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a b s t r a c t

In this paper, a hierarchical control strategy for Venlo-type greenhouse climate control under South
Africa climate is proposed to improve energy efficiency and reduce operating cost. The proposed hier-
archical control architecture includes two layers. The upper layer is to generate set points by solving
different optimization problems. Three different strategies with different optimization objectives are
studied. The meteorological data of a typical winter day is used. Strategy 1 is to minimize the energy
consumption. Strategy 2 is to minimize the energy cost under the time-of-use (TOU) tariff. Strategy 3 is to
minimize the total cost of energy consumption, ventilation and carbon dioxide (CO2) supply. The lower
layer is to track the trajectories obtained from the upper layer. A closed-loop model predictive control
(MPC) strategy is introduced to address model plant mismatch and reject system disturbances. Two
performance indices, relative average deviation (RAD) and maximum relative deviation (MRD), are
introduced to compare the tracking performance of the proposed MPC and an open loop control under
three different levels of system disturbances (2%, 5%, 10%). Simulation results show that the proposed
strategy can effectively reduce the operating cost while keeping the temperature, relative humidity and
CO2 concentration within required ranges. Compared with Strategy 1 and Strategy 2, the total cost of
Strategy 3 is reduced by 72.07% and 71.41% respectively. Moreover, the proposed MPC has better tracking
performance than the open loop control. Therefore, the proposed hierarchical MPC strategy could be an
effective way to improve greenhouse energy efficiency and achieve sustainable cleaner production.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

With the increase of population and the decrease of cultivable
lands, the problem of food shortage is becoming more and more
serious in some countries (Hassanien et al., 2016; Yano and Cossu,
2019). In addition, in some arid regions, freshwater demand is
increasingly difficult to meet (Liu et al., 2020, 2019). Greenhouse
cultivation is an effective way to solve these problems. Crops grown
in the greenhouse can get higher yields than that grown outdoor
(Esen and Yuksel, 2013). Moreover, greenhouse cultivation con-
sumes less water than outdoor planting mode (Garg and Dadhich,
2014). Therefore, the research on agricultural greenhouse can
help to solve the problem of food shortage and effectively alleviate
the current water crisis.

A Venloetype greenhouse is a commonly used greenhouse in
Lin), lijun.zhang@up.ac.za
agricultural production. Farmers can adjust the greenhouse climate
according to their preferences with controllers, to keep the tem-
perature, humidity, CO2 concentration, and light intensity within
desired ranges (Van Henten, 1994; Yang and Rhee, 2013). However,
due to the problems of operation strategy, some greenhouses have
low energy efficiency and high production cost.

The greenhouse climate control process consumes lots of energy
to keep greenhouse climatic conditions within required ranges (Fox
et al., 2019). The main energy sources include electricity energy,
coal, fuel oil, natural gas, and clean energy such as wind energy and
solar energy (Vadiee and Martin, 2014; Cuce et al., 2016). Coal and
fuel oil can be used as backup energy to power greenhouses during
power outages. The high energy consumption will increase both
greenhouse production cost and greenhouse gas emissions (Van
Henten and Bontsema, 2009). For example, in the United States,
greenhouse energy consumption accounts for 16% of agricultural
energy consumption (Bozchalui et al., 2014). In some cases, energy
costs account for 50% of the total cost of greenhouse production
(Shen et al., 2018). Some approaches have been proposed to solve
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this problem. For instance, a fuzzy control strategy for greenhouse
climate to minimize production cost is proposed in (Lafont and
Balmat, 2002). A robust control method is proposed in (Bennis
et al., 2008). A PID controller for greenhouse climate system is
designed in (Hu et al., 2011). An adaptive fuzzy control strategy is
studied in (Su et al., 2016). Under these control strategies, the
greenhouse climatic factors such as temperature and humidity can
be kept within required ranges. However, energy efficiency is still
low due to the lack of energy optimization processes.

Some control strategies considered energy optimization. For
instance, a control method to reduce the energy consumption of
greenhouse heating is proposed in (Chen et al., 2015). In (Ramírez-
Arias et al., 2012), a multi-objective control strategy for greenhouse
crop growth is proposed tomaximize profit, fruit quality andwater-
use efficiency. In (Blasco et al., 2007), a model-based predictive
control strategy is proposed to reduce the energy and water con-
sumption of the greenhouse. However, these studies only consid-
ered the cost of energy consumed for greenhouse control. The cost
of ventilation and CO2 supply, which accounts for a large part of
production costs, is ignored. Moreover, the time-of-use (TOU) tariff
was not considered in these studies.

Greenhouse modelling is also challenging because of the
complexity of the greenhouse environment. For example, the
controlled variables (temperature and humidity) are correlated and
sensitive to the outside weather (Chen et al., 2016; Du et al., 2012).
In addition, the growth of crops has a strong impact on climate
change inside the greenhouse (Rodríguez et al., 2008). For example,
the transpiration of crops can affect greenhouse humidity (Su et al.,
2017). Therefore, it is difficult to accurately model the dynamic
process of greenhouse climate.

