch control variables are swi(k), which can
characterize the status of most switches in the system as
constraints (15) and (16) imply. Given constraints (8)–(10), it
is unnecessary to cover the whole finite horizon. For the
appliance i, swi(k)> 0 when Sti ≤ k≤Eni, and swi(k) � 0 if k
lies outside the working period. (erefore, the minimum
required control variables are swi(k) with k ∈ [Sti, Eni]. (e
dimension of this part is 

n
i�1Di.

(e charging power control variables are P1(k) and
P3(k). Given constraints (3) and (15), P1(k)∗P3(k) � 0 at
any given instant k; therefore, the dimension of this part is
T.

As mentioned above, the appliance time scheduling is
simplified with the known a priori and constant load profile
pi(t) and operation duration Di. Taking advantage of the
knowledge, the scheduling is implemented with decision
variables Sti. (e dimension of this part is n.

(e dimension of the optimization is therefore


n
i�1Di + T + n. Comparing with the previous study [15], the

problem is extended to a higher dimension but simplified by
taking advantage of swi(k) and the constraints such that the
dimension of the optimization grows slower than the
problem scale.

3.2. Objectives. (e cost minimization objective is formu-
lated as follows:

Jc � 
T

k�0
ρ(k) P3(k) + P5(k)  + φbJB(T), (17)

where φb denotes a weight that indicates the preferable
importance of the battery wearout to the decision-maker.

(e renewable energy penetration objective is formu-
lated as follows:

Je � 
T

k�0
P3(k) + P5(k) . (18)

(e user satisfaction is evaluated via an inconvenience
indicator, which is adopted from the study of Setlhaolo and
Xia [12]:

β � 
n

i�1
ci 

T

k�0
u

bl
i (k) − ui(k) 

2
, (19)

where ci denotes an importance factor of the appliance i and
ubl

i (k) denotes the baseline time schedule of the appliance i.
(19) quantifies the difference between the baseline time
schedule and the adopted time schedule. Given the system
modelling and constraints in this study, the user satisfaction
evaluation is simplified as follows:

β �

��������������


n

i�1
ci St

bl
i − Sti 

2




, (20)

where Stbl
i denotes the baseline starting instant. Such a

difference has to be minimized such that the user remains
happy with the optimized appliance time schedule.
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3.3. Technoeconomic Optimization. Taking advantage of the
preceding objective functions and constraint formulations,
the technoeconomic optimization problem is obtained by
minimizing the following objective function:

J swi(k), P1(k), P3(k), Sti(  � λcJc + λeJe + λbβ, (21)

subject to the battery dynamics (2) and constraints (3),
(8)–(10), and (11)–(16).

According to the above formulations, there are
nonlinear objective functions and constraints, as well as
continuous and discrete decision variables in the prob-
lem. (ey result in a mixed-integer nonlinear pro-
gramming (MINLP) problem, at a relatively large scale.
(e general theoretic approach of solving an MINLP
problem remains an open question; as a result, numerical
solvers are widely employed. In the previous study [15],
an OTPI toolbox https://www.inverseproblem.co.nz/
OPTI/index.php/DL/DownloadOPTI/ in MATLAB was
adopted as the numerical solver. (e former solver took
quite a large amount of time for calculation. In this study,
the implementation of intelligent optimization algo-
rithms on such a problem is investigated. A newly pro-
posed algorithm named the competitive swarm optimizer
(CSO) is adopted as the numerical solver. (e in-
troduction to the CSO-based solver comes in the fol-
lowing section.

4. Numerical Solver Design

4.1.Competitive SwarmOptimizer. In the CSO algorithm, let
x denote a particle and w and l the indices of the winner and
loser particles in a pair. Assume that it is the G-th iteration,
and there have been k − 1 competitions. After the k-th
competition, the next-generation winner particle xw,k(G +

1) remains the same as xw,k(G). (e loser particle
xl,k(G + 1), namely, the position vector, is thereby updated
as follows:

xl,k(G + 1) � xl,k(G) + Vl,k(G + 1), (22)

where Vl,k(G + 1) is the next-generation velocity vector,
updated as follows:

Vl,k(G + 1) � rn1(k, G)Vl,k(G) + rn2(k, G) xw,k(G) − xl,k(G) 

+ φrn3 xk(G) − xl,k(G) ,

(23)

where rn1, rn2, and rn3 are random vectors; xk(G) is the
center of neighborhood filed particles, i.e., a set of par-
ticles that are close enough to xl,k(G); and φ is the
weighting coefficient of xk(G). Such a neighborhood field
is predefined.(ere is a special case that the neighborhood
covers the whole swarm, where xk(G) indicates the global
mean position of the particles at iteration G. (e velocity
and position vectors are employed for the continuous
cases. In a discrete case, e.g., the decision variables swi(k)

in this study, other update mechanisms must be
employed. A crossover mechanism is hereby employed as
follows:

xl,k(rn, G + 1) � xw,k(rn, G),

xl,k(rn, G + 1) � xl,k(rn, G),
 (24)

where rn denotes randomly generated indices of the com-
ponents in a particle x and rn the unselected indices. (24)
suggests that the winner particle xw,k(G) selects and copies a
part of its components into the next-generation loser particle
xl,k(G + 1). (e unselected components of xl,k(G + 1) re-
main the same as xl,k(G). In this way, the loser particle can
learn from the winner particle.

For an MINLP problem, there are simultaneously
continuous and discrete components in a particle. In this
case, the continuous part and discrete part are separated,
(23) and (22) are implemented on the continuous part, and
(24) is implemented on the discrete part. After the learning
process, the two updated parts are combined again to
obtain the particle of next generation. (e theoretical proof
of the convergence of the CSO algorithm can be referred to
[17].

(e pseudocode of the CSO according to the preceding
introduction is illustrated in Algorithm 1 [25].

Remark 2. (e introduced CSO algorithm is mainly
designed for continuous problems. For discrete decision
variables, e.g., binary variables or integers, the discrete PSO
algorithm [26, 27] can facilitate the algorithm design. (e
pairwise competition can be further introduced to other
evolutionary algorithms, such as differential evolution
(DE).

Remark 3. Given the investigated MINLP problem (21), the
original CSO algorithm cannot be applied in a straight-
forward way. Modifications that match the decision vari-
ables are to be introduced such that satisfying performances
can be achieved.

4.2. Modified CSO-Based Solver. In order to implement the
CSO algorithm on a constrained problem, a penalty function
is introduced to the original objective function (17). Given
that there are NC constraints to a problem, the penalty
function is formulated as follows:

Pen � 
T

k�0


NC

i�0
ωPen,iPen,i(k), (25)

where

Pen,i(k) �
0, if constraint i is obeyed,

M, if constraint i is violated,
 (26)

where M is a large positive number and ωPen,i is the
weighting factor for constraint i. A fitness function is thereby
formulated with (17), (25), and (26):

f(x) � Jc + Pen. (27)

In this way, for a minimization problem, a particle
becomes much less competitive when any of the constraints
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is violated, given that a large positive will be added to the
objective function.

After competition, the loser particle must learn from the
winner particle. However, the MINLP search space and
constraints in the investigated problem are quite compli-
cated. (e dynamics of the battery bank charging and
discharging invoke further difficulty to search for the op-
timum. Consequently, the performance of Algorithm 1 is
not satisfying. (e following modifications are thereby
employed to improve the performances on this specific
problem.

Firstly, the learning strategies are modified to improve
the searching efficiency. Let f(G) denote the mean fitness of
the current swarm (at the G-th iteration). After competition,
the fitness of both winner and loser particles is evaluated:

(i) If f(xw,k(G))≥f(G), both winner and loser par-
ticles are considered inferior; therefore, the winner
particle must learn from the global best particle
xgbest(G), while the loser particle must learn from
the winner.

(ii) If f(xl,k(G))≤f(G), both winner and loser parti-
cles are considered superior; therefore, the winner
particle is moved into P(G + 1), and the loser
particle implements mutation subject to the genetic
algorithm style.

(iii) If f(xw,k(G))≤f(G)<f(xl,k(G)), the original
CSO learning strategies are applied.

Secondly, constraints (3) and (15) are employed to
generate battery bank charging and discharging states,
namely, the “knowledge-guided solution filter”. ∀k, g4(k) is
firstly identified subject to (16). If g4(k) � 1, then
P1(k) � P3(k) � 0. If g4(k) � 0, then P1(k) is randomly
generated within [0, Ppv(k) − P2(k)). If g4(k) � 0 and
P1(k) � 0, then P3(k) is randomly generated. If the Soc(k)

reaches its upper bound at time k, then P1(k) � P3(k) � 0.
In this way, the charging and discharging decision variables
are guaranteed to be feasible. (e knowledge-guided solu-
tion filter reduces cost of trial and error during optimization
such that the algorithm can persist searching within a
feasible space.

Remark 4. According to simulations, the modified solver
constantly outperforms the original CSO algorithm on the
investigated problem. (ere lacks a theoretical analysis on
the performances, whereas a hypothesis is made that the
superior performances are resulted from the knowledge-
guided solution filter. Wang and Zheng [28] reported that
exploitation of the algorithm is enhanced by knowledge-
based local search. Further details and investigations are
expected in future works.

Definition:
x: the particle;
P: the swarm;
np: the swarm size, i.e., the number of particles;
G: number of iterations;
w and l: the indices of winner and loser particles;
f(·): the fitness function, assuming that this is a minimization problem;
Terminal condition: the maximum number of iteration Mg is reached;

(1) Begin
(2) Initialize population P(1) with np particles;
(3) while G � 1 toMg do
(4) P(G+ 1)�∅;
(5) while P(G)≠∅ do
(6) Generate two random indices r1 and r2 from np;
(7) if f(xr1

)≤f(xr2
) then

(8) w � r1, l � r2;
(9) else
(10) w � r2, l � r1;
(11) end if
(12) put xw(G) into P(G + 1);
(13) If x is coded as continuous variables, update xl(G) with (23) and (22);
(14) If x is coded as discrete variables, update xl(G) with (24);
(15) If x contains both continuous and discrete parts, update the two parts separately;
(16) put the updated loser particle xl(G) into P(G + 1);
(17) remove particles xr1

and xr2
from P(G);

(18) end while
(19) G�G+ 1;
(20) end while
(21) choose xbest the particle with the best fitness f(·) from PMg;
(22) Return xbest;
(23) End

ALGORITHM 1: Pseudo code of the CSO algorithm.
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5. Simulation Results and Analysis

5.1. Case Study. (e case study investigates the operation of
a household, grid-connected, PV-battery hybrid energy
system. (e data are retrieved from the South African do-
mestic appliance operation studies [13–15]. (ere are eight
appliances connected in the system. (e usage profile of the
appliances is shown in Table 1 on a daily basis, where there
are 144 time slots, a.k.a., sampling instants. Each time slot
lasts 10minutes. (e scheduling horizon is 24 hours, i.e., a
whole day. (e adopted usage profile and baseline time
schedule are for the working day scheduling for a typical
South African home. To emphasize, the power of the ap-
pliances is measured average power. (e baseline time
schedule reflects the preferable time according to the in-
habitant’s habits. For example, the inhabitant turns on the
electrical water heater (EWH) twice a day for the hot water
demand. In the morning, the EWH is turned on at 5 : 00 am
(the 31-st time slot), operates for two hours, and is turned off
at 7 : 00 am (the 42-nd time slot) such that the user can use
heated water after breakfast. In the afternoon, the EWH is
turned on again at 5 :10 pm (the 104-th time slot) and turned
off at 7 :10 pm (the 115-th time slot) such that the hot water
for the evening can be ready. (is is the most convenient
EWH operation plan for the user. Similarly, the stove must
be turn on twice for the cooking demands. (e other ap-
pliances have to be turned on and off only once daily.

(ere are several further constraints with the given
scenario. Firstly, for the shiftable appliances, a preferable
range of starting time slots are given in Table 1. (e flexible
appliance can start anytime in a day, and the only re-
quirement is that the operation must be finished before the
end of the horizon.(e fixed appliance cannot be scheduled;
therefore, the preferable range is not applicable (N/A).
Secondly, the washingmachine and electrical dryer work in a
sequence; that is, the dryer must start after the washing
machine job is finished. In this case, it results in an addi-
tional constraint to the preceding ones:

St4 ≥ St3 + D3. (28)

(e adopted PV system and battery bank have their
own limitations, as shown in Table 2. (e PV system in-
tegrates 14 solar panels with the rated power of 0.25 kW.
(erefore, the overall capacity, i.e., the rated output, of the
PV system is 3.5 kW. Actually, the PV system output at any
given time slot depends on the solar irradiation profile.
Such a profile is possible to forecast 24 hours ahead of the
scheduling [19]. In the case study, the timely PV output is
identified based on an hourly profile in [29], as shown
in Table 3, where Qpv is k ∈ [39, 144). (e battery bank
consists of 4 lead-acid batteries, each with 12 V rated
voltage and 105Ah rated capacity; that is, the overall ca-
pacity is 5.04 kWh. (e battery cost is calculated in South
African rand (ZAR), which is R5826. (e lifespan of
the battery bank is 1000 cycles at 50% depth of dis-
charge (http://www.trojanbattery.com/markets/renewable-
energy-re/); therefore, the wear cost per 1 kWh throughput
energy is 5826/(1000 ∗ 0.5∗ 5.04) � 2.312R/kWh. φb � 0.1

Table 1: Typical usage profiles and baseline time schedules.

Appliances Power (kW) Duration (min)
Baseline

Preferable range of StiIndex i Sti Eni

Shiftable

(1) EWH 3.0 120 31 42 [19, 31]

120 104 115 [91, 121]

(2) Stove 2.5 30 32 34 [25, 55]

50 113 117 [97, 127]

(3) Washing machine 0.5 60 109 114 [43, 133]

(4) Electric dryer 2.0 30 116 118 [49, 139]

Fixed
(5) Refrigerator 0.1 1440 1 144 N/A
(6) Television set 0.2 180 104 121 N/A
Flexible
(7) Dishwasher 1.8 150 116 130 [1, 130]

(8) Bread maker 1.5 150 118 132 [1, 130]

Table 2: PV system and battery bank parameters.

PV capacity Ppv 3.5 kWp

Battery bank maximum capacity Cmax 5.04 kWh
Battery bank minimum capacity Cmin 2.52 kWh
Battery bank cost (ZAR) R5826
Initial state of the battery bank 60%Cmax

AC charger efficiency ηc 85%
PV charge controller efficiency ηs 90%
PV inverter efficiency ηI2 95%
Battery bank inverter efficiency ηI4 95%
Battery bank charging efficiency ηB 80%

Table 3: Hourly PV output.

