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H I G H L I G H T S

• Lamp failure model based on lumen degradation.

• Energy savings model considering the surviving population.

• Maintenance optimization model based on lumen degradation failure.

• Optimal maintenance model optimizes maintenance costs and energy savings.
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A B S T R A C T

This study presents an optimal lighting maintenance plan that takes into account lumen degradation failure. In
lighting retrofit projects, retrofitted lights fail over time mainly owing to burnout and lumen degradation fail-
ures. These failures result in a reduced illumination level and lower project savings if proper maintenance is not
performed. Previous studies developed lighting maintenance plans by modeling lamp population decay due to
burnout failure. In this study, we present an optimal lighting maintenance plan based on lumen degradation
failure. The lumen degradation failure is modeled based on the statistical properties of degradation rates. By
using the Kaplan–Meier method, the formulated lumen degradation failure is used to model the surviving po-
pulation. The surviving population model is used to design an optimal lighting maintenance plan, which max-
imizes energy savings and minimizes maintenance costs. The effectiveness of the formulated maintenance plan is
demonstrated by an actual residential energy-efficient lighting retrofit project implemented in South Africa.
Results show that the proposed maintenance plan is more cost-effective than full maintenance.

1. Introduction

Energy-efficient (EE) lighting retrofit projects are promoted in var-
ious incentives energy efficiency programs, such as clean development
mechanism (CDM) [1], demand-side management [2], and white
tradable certificate schemes [3]. Over time, the number of retrofitted
lights decreases owing to lumen degradation and burnout failures.
These failures lead to reductions in illumination levels and energy
savings if proper maintenance is not performed. To control the lamp
population decay in the EE lighting retrofit projects promoted under
incentive programs, some project guidelines suggest that no rebate will
be given to the implemented project if 50% of the initial population has
failed during the project crediting period [4]. In consideration of lumen
degradation, the Alliance for Solid-State Illumination Systems and

Technologies recommends 70% lumen (30% degradation from the in-
itial lumen output) threshold to determine the useful life of LEDs for
general lighting applications [5]. Therefore, for LED-based lighting
retrofit projects, a 70% lumen degradation criterion should be con-
sidered to maintain both the illumination levels and energy savings,
since burnout failure is not significant in LEDs because of their long-
evity.

Burnout failure in lighting devices is mostly generated by defective
materials, deviations in the manufacturing process or incorrect hand-
ling and operation [6]. When burnout failure occurs, the light suddenly
goes off. The degradation is due to increased wear and aging of the
material [7]. The most common degradation in electric lights is lumen
degradation. The causes of lumen degradation differ from one lighting
technology to another. Lumen degradation in LEDs varies, depending
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on the package and system design [8].
In the literature, various models of lamp population decay have

been proposed. The AMS-II.J CDM guideline suggests linear population
decay for compact fluorescent lamps [9]. The CDM model formulates
linear decay over the rated lifetime of lamps. This model has been
applied in [10] for optimal sampling design for measurement and
verification (M&V). The Polish efficient lighting project (PELP), con-
ducted by the World Bank through an international finance corporation
[11], presented a logistic curve for a population of 1.2 million lamps.
References [12,13] proposed a model derived from existing biological
population growth equations for modeling the decay of compact
fluorescent lamps over time. This model has been applied in [14] for
optimal maintenance planning of the EE lighting retrofit project. Re-
ference [15] introduces LEDs’ failure model based on lumen degrada-
tion, and this model is used to design an optimal maintenance plan of
an LED-based lighting retrofit project.

Based on when it is performed (before or after failure), maintenance
can be classified into two main categories [16]: corrective maintenance
(CM), and preventive maintenance (PM). CM is performed after a
failure has occurred, while PM is performed before a failure has oc-
curred. PM is usually performed according to a schedule and can be
based on the usage of the product (e.g.: every 1000 h, 10,000 h, etc.),
time-based (every week, every month, every year, etc.), or condition-
based [17]. For lighting systems, the preventive maintenance scheduled
at fixed time intervals is the most efficient [15]. PM maintains the ef-
ficiency of the equipment and keeps it running more efficiently. How-
ever, the implementation of PM can be time-consuming and costly
because of the tasks performed, such as continuous monitoring of the
working conditions of the item. Therefore, effective PM should be
prioritized to balance maintenance costs and additional benefits.

The current work continues in the line of study [15] by considering
large-scale lighting retrofit projects. In large-scale lighting retrofit
projects, monitoring when each lamp will fail can be time-consuming
and costly. In this work, the degradation failure model is developed by
analyzing the statistical properties of sample lumen degradation rates.
This model considers the variations in lumen degradation rates which
may be caused by manufacturing materials and processes, or different
handling conditions. The main contribution of this study is the for-
mulation of optimal lighting maintenance that takes into account lumen
degradation failure based on the statistical properties of the lumen
degradation rates.

In this study, lumen degradation failure is modeled by analyzing the
statistical properties of the degradation rates of LUXEON rebel,
Lumileds Philips LEDs. Fifty-seven probability distributions are tested
to find the best distribution fit of the samples’ degradation rates.
Kolmogorov Smirnov, Anderson Darling, and Chi-Squared goodness fit
tests are used to determine the best fit of samples’ degradation rates.
The generalized extreme value (GEV) distribution is the best fit for the
tested degradation rates and is used to calculate the cumulative prob-
ability of failure distribution and model the lumen degradation failure.
By using the Kaplan–Meier method, the failure model is used to esti-
mate the surviving population. Thereafter, the surviving population
model developed is used to design an optimal maintenance plan for an
LED-based lighting retrofit project. The optimal maintenance plan is
formulated to maximize energy savings and minimize maintenance
costs. The optimization problem is solved using the Mixed Integer
Distributed