In the field of greenhouse climate modelling, there are different
methods in the literature. In (Ferreira et al., 2002; Frausto and
Pieters, 2004), a black box model is presented by analyzing the
input and output data of the greenhouse system. However, this
modelling method generally requires lots of data to ensure the
accuracy of the model. Moreover, the model built may not be
suitable for greenhouses with different configurations (Tap, 2000).
Somemodelling processes are based on first principles by analyzing
the physical, chemical and biological laws involved in the process.
For example, a dynamic model based on energy and mass balances
is proposed in (Van Beveren et al., 2015a, b). This modellingmethod
gives a detailed description of the climate control process. Both the
effects of crop transpiration and the interference of external con-
ditions are taken into consideration. The experimental results show
that the proposed model has a good performance regarding
greenhouse climate control.

The accuracy of traditional control strategies is low due to sys-
tem disturbances and model uncertainties. The climatic conditions
outside the greenhouse such as temperature, humidity, solar radi-
ation, wind speed have a great impact on the climate in the
greenhouse (Chen et al., 2018). In order to solve this problem,
different control methods are proposed. A robust control strategy
for greenhouse temperature and CO2 concentration control is
proposed in (Linker et al., 1999). An adaptive fuzzy control strategy
is presented in (Su et al., 2015). Some research studied the appli-
cation of model predictive control (MPC) for greenhouse climate
control, such as (Coelho et al., 2005; Gruber et al., 2011). The
greenhouse control system can react before any deviation of the
controlled variables occurs, thus avoiding the response delay.
However, the proposed MPC is only used for greenhouse temper-
ature control, not for humidity and CO2 concentration control.

MPC uses the model of the plant to predict the future response
over a finite horizon. A control sequence is obtained by solving an
optimization problem online. Only the first value of the response
sequence is applied to the next sampling interval, the rest values
are discarded (Wu et al., 2015; Zhu et al., 2014). Due to the closed-
loop nature of MPC, it can effectively address system disturbances
and is widely used in process control such as urban household
water management (Wanjiru et al., 2016), industrial fermentation
process control (Mohd and Aziz, 2016), building performance
optimization (Cao et al., 2019), heavy-haul train control (Zhang and
Zhuan, 2013, 2015) and air conditioning system optimization (Mei
and Xia, 2017; Sayadi et al., 2019).

In South Africa, the food shortage problem is serious. About 35%
of South Africa’s population does not have access to adequate food
(Erna du Plessis et al., 2015). One reason is that many lands are not
suitable for traditional outdoor planting. Crop yields are vulnerable
to climate change. Moreover, the energy shortage problem is also
very serious in South Africa (Menyah and Wolde-Rufael, 2010;
Kohler, 2014). In 2019, a stage 4 load shedding was implemented to
prevent the collapse of the power system, which has a negative
impact on people’s lives.

In this paper, the climate control of a Venlo-type greenhouse
under South Africa climate is studied. The main objective of this
paper is to analyze different control strategies for a typical modern
greenhouse system to improve energy efficiency and reduce pro-
duction cost. The dynamic model presented in (Van Beveren et al.,
2015a, b) is adopted. A hierarchical control strategy is proposed.
The proposed hierarchical control architecture is divided into two
layers. On the upper layer, three different strategies with different
optimization objectives are proposed to find the optimal operation
trajectories. Strategy 1 is to minimize the energy consumption for
greenhouse heating and cooling. Strategy 2 is to minimize the en-
ergy cost under the TOU tariff. Strategy 3 is to minimize the total
cost which includes energy cost, ventilation cost and CO2 supply
cost. On the lower layer, a model predictive controller is designed to
track the trajectories obtained from the upper layer.

The main contributions of this paper are as follows: (1) A hier-
archical control architecture for greenhouse climate control is
adopted. The proposed hierarchical control strategy can effectively
reduce the computational complexity of optimization problems. (2)
Three different optimal strategies are studied to reduce greenhouse
cost. Not only energy cost but also ventilation and CO2 supply cost
are taken into consideration for the optimization of operating cost.
Compared with traditional control methods, the proposed control
strategy can greatly reduce greenhouse operating costs. (3) AnMPC
strategy is used to reduce the influence of system disturbance and
model plant mismatch. The system control accuracy is improved.

The rest of this paper is organized as follows: System description
is presented in Section 2. The hierarchical control strategy is
described in Section 3. The climate controller design is conducted in
Section 4. The simulation results are discussed in Section 5. Section
6 is the conclusion.