Time slot k [0, 39) [39, 45) [45, 51) [51, 57)

Ppv(k) (kWh) 0 0.15 0.85 1.65
[57, 63) [63, 69) [69, 75) [75, 81) [81, 87)

2.35 2.9 3 2.95 2.55
[87, 93) [93, 99) [99, 105) [105, 111) [111, 144)

2 1.45 0.75 0.1 0
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such that the usage of the battery is encouraged. (e im-
portance factors ci � 1 for each i, i.e., involved appliances,
are considered equally important in this case. (e effi-
ciencies of the charge controller, AC charger, and inverters
are given as well.

(e power grid supply is described as follows: (e
maximum household current is 60A, which is limited by the
utility company. (e charging power from the grid is
considered constant in this case, which is 5 kW; that is,P3(k)

can only be 0 or 5 kWh. Furthermore, the TOU tariff is
adopted from the study in [13], as shown in Table 4.

5.2. Simulations. Simulations are programmed in C++ with
the following running environment: the CPU is Inter Core
i3-8100 CPU@3.60GHz, the RAM is 16GB, and the system
isWindows 10× 64.(ree cases are adopted by adjusting the
weighting factors in (21).

(i) λe � 1, λc � 0, and λb � 0 such that the optimization
employs a single objective, i.e., the renewable energy
penetration.

(ii) λe � 0, λc � 1, and λb � 0 such that only the cost
minimization objective is optimized.

(iii) λe � 1, λc � 1, and λb � 1 such that the multi-
objective optimization of (21) is implemented where
Jc, Je, and β are equally considered.

In each case, there are two demonstrated results. One
result is from the proposed approach, and the other one is
from the previous power dispatch model [15] as the com-
parative results. Both results are reported from the average of
20 runs, taking advantage of the proposed CSO-based opti-
mizer. In the CSO algorithm, the swarm size is 1500 and the
iteration number is 10000. (e neighborhood field is defined
to be the nearest superior particle and inferior particle. (e
details of such a neighborhood field can be referred to [30, 31].

5.3. Results andAnalysis. (e results are reported as follows:

(i) In the first case, the grid power supply is mini-
mized to be 14 kWh, at the energy cost of R16.57
and inconvenience indicator of 14.25. (e power
dispatch is depicted in Figure 3. In the com-
parative result, the minimal grid power is
15.07 kWh, at the energy cost of R14.29 and in-
convenience indicator of 14.59. (e power dis-
patch is depicted in Figure 4. (e improvement of
the objective is 7.1%. (e average running time is
18.43 minutes.

(ii) In the second case, the cost is minimized to be
R7.06, while the overall power supply from the grid
is 14.37 kWh. (e inconvenience indicator is 13.89.
(e power dispatch is depicted in Figure 5. In the
comparative result, the minimal cost is R7.72, with

Table 4: TOU tariff.

Time periods Electricity price Hours
Peak hours R2.2225/kWh [08 : 00, 11 : 00)∪  [19 : 00, 21 : 00)
Standard hours R0.6773/kWh [07 : 00, 08 : 00)∪  [11 : 00, 19 : 00)∪  [21 : 00, 23 : 00)
Off-peak hours R0.3656/kWh [00 : 00, 07 : 00)∪  [23 : 00, 24 : 00)
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Figure 3: Power dispatch of the new design in case (i).
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the grid power supply of 15.57 kWh and in-
convenience indicator of 15.03. (e power dispatch
is depicted in Figure 6. (e improvement of the
objective is 8.6%. (e average running time is
18.36minutes.

(iii) In the third case, the weighted sum of all objec-
tives is minimized. (e optimized objective
function value is 34.64, when the energy cost is
R8.29 and the grid power supply is 15.53 kWh,

and the inconvenience indicator is 10.82. (e
power dispatch is depicted in Figure 7. In the
comparative result, the objective function value is
39.97, where the energy cost is 9.53 and grid
power is 18.78 kWh, with the inconvenience in-
dicator of 11.66 as well. (e power dispatch is
depicted in Figure 8. (e improvement of the
objective is 13.3%. (e average running time is
18.37minutes.
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Figure 5: Power dispatch of the new design in case (ii).
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Figure 4: Power dispatch of the previous design in case (i).
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From Figures 3, 5, and 7, overlaps between different
power supplies can be observed especially during peak
hours, while from Figures 4, 6, and 8, none of the time slots
allows multiple power supplies. In these cases, the grid
power outputs are smoothened under the dispatch with the
proposed approach. From the comparative results, supplies
become more intermittent because of the contradiction
between the renewable penetration objective and the supply

constraint. Allowing the combination of multiple power
supplies reduces such an intermittent performance while,
according to the energy and economy performances in case
studies, making better use of the renewable energy sources.

As a conclusion, the proposed approach outperforms the
previous model in all cases. When comparing the results of
the new and previous designs, it appears that the flexible
power dispatch allows more appliances to be scheduled to
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Figure 7: Power dispatch of the new design in case (iii).
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Figure 6: Power dispatch of the previous design in case (ii).
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standard and off-peak hours, resulting in a lower energy
cost. (e objectives Je and Jc manifest a certain level of
trade-off. (is is resulted from the employment of the TOU
tariff, where some off-peak hours may be infeasible for the
PV system because of its intermittent nature. When com-
paring the results among the three cases, it can be found that
the first two cases can achieve lower energy cost and grid
power consumption because of ignoring the inconvenience
indicator β. It invokes an interesting topic for future studies
that how to strike a balance between the conflicted interests
of user satisfaction and energy efficiency in such a hybrid
energy system management.

6. Conclusions

(is paper investigates a technoeconomic optimization
problem for a domestic grid-connected PV-battery hybrid
energy system, via extending and improving a previously
proposed system design. According to the previous design,
the power dispatch is decided for the totality of the elec-
trical loads. In the new model, appliances that comprise the
electrical loads are supplied and managed, respectively, via
additional power lines and switches from each power
source. Furthermore, the appliance time scheduling is
incorporated into such a flexible power dispatch. In this
way, the system achieves better energy efficiency and
economic performances via the technoeconomic optimi-
zation. (e performances are evaluated by three optimi-
zation objectives: minimizing energy cost, maximizing
renewable energy penetration, and increasing user satis-
faction, over a finite horizon. (ere are nonlinear objective
functions and constraints, as well as discrete and contin-
uous decision variables, in such an optimization problem.

As a result, the problem becomes an MINLP one at a large
scale, which is difficult to solve. A competitive swarm
optimizer-based numerical solver is thereby designed and
employed.

In order to verify that the new design does improve the
performances, a case study is investigated, where the power
dispatch and appliance time scheduling on a daily basis are
applied to a typical South African household hybrid system.
(ere are three optimization cases, each with different
objective functions, including only energy cost minimiza-
tion, only renewable energy penetration maximization, and
a weighted sum of the three objectives. Simulations are
applied in these cases, where comparative results are also
obtained via optimization of the previous system design.(e
same solver and system configurations are employed. In all
cases, the results from the new design outperform results
from the previous design. (e improvement ranges from
7.1% to 13.3% and manifests that further energy efficiency
and economic benefits can be achieved by the proposed
approach. Furthermore, the solver generally takes around
18.4minutes to obtain the solution. It verifies that the
proposed approach has the potential for application in a
real-time context.

(ere are several future works to investigate based on the
current-stage results. Firstly, the performance evaluations,
such as the battery wear cost and the renewable energy
penetration, are simplified. More practical indicators can be
introduced in the future. Secondly, uncertainties from the
environment and user demands are inevitable in practice.
(e real-time feedback mechanism can be introduced to
overcome such uncertainties. (irdly, the game theory-
based power dispatch and load scheduling considering
conflicted interests call further study. Lastly, the CSO-based
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numerical solver can be further investigated to improve the
algorithm performance.
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A B S T R A C T

An autonomous hierarchical distributed control (AHDC) strategy is proposed for a building multi-evaporator air
conditioning (ME A/C) system in this paper. The objectives are to minimize peak demand and energy costs, and
to reduce communication resources, computational complexity and conservativeness while maintaining both
thermal comfort and indoor air quality (IAQ) in acceptable ranges. The building consists of multiple connected
rooms and zones. The proposed control strategy consists of two layers. The upper layer is an open loop
optimizer, which only collects local measurement information and solves a distributed steady state resource
allocation problem to autonomously and adaptively generate reference points, for low layer controllers. This
is achieved by optimizing the demand and energy costs of a multi-zone building ME A/C system under a
time-of-use (TOU) rate structure, while meeting the requirements of each zone’s thermal comfort and IAQ
within comfortable ranges. The lower layer also uses local information to track the trajectory references, which
are calculated by the upper layer, via a distributed model predictive control (DMPC) algorithm. The control
strategy is distributed at both layers because they use only local information from the working zone and its
neighbors. Simulation results are provided to illustrate the advantages of the designed control schemes.

1. Introduction

It is well known that many environmental problems are linked
to energy consumption. The energy consumed by the building sector
accounts for 40% of the total energy consumption in the world (UNEP
Sustainable Buildings & Climate Initiative, 2009). Among all building
energy consumers, air conditioning (A/C) systems are responsible for
the largest share, which represents close to 50% of the total electricity
use in the building sector.

In recent years, many researchers have focused on reducing en-
ergy consumption of building heating, ventilation and air conditioning
(HVAC) systems (Lee & Braun, 2008; Tang, Wang, Shan, & Cheung,
2018). Meanwhile, indoor comfort is also important for buildings, since
it directly affects the occupants’ working efficiency. The effective con-
trol of HVAC systems has the potential of reducing energy consumption
or cost and improving indoor thermal comfort and air quality (IAQ).
In Atthajariyakul and Leephakpreeda (2004), the authors proposed a
method of real-time determination of an optimal indoor-air condition
for the HVAC system to consider indoor thermal comfort and IAQ for
occupants simultaneously with efficient energy consumption. However,
this method is only tested around the desired points; we do not know
if this method can be used without the desired points.

Model predictive control (MPC) has been verified as one of the most
successful advanced control strategies, which is capable of improving
energy efficiency and thermal comfort in buildings (Castilla, Álvarez,

∗ Corresponding author.
E-mail address: junmei027@gmail.com (J. Mei).

Normey-Rico, & Rodríguez, 2014; Cigler, Prívara, Váňa, Žáčeková, &
Ferkl, 2012; Ma, Qin, & Salsbury, 2014; Maasoumy & Sangiovanni-
Vincentelli, 2012; Mei & Xia, 2017b; Wallace et al., 2012). An energy-
optimized open loop optimization and the MPC schemes were pro-
posed (Mei & Xia, 2017a; Mei, Xia, & Song, 2018) for a direct expansion
(DX) A/C system to improve energy efficiency while maintaining indoor
thermal comfort and IAQ within comfort levels. Other advantages of
MPC for building HVAC systems include robustness, tunability and
flexibility (Oldewurtel et al., 2012). Despite MPC having superior per-
formance to other control strategies, the size of the optimization prob-
lem increases rapidly when the dimension of the building A/C systems
is large. Centralized MPC techniques were proposed (Hu & Karava,
2014; Maasoumy, Razmara, Shahbakhti, & Sangiovanni-Vincentelli,
2014; Mei & Xia, 2018; Razmara, Maasoumy, Shahbakhti, & Robinett
III, 2015) for multi-zone HVAC systems to improve energy efficiency
and thermal comfort. In the centralized control structure case, all
the subsystems are controlled by one MPC law. The model used for
prediction includes the coupling elements. When a centralized MPC
algorithm is used for controlling HVAC systems in a large number of
rooms, its algorithm is impractical since the optimization problems may
not be solved in a reasonable time and the control systems are not
easy to maintain. To reduce computational time, one of the effective
predictive control strategies is a decentralized MPC approach (Elliott &
Rasmussen, 2013). Large-scale control problems are decomposed into
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Nomenclature

𝐴1 heat transfer area in the dry-cooling region
of the DX evaporator, m2

𝐴2 heat transfer area in the wet-cooling region
of the DX evaporator, m2

𝐴𝑤𝑖𝑛 represents the total window area, m2

𝐶𝑎 specific heat of air, kJ kg−1 ◦C−1

𝐶𝑐 CO2 concentration in the conditioning
space, ppm

𝐶𝑙𝑜𝑎𝑑 pollutant load, m3/s
𝐶𝑠 CO2 concentration of air supply, ppm
𝑑 cross-sectional area of zone, m2

𝐺 amount of CO2 emission by a person, L/h
ℎ𝑓𝑔 latent heat of vaporization of water, kJ∕kg
ℎ𝑟1 enthalpy of refrigerant at evaporator inlet,

kJ∕kg
ℎ𝑟2 enthalpy of refrigerant at evaporator outlet,

kJ∕kg
ℎ𝑠 enthalpy leaving the DX evaporator, kJ∕kg
𝑘𝑃 , 𝑘𝐼 proportional and integral coefficients
𝑚𝑟 mass flow rate of refrigerant, kg∕s
𝑀𝑙𝑜𝑎𝑑 moisture load in the conditioned space, kg/s
𝑂𝑐𝑐𝑝 number of occupants
𝑄𝑙𝑜𝑎𝑑 sensible heat load in the conditioned space,

kW
𝑄𝑟𝑎𝑑 solar radiative heat flux density, W∕m2

𝑅 thermal resistance, ◦C/kW
𝑇𝑑 air temperature leaving the dry-cooling re-

gion on air side of the DX evaporator,
◦C

𝑇𝑚𝑖𝑥 mixing temperature between the outside air
and return air, ◦C

𝑇𝑠 air temperature leaving the DX evaporator,
◦C

𝑇𝑤 temperature of the DX evaporator wall, ◦C
𝑇𝑧 air temperature in the conditioned space, ◦C
𝑇0 temperature of the outdoor air, ◦C
𝑉 volume of the conditioned space, m3

𝑣𝑎 indoor air velocity, m∕s
𝑉ℎ1 air side volume in the dry-cooling region on

air side of the DX evaporator, m3

𝑉ℎ2 air side volume in the wet-cooling region on
air side of the DX evaporator, m3

𝑣𝑓 air volumetric flow rate, m3∕s
𝑊𝑚𝑖𝑥 mixing moisture content of outside air and

return air, kg∕kg
𝑊𝑠 moisture content of air leaving the DX

evaporator, kg∕kg
𝑊𝑧 moisture content of air-conditioned space,

kg∕kg
𝑊0 moisture content of the outdoor air, kg∕kg

Greek letters

𝛼𝑑𝑐 heat transfer coefficient between air and
the DX evaporator wall in the dry-cooling
region, kW m−2 ◦C−1

several independent control problems, which can take care of the local
control parameters (Atam, 2016). However, the results demonstrated
that the control performance loss was 28.58%. A distributed control

𝛼𝑤𝑐 heat transfer coefficient between air and
the DX evaporator wall in the wet-cooling
region, kW m−2 ◦C−1

𝜀𝑤𝑖𝑛 transmissivity of glass of window
𝜌 density of moist air, kg∕m3

Subscripts

𝑖 room number

Abbreviations

AHDC autonomous hierarchical distributed control
DMPC distributed model predictive control
EEV electronic expansion valve
HVAC heating, ventilation and air conditioning

IAQ indoor air quality
ME A/C multi-evaporator air conditioning
MPC Model predictive control
NLP nonlinear programming
PMV predicted mean vote
PSA pressure swing absorption
TABS thermally activated building systems
TOU time-of-use

approach is capable of balancing these issues. The structure of the
distributed control is similar to a decentralized law, but is essentially
a different approach (Zhang, Shi, Yan, Malkawi, & Li, 2017). The dis-
tributed control decomposes the centralized control to a group of local
agents communicating with its neighbors, which makes it possible to
be used for large-scale dynamically coupled systems. A communication
network that allows collaboration among local control laws, which
allows the improvement of global system performance compared to
a decentralized structure. Moreover, computational demand should be
significantly reduced compared to the centralized structure (Zheng, Li,
& Qiu, 2013).

Owing to the advantages of distributed model predictive control
(DMPC), this strategy was proposed to reduce the computational de-
mand and handle the coupling among subsystems (Ma, Anderson, &
Borrelli, 2011; Morosan, Bourdai, Dumur, & Buisson, 2011; Morosan,
Bourdais, Dumur, & Buisson, 2010; Scherer et al., 2014). A DMPC
was proposed in Ma et al. (2011) to improve the energy efficiency of
the HVAC system while keeping zone temperature within the comfort
range. In the study, the nonlinear optimal control problem is for-
mulated and solved through sequential quadratic programming. Then
the subproblem is decomposed further by adopting a subgradient ap-
proach. A local controller reaches the optimal solution by repeatedly
negotiating with its neighbors in every sampling period, which in-
evitably increases the demand for calculation. In Morosan et al. (2010),
the DMPC algorithm, only required the predicted output exchanged
with its neighbors for every sampling period. However, this algorithm
can only obtain Nash equilibrium, which may not be the optimal
solution. In Morosan et al. (2011), the authors proposed a DMPC
algorithm to control multi-source multi-zone temperatures. In order
to attenuate the online computational burden, the DMPC algorithm
was implemented based on Benders’ decomposition. The results show
that the computational and convergence times of this algorithm are
superior to the centralized MPC. However, the energy efficiency of the
DMPC method is not particularly good compared to the centralized
MPC strategy. Furthermore, this type of distributed structure does not
converge to the optimal solution, as in Scherer et al. (2014) which was
an agent-based suboptimal controller; the drawback is transmitted to
the decomposition algorithm.

In addition to improving energy efficiency while maintaining build-
ing multi-zones’ thermal comfort within comfort range, DMPC strategies
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based on energy scheduling were proposed in Long, Liu, Xie, and Jo-
hansson (2016) and Radhakrishnan, Srinivasan, Su, and Poolla (2018).
In Long et al. (2016), the authors proposed a method that combined the
closed-loop centralized and distributed structures together to design a
hierarchical control scheme to balance the computational complexity
and conservativeness. In the study, the upper layer controller collects
temperature and predictive information of all rooms and zones, which
implies that the centralized scheduling (CS) needs to communicate with
all rooms. The upper layer optimization problem is nonlinear, and
solving it for a large building using centralized approaches is com-
putationally cumbersome, leading to scalability issues. Furthermore,
implementing centralized approaches requires transmission of zone-
levels models and sensor information to the CS, leading to engineering
difficulties and increasing information exchange. In the lower layer,
the distributed controller only uses one room’s information and its
neighbor off-line reference signals. This may cause loss of control
accuracy in receding horizon. Moreover, the trajectory references in
the optimization objectives are given and fixed over a 24-h period,
as in Ma et al. (2011), Morosan et al. (2010) and Scherer et al.
(2014). Centralized and distributed MPC controllers following fixed
trajectory references were also reported in other field (Zafra-Cabeza,
Maestre, Ridao, Camacho, & Sánchez, 2011). In our previous work (Mei
et al., 2018), the results demonstrated that the MPC strategy following
preprogrammed time-varying reference points can save more in energy
consumption and cost when compared with a fixed trajectory reference.
More recently, in Radhakrishnan et al. (2018), the authors proposed
adaptive learning and distributed control together to improve the
energy efficiency and thermal comfort for multi-zone HVAC systems.
The optimal references are preprogrammed and time-varying, while
the presented zone thermal dynamics of a multizone building did not
consider the interaction between rooms. Moreover, this distributed
optimization algorithm is solved by using the subgradient method.

Advanced building structures are extremely complicated, with
widely equipped multi-evaporator (ME) A/C systems. An ME A/C,
which is DX based, consists of an outdoor compressor and condensing,
and multiple indoor units including electronic expansion valves (EEVs)
and evaporators (Xu, Yan, Deng, Xia, & Chan, 2013). Experimental
results have illustrated that the control performance of the novel
capacity control algorithm is further improved in comparison with
its previous work. However, controlling indoor air temperature by
using the novel capacity control algorithm could still be subject to
significant fluctuations under certain operating conditions because of
using a temperature dead-band, time-delay for compressor start-up.
The interaction with other indoor units may be an important impact
factor but was rarely considered. To improve the energy efficiency of
a multi-zone building ME A/C system, thermal comfort and IAQ levels,
a suitable optimization method is required for making each room’s
temperature, humidity and CO2 concentration consistent with their
desired references. To realize it, we consider a case that each DX unit
can exchange information with its neighbors.

To overcome the above issues, in this paper we present an au-
tonomous hierarchical distributed control (AHDC) method for a multi-
zone building ME A/C system which not only considers how to main-
tain multiple zones’ thermal comfort and IAQ within comfortable
ranges but also considers reduction of communication resources, com-
putational complexity and conservativeness reduction, and energy con-
sumption and costs. Meanwhile, the peak-average-ratio (PAR) can also
be considered in this paper. Moreover, the proposed comfort control
considers thermal comfort and IAQ and the coupling effects of them.
This control strategy consists of two layers. The upper layer is open
loop scheduling that collects only a room’s measurement information
containing room cooling and pollutant loads, weather conditions, end-
user services including demand and energy rates, thermal comfort and
IAQ levels and operation profiles. Then the upper layer formulates and
solves a steady-state optimization problem for minimizing the demand
and energy costs of the multi-zone building ME A/C system under a

time-of-use (TOU) rate structure of electricity over a 24-h period using
nonlinear programming (NLP) algorithm. We make an assumption that
the multi-zones are similar in the occupancies, functions and purposes;
in this situation, one can distributively design an optimal scheduler.
This scheduling generates time-varying trajectory references and com-
municates with the whole connected network through neighbors. All
rooms then transmit their references to the lower layer controllers.
The lower layer designed as DMPC controllers also uses local infor-
mation to formulate and solve local optimization problems to track the
autonomously and adaptively time-varying trajectory reference signals
calculated by the upper layer. For simplicity, we make an assumption
that all state variables are measured, thus full state feedbacks are
considered. Our future work will consider designing observers in case
some variables are not measured. The way we handle the upper layer
is different from that of Long et al. (2016) and Zafra-Cabeza et al.
(2011), which needs to collect all rooms’ measurement information.
It is also different from the distributed controllers in Ma et al. (2011),
Morosan et al. (2011, 2010), Scherer et al. (2014) and Zheng et al.
(2013), which collect information from a zone and its neighbors. The
proposed control scheme can be realized with reduced, cheaper and
short-range communication modules, and depending on the commu-
nication topology, a receiver only. While in the conventional control
schemes (Long et al., 2016; Ma et al., 2011; Morosan et al., 2011, 2010;
Scherer et al., 2014; Zafra-Cabeza et al., 2011; Zheng et al., 2013),
it may require full-swing communication modules, i.e., with both a
transmitter and receiver, which require external service providers in
long-range data communication modules. The lower layer designs a
new distributed controller for a zone such that this subsystem depends
entirely on the zone by introducing a new input variable over a short-
term horizon. This distributed control scheme is desirable in practice
and can be easily implemented by our previous control algorithm (Mei
et al., 2018). The results show that the proposed control scheme is
superior to the previous control strategy on energy efficiency.

Our principal contributions can be summarized as follows:
(1) We first propose two-layer distributed control strategies that

not only reduce more energy demand and costs in comparison with
previous works but also maintain both thermal comfort and IAQ of
multi-zone within comfortable ranges. These levels of performance are
demonstrated in the case study.

(2) The proposed steady state distributed control and closed-loop
distributed control schemes have the potential of reducing the com-
plexity of computation and the hardware of communication modules in
comparison with the centralized, non-distributed control schemes and
hierarchical distributed control schemes.

(3) A novel approach for the lower layer closed-loop distributed
control is designed to obtain a new feedback controller. This is achieved
by introducing new input variables such that the closed-loop distributed
control subsystems can be converted to a subsystem that depends
entirely on one zone and our previous MPC algorithm developed for
a single zone can be used.

(4) This study considers the predicted mean vote (PMV) index as an
indicator of both thermal comfort and IAQ.

This paper is organized as follows: In Section 2, the nonlinear
dynamical models and energy models for the multi-zone building ME
A/C system, the PMV index and the system constraints are presented.
The proposed AHDC method for the multi-zone building ME A/C system
is proposed in Section 3. Simulation results are provided in Section 4.
Section 5 concludes this paper.

2. System model

2.1. An ME A/C system in buildings

The schematic of an ME A/C system is illustrated in Fig. 1. The
ME A/C system includes dampers, DX evaporators, an air-cooled tube-
plate-finned condenser, a variable speed compressor, EEVs, variable
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Fig. 1. Schematic diagram of an ME A/C system.

speed centrifugal supply fans with pressure swing absorption (PSA)
boxes, and a damper for mixing return air from the ME A/C system
with outside air. The variable speed supply fan adjusts its own speed
based on the air flow rate/opening controlled by EEV to control cooled
air to each room. Each indoor unit placed in the room has an EEV
and an evaporator. The PSA box regulates the conditioned air flow
rate and absorbs CO2 contaminant concentration for improving the
fresh air ratio. Each indoor unit is connected to the variable speed
compressor and the outlet of the air-cooled condenser. The indoor air
unit recirculates return air from building spaces and mixes it with
outside air. The proportion of return air to outside air is controlled by
damper positions in the ME A/C system. The mixed air is cooled by the
cooling coils.

Because of the complex nature of air flow and the heat transfer
process, ME A/C systems are usually modeled as time-varying nonlinear
partial differential equations (Vakiloroaya, Ha, & Skibniewski, 2013),
which are not suitable for control and optimization. Therefore, the
following assumptions are made to simplify the modeling.

(1) The air in each room and outdoor environment is well mixed
immediately so that the temperature, humidity and CO2 concentration
distributions are uniform.

(2) The heat capacity of air is constant.

2.2. Dynamic model of the ME A/C system

According to the above configuration, we use an undirected con-
nected graph structure to represent the rooms and their dynamic cou-
plings as described below. We associate the 𝑖th room with the 𝑖th node
of the system. The mathematical dynamic models for the multi-zone
building ME A/C system via the relationship between air enthalpy,
temperature and the moisture content leaving the evaporator 𝑖 of unit
𝑖 as ℎ𝑠,𝑖 = 𝐶𝑎𝑇𝑠,𝑖 + ℎ𝑓𝑔𝑊𝑠,𝑖 are described as follows. In this paper, we
only consider the interaction between rooms by sensible heat gain.

𝐶𝑎𝜌𝑉𝑖
d𝑇𝑧,𝑖
d𝑡 =

𝑚
∑

𝑗=1

𝑇𝑧,𝑗 − 𝑇𝑧,𝑖
𝑅𝑖𝑗

+
𝑇0 − 𝑇𝑧,𝑖

𝑅𝑖
+ 𝐶𝑎𝜌𝑣𝑓,𝑖(𝑇𝑠,𝑖 − 𝑇𝑧,𝑖) +𝑄𝑙𝑜𝑎𝑑,𝑖,

(1a)

𝜌𝑉𝑖
d𝑊𝑧,𝑖

d𝑡 = 𝜌𝑣𝑓,𝑖(
ℎ𝑠,𝑖 − 𝐶𝑎𝑇𝑠,𝑖

ℎ𝑓𝑔
−𝑊𝑧,𝑖) +𝑀𝑙𝑜𝑎𝑑,𝑖, (1b)

𝐶𝑎𝜌𝑉ℎ1,𝑖
d𝑇𝑑,𝑖
d𝑡 = 𝐶𝑎𝜌𝑣𝑓,𝑖(𝑇𝑚𝑖𝑥 − 𝑇𝑑,𝑖) + 𝛼𝑑𝑐,𝑖𝐴1,𝑖(𝑇𝑤,𝑖 −

𝑇𝑚𝑖𝑥 + 𝑇𝑑,𝑖
2

), (1c)

𝜌𝑉ℎ2,𝑖
dℎ𝑠,𝑖
d𝑡 = 𝛼𝑤𝑐,𝑖𝐴2,𝑖(𝑇𝑤,𝑖 −

𝑇𝑑,𝑖 + 𝑇𝑠,𝑖
2

) + ℎ𝑓𝑔𝜌𝑣𝑓,𝑖(𝑊𝑚𝑖𝑥 −
ℎ𝑠,𝑖 − 𝐶𝑎𝑇𝑠,𝑖

ℎ𝑓𝑔
)

+ 𝐶𝑎𝜌𝑣𝑓,𝑖(𝑇𝑑,𝑖 − 𝑇𝑠,𝑖),

(1d)

𝐶𝑤,𝑖𝜌𝑤,𝑖𝑉𝑤,𝑖
d𝑇𝑤,𝑖

d𝑡 = 𝛼𝑑𝑐,𝑖𝐴1,𝑖(
𝑇𝑚𝑖𝑥 + 𝑇𝑑,𝑖

2
− 𝑇𝑤,𝑖)

+ 𝛼𝑤𝑐,𝑖𝐴2,𝑖(
𝑇𝑑,𝑖 + 𝑇𝑠,𝑖

2
− 𝑇𝑤,𝑖)−

(ℎ𝑟2,𝑖 − ℎ𝑟1,𝑖)𝑚𝑟,𝑖,

(1e)