2. System description

A greenhouse is a building structure with walls and roofs that
are made of transparent materials such as glasses and plastics. The
cover prevents energy loss and keeps the indoor temperature
higher than that of the outside. The ventilation reduces humidity in
greenhouses and provides CO2 for crops. The sunlight provides the
light crops need. However, sometimes the greenhouse climate
cannot be maintained within the required range. For instance,
when the outdoor temperature is too low, additional heating is
needed. Moreover, in order to obtain higher yield and better
quality, extra CO2 and lighting should be supplied. Therefore, a
greenhouse climate control system is essential to keep the internal
climate within suitable ranges.

The structure of the greenhouse climate control system is
shown in Fig. 1. These systems can be controlled by growers, or can



Fig. 1. Greenhouse climate control system structure.
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automatically respond to external conditions and manipulate in-
ternal climate accordingly. Fig. 2 is the schematic diagram of the
greenhouse control process. Firstly, farmers set control objectives
and system constraints according to their experience. Then, the
controller calculates the optimal control variables based on the
electricity price, climate data in the greenhouse, and outdoor
weather data. Finally, actuators regulate the greenhouse climate
according to the control signal obtained from the controller.
2.1. Greenhouse climate model

Greenhouse climate control is a multi-input multi-output
(MIMO) system. Greenhouse climate control generally includes
temperature control, relative humidity control, CO2 concentration
control and lighting control. In this paper, the greenhouse climate
control system studied includes three inputs (heating, ventilation
and CO2 injection) and three outputs (temperature, relative hu-
midity and CO2 concentration).

The dynamic model about temperature, humidity and CO2
concentration control presented in (Van Beveren et al., 2015a, b) is
adopted, and briefly introduced in the following. Please note that
Fig. 2. Schematic diagram of greenhouse control process.
the model is based on the energy and mass balances of the
greenhouse per unit area.
2.1.1. Temperature model
Greenhouse temperature modeling is based on the energy bal-

ance of the greenhouse. The temperature is governed by:

dTair
dt

¼ 1
Ccap

�
Qsun þQlamp �Qcov �Qtrans �Qvent þQc

�
; (1)

where Tair is the temperature inside the greenhouse, Ccap is the heat
capacity of the greenhouse, Qsun is the incoming radiation from the
sun, Qlamp is the lamp heating power. Qcov is the heat transfer
through the cover, Qtrans is the energy absorption of crop transpi-
ration. Qvent is the energy exchange through ventilation. Qc is the
heating or cooling power. All variables used in this paper are
defined in the nomenclature shown in Table 1.

Qsun can be calculated by:

Qsun ¼a1Irad; (2)

where a1 is the transmission coefficient of the cover material and
Irad is the solar radiation power.

Qcov can be described by:

Qcov ¼a2ðTair � ToutÞ; (3)

where a2 is the heat transfer coefficient of the cover, Tout is the
outside temperature.

Qtrans can be obtained by:

Qtrans ¼ geL
�
Hcrop �Hair

�
; (4)

where ge is the transpiration conductance, L is the amount of en-
ergy needed to evaporate water from a leaf. Hcrop is the absolute
water vapour concentration at crop level. Hair is the absolute water
vapour concentration of the greenhouse air.

Hcrop can be calculated by:

Hcrop ¼Hair;sat þ ε

rb
2LAI

Rn
L
; (5)

where Hair;sat is the saturated vapour concentration. According to
(Bontsema et al., 2008), Hair;sat can be approximated by:

Hair;sat ¼5:5638e0:0572Tair : (6)

ge is obtained using:

ge ¼ 2LAI
ð1þ εÞrb þ rs

; (7)

where LAI is the leaf area index, ε is the ratio of latent to sensible
heat content of saturated air. rb is the boundary layer resistance, rs
is the stomatal resistance.

ε and rs can be obtained by:

ε¼0:7584e0:0518Tair ; (8)

rs ¼
0
@82þ570e�gRn

LAI

1
A�

1þ0:023ðTair � 20Þ2
�
; (9)

where g is a crop specific parameter, Rn is the net radiation at crop
level and given by:



Table 1
Nomenclature.

Tair air temperature in the greenhouse,
�
C

RHair relative humidity in the greenhouse, %
Tout air temperature outside the greenhouse, �C
Irad solar radiation power, W=m2

Qsun incoming radiation power,W=m2

a1 transmission coefficient
Qlamp lamp heating power,W=m2

a2 heat transfer coefficient, W/�Cm2
Qcov heat transfer through the cover, W=m2

ge transpiration conductance, m=s
Qtrans transpiration endothermic power, W=m2

L energy needed to evaporate water from a leaf, J=g
Qvent heat loss through ventilation power, W=m2

Qc controlled heating or cooling power, W=m2

LAI leaf area index
Hair humidity in the greenhouse, g=m3

ε ratio of latent to sensible heat content of saturated air
Htrans vapour evaporated by the crop, g=m2s
Hcov vapour condensation to the cover, g=m2s
rb boundary layer resistance parameter, s=m
Hcrop vapour concentration at crop level, g=m3

rs stomatal resistance, s=m
Hout humidity outside the greenhouse, g=m3

g crop specific parameter
Hvent vapour flux due to ventilation, g=m2s
PE artificial lighting power, W=m2