𝑉𝑖
d𝐶𝑐,𝑖

d𝑡 = (𝑘𝑃 𝑣𝑓,𝑖 + 𝑘𝐼 ∫

𝑇𝐼

0
𝑣𝑓,𝑖d𝑠)(𝐶𝑠,𝑖 − 𝐶𝑐,𝑖) + 𝐺𝑖 ⋅ 𝑂𝑐𝑐𝑝𝑖, (1f)

where zone 𝑖 ∈ {1, 2,… , 𝑚}, 𝑇𝑧,𝑖 and 𝑊𝑧,𝑖 are the air temperature and
moisture content of zone 𝑖, respectively; 𝑇𝑧,𝑗 means the air temperature
of neighboring zone 𝑖. 𝐶𝑐,𝑖 denotes the CO2 concentration of zone 𝑖,
𝐶𝑠,𝑖 represents the CO2 concentration of supply air to zone 𝑖. 𝑇𝑠,𝑖 and
𝑊𝑠,𝑖 are the air temperature and moisture content leaving the indoor
unit 𝑖, respectively; 𝑇0 and 𝑊0 are the outside air temperature and
moisture content, respectively. 𝑇𝑑,𝑖 is the air temperature leaving the
dry-cooling region on the air side of the DX evaporator of indoor unit
𝑖, 𝑇𝑤,𝑖 is the temperature of the DX evaporator wall in indoor unit 𝑖,
ℎ𝑠,𝑖 is the enthalpy leaving the DX evaporator of indoor unit 𝑖. 𝑣𝑓,𝑖 is
the air volumetric flow rate of the supply fan 𝑖, 𝑚𝑟,𝑖 is the mass flow
rate of refrigerant to the indoor unit 𝑖. ℎ𝑟1,𝑖 and ℎ𝑟2,𝑖 are the enthalpies
of refrigerant at the DX evaporator inlet and outlet of indoor unit 𝑖,
respectively. 𝑉𝑖 is the volume of zone 𝑖; 𝑉ℎ1,𝑖 and 𝑉ℎ2,𝑖 are the air side
volumes in the dry-cooling region and wet-cooling region on the air
side of the DX evaporator of indoor unit 𝑖, respectively. 𝐶𝑤,𝑖, 𝜌𝑤,𝑖 and
𝑉𝑤,𝑖 are the specific heat of air, density of moist air and volume of the
DX evaporator wall of indoor unit 𝑖, respectively. 𝛼𝑑𝑐,𝑖 and 𝛼𝑤𝑐,𝑖 are the
heat transfer coefficients between air and the evaporator wall in the
dry-cooling region and wet-cooling region of indoor unit 𝑖, respectively.
𝐴1,𝑖 and 𝐴2,𝑖 are the heat transfer areas in the dry-cooling region and
wet-cooling region on the DX evaporator of indoor unit 𝑖, respectively,
which are time-varying uncertainty and bounded parameters. 𝑂𝑐𝑐𝑝𝑖 is
the number of occupants of zone 𝑖, 𝐺𝑖 is amount of CO2 emission rate
of people at zone 𝑖. 𝑘𝑃 and 𝑘𝐼 are the parameter of the PI controller.

𝑅𝑖𝑗 = 𝑅𝑗𝑖 is the thermal resistance of the wall between zone 𝑖
and 𝑗, 𝑅𝑖 is the thermal resistance of the wall between zone 𝑖 and
the outside. If 𝑅𝑖𝑗 and 𝑅𝑖 are not known from design specifications,
they can be obtained via model identification (Bacher & Madsen, 2011;
Jiménez, Madsen, & Andersen, 2008). 𝑇𝑚𝑖𝑥 and 𝑊𝑚𝑖𝑥 are the mixed air
temperature and mixed moisture content before each DX evaporator
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cooling coil, respectively. The mixed air temperature and moisture
content are calculated as follows:

𝑇𝑚𝑖𝑥 = (1 − 𝛿)𝑇0 + 𝛿
∑𝑚

𝑖=1 𝑣𝑓,𝑖𝑇𝑧,𝑖
∑𝑚

𝑖=1 𝑣𝑓,𝑖
, 𝑊𝑚𝑖𝑥 = (1 − 𝛿)𝑊0 + 𝛿

∑𝑚
𝑖=1 𝑣𝑓,𝑖𝑊𝑧,𝑖
∑𝑚

𝑖=1 𝑣𝑓,𝑖
,

(2)

where 𝛿 is the mixing ratio between the outside air and return air. It
is assumed that the return air temperature and moisture content are
the weighted sums of the zone temperatures and moisture contents
with weights, being the air flow rate of supply air to the corresponding
zones. The return air is not recirculated when 𝛿 = 0, and no outside
fresh air is used when 𝛿 = 1. 𝛿 can be employed to save energy through
recirculation but it has to be less than one to guarantee minimal out-
door fresh air delivered to the rooms. Note that the first equation of (2)
is taken from Ma, Matuško, and Borrelli (2015). It is assumed that the
mixed moisture content has a similar description in the second equation
of (2). The airside convective heat transfer coefficients for the louvre-
finned evaporator under both dry-cooling and wet-cooling regions on
the air side of the evaporator 𝑖 are calculated as follows (Chen & Deng,
2006):

𝛼𝑑𝑐,𝑖 = 𝑗𝑑𝑐𝜌𝑣𝑎,𝑖
𝐶𝑎

𝑃𝑟
2
3

, 𝛼𝑤𝑐,𝑖 = 𝑗𝑤𝑐𝜌𝑣𝑎,𝑖
𝐶𝑎

𝑃𝑟
2
3

, 𝑖 = 1, 2,… , 𝑚, (3)

where 𝑃𝑟 is the Prandtl number, 𝑗𝑑𝑐 and 𝑗𝑤𝑐 are the Colburn factors in
the cooling mode. The air velocity 𝑣𝑎,𝑖 is described as follows:

𝑣𝑎,𝑖 =
𝑣𝑓,𝑖 − 𝜀𝑖

𝑑𝑖
, 𝑖 = 1, 2,… , 𝑚,

where 𝑑𝑖 (m2) is the cross-sectional area of zone 𝑖, 𝜀𝑖 is the non-desired
air velocity through the door or window to pass in and out of the air
to zone 𝑖, 𝑣𝑎,𝑖 is the indoor air velocity of room 𝑖.

The above models (1a)–(1e) without considering outside air temper-
ature and humidity entering into system for a single room were first
built in Qi and Deng (2008). The above models (1a)–(1f), absorbing
CO2 by an independent PSA box for a single room, were built in Mei and
Xia (2017a). The above models (1a)–(1f) for a single room, absorbing
CO2 by using a PI controller based on a supply fan, were built in Mei
et al. (2018). On the right-hand side of (1a), the first term denotes the
heat transfer between zone 𝑖 and all neighbors of zone 𝑖; the second
term means the heat transfer between zone 𝑖 and the outside wall.
The PI controller in Eq. (1f) is designed based on the air volumetric
flow rate of the supply fan. It can be used for controlling the indoor
CO2 concentration. In addition, the PI controller has the potential of
reducing the complexity of computation and the cost of hardware.

Remark 1. Higher-order resistance–capacitance (RC) models were de-
veloped in Maasoumy et al. (2014) and Razmara et al. (2015). For
simplicity, we only consider the first-order RC model in this paper.
Though the higher-order RC models maybe more accurate than the
first-order model, it is more difficult to use the current methods to
solve the distributed control problem. Most existing works to solve
the distributed control problem assume that interaction terms are ei-
ther disturbances or negligible. We will study the distributed control
problem of the higher-order RC models in the future.

Remark 2. The building DX A/C system’s cooling and pollutant loads
can be expressed in Mei et al. (2018) and used as measurement in-
formation for an open loop controller in the upper optimization. The
building loads are affected by some parameters (such as 𝑇0, 𝑊0, 𝑄𝑟𝑎𝑑,𝑖,
𝑂𝑐𝑐𝑝𝑖, internal heat gain 𝑄𝑖𝑛𝑡,𝑖 and moisture ventilation load 𝑀𝑖𝑛𝑡,𝑖).
The prediction of these parameters can be obtained through a weather
forecast station, historical data and schedules. Though the multi-zone
buildings’ cooling and pollutant loads cannot be accurately predicted,
the designed AHDC strategy in the next section includes the DMPC
controllers that are capable of handling the prediction errors.

To make the ME A/C system cooperatively control multi-zones’
thermal comfort and air quality, we suppose that the ME A/C system
is equipped with a communication network based on wireless commu-
nication. In this network, they can share information (e.g., 𝑇𝑧,𝑖, 𝑊𝑧,𝑖
and 𝐶𝑐,𝑖) with one another, which is shown in Fig. 1. The information
flow between them is modeled as a network graph  = ( , 𝜗,), where
 = {1, 2,… , 𝑚} is the index set of different rooms and zones of the
ME A/C system, 𝜗 ⊂  ×  is the edge set of ordered pairs of the ME
A/C system, and  = [𝑎𝑖𝑗 ] ∈ R𝑚×𝑚 is the adjacency matrix with entries
𝑎𝑖𝑗 = 1 or 𝑎𝑖𝑗 = 0. If the ME A/C subsystem 𝑖 can receive information
from the ME A/C subsystem 𝑗, then (𝑗, 𝑖) ∈ 𝜗, 𝑎𝑖𝑗 = 1 and the ME A/C
subsystem 𝑗 is called the network neighbor of the ME A/C subsystem 𝑖,
denoted by 𝑗 ∈ 𝑖, where 𝑖 = {𝑗 ∈ |𝑎𝑖𝑗 = 1}. If the ME A/C subsystem
𝑖 cannot have access to the information of the ME A/C subsystem 𝑗, then
(𝑗, 𝑖) ∉ 𝜗, 𝑎𝑖𝑗 = 0 and 𝑗 ∉ 𝑖. Self-connection is not considered for ,
i.e., 𝑎𝑖𝑖 = 0, ∀𝑖 ∈  . A graph  is undirected if 𝑎𝑖𝑗 = 𝑎𝑗𝑖 for any 𝑖, 𝑗 ∈  .
In this paper, the network graph  = ( , 𝜗,) of the ME A/C system is
assumed to be undirected and connected (Yu & Xia, 2017).

All the DX units of the ME A/C system adjust their comfort levels
adaptively by acquiring the adjacent information. The neighbors of
each DX unit can be defined in many different ways. In this paper, the
following way is based on the effect of thermal resistance and is defined
as follows:

𝑖 = {𝑗 ∶ |𝑅𝑖𝑗 | < 𝜀0, 𝑖 ≠ 𝑗}, (4)

where the parameter 𝜀0 is a predefined threshold, 𝑖 is the set of
neighbors of room 𝑖.

The system dynamic equations (1) can be written as equations of
the following:

�̇�𝑖 = 𝑓𝑖(𝑥𝑖, 𝑥−𝑖, 𝑢𝑖, 𝜔𝑖), 𝑖 = 1, 2,… , 𝑚, (5)

where the vector denoted as 𝑥𝑖 ≜ [ℎ𝑠,𝑖, 𝑇𝑧,𝑖, 𝑇𝑑,𝑖, 𝑇𝑤,𝑖,𝑊𝑧,𝑖, 𝐶𝑐,𝑖]𝑇 is the
state of the subsystem 𝑆𝑖; 𝑢𝑖 = [𝑣𝑓,𝑖, 𝑚𝑟,𝑖]𝑇 are the constrained control
signals; 𝜔𝑖 ≜ [𝑄𝑙𝑜𝑎𝑑,𝑖,𝑀𝑙𝑜𝑎𝑑,𝑖, 𝐶𝑙𝑜𝑎𝑑,𝑖]𝑇 represent the load variables of
room 𝑖; and 𝑥−𝑖 concatenate the states of all subsystems 𝑆𝑗 (𝑗 ∈ )
of the subsystem 𝑆𝑖, i.e., 𝑥−𝑖 = (𝑥1,… , 𝑥𝑖−1, 𝑥𝑖+1,… , 𝑥𝑚). The functions
𝑓𝑖(𝑥𝑖, 𝑥−𝑖, 𝑢𝑖, 𝜔𝑖) (𝑖 = 1, 2,… , 𝑚) are defined as follows:

𝑓𝑖(𝑥𝑖, 𝑥−𝑖, 𝑢𝑖, 𝜔𝑖)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛼𝑤𝑐,𝑖𝐴2,𝑖(𝑇𝑤,𝑖−
𝑇𝑑,𝑖+𝑇𝑠,𝑖

2 )+ℎ𝑓𝑔𝜌𝑣𝑓,𝑖(𝑊𝑚𝑖𝑥−
ℎ𝑠,𝑖−𝐶𝑎𝑇𝑠,𝑖

ℎ𝑓𝑔
)+𝐶𝑎𝜌𝑣𝑓,𝑖(𝑇𝑑,𝑖−𝑇𝑠,𝑖)

𝜌𝑉ℎ2,𝑖
∑𝑚

𝑗=1
𝑇𝑧,𝑗−𝑇𝑧,𝑖

𝑅𝑖𝑗
+

𝑇0−𝑇𝑧,𝑖
𝑅𝑖

+𝐶𝑎𝜌𝑣𝑓,𝑖(𝑇𝑠,𝑖−𝑇𝑧,𝑖)+𝑄𝑙𝑜𝑎𝑑,𝑖

𝐶𝑎𝜌𝑉𝑖

𝐶𝑎𝜌𝑣𝑓,𝑖(𝑇𝑚𝑖𝑥−𝑇𝑑,𝑖)+𝛼𝑑𝑐,𝑖𝐴1,𝑖(𝑇𝑤,𝑖−
𝑇𝑚𝑖𝑥+𝑇𝑑,𝑖

2 )
𝐶𝑎𝜌𝑉ℎ1,𝑖

𝛼𝑑𝑐,𝑖𝐴1,𝑖(
𝑇𝑚𝑖𝑥+𝑇𝑑,𝑖

2 −𝑇𝑤,𝑖)+𝛼𝑤𝑐,𝑖𝐴2,𝑖(
𝑇𝑑,𝑖+𝑇𝑠,𝑖

2 −𝑇𝑤,𝑖)−(ℎ𝑟2,𝑖−ℎ𝑟1,𝑖)𝑚𝑟,𝑖
𝐶𝑤,𝑖𝜌𝑤,𝑖𝑉𝑤,𝑖

𝜌𝑣𝑓,𝑖(
ℎ𝑠,𝑖−𝐶𝑎𝑇𝑠,𝑖

ℎ𝑓𝑔
−𝑊𝑧,𝑖)+𝑀𝑙𝑜𝑎𝑑,𝑖

𝜌𝑉𝑖

(𝑘𝑃 𝑣𝑓,𝑖+𝑘𝐼 ∫
𝑇𝐼
0 𝑣𝑓,𝑖d𝑠)(𝐶𝑠,𝑖−𝐶𝑐,𝑖)+𝐺𝑖⋅𝑂𝑐𝑐𝑝𝑖

𝑉𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.
(6)

2.3. Simplified energy models of the ME A/C system

The power consumers of the multi-zone building ME A/C system
include the dampers, condenser fan, compressor and DX cooling coils.
The power to drive the dampers is assumed to be negligible. The
condenser fan power 𝑃𝑐𝑜𝑛 is approximated as a second-order polynomial
function of the total mass flow rate of refrigerant (𝑚𝑟 =

∑𝑚
𝑖=1 𝑚𝑟,𝑖) driven

by the fan

𝑃𝑐𝑜𝑛 = 𝑐0 + 𝑐1𝑚𝑟 + 𝑐2𝑚
2
𝑟 , (7)

where 𝑐0, 𝑐1 and 𝑐2 are the parameters to be identified by curve-fitting
of experimental data in Vakiloroaya, Samali, and Pishghadam (2014).
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The power consumption of the evaporator fans 𝑃𝑒𝑣𝑎 based on the
energy conservation law is expressed as follows:

𝑃𝑒𝑣𝑎 =
𝑚
∑

𝑖=1
(𝑎0 + 𝑎1𝑣𝑓,𝑖,+𝑎2𝑣2𝑓,𝑖 + 𝑎3𝑇𝑠,𝑖 + 𝑎4𝑇

2
𝑠,𝑖 + 𝑎5𝑄𝑐,𝑖

+ 𝑎6𝑄
2
𝑐,𝑖 + 𝑎7𝑣𝑓,𝑖𝑇𝑠,𝑖+

𝑎8𝑣𝑓,𝑖𝑄𝑐,𝑖 + 𝑎9𝑇𝑠,𝑖𝑄𝑐,𝑖),

(8)

where the coefficients 𝑎𝑖 (𝑖 = 0, 1,… , 9) are constant and can be
determined by curve-fitting of experimental data in Vakiloroaya et al.
(2014). 𝑄𝑐,𝑖 is the summation of the sensible and latent heat loads in
room 𝑖.