RHair relative humidity in the greenhouse, %
h lighting thermal conversion coefficient
Cair CO2 concentration in the greenhouse, g=m3

gv ventilation rate, m=s
Cout CO2 concentration outside the greenhouse, g=m3

s the greenhouse area, m2

Cinj CO2 injection into the greenhouse, g=m2s
rair density of air, kg=m3

Cass CO2 assimilation by the crop, g=m2s
h average height of greenhouse, m
Cvent effect of ventilation on CO2 concentration, g=m2s
gc the condensation conductance, m=s
Ccap heat capacity of the greenhouse, J=+Cm2

pgc
parameter related to the properties of the condensation surface, m+C

�
1
3s�1

Cp;air heat capacity of the air, J=kg+C
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Rn ¼0:86
�
1� e�0:7LAI

�
ðQsunþ PEÞ; (10)

where PE is the rated electric power of artificial lighting installed.

Qlamp¼ hPE; (11)

whereh is the part of electric energy consumption of the lamps that
is converted into heat.

Qvent ¼ gvrairCp;airðTair � ToutÞ; (12)

where gv denotes the specific ventilation rate, rair is the density of
the air, Cp;air is the specific heat capacity of the air.
2.1.2. Relative humidity model
The factors affecting the change of greenhouse relative humidity

include crop transpiration, vapour condensation, and ventilation.
The relative humidity RHair can be obtained using:

RHair ¼Hair
�
Hair;sat ; (13)

where Hair is the vapour concentration of the greenhouse air. Hair
can be calculated by:
dHair

dt
¼1
h
ðHtrans �Hcov �HventÞ; (14)

where Htrans is the vapour produced by plant transpiration, Hcov is
the vapour condensation to the cover,Hvent is the vapour flux due to
ventilation. h is the average height of greenhouse.

Htrans is influenced by Hcrop and Hair , and it can be described by:

Htrans ¼ ge
�
Hcrop �Hair

�
: (15)

Hcov can be modelled by the following equation:

Hcov ¼ gc
h
0:2522e0:0485Tair ðTair � ToutÞ�

�
Hair;sat �Hair

�i
; (16)

where gc is the condensation conductance, and it can be calculated
by:

gc ¼
�
0 if Tair � Tout ;
pgcðTair � TcovÞ1=3 if Tair > Tout

�
(17)

where pgc is related to the properties of the condensation surface.
Hvent is influenced by the ventilation and the humidity both

inside and outside greenhouse. The value of Hvent can be obtained
by:
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Hvent ¼ gvðHair �HoutÞ; (18)

where gv is the ventilation rate and controlled by the power of fans.

2.1.3. CO2 concentration Model
The CO2 concentration model based on mass balance is as

follows.

dCair
dt

¼ 1
h

�
Cinj �Cass �Cvent

�
; (19)

where Cair is the CO2 concentration inside the greenhouse, Cinj is
the CO2 injection rate, Cass is the CO2 assimilation, Cvent is the
changes in CO2 concentration due to ventilation.

Cass and Cvent can be obtained by:

Cass¼2:2� 10�3 1
1þ 0:42

Cair

�
1� e�0:003ðQsunþPEÞ

�
; (20)

Cvent ¼ gvðCair �CoutÞ: (21)

2.1.4. Model performance analysis
The models proposed had been validated in (Van Beveren et al.,

2015a, b). Two performance indices, correlation coefficient (r) and
root mean square error (RMSE), are calculated to analyze the model
performance. The greenhouse climate data of one whole year is
used for the model performance analysis. The results show that the
predicted values can follow the actual values well in most cases. In
some cases, there is a big difference between the predicted value
and the actual measured value such as in February when the
outside temperature is very low. Similar results can be found in (Su
et al., 2018). The average winter temperature in South Africa is
much higher than that in the Netherlands. For example, in Pretoria,
the administration capital of South Africa, the average temperature
of the winter is also above 10+C. Therefore, the proposed model in
(Van Beveren et al., 2015a, b) can be used for greenhouse control in
South Africa.

2.2. System constraints

2.2.1. State constraints
Too high or too low temperature, relative humidity and CO2

concentration will have a negative impact on both crops yields and
quality (Kl€aring et al., 2007). For instance, too high relative hu-
midity in the greenhouse will accelerate the spread of pests and
diseases, too high or too low temperature will result in crop wilting
and even death. Therefore, the state variables should be keptwithin
appropriate ranges to provide suitable growing conditions for
crops. Moreover, for different type of crops, the ranges are different.
The ranges are determined by farmers’ experience or the results
obtained from the optimization of crop growth control process. The
state constraints are represented by the following.

Tair;min � Tair � Tair;max; (22)

RHair;min �RHair � RHair;max; (23)

Cair;min �Cair � Cair;max; (24)

where Tair;min and Tair;max are the lower and upper bounds of
temperature, RHair;min and RHair;max are the lower and upper
bounds of relative humidity, and Cair;min and Cair;max are the lower
and upper bounds of CO2 concentration.

2.2.2. Input constraints
There are also some input constraints, such as the operational

constraints and physical limits below.

Qc;min �Qc � Qc;max; (25)

gv;min � gv � gv;max; (26)

Cinj;min�Cinj � Cinj;max; (27)

where Qc;min and Qc;max are the lower and upper bounds of heating
or cooling power. gv;min and gv;max are the lower and upper bounds
of ventilation rate. Cinj;min and Cinj;max are the lower and upper
bounds of CO2 injection rate.

To reduce the wear of actuators, extreme changes should be
prevented (Durand et al., 2016). Therefore, the following input rate
of change constraints are adopted:

				dQc

dt

				 � k1; (28)

				dgvdt

				 � k2; (29)

				dCinjdt

				 � k3; (30)

where k1, k2 and k3 are the change rate limits of input variables Qc,
gv and Cinj respectively.

3. Hierarchical control strategy

The hierarchical control can effectively reduce the computa-
tional complexity of complex problems by decomposing them into
different subproblems, which is widely used in building energy
optimization processes (Mei et al., 2018). The hierarchical control
architecture of greenhouse climate is shown in Fig. 3. On the upper
layer, an optimization problem that takes into account weather
data and energy price is solved to obtain the set points. On the
lower layer, a climate controller is designed to track the reference
trajectories obtained from the upper layer.

3.1. Upper layer (optimization layer)

The upper layer is to find the set points for greenhouse climate
controllers. In this paper, three different strategies with different
optimization objectives are studied. For these optimization prob-
lems, the control variables are the heating or cooling power Qc,
ventilation rate gv and CO2 injection rate Cinj. The controlled vari-
ables are the temperature Tair , relative humidity RHair and CO2
concentration Cair .

The objective of Strategy 1 is to minimize the energy con-
sumption for greenhouse heating and cooling. Therefore, the
optimization objective of Strategy 1 can be given by:

J1 ¼
ðtf

ti

jQcðtÞjdt; (31)

where ti is the initial time, tf is the final time of optimization.
The objective of Strategy 2 is to minimize the energy cost under



Fig. 3. Greenhouse climate hierarchical control architecture.
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the TOU tariff. The objective function of Strategy 2 is as follows.

J2 ¼
ðtf

ti

jQcðtÞwðtÞjdt; (32)

where wðtÞ is the electricity price at the time t. In this study, the
TOU tariff in South Africa is used and given by:

wðtÞ¼
8<
:

wo t2½0;6�∪½22;24�
ws t2½9;17�∪½19;22�;
wp t2½6;9�∪½17;19�

9=
; (33)

where wo, ws, wp are the off-peak, standard, peak tariff in R= kWh.
R is the South Africa Currency, Rand. The value of wo, ws, wp are
0.5157, 0.9446, 3.1047 respectively.

The objective of Strategy 3 is to minimize the total operating
cost which includes the energy cost, ventilation cost and CO2
supply cost. The energy cost can be obtained from (32). The
ventilation cost is the cost of electricity consumed by the ventila-
tion fan. In this paper, the on-off control method is adopted for
ventilation fan operation. The CO2 cost is determined by the
amount of the CO2 consumed and the price of the CO2. The
objective function of Strategy 3 can be obtained by:

J3 ¼
ðtf

ti

�
QcðtÞwðtÞþ gvðtÞlwðtÞ þ CinjðtÞpc

�
dt; (34)

where pc is the price of organic CO2. pc ¼ R1000=ton. l is the
conversion coefficient from the ventilation rate (gv) to the venti-
lation fan power (Qv). l ¼ 0:06 W=m3.

The optimization problem (31), (32) and (34) are subject to the
constraints from (22) to (30).

3.2. Lower layer (control layer)

The lower layer to track the reference trajectories obtained from
the upper layer. In this paper, a closed-loop model predictive
controller is designed and compared with the open loop controller.
Two performance indices (relative average deviation and
maximum relative deviation) are introduced to compare the
tracking performance of the proposedmodel predictive control and
an open loop control under different levels of system disturbances.
4. Climate controller design

4.1. Open loop control

The continuous state-space model is as follows:

_x¼ f ðx;uÞ: (35)

In order to facilitate the controller, (35) is discretized to:

xðkþ1Þ¼ f ðxðkÞ;uðkÞÞ; (36)

where k is the current time kTs, Ts is the sampling interval. xðkÞ ¼
½TðkÞ;RHðkÞ;CðkÞ�T , TðkÞ, RHðkÞ and CðkÞ are the temperature, hu-
midity and CO2 concentration at time k respectively. The objective
function that derives from (34) is adopted and given by:

Jo ¼
XN
k¼1

jPuðkÞj; (37)

where N ¼ T
Ts
. T is the total simulation time. uðkÞ ¼

½u1ðkÞ;u2ðkÞ;u3ðkÞ�T , uðkÞ is the input variables at the time k ¼
1;2;3; /; N. u1, u2 and u3 are the heating/cooling power (Qc),
ventilation rate (gv) and CO2 injection rate (Cinj), respectively. For
Strategy 1, P ¼ ½1;0;0�. For Strategy 2, P ¼ ½w;0;0�. For Strategy 3,
P ¼ ½w;lw;pc�.