The power consumption of the compressor 𝑃𝑐𝑜𝑚𝑝 is determined
by Wallace et al. (2012):

𝑃𝑐𝑜𝑚𝑝 =
𝑚
∑

𝑖=1

𝑚𝑟,𝑖(ℎ𝑟2,𝑖 − ℎ𝑟1,𝑖)
𝜂

, (9)

where 𝜂 is the combined total efficiency of the compressor (known
parameters).

The total electric power consumption 𝑃𝑡𝑜𝑡 of the multi-zone building
ME A/C system at time 𝑡 then is calculated as

𝑃𝑡𝑜𝑡 = 𝑃𝑐𝑜𝑛 + 𝑃𝑒𝑣𝑎 + 𝑃𝑐𝑜𝑚𝑝. (10)

2.4. PMV index

The PMV index was proposed by Fanger (1972) and is used as
a thermal comfort indicator. Fanger’s index quantifies thermal sensa-
tion experienced by numerous people. The sensation is represented
by a scale ranging from −3 (cold) to +3 (hot). The PMV index can
be determined by personal and environmental factors. The personal
factors consist of metabolic rate 𝑀𝑟 (W∕m2) and clothing insulating 𝐼𝑐𝑙
(m2◦C∕W). The environmental factors comprise air temperature 𝑇𝑧, air
humidity (or moisture content) 𝑊𝑧, air velocity 𝑣𝑎 and mean radiant
temperature 𝑇𝑟. The function of the conventional PMV index for a single
zone is depicted by

𝑃𝑀𝑉 = 𝑔(𝑇𝑧,𝑊𝑧, 𝑣𝑎,𝑀𝑟, 𝐼𝑐𝑙 , 𝑇𝑟), (11)

where the specific expression can be described in Fanger (1972).
Conventionally, the PMV index is an indicator of indoor air tempera-

ture and humidity (Castilla et al., 2011, 2014; Cigler et al., 2012; Freire,
Oliveira, & Mendes, 2008). The CO2 concentration, air temperature and
humidity have become three major indicators of thermal comfort and
IAQ. The separate control of the PMV index and CO2 concentration
was studied in Atthajariyakul and Leephakpreeda (2004) and Wang and
Jin (2000). However, three coupling effects of indoor air temperature,
humidity and CO2 concentration cannot be ignored in many cases. In
fact, indoor humidity was correlated with CO2 concentration according
to measurement results reported in Gladyszewska-Fiedoruk (2013).
Furthermore, the experimental investigation (Lin, Chiu, & Chen, 2015)
suggested that the value of the PMV index was affected by control of
the indoor CO2 concentration. To our best knowledge, very little work
exists in the literature that proposes mathematical equations among the
indoor air temperature, relative humidity and CO2 concentration. We
propose simplified mathematical equations such that the PMV index
includes indoor thermal comfort and CO2 concentration in this study.

𝑀𝑟 is the rate of metabolism, which denotes the amount of energy
used by a person per unit of time. From the study of Weir (1949), the
metabolic rate is directly related to a person’s energy output, which can
be expressed by calorie output per hour and a body’s surface area

𝑀𝑟 = 𝐾𝑝∕𝑆𝑝, (12)

where 𝐾𝑝 denoting a person’s heat output per hour is the calorie of 1L
of oxygen consumed, 𝑆𝑝 is the body surface area and can be expressed
as (Weir, 1949)

𝑆𝑝 = 0.007184𝐻0.725𝑊 0.425, (13)

where 𝐻 and 𝑊 are the height (cm) and weight (kg) of a person,
respectively. For 1L oxygen consumed, we have (Weir, 1949)

⎧

⎪

⎨

⎪

⎩

1𝐿 O2 consumed = 𝑎 + 𝑏 + 𝑐 = 1,
1𝐿 CO2 produced = 𝑅 = 𝑎 + 0.802𝑏 + 0.718𝑐,
𝐾𝑝 = 5.047𝑎 + 4.463𝑏 + 4.735𝑐,

(14)

where 𝑎 is the carbohydrate, 𝑏 denotes the protein and 𝑐 represents the
fat which is obtained by 1L of oxygen metabolizing. The third equation
of (14) can be reduced to the following one

𝐾𝑝 = 3.9 × L O2 used + 1.1 × L CO2 produced = 3.9 ∗ 𝑉𝑜 + 1.1 ∗ 𝐺, (15)

where 𝑉𝑜 is the amount of oxygen consumed per unit of hour (l/h). This
equation was widely cited and can be used for estimating the energy
expenditure, oxygen consumed and CO2 produced (Christensen, Frey,
Foenstelien, Aadland, & Refsum, 1983; Kinney, Morgan, Domingues, &
Gildner, 1964; Treuth, Adolph, & Butte, 1998).

Under normal conditions, when a body is at rest and in nutritional
equilibrium, the global respiratory ratio is 𝑚CO2

∕𝑚O2
= 0.83 as re-

ported in Djongyang, Tchinda, and Njomo (2010). Since this study
investigates thermal comfort and IAQ of offices, we assume 𝐺∕𝑉𝑜 =
0.83. One can then obtain

𝐾𝑝 =
481.3
83

∗ 𝐺, (16)

According to (12), one can obtain that the metabolic rate in human
metabolism of room 𝑖 denoted by 𝑀𝑟𝑖 has the following equation

𝑀𝑟𝑖 =
481.3
83𝑆𝑝𝑖

∗ 𝐺𝑖, 𝑖 = 1, 2,… , 𝑚. (17)

where 𝑆𝑝𝑖 is the body surface area of room 𝑖.
Based on the Eqs. (17) and (1f), 𝑀𝑟𝑖 under a steady state of the CO2

concentration in room 𝑖 can be expressed by

𝑀𝑟𝑖 =
481.3

83𝑆𝑝𝑖 ⋅ 𝑂𝑐𝑐𝑝𝑖
(𝑘𝑃 𝑣𝑓,𝑖 + 𝑘𝐼 ∫

𝑇𝐼

0
𝑣𝑓,𝑖d𝑠)(𝐶𝑐,𝑖 − 𝐶𝑠,𝑖), 𝑖 = 1, 2,… , 𝑚.

(18)

This equation implies that the metabolic rate can reflect indoor CO2
concentration produced.

Then the PMV𝑖 index is the function of the following variables:

𝑃𝑀𝑉𝑖 = 𝑔𝑖(𝑇𝑧,𝑖,𝑊𝑧,𝑖, 𝐶𝑐,𝑖, 𝑣𝑓,𝑖, 𝐼𝑐𝑙 , 𝑇𝑟), 𝑖 = 1, 2,… , 𝑚. (19)

It can be noted from this equation that the PMV index can be used as
an indicator of thermal comfort and IAQ of room 𝑖.

The Eq. (18) represents a condition under which the steady states
of the system are reached, i.e., there is a relationship between the
metabolic rate, CO2 concentration and air volumetric flow rate at
steady states. In fact, for the same activity of a person, his respiratory
change is determined by the indoor air temperature or/and humidity.
A person’s metabolic rate is directly reflected by a respiratory change.
The high or low temperature or/and humidity can cause the occupant
to breathe out either more or less CO2, thus the indoor air temperature
or/and humidity can influence the metabolic rate. On the other hand,
the air volumetric flow rate determines the indoor air temperature and
humidity and their eventual steady states. Therefore, the air volumetric
flow rate is indirectly related to the metabolic rate.

Remark 3. Most previous works used the PMV index as a thermal
comfort indicator. From function (19), it can be seen that the modified
PMV index has been extended and used as an indicator of both thermal
comfort and IAQ in the normal office buildings.

2.5. Constraints

The multi-zone building ME A/C system is subject to thermal com-
fort and IAQ constraints, and cooling operational constraints are de-
fined as below.
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(C1) PMV𝑖 ∈ [PMV𝑖,PMV𝑖], 𝑖 = 1, 2,… , 𝑚. Each room’s thermal
comfort and IAQ are within the comfort ranges.

(C2) 𝛿 ∈ [𝛿, 𝛿). The upper and lower bounds limit the ratio of the
outside air entering the system.

(C3) 𝑇𝑧,𝑖 ∈ [𝑇 𝑧,𝑖, 𝑇 𝑧,𝑖], 𝑊𝑧,𝑖 ∈ [𝑊 𝑧,𝑖,𝑊 𝑧,𝑖], 𝐶𝑐,𝑖 ∈ [𝐶𝑐,𝑖, 𝐶𝑐,𝑖], 𝑖 =
1, 2,… , 𝑚. Each room’s air temperature, moisture content and CO2
concentration are within the required ranges for occupants in the
cooling mode.

(C4) 𝑇𝑠,𝑖 ∈ [𝑇 𝑠,𝑖, 𝑇 𝑠,𝑖], 𝑊𝑠,𝑖 ∈ [𝑊 𝑠,𝑖,𝑊 𝑠,𝑖], 𝑖 = 1, 2,… , 𝑚. The bounds
of the air temperature and moisture leaving the DX evaporator are
limited because of the physical characteristics of the coils and the air
cooling coils of the DX evaporators. Besides, the upper bounds 𝑇 𝑠,𝑖 and
𝑊 𝑠,𝑖 are less than 𝑇𝑧,𝑖 and 𝑊𝑧,𝑖 respectively since they are used for
cooling and dehumidifying of each room. The bound of the air enthalpy
ℎ𝑠,𝑖 satisfies: ℎ𝑠,𝑖 ∈ [𝐶𝑧𝑇 𝑠,𝑖 + ℎ𝑓𝑔𝑊 𝑠,𝑖, 𝐶𝑎𝑇 𝑠,𝑖 + ℎ𝑓𝑔𝑊 𝑠,𝑖].

(C5) ∑𝑚
𝑖=1 𝑣𝑓,𝑖𝑇𝑠,𝑖 ≤

∑𝑚
𝑖=1 𝑣𝑓,𝑖𝑇𝑚𝑖𝑥,

∑𝑚
𝑖=1 𝑣𝑓,𝑖𝑊𝑠,𝑖 ≤

∑𝑚
𝑖=1 𝑣𝑓,𝑖𝑊𝑚𝑖𝑥. The

mixed air temperature and moisture content after each DX evaporator
can only decrease.

(C6) 𝑇𝑑,𝑖 ≤ 𝑇𝑚𝑖𝑥, 𝑇𝑤,𝑖 ≤ 𝑇𝑑,𝑖, 𝑊𝑠,𝑖 ≤ 𝑊𝑚𝑖𝑥, 𝑖 = 1, 2,… , 𝑚.
Air temperature and moisture content after each DX dry-cooling and
wet-cooling regions can only decrease, respectively.

(C7) 𝑣𝑓,𝑖 ∈ [𝑣𝑓,𝑖, 𝑣𝑓,𝑖], 𝑚𝑟,𝑖 ∈ [𝑚𝑟,𝑖, 𝑚𝑟,𝑖], 𝑖 = 1, 2,… , 𝑚. The upper
bounds of the air volumetric flow rate 𝑣𝑓,𝑖 and the mass flow rate of
refrigerant 𝑚𝑟,𝑖 of each room are limited by the physical characteristics
of the multi-zone building ME A/C system. The lower bounds 𝑣𝑓,𝑖 > 0
and 𝑚𝑟,𝑖 > 0 are matched minimum operation and ventilation demands.

The constraints in (C1)–(C7) are compactly written as

𝑥𝑖 ∈ X, 𝑢𝑖 ∈ U, ℎ1,𝑖(𝑥𝑖, 𝑢𝑖) ≤ 0, ℎ2,𝑖(𝑥𝑖) ≤ 0 and 𝑃𝑀𝑉𝑖 ∈ F,

𝑖 = 1, 2,… , 𝑚.
(20)

where X, U, P and F are bounded sets, ℎ1,𝑖(𝑥𝑖, 𝑢𝑖) and ℎ2,𝑖(𝑥𝑖) can
be written as functions of the state and input variables, where they
correspond to constraints in (C5) and (C6).

3. Controller design

To facilitate the description of the proposed AHDC strategy for the
nonlinear systems (5), the notation 𝑢 will be used for the upper layer
control and 𝑙 will be used for the lower layer DMPC. We will abbreviate
the upper layer open loop controller to UOPC while the lower layer
DMPC as LDMPC for short. 𝑡𝑢𝑘 denotes the sampling time instant of
the UOPC and 𝑡𝑙𝑘 represents that of the lower level DMPC; assume
𝑐(𝑘, 𝑞) ≜ 𝑘𝑀+𝑞, where 𝑀 is a positive integer number corresponding to
the number of sampling instants of the LDMPC between two sampling
instants of the UOPC; 𝑡𝑢𝑘 ≜ 𝑡𝑙𝑐(𝑘,0); 𝛿𝑢 ≜ 𝑡𝑢𝑘+1 − 𝑡𝑢𝑘 and 𝛿𝑙 ≜ 𝑡𝑙𝑘+1 − 𝑡𝑙𝑘
denote the sampling period of the UOPC and LDMPC, respectively;
𝛿𝑢 = 𝑀𝛿𝑙. 𝑇 𝑙 denotes the prediction horizon of the LDMPC, which
satisfies 𝛿𝑢 ≥ 𝑇 𝑙.

Throughout the rest of this paper, we denote the long-term scale
horizon as [0, 𝐾𝑢], and 𝐾𝑢 = 𝑛𝛿𝑢 (𝑛 ∈ 𝑁+). Fig. 2 shows the time index
of the two layers and that the upper layer sends information to the
lower layer.

3.1. Upper level: steady state optimization problem

In reality, each zone has desired air temperature, humidity and CO2
concentration, the reference points of which are determined by users.
The objective of the upper layer considered in this paper is to minimize
the total electricity bills in the building, which reflect demand and
energy costs under the TOU rate structure, and to generate optimal
reference points of air temperature, humidity and CO2 concentration

Fig. 2. Simplified schematic of two-layer time index.

for each zone for the lower layer. More specifically, we consider the
following centralized steady-state optimization problem:

𝑋∗(𝑡𝑢𝑘) = arg min𝑥(𝑡𝑢𝑘),𝑢(𝑡
𝑢
𝑘)

(

𝑚
∑

𝑖=1

[

𝑤1

𝑛
∑

𝑘=1

(

𝐸𝑐 (𝑡𝑢𝑘)𝑃𝑡𝑜𝑡,𝑖(𝑡𝑢𝑘)𝛿
𝑢)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
energy cost

+𝑤2
(

𝐷𝑐 (𝑡𝑢𝑘)max1≤𝑘≤𝑛
{

𝑃𝑡𝑜𝑡,𝑖(𝑡𝑢𝑘)
})

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
demand cost

)

,

(21a)

subject to the following constraints:

𝑓𝑖(𝑥𝑖(𝑡𝑢𝑘), 𝑥−𝑖(𝑡
𝑢
𝑘), 𝑢𝑖(𝑡

𝑢
𝑘), 𝜔𝑖(𝑡𝑢𝑘)) = 0, 𝑖 = 1, 2,… , 𝑚, (21b)

|𝑃𝑀𝑉𝑖(𝑡𝑢𝑘)| ≤ 𝛼, 𝑖 = 1, 2,… , 𝑚, (21c)

𝑥𝑖(𝑡𝑢𝑘) ∈ X𝑖, 𝑢𝑖(𝑡𝑢𝑘) ∈ U𝑖, ℎ1,𝑖(𝑥𝑖(𝑡𝑢𝑘), 𝑢𝑖(𝑡
𝑢
𝑘)) ≤ 0, ℎ2,𝑖(𝑥𝑖(𝑡𝑢𝑘)) ≤ 0,

𝑖 = 1, 2,… , 𝑚,
(21d)

where 𝑡𝑢𝑘 ∈ [0, 𝐾𝑢], 𝑥(𝑡𝑢𝑘) = [𝑥1(𝑡𝑢𝑘),… , 𝑥𝑚(𝑡𝑢𝑘)]
𝑇 is the system state, 𝑢(𝑡𝑢𝑘) =

[𝑢1(𝑡𝑢𝑘),… , 𝑢𝑚(𝑡𝑢𝑘)]
𝑇 is the control input. The total energy consumption

𝑃𝑡𝑜𝑡 is expressed in (10) and the PMV function is described in (19).
Constant 𝛼 is the comfort bounded of the value of the PMV index. 𝐸𝑐 (𝑡𝑢𝑘)
is the TOU electricity rate at time step 𝑡𝑢𝑘, and 𝐷𝑐 (𝑡𝑢𝑘) is the demand
charge rate at time step 𝑡𝑢𝑘. 𝑤𝑖 (𝑖 = 1, 2) denote the positive weighting
factors and 𝑓𝑖(𝑥𝑖(𝑡𝑢𝑘), 𝑥−𝑖(𝑡

𝑢
𝑘), 𝑢𝑖(𝑡

𝑢
𝑘), 𝜔𝑖(𝑡𝑢𝑘)) are defined in (6). 𝑋∗(𝑡𝑢𝑘) is a

global optimal solution of the optimization problem (21).
Before investigating the distributed steady state optimization prob-

lem, we make an assumption on the system model.

Assumption 1. The optimal problem (21) admits a solution, of which
the steady state of temperature, humidity and CO2 concentration for
each zone are approximately the same.

This assumption is valid in many practical situations where the
different zones serve the same functions and purposes; for example
in an office environment, the comfort requirements are subject to the
same standards, ambient conditions and energy regulatory and pricing
structure and are therefore normally the same.

This assumption may not hold in cases where buildings have differ-
ent functional zones such as offices and ancillary equipment spaces.
The similar algorithms can be extended to the cases when different
functional zones can be grouped into homogeneous ones.

Secondly, under a steady state, the total heat gain from neighboring
zones is sometimes less dominant compared with that from the outside
plus the indoor heat gain in every zone. As reported in Mei et al. (2018),
the TOU rate structure is also the main factor to dominate the steady
state optimization solutions. Therefore, in the optimization problem
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(21), we can ignore the interacting terms 𝛴𝑚
𝑗=1,𝑗≠𝑖

𝑇𝑧,𝑗−𝑇𝑧,𝑖
𝑅𝑖𝑗

in (1a) or

𝛴𝑚
𝑗=1,𝑗≠𝑖

𝑇𝑧,𝑗−𝑇𝑧,𝑖
𝑅𝑖𝑗

in (21b). Thereby, a simplified optimization problem

(22) is considered for one zone 𝑖 only as follows:

𝑋𝑟
𝑖 (𝑡

𝑢
𝑘) = arg min𝑥𝑖(𝑡𝑢𝑘),𝑢𝑖(𝑡

𝑢
𝑘)

(

𝑤1

𝑛
∑

𝑘=1

(

𝐸𝑐 (𝑡𝑢𝑘)𝑃𝑡𝑜𝑡,𝑖(𝑡𝑢𝑘)𝛿
𝑢)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
energy cost

+𝑤2(𝐷𝑐 (𝑡𝑢𝑘)max1≤𝑘≤𝑛
{

𝑃𝑡𝑜𝑡,𝑖(𝑡𝑢𝑘)
}

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

demand cost

)

,

(22a)

subject to the following constraints:

𝑓𝑖(𝑥𝑖(𝑡𝑢𝑘), 𝑢𝑖(𝑡
𝑢
𝑘), 𝜔𝑖(𝑡𝑢𝑘)) = 0, (22b)

|𝑃𝑀𝑉𝑖(𝑡𝑢𝑘)| ≤ 𝛼, (22c)

𝑥𝑖(𝑡𝑢𝑘) ∈ X𝑖, 𝑢𝑖(𝑡𝑢𝑘) ∈ U𝑖, ℎ1,𝑖(𝑥𝑖(𝑡𝑢𝑘), 𝑢𝑖(𝑡
𝑢
𝑘)) ≤ 0, ℎ2,𝑖(𝑥𝑖(𝑡𝑢𝑘)) ≤ 0, (22d)

where 𝑡𝑢𝑘 ∈ [0, 𝐾𝑢], 𝑋𝑟
𝑖 (𝑡

𝑢
𝑘) is a local optimal solution, and 𝑖 means that

the optimization problem (22) only needs the measurement information
of room 𝑖. Here, 𝑓𝑖(𝑥𝑖, 𝑢𝑖, 𝜔𝑖) is described by

𝑓𝑖(𝑥𝑖, 𝑢𝑖, 𝜔𝑖)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛼𝑤𝑐,𝑖𝐴2,𝑖(𝑇𝑤,𝑖−
𝑇𝑑,𝑖+𝑇𝑠,𝑖

2 )+ℎ𝑓𝑔𝜌𝑣𝑓,𝑖(𝑊𝑚𝑖𝑥−
ℎ𝑠,𝑖−𝐶𝑎𝑇𝑠,𝑖

ℎ𝑓𝑔
)+𝐶𝑎𝜌𝑣𝑓,𝑖(𝑇𝑑,𝑖−𝑇𝑠,𝑖)

𝜌𝑉ℎ2,𝑖
𝑇0−𝑇𝑧,𝑖

𝑅𝑖
+𝐶𝑎𝜌𝑣𝑓,𝑖(𝑇𝑠,𝑖−𝑇𝑧,𝑖)+𝑄𝑙𝑜𝑎𝑑,𝑖

𝐶𝑎𝜌𝑉𝑖
𝐶𝑎𝜌𝑣𝑓,𝑖(𝑇𝑚𝑖𝑥−𝑇𝑑,𝑖)+𝛼𝑑𝑐,𝑖𝐴1,𝑖(𝑇𝑤,𝑖−

𝑇𝑚𝑖𝑥+𝑇𝑑,𝑖
2 )

𝐶𝑎𝜌𝑉ℎ1,𝑖
𝛼𝑑𝑐,𝑖𝐴1,𝑖(

𝑇𝑚𝑖𝑥+𝑇𝑑,𝑖
2 −𝑇𝑤,𝑖)+𝛼𝑤𝑐,𝑖𝐴2,𝑖(

𝑇𝑑,𝑖+𝑇𝑠,𝑖
2 −𝑇𝑤,𝑖)−(ℎ𝑟2,𝑖−ℎ𝑟1,𝑖)𝑚𝑟,𝑖

𝐶𝑤,𝑖𝜌𝑤,𝑖𝑉𝑤,𝑖

𝜌𝑣𝑓,𝑖(
ℎ𝑠,𝑖−𝐶𝑎𝑇𝑠,𝑖

ℎ𝑓𝑔
−𝑊𝑧,𝑖)+𝑀𝑙𝑜𝑎𝑑,𝑖

𝜌𝑉𝑖
(𝑘𝑃 𝑣𝑓,𝑖+𝑘𝐼 ∫

𝑇𝐼
0 𝑣𝑓,𝑖d𝑠)(𝐶𝑠,𝑖−𝐶𝑐,𝑖)+𝐺𝑖⋅𝑂𝑐𝑐𝑝𝑖

𝑉𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(23)

We have five important remarks for the optimization problem (22).

• In (22a), the term regarding the end-user services contains two
parts, i.e., the energy cost of the multi-zone building ME A/C
system given by ∑𝑛

𝑘=1
[

𝐸𝑐 (𝑡𝑢𝑘)𝑃𝑡𝑜𝑡,𝑖(𝑡𝑢𝑘)𝛿
𝑢] (weighted by 𝑤1) aims to

minimize energy cost, the peak demand 𝐷𝑐 (𝑡𝑢𝑘)max1≤𝑘≤𝑛
{

𝑃𝑡𝑜𝑡,𝑖(𝑡𝑢𝑘)
}

(weighted by 𝑤2) aims to reduce demand cost.
• The weighting factors 𝑤1 and 𝑤2, which are determined by users,

are to balance the two objectives. Specifically, if preferring more
demand reduction, they can increase 𝑤2 and decrease 𝑤1 and vice
versa.

• It can be seen in (22a) that the energy and demand rates 𝐸𝑐 (𝑡𝑢𝑘)
and 𝐷𝑐 (𝑡𝑢𝑘) depend on the TOU. The rate structures are determined
by utilities for various types of customers. For some rate plans,
customers have the flexibility to choose peak periods so that
they can save cost by optimizing energy use during specific time
periods.

• This steady state optimization problem is different from our pre-
vious work (Mei & Xia, 2017a; Mei et al., 2018). In Mei and Xia
(2017a), an open loop optimal control algorithm was proposed to
minimize energy consumption by setting temperature, humidity
and CO2 concentration. In Mei et al. (2018), an open loop steady
state optimal control algorithm is autonomously and adaptively
setting optimal temperature, humidity and CO2 concentration
references, which could be time-varying to minimize energy cost
and the PMV index. This study proposes an open loop optimal
controller that minimizes the energy and demand charge costs
under the PMV index within acceptable ranges. It reaches the
same conclusions as Mei et al. (2018) in scheduling the reference

setpoints. On the other hand, this study considers a DR action,
which can further improve energy efficiency and reduce energy
cost, it is different from our previous work (Mei & Xia, 2017a;
Mei et al., 2018) without consideration of that action.

• The optimal solution applies to one zone, and the resulting ref-
erence setpoints are then communicated to the whole network
through connecting neighbors. Therefore, the scheduling is im-
plementable in a distributed manner.

The ADSMS is a hierarchical distributed way that aims at achieving
energy and cost savings in ME A/C operations without compromising
occupancy comfort levels. The information communication for the
simplified ADSMS is illustrated in Fig. 3. The idea here is to consider
comfort as a service for occupants. The zones (using zone modules
(ZMs)) are customers seeking this service (called token), and a distri-
bution system operator (DSO) is the service provider (called provider).
There are four steps in the ADSMS that are explained in the following:

(1) Master: The DSO collects one zone’s measurement information
(cooling and pollutant loads, weather and occupancy), then computes
and transmits optimal reference signals to this zone by a communica-
tion network.

(2) Slave: The neighboring zones receive communication informa-
tion using numerous ZMs from the driving system. Then neighboring
zones then communicate to whole zones through connecting neighbors.

(3) Token requests: The main aim of the ZM is to run an MPC using
forecast information (weather condition, occupancy and cooling and
pollutant loads) plus sensor readings (temperature and humidity, ther-
mostat and CO2 sensors) to compute the minimal energy consumption
and cost required without breaching comfort ranges.

(4) Coordination: After each room receives communication informa-
tion, each DX unit employs a DMPC algorithm to optimize the transient
process of reaching thermal comfort and satisfying IAQ demands while
minimize energy consumption and costs.

Remark 4. For ease of implementation, the min–max problem in (22a)
is converted into the standard nonlinear programming described below
so that it can be conveniently solved by the Matlab built-in functions.
A new variable 𝑧𝑃 is introduced to represent the peak demand of the
day for zone 𝑖 only as follows:

𝑧𝑃 ,𝑖 = max1≤𝑘≤𝑛
{

𝑃𝑡𝑜𝑡,𝑖(𝑡𝑢𝑘)
}

. (24)

By simplifying the objective to the form in (25), the optimization
problem in (22a) can be rewritten as

min
(

𝑤1

𝑛
∑

𝑘=1
𝐸𝑐 (𝑡𝑢𝑘)𝑃𝑡𝑜𝑡,𝑖(𝑡𝑢𝑘)𝛿

𝑢 +𝑤2𝐷𝑐 (𝑡𝑢𝑘)𝑧𝑃 ,𝑖
)

. (25)

3.2. Lower level: DMPC

To conclude, the goal of the lower layer is to design the tracking
rule 𝑢(𝑡𝑢𝑘) in a distributed way so that each subsystem of (5) can reach
its steady states according to the changing environment during the day.