The open loop controller solves the optimization problem:

u*ref ¼ argmin
u

Jo; (38)

subject to the constraints (22)� (30) and (36).
4.2. Closed-loop MPC

For closed-loop MPC, the input variables obtained from (38) are
taken as the inputs reference trajectories uref , and the corre-
sponding state variables are taken as the state variables reference
trajectories xref . The objective function is as follows:



Table 2
Parameters of the greenhouse model.

Variable Value Unit

a1 0.7 �
a2 10 �
g 0.008 �
LAI 2.6 �
Ccap 30000 J=m2 +C
h 7 m
s 40709 m2

L 2450 J=g
rb 150 s=m
rair 1.225 kg=m3

Cp;air 1003 J=kg+C
pgc 1:8� 10�3 m+C�1=3s�1

Tair;min 14 +C
Tair;max 26 +C
RHair;min 0 %
RHair;max 90 %
Cair;min 400 ppm
Cair;max 2000 ppm
Qc;min �200 W=m2

Qc;max 200 W=m2

gv;min 0 m=s
gv;max 0.05 m=s
Cinj;min 0 g=m2s
Cinj;max 0.05 g=m2s
k1 0.51 W=m2s
k2 5:1� 10�5 m=s2

k3 5:1� 10�5 g=m2s2
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Jm ¼
XNp

i¼1

ðDxðkþ ijkÞÞTQðDxðkþ ijkÞÞ

þ
XNc

i¼1

ðDuðkþ i� 1jkÞÞTRðDuðkþ i�1jkÞÞ; (39)

where Np and Nc are optimization horizon and control horizon
respectively. Q and R are the weighting matrices. jk means that the
predicted value is based on the information up to time k. DxðkþijkÞ
is the changes of state variables because of Du. Du is the change of
input variables, and it is used to compensate model plant mismatch
and system disturbances. DxðkþijkÞ and Du are given by

Dxðkþ ijkÞ¼ xðkþ ijkÞ � xref ðkþ iÞ; (40)

DuðkÞ¼uðkjkÞ � uref ðkÞ: (41)

Denote DU ¼
½DuðkjkÞ;Duðkþ 1jkÞ;Duðkþ 2jkÞ;/;Duðkþ Nc � 1jkÞ�T . The MPC
controller solves the nonlinear optimization problem

DU*ðkÞ¼ argmin
DU

JmðkÞ; (42)

subject to the constraints (22)� (30) and (36). The optimal control
is implemented in a receding horizon scheme that the first value of
DU*ðkÞ is adopted and the rest are discarded.

DuðkÞ¼Du*ðkjkÞ; (43)

where Du*ðkjkÞ is the first entry of DU*ðkÞ. Repeat the above steps
until k reaches the predefined value. The final optimal inputs ob-
tained by the MPC controller is given by: uðkÞ ¼ uref ðkÞþ DuðkÞ.
Fig. 4. Outside temperature and relative humidity.

Fig. 5. Solar irradiation power and lighting power.
5. Simulation

5.1. Simulation parameters

In this paper, a Venlo-type greenhouse is studied. The parame-
ters of the greenhouse model are derived from (Van Beveren et al.,
2015a, b) and listed in Table 2.

The greenhouse area s is 40709 m2 and the average height is 7
m. There are 4536 SON-T lamps installed for providing artificial
lighting. For each 80 m2, one air-to-water heat exchanger is
installed for heating and cooling. Fans and windows are used for
ventilation.

An OCAP (organic CO2 for assimilation by plants) network is
used to supply organic CO2. The price of CO2 delivered by OCAP
pipeline is R 1000 per ton. An axial plate type fan is used for
ventilation. The power of each fan is 300 W. The air flow is 5000 m3

per hour. There are eight HortiMaX® measurement boxes for
climate data measurement. To achieve a uniform greenhouse
climate state, the measurement boxes and greenhouse climate
control actuators are uniformly distributed.

The meteorological data such as solar radiation, outdoor tem-
perature and outdoor relative humidity are from a weather station
at the University of Pretoria. The data for a typical winter day (July
13, 2016) is used and shown in Fig. 4 and Fig. 5. Please note that the
light power is not a control variable. For day time (07:00 to 18:00),
the lighting power is set to zero. For night time (19:00 to 06:00), the
lighting power is set to 110 W=m2. The outdoor CO2 concentration
is 407 ppm. The initial value needs to be within a reasonable range
of the greenhouse climate. In this paper, the initial value selected
meet the system state constraints. The initial values of the tem-
perature, relative humidity, and CO2 concentration in the green-
house are set to 20 +C, 74%, and 500 ppm respectively. The
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greenhouse climate data sampling interval Ts and the total simu-
lation time T are set to 300 s and 24 h respectively.

Simulations are carried out in MATLAB environment, and the
‘fmincon’ function is used to solve the optimization problem with
the sequential quadratic programming algorithm.

5.2. Optimization results

5.2.1. Strategy 1
The optimization result of Strategy 1 is shown in Fig. 6. It can be

seen that almost all the energy consumed is used for greenhouse
heating in the morning (from 6 a.m. to 8 a.m.). That is because the
outdoor temperature is low during the night, the heat exchange
with the outside environment causes the temperature in the
greenhouse to gradually drops to the lower limit. The heater must
start working to keep the temperature within the required range.
The greenhouse ventilation to reduce the humidity in the green-
house is mainly around noon time (from 10 a.m. to 3 p.m.). The
reason is that the outdoor temperature is higher during this period,
the ventilation can reduce indoor humidity without causing energy
losses.

5.2.2. Strategy 2
The comparison of optimization results between Strategy 1 and

Strategy 2 under the TOU tariff is shown in Fig. 7. The comparison of
energy consumption between Strategy 1 and Strategy 2 is shown in
Fig. 8. The comparison of energy cost between Strategy 1 and
Strategy 2 is shown in Fig. 9. It can be seen that Strategy 2 consumes
more energy (4502 kWh) than Strategy 1 (3587 kWh). However,
the energy cost of Strategy 2 (R 9050) is less than the energy cost of
Strategy 1 (R 9942). That is because Strategy 2 consumes less en-
ergy (2591 kWh) than Strategy 1 (3112 kWh) during the peak
period when the energy price (R 3.1047/kWh) is much higher than
that during standard period (R 0.9446/kWh) and off-peak period (R
0.5157/kWh).

5.2.3. Strategy 3
The optimization result of strategy 3 is shown in Fig. 10. The
Fig. 6. Optimization re
comparison of the energy and CO2 consumption of three different
strategies is shown in Fig. 11. Fig. 12 shows the comparison of the
cost of three different strategies. The optimization results show that
less CO2 supply are needed to keep the CO2 concentration within
the required range. The CO2 consumption of Strategy 3 is reduced
by 96.52% (from 27.28 to 0.95 t) compared with Strategy 1 and
Strategy 2. The total cost of Strategy 1, Strategy 2 and Strategy 3 are
R 39454, R 38540 and R 11018 respectively. Comparedwith Strategy
1 and Strategy 2, Strategy 3 reduces total costs by 72.07% and
71.41%, respectively.

5.2.4. Optimization analysis
The previous optimization is based on the meteorological data

of one typical winter day in Pretoria, South Africa. In order to make
the conclusions more convincing, the proposed strategies were also
analyzed based on the meteorological data of the other two winter
days (June 5, 2016 and August 3, 2016). The meteorological data is
shown in Fig. 14 and Fig. 15.

Similar results to the optimization based on the meteorological
data of July 13, 2016 are obtained. For June 5, 2016, the operation
cost of Strategy 1, Strategy 2 and Strategy 3 are R 41076, R 40576
and R 13317 respectively. Compared with Strategy 1 and Strategy 2,
Strategy 3 can reduce operating cost by 67.58% and 67.18% respec-
tively. For August 3, 2016, the operation cost of Strategy 1, Strategy 2
and Strategy 3 are R 37935, R 36687 and R 9966 respectively.
Compared with Strategy 1 and Strategy 2, Strategy 3 can reduce
operating cost by 73.73% and 72.84% respectively.

5.3. Model predictive control

In (Van Beveren et al., 2015a, b), an open loop control strategy is
proposed for greenhouse climate control. Due to the disturbances
in the greenhouse system, the accuracy of open loop control is often
not high. In this paper, a closed-loop model predictive control
strategy is studied and compared with the open loop control
strategy.

In this paper, the optimization results of Strategy 3 shown in
Fig. 10 are taken as the reference trajectories. The reason for
sults of Strategy 1.



Fig. 7. Comparison of optimization results between Strategy 1 and Strategy 2 under the TOU tariff.

Fig. 8. Energy consumption comparison.

Fig. 9. Energy cost comparison.
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choosing the results of Strategy 3 as the reference trajectory is that
Strategy 3 is superior to Strategy 2 and Strategy 1 in improving
greenhouse energy efficiency and reducing production costs. The
operating cost under Strategy 3 is lower than that under Strategy 1
and Strategy 2. The MPC parameter settings are as follows: the
predictive horizon Np ¼ 10, the control horizon Nc ¼ Np, the
sampling interval Ts ¼ 60 s, the total simulation time T ¼ 24 h, the
weighting matrix Q ¼ diagð100;100;100Þ, R ¼ diagð1;1;1Þ.