The UOPC transmits the reference signals, 𝑥𝑟(𝑠; 𝑡𝑢𝑘) = [𝑥𝑟1(𝑠; 𝑡
𝑢
𝑘),… ,

𝑥𝑟𝑚(𝑠; 𝑡
𝑢
𝑘)]

𝑇 , 𝑢𝑟(𝑠; 𝑡𝑢𝑘) = [𝑢𝑟1(𝑠; 𝑡
𝑢
𝑘),… , 𝑢𝑟𝑚(𝑠; 𝑡

𝑢
𝑘)]

𝑇 , 𝑇 𝑟
𝑠,𝑖(𝑠; 𝑡

𝑢
𝑘), 𝛿(𝑠; 𝑡

𝑢
𝑘), to the

LDMPC for 𝑠 ∈ [𝑡𝑢𝑘, 𝑡
𝑢
(𝑘+1)), 𝑖 = 1, 2,… , 𝑚. Here, 𝑥𝑟(𝑡𝑢𝑘) ≜ 𝑥𝑟(𝑡𝑢𝑘; 𝑡

𝑢
𝑘). In

the lower layer, the DMPC controllers are designed to steer for the
multi-zone building ME A/C system to track the trajectory references
calculated by the upper layer. The linearized dynamic subsystem 𝑆𝑖 for
the nonlinear systems (5) around the trajectory references at sampling
time instant 𝑡𝑙𝑐(𝑘,𝑞) can be written as given below. In (26), the interacting
terms in non-neighboring zone are ignored because of our definition of
neighbors in (4).
{

𝛿�̇�𝑖(𝑠) = 𝐴𝑖𝑖(𝑡𝑙𝑐(𝑘,𝑞))𝛿𝑥𝑖(𝑠) +
∑

𝑗∈𝑖
𝐴𝑖𝑗 (𝑡𝑙𝑐(𝑘,𝑞))𝛿𝑥𝑗 (𝑠) + 𝐵𝑖(𝑡𝑙𝑐(𝑘,𝑞))𝛿𝑢𝑖(𝑠),

𝑦𝑖(𝑠) = 𝐶𝑖𝑖𝛿𝑥𝑖(𝑠) + 𝑦𝑟𝑖 (𝑠), 𝑠 ∈ [𝑡𝑙𝑐(𝑘,𝑞), 𝑡
𝑙
𝑐(𝑘,𝑞) + 𝑇 𝑙), 𝑖 = 1, 2,… , 𝑚,

(26)

where 𝐴𝑖𝑖(𝑡𝑙𝑐(𝑘,𝑞)) = 𝜕𝑓𝑖
𝜕𝑥𝑖

(𝑥𝑟𝑖 (𝑡
𝑙
𝑐(𝑘,𝑞)), 𝑢

𝑟
𝑖 (𝑡

𝑙
𝑐(𝑘,𝑞))), 𝐴𝑖𝑗 (𝑡𝑙𝑐(𝑘,𝑞)) = 𝜕𝑓𝑖

𝜕𝑥𝑗
(𝑥𝑟𝑗 (𝑡

𝑙
𝑐(𝑘,𝑞)),

𝑢𝑟𝑗 (𝑡
𝑙
𝑐(𝑘,𝑞))), 𝐵𝑖(𝑡𝑙𝑐(𝑘,𝑞)) = 𝜕𝑓𝑖

𝜕𝑢𝑖
(𝑥𝑟𝑖 (𝑡

𝑙
𝑐(𝑘,𝑞)), 𝑢

𝑟
𝑖 (𝑡

𝑙
𝑐(𝑘,𝑞))) for 𝑗 ∈ 𝑖. 𝛿𝑥𝑖(𝑠) and
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Fig. 3. Autonomous demand-side management scheduling architecture.

Fig. 4. Schematic of six-rooms building with the thermal network for all zones and its
surrounding walls.

𝛿𝑢𝑖(𝑠) are the deviations of state and input from their trajectory ref-
erences, respectively; 𝑦𝑖 = [𝑇𝑧,𝑖,𝑊𝑧,𝑖, 𝐶𝑐,𝑖]𝑇 are the original output
variables; 𝑦𝑟𝑖 = [𝑇 𝑟

𝑧,𝑖,𝑊
𝑟
𝑧,𝑖, 𝐶

𝑟
𝑐,𝑖]

𝑇 are the trajectory references in the lower
layer, which are calculated in the upper layer.

The predicted subsystem 𝑆𝑖 can be written as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝛿�̇�𝑝𝑖 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞)) = 𝐴𝑖𝑖(𝑠; 𝑡𝑙𝑐(𝑘,𝑞))𝛿𝑥

𝑝
𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞))

+
∑

𝑗∈𝑖 𝐴𝑖𝑗 (𝑡𝑙𝑐(𝑘,𝑞))𝛿𝑥𝑗 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞))+

𝐵𝑖(𝑠; 𝑡𝑙𝑐(𝑘,𝑞))𝛿𝑢
𝑝
𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)),

𝑦𝑝𝑖 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞)) = 𝐶𝑖𝑖𝛿𝑥

𝑝
𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)) + 𝑦𝑟𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)), 𝑠 ∈ [𝑡𝑙𝑐(𝑘,𝑞), 𝑡

𝑙
𝑐(𝑘,𝑞) + 𝑇 𝑙),

𝑖 = 1, 2,… , 𝑚,

(27)

where 𝛿𝑥𝑝𝑖 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞)), 𝛿𝑢

𝑝
𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)) and 𝑦𝑝𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)) are the predicted state,

input and output trajectories at time step 𝑡𝑙𝑐(𝑘,𝑞), 𝛿𝑥𝑗 (𝑠; 𝑡𝑙𝑐(𝑘,𝑞)) is the
assumed state sequence of 𝑆𝑖 at time step 𝑡𝑙𝑐(𝑘,𝑞).

The MPC algorithm is designed for the lower layer to minimize the
optimization objective after reaching trajectory references as well as to
handle building external disturbances and to compensate for the model
mismatch. Let

𝛿𝑢𝑝𝑖 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞)) = −

∑

𝑗∈𝑖

𝐾𝑗 (𝑠; 𝑡𝑙𝑐(𝑘,𝑞))𝛿𝑥𝑗 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞)) + 𝑣𝑝𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)),

𝑠 ∈ [𝑡𝑙𝑐(𝑘,𝑞), 𝑡
𝑙
𝑐(𝑘,𝑞) + 𝑇 𝑙),

(28)

where 𝑖 = 1, 2,… , 𝑚, 𝐾𝑗 (𝑠; 𝑡𝑙𝑐(𝑘,𝑞)) is the gain matrix from zone 𝑗,
𝑣𝑖(𝑠; 𝑡𝑙𝑐(𝑘,𝑞)) is a new input variable for zone 𝑖, then (27) is converted
to (29) as follows:

⎧

⎪

⎨

⎪

⎩

𝛿�̇�𝑝𝑖 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞)) = 𝐴𝑖𝑖(𝑠; 𝑡𝑙𝑐(𝑘,𝑞))𝛿𝑥

𝑝
𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)) + 𝐵𝑖(𝑡𝑙𝑐(𝑘,𝑞))𝑣

𝑝
𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)),

𝑦𝑝𝑖 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞)) = 𝐶𝑖𝑖𝛿𝑥

𝑝
𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)) + 𝑦𝑟𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)), 𝑠 ∈ [𝑡𝑙𝑐(𝑘,𝑞), 𝑡

𝑙
𝑐(𝑘,𝑞) + 𝑇 𝑙),

𝑖 = 1, 2,… , 𝑚.

(29)

93



J. Mei and X. Xia Control Engineering Practice 90 (2019) 85–100

Many standard approaches exist in Ma et al. (2011) and Scherer
et al. (2014) for the system (29), which depends entirely on one zone 𝑖.
In this paper, we are using the MPC strategy proposed by our previous
work (Mei et al., 2018), then the proposed optimization objective is
given by

min𝑣𝑝𝑖 (𝑠;𝑡
𝑙
𝑐(𝑘,𝑞))

𝐽
𝑙
𝑖 = ∫

𝑡𝑙𝑐(𝑘,𝑞)+𝑇
𝑙

𝑡𝑙𝑐(𝑘,𝑞)

(

‖

‖

‖

𝑦𝑝𝑖 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞)) − 𝑦𝑟𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞))

‖

‖

‖

2

𝑄𝑖

+ ‖

‖

‖

𝑣𝑝𝑖 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞))

‖

‖

‖

2

𝑅𝑖

)

𝑑𝑠

+ ‖

‖

‖

𝑦𝑝𝑖 (𝑡
𝑙
𝑐(𝑘,𝑞) + 𝑇 𝑙; 𝑡𝑙𝑐(𝑘,𝑞)) − 𝑦𝑟𝑖 (𝑡

𝑙
𝑐(𝑘,𝑞) + 𝑇 𝑙)‖‖

‖

2

𝑃𝑖
,

𝑖 = 1, 2,… , 𝑚,

(30a)

subject to:

𝛿�̇�𝑝𝑖 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞)) = 𝐴𝑖𝑖(𝑠; 𝑡𝑙𝑐(𝑘,𝑞))𝛿𝑥

𝑝
𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)) + 𝐵𝑖(𝑠; 𝑡𝑙𝑐(𝑘,𝑞))𝑣

𝑝
𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)),

𝑖 = 1, 2,… , 𝑚,
(30b)

𝑦𝑝𝑖 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞)) = 𝐶𝑖𝑖𝛿𝑥

𝑝
𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)) + 𝑦𝑟𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)), 𝑖 = 1, 2,… , 𝑚, (30c)

𝑥𝑝𝑖 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞)) ∈ X, 𝑣𝑝𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)) ∈ V, 𝑖 = 1, 2,… , 𝑚, (30d)

where 𝑠 ∈ [𝑡𝑙𝑐(𝑘,𝑞), 𝑡
𝑙
𝑐(𝑘,𝑞) + 𝑇 𝑙), 𝐽

𝑙
𝑖 is the lower layer objective function 𝑖,

the controllers 𝛿𝑢𝑝𝑖 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞)) obtained are distributed. 𝑄𝑖, 𝑅𝑖, 𝑃𝑖 are the

weighting matrix, V is a bounded set of the new input variable 𝑣𝑖. The
convergence for the above finite horizon periodic MPC optimization
problem (30) can be proved by the results in Xia, Zhang, and Elaiw
(2011) and Zhang and Xia (2011).

The implementation strategy of the proposed AHDC algorithms for
a multi-zone building ME A/C system can be summarized as follows:

The algorithm 1 in our previous work (Mei et al., 2018) is adopted
to solve the upper layer distributed steady state optimization problem.

Algorithm: The lower layer DMPC algorithm can be given below.
(1) At sampling time instant 𝑡𝑢𝑘, 𝑘 = 0, 1,… , 𝑛, UOPC receives each

local neighbor’s measurement information.
(2) UOPC computes the state trajectory 𝑥𝑟(𝑠; 𝑡𝑢𝑘) = [𝑥𝑟1(𝑠; 𝑡

𝑢
𝑘),… ,

𝑥𝑟𝑚(𝑠; 𝑡
𝑢
𝑘)]

𝑇 , 𝑠 ∈ [𝑡𝑢𝑘, 𝑡
𝑢
𝑘+1) and its corresponding control input trajectory

𝑢𝑟(𝑠; 𝑡𝑢𝑘) = [𝑠; 𝑢𝑟1(𝑡
𝑢
𝑘),… , 𝑢𝑟𝑚(𝑠; 𝑡

𝑢
𝑘)], 𝑠 ∈ [𝑡𝑢𝑘, 𝑡

𝑢
𝑘+1), which are transmitted to

LDMPC, to obtain linearized systems (29).
(3) At sampling time instant 𝑡𝑙𝑐(𝑘,𝑞), LDMPC𝑖 receives the state mea-

surement 𝑥𝑖(𝑠; 𝑡𝑙𝑐(𝑘,𝑞)) and 𝑥−𝑖(𝑠, 𝑡𝑙𝑐(𝑘,𝑞)) from its neighbors, gives an ini-
tial point 𝑥𝑖(0) (𝑘 = 𝑞 = 0) and computes the optimal control in-
put 𝑣∗𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)) of the optimization problems (30) over the prediction

horizon [𝑡𝑙𝑐(𝑘,𝑞), 𝑡
𝑙
𝑐(𝑘,𝑞) + 𝑇 𝑙].

(4) The first solution 𝑣∗𝑖 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞)) is used through (28) to update

𝛿𝑢𝑝𝑖 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞)) as the initial condition over the next prediction horizon

[𝑡𝑙𝑐(𝑘,𝑞+1), 𝑡
𝑙
𝑐(𝑘,𝑞) + 𝛿𝑙].

(5) If 0 ≤ 𝑞 < 𝑀, 𝑞 = 𝑞 + 1 and go to (3); else 𝑘 = 𝑘 + 1, 𝑞 = 0 and
go to (1).

4. Case study

In this section, a six-room model is considered to simulate the per-
formance of the proposed AHDC strategy in special climate conditions
in Cape Town, South Africa. The simulations are conducted during
normal operation of an office building with normal occupancy. The six
rooms are connected and the undirected graph is  = { ,} where
 = {1, 2, 3, 4, 5, 6} and 𝜀0 = 5. 𝑅12 = 𝑅21 = 𝑅23 = 𝑅32 = 𝑅34 = 𝑅43 =
𝑅45 = 𝑅54 = 𝑅56 = 𝑅65 = 𝑅61 = 𝑅16 = 4 < 𝜀0, 𝑅13 = 𝑅31 = 𝑅24 =
𝑅42 = 𝑅35 = 𝑅53 = 𝑅46 = 𝑅64 = 𝑅51 = 𝑅15 = 𝑅62 = 𝑅26 = 8 > 𝜀0,
𝑅14 = 𝑅41 = 𝑅25 = 𝑅52 = 𝑅36 = 𝑅63 = 12 > 𝜀0, then the neighbors of
zone 𝑖 are depicted in Table 1. As an illustrating example, Fig. 4 shows
the schematic of a six-room building with the thermal network. It can
be verified that the network is connected.

Table 1
The neighborhood definition of zones.

Room (𝑖) Neighbors (𝑖) Room (𝑖) Neighbors (𝑖)

1 2,6 2 1,3
3 2,4 4 3,5
5 4,6 6 5,1

Table 2
Model parameters of the ME A/C system.

Notations Values Notations Values

𝜌 1.2 kg∕m3 ℎ𝑓𝑔 2450 kJ∕kg
𝑉𝑖 77 m3 𝜀𝑤𝑖𝑛 0.45
𝑉ℎ1 0.04 m3 𝑉ℎ2 0.16 m3

𝑘𝑠𝑝𝑙 0.0251 kJ∕m3 𝐶𝑎 1.005 kJ kg−1 ◦C−1

𝐴0,𝑖 22.07 m3 𝑅𝑖 15 ◦C/kW

Table 3
Coefficients of energy models.

Notations Values Notations Values

𝑎0 = 900.5 𝑎1 = −8.1 𝑎2 = 6.18 𝑎3 = −0.15
𝑎4 = −4.61 𝑎5 = 0.02 𝑎6 = −0.2 𝑎7 = 0.01
𝑎8 = 0.12 𝑎9 = 0.09 𝑐0 = 138.1 𝑐1 = 0.52
𝑐2 = −2.3

Table 4
Values of system constraints.

Notations Values Notations Values

𝑇 𝑠,𝑖 22 ◦C 𝑇 𝑠,𝑖 8 ◦C
𝑇 𝑧,𝑖 26 ◦C 𝑇 𝑧,𝑖 22 ◦C
𝑇 𝑑,𝑖 22 ◦C 𝑇 𝑑,𝑖 10 ◦C
𝑇𝑤,𝑖 22 ◦C 𝑇𝑤,𝑖 10 ◦C
𝑊 𝑧,𝑖 12.3/1000 kg/kg 𝑊 𝑧,𝑖 9.85/1000 kg/kg
𝐶𝑐,𝑖 800 ppm 𝐶𝑐,𝑖 650 ppm
𝑊 𝑠,𝑖 9.85/1000 kg/kg 𝑊 𝑠,𝑖 7.85/1000 kg/kg
𝑣𝑓,𝑖 0.8 m3/s 𝑣𝑓,𝑖 0.05 m3/s
𝑚𝑟,𝑖 0.11 kg/s 𝑚𝑟,𝑖 0.005 kg/s
ℎ𝑠,𝑖 46.3 kJ/kg ℎ𝑠,𝑖 27.3 kJ/kg
𝛼 0.5

4.1. Parameter selection

The volume of each room space is 77 m3. The model parameters
of the multi-zone building ME A/C system are given in Table 2. The
coefficients of the power consumption models for the condenser (7)
and evaporators (8) are calibrated through the regression analysis of
the available measured data in Vakiloroaya et al. (2014), which are
shown in Table 3. It is assumed that the combined total efficiency of
the compressor 𝜂 is 0.85. Each room has a window with the area of
4 m2. For the proposed AHDC strategy considered below, the system
variable constraints are given by bounds in Table 4, and we constrain
the value of each room’s PMV index in the range of [−0.5, 0.5] to ensure
that the multi-zone building ME A/C system is able to control each
room’s thermal comfort and IAQ at the required levels for occupants.
The weighting factors are defined as 𝑤1 = 1, 𝑤2 = 1. In our previous
work (Mei et al., 2018), the simulation results demonstrated that the
open loop optimal controller and the MPC scheme are not sensitive
to the model parameters 𝐴1 and 𝐴2 of the single-zone DX A/C system
within any ranges of [𝑎𝐴0, 𝑏𝐴0] where 0 ≤ 𝑎, 𝑏 ≤ 1 and 𝑎 ≤ 𝑏. This result
can be extended to the multi-zone building ME A/C system. Hence,
𝐴1,𝑖 = 0.15𝐴0,𝑖 and 𝐴2,𝑖 = 0.85𝐴0,𝑖, 𝑖 ∈  are chosen in this paper.

The simulation runs from 0:00 to 23:59. The environmental tem-
perature and relative humidity information are obtained from a me-
teorological station located in Cape Town, South Africa. The outside
air temperature and relative humidity profiles are plotted in Fig. 5(a).
The predicted solar radiative heat flux density profile is shown in
Fig. 5(b). The external sensible heat load of each room is depicted in
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Fig. 5. (a) Outside temperature and relative humidity. (b) Radiative heat flux. (c) External sensible heat load.

Fig. 6. Certainty internal sensible, certainty moisture and CO2 emission loads.

Fig. 7. The steady state errors in six-room building under the sampling periods 1 h and 0.5 h.

Table 5
Time-of-use electricity rates.

Summer Period Energy charge
($/kWh)

Demand charge
($/kWh)

Peak 12:00-18:00 0.20538 11.889
Standard 08:00-12:00, 18:00-21:00 0.05948 2.352
Off-Peak 21:00-08:00 0.03558 1.007

Fig. 5(c). The certainty internal sensible and latent heat loads and the
CO2 emission load of each room over a 24-h period are predicted in
Fig. 6. The certainty loads mean the sensible heat and moisture loads
from lighting, equipment and applications. The values of Figs. 5–6 at
every hour are commensurately quantized for the lower layer.

It is assumed that the building operates under the TOU rate plan
shown in Table 5. Since there is a big difference in the demand charges
between peak and off-peak hours, energy cost savings can be expected if
significant amounts of peak power consumption are shifted to non-peak
hours.

4.2. Comparison of optimal scheduling control strategies

To illustrate the performance of the proposed AHDC, comparisons
with other control strategies are considered for scheduling the opera-
tion of the multi-zone building ME A/C system. The first approach is the
DMPC algorithm based on given setpoints of air temperature, humidity
and CO2 concentration, aiming at minimizing energy consumption,

referred as S1 (Mei & Xia, 2017a). The second approach is the DMPC
algorithm based on energy cost and the value of the PMV index
minimization, referred as S2 (Mei et al., 2018). The proposed approach
is the DMPC algorithm based on demand and energy cost minimization,
referred as S3. To simplify the comparison, among the three strategies,
the multi-zone building ME A/C system operation profiles are generated
by employing an NLP algorithm under the same outside and inside
conditions. The control parameters are listed below: The sampling time
𝛥 = 2 min is adopted to discretize the nonlinear multi-zone building ME
A/C system. The prediction horizon of the lower layer DMPC scheme is
set as 𝑁 = 15; the sampling periods of UOPC and LDMPC are 1 h and
2 min, respectively. The total simulation time 𝐾𝑢 is 24 h. To illustrate
the sampling period without affecting the control accuracy, the steady
state solutions under the sampling periods 1 h and 0.5 h are plotted
in Fig. 7. It can be seen from Fig. 7 that the control accuracy is rarely
affected by the setting sampling period. Table 6 lists the combinations
of the optimization and control strategies in the three scenarios. The
test results for the three scenarios are shown in Section 4.3.

4.3. Simulation test results

The performances of the three scenarios are compared through
MATLAB simulations with historical weather data for a specific day.
Fig. 8 shows the steady state profiles of air temperature, relative
humidity and CO2 concentration of each room, which are obtained
by solving the distributed coordination optimization problem (22) and
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Fig. 8. The steady state in each room under the distributed and centralized optimal controller.

Fig. 9. Each zone’s temperature profile for a 24-h period.

Table 6
Comparison of different control strategies.

Scenarios Upper layer optimization Low layer
control

Setpoint DR
action

S1 Energy consumption DMPC Given
S2 Energy cost+PMV DMPC Autonomous
S3 Energy cost+demand cost DMPC Autonomous ✓

the centralized optimization (21). It can be seen from Fig. 8 that the
distributed steady state is close to the centralized steady states of
each room; the deviations are small and can be accepted by occupants
(Assumption 1 is valid). The scheduling is thus effective.

The tracking reference points of the air temperature of each room
with the three control strategies are depicted in Fig. 9 over a 24-
h period. The tracking reference points of relative humidity of each

room with the three control strategies are illustrated in Fig. 10 over
a 24-h period. The tracking reference points of CO2 concentration of
each room with the three control strategies are shown in Fig. 11.
Figs. 9–11 also show that the optimized reference points are adaptively
preprogrammed by employing scenarios S2 and S3. We observe that
each room’s air temperature, relative humidity and CO2 concentration,
by using the proposed control strategy, are tracking and maintaining
their reference points. It can be seen from Figs. 9–11 that the reference
points of air temperature, relative humidity and CO2 concentration of
each room with scenarios S2 and S3 are raised during standard hours.
The reason is that the controllers of scenarios S2 and S3 are automat-
ically adjusting their reference points upward during standard hours
according to the energy price policy and DR action respectively, such
that the energy cost and energy consumption are minimized while both
thermal comfort and IAQ are still maintained within comfort ranges.
The pre-cooling and pre-decreasing CO2 contaminant concentration
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Fig. 10. Each zone’s relative humidity profile for a 24-h period.

automatically starts in the morning simultaneously. This is because the
energy costs for operating a multi-zone building ME A/C system during
off-peak hours are lower than other periods. In the morning, the air
temperature, humidity and CO2 concentration reference points of all
rooms are kept at the lower bounds of the comfort regions to store
cooling and lower CO2 contaminant concentration until the peak hours.
As soon as the peak hours start, the reference points increase to the
upper bounds, hence minimizing the demand in the afternoon by taking
DR action. After more cooling and pollutant loads occur simultaneously
during peak hours, the reference points are automatically set higher to
turn off the cooling and increase the CO2 contaminant concentration.
We also observe that the time-varying reference points of air tempera-
ture, relative humidity and CO2 concentration of each room are always
maintained in the comfort regions over a 24-h period with the proposed
control strategy. We further observe that after reaching their reference
points, the proposed controllers are maintaining the reference points
with small variation ranges. Therefore, the proposed control strategy is
capable of handling the changing cooling and pollutant loads over a 24-
h period and maintaining thermal comfort and IAQ at comfort levels.
From Fig. 12, it can be observed that the values of the PMV index for
the six rooms lie within the expected range [−0.5, 0.5], which indicates
that the indoor air temperature, humidity and CO2 concentration are
controlled within their comfort ranges. It can be observed from Fig. 12,
with the control method in Freire et al. (2008), the PMV index is
controlled at the desired value, which indicates that the indoor air
temperature and humidity are at their desired references, but it may not

Table 7
Comparison of different control strategies.

Strategy Energy consumption (kWh) Energy cost ($)

S1 124.56 10.67
S2 80.34 6.98
S3 79.78 5.66

demonstrate that the indoor air CO2 concentration is within a comfort
range.

To show the advantage of the proposed AHDC strategy over the
other two control strategies in shifting demands from peak periods to
non-peak periods, the power consumption under the peak and non-peak
periods for the three control strategies are shown in Fig. 13. Table 7
summarizes the total energy consumption and cost for the multi-zone
building ME A/C system under the three control strategies. From
Table 7, it can be seen that with control strategies S2 and S3, more
energy consumption and costs are reduced in comparison with control
strategy S1. The reason is that each room’s air temperature, humidity
and CO2 concentration reference points are adaptively and optimally
preprogrammed under control strategies S2 and S3. We observe from
Table 7 that the energy consumptions with control strategies S2 and S3
are almost the same, while the energy costs are different. It implies that
the proposed control strategy S3 is capable of reducing more energy
costs but not of reducing energy consumption in comparison with
control strategy S2. It can be seen from Fig. 13 that under the proposed
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Fig. 11. Each zone’s CO2 concentration profile for a 24-h period.

Fig. 12. Profile of the value of the PMV index for the six rooms over a 24-h period.

control strategy S3 with DR action, more energy costs are reduced
during peak hours in comparison with control strategies S1 and S2. The
reason is that the proposed control strategy S3 is automatically shifting
peak demands to non-peak periods. Meanwhile, energy consumption
with the proposed control strategy S3 is more than that with control
strategy S2 during standard periods because the energy cost in standard
periods is lower than that in peak periods. Consequently, minimizing
total energy costs and shifting demand are achieved over a 24-h period
while maintaining both thermal comfort and IAQ at the required levels.
Therefore, according to the above comparisons, the proposed control
strategy S3 achieves a lower proportion of demand cost during peak
hours and shows successful demand shifting and energy cost reduction.

Fig. 13. Energy consumption in three time periods with the three control strategies.

Furthermore, to show the performance of the proposed distributed
control strategies over the previous distributed control scheme (Scherer
et al., 2014), we will compare the two control methods in view
of energy efficiency in this section. The distributed control strategy
in Scherer et al. (2014) is based on the given reference of indoor air
temperature and a linearization system of the HVAC system with a
solar plant by fixing the fancoil air speed. The distributed controller
is then steered for the HVAC system to follow the given reference with
minimizing energy consumption. In order to compare the two control
strategies, the control scheme (Scherer et al., 2014) should be employed
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Table 8
Compared with the previous control strategy.

Strategy Energy consumption
(kWh)

Energy cost ($)

Previous control (Scherer et al., 2014) 128.75 10.98
Proposed control 79.78 5.66
Saving 38% 48.5%

to steer the ME A/C system to follow the given reference and fixing
volume flow rate of supply air. The comparison results are depicted in
Table 8. It can be seen from the table that the proposed control strategy
can reduce more energy consumption and cost in comparison with the
previous control strategy (Scherer et al., 2014). The reason is that the
proposed control scheme shifts the peak demand from the peak hours
to off-peak hours by adaptively programming each room’s setpoints of
air temperature, humidity and CO2 concentration.

5. Conclusion

This paper presents an AHDC strategy to the problem of mini-
mizing demand and energy costs, as well as reducing communication
resources, computational complexity and conservativeness for a multi-
zone building ME A/C system while maintaining both thermal comfort
and IAQ within comfort ranges. The developed control strategy is
an improvement over the current control methods, in which the air
temperature, humidity and CO2 concentration references of each zone
are adaptively preprogrammed optimal operation profiles for the multi-
zone ME A/C system to minimize the energy and demand costs. The
lower layer DMPC controllers steer the multi-zone building ME A/C
system to follow and maintain the autonomously preprogrammed refer-
ences; meanwhile, the energy and demand costs are reduced and shifted
from the peak hours to non-peak hours. The simulation results show
that the designed DMPC controller optimize the transient processes
reaching the steady state and over the previous distributed control
method in view of energy efficiency. They also demonstrated that
the proposed AHDC strategy gives the controller the ability to handle
model parameters uncertainty and time-varying weather conditions.
The proposed control strategy is suitable for a cluster of similarly
purposed buildings, thus requiring less and cheaper communication
resources to implement.
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