Please note that the disturbance is added to the outputs as
measurement disturbance. For example, when the system distur-
bance is 2%, the actual value ya ¼ yp � ð1 þ eÞ, where yp is the
model predicted value, e is a random variable between�2% and 2%.
The comparison results between open loop control and MPC under
2% system disturbances are shown in Fig. 13. It can be seen that
three green curves (MPC results) fluctuate in a very small range
near the corresponding reference trajectories. However, three red
curves (open loop control results) fluctuate in a relatively large
range near the corresponding reference trajectories. Compared
with open loop control, MPC has better tracking performance.

To compare the tracking performance of open loop control and
MPC more accurately, the tracking performance indices relative
average deviation (RAD) and maximum relative deviation (MRD)
are introduced. The RAD is to evaluate the overall tracking effect
while the MRD is to evaluate tracking effect of the worst tracking
point.

Denote the value of actual measurement as xmeas, then the
relative deviation (RD) of x is defined by:

RDðiÞ¼
					
xmeasðiÞ � xref ðiÞ

xref ðiÞ

					: (44)

The RAD can be obtained by:



Fig. 10. Optimization results of Strategy 3.

Fig. 11. Comparison of energy and CO2 consumption.

Fig. 12. Comparison of the cost of three different strategies.
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RAD¼ 1
N

XN
i¼1

RDðiÞ; (45)

where N is the total sampling times. For the open loop control, N ¼
288. For the MPC, N ¼ 1440.

The MRD can be calculated by:

MRD¼maxðRDÞ (46)

Table 3 is the tracking performance indices comparison between
open loop control and MPC under three different system distur-
bances. The subscripts 2, 5 and 10 in Table 3 denote the values are
the results under 2%, 5% and 10% system disturbance respectively.

When the system disturbance is 2%, compared with open loop
control, MPC reduces 60.06% temperature RAD (from 3.38% to
1.35%), 76.19% relative humidity RAD (from 3.36% to 1.07%), and
78.12% CO2 concentration RAD (from 4.57% to 1.00%). MPC reduces
54.28% temperature MRD (from 13.80% to 6.31%), 66.28% relative
humidity MRD (from 18.18% to 6.13%), and 89.31% CO2 concentra-
tion MRD (from 19.27% to 2.06%).

When the system disturbances are 5% and 10%, similar results
are obtained. Both the RAD and MRD of MPC are smaller than that
of the open loop control. The results show that the MPC has better
tracking performance compared with the open loop control under
different levels of system disturbances.

6. Conclusion

A hierarchical control strategy of a Venlo-type greenhouse
system is proposed to reduce greenhouse cost while keeping
greenhouse climatic conditions such as the temperature, humidity
and CO2 concentration within required ranges. The hierarchical
control architecture includes two layers. On the upper layer, three
different strategies with different optimization objectives are



Fig. 13. Comparison of open loop control and MPC under 2% system disturbances.

Fig. 14. Meteorological data of June 05, 2016.

Fig. 15. Meteorological data of August 03, 2016.

Table 3
Tracking performance indices comparison between open loop control and MPC
under different system disturbances.

Open loop control MPC

RAD MRD RAD MRD

T2 (%) 3.38 13.80 1.35 6.31
RH2 (%) 3.63 18.18 1.07 6.13
C2 (%) 4.57 19.27 1.00 2.06
T5 (%) 8.37 37.51 3.23 12.39
RH5 (%) 8.61 39.62 3.05 29.70
C5 (%) 11.48 50.40 2.49 6.38
T10 (%) 16.62 90.09 7.95 44.96
RH10 (%) 17.33 78.77 5.99 80.30
C10 (%) 23.07 124.92 4.97 11.15
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studied. Strategy 1 is tominimize the energy consumption. Strategy
2 is to minimize the energy cost under the time-of-use (TOU) tariff.
Strategy 3 is to minimize the total operating cost. The optimization
results are taken as the trajectories for the lower layer. On the lower
layer, an MPC controller is designed to track the reference trajec-
tories obtained from the upper layer. Two performance indices are
calculated to compare the tracking performance of the proposed
MPC controller and an open loop controller under different level of
system disturbances. The simulation results show that compared
with Strategy 1 and Strategy 2, Strategy 3 reduces total costs by
72.07% and 71.41%, respectively. In addition, the MPC can track the
reference trajectories better than the open loop control under three
different level system disturbances.
In future work, wewill focus on the following aspects. 1) How to
reduce greenhousewater consumption. 2) How to usewind energy,
solar energy and other clean energy to power greenhouse systems.
3) How to dispatch hybrid energy systems to operate in a more
efficient and clean way.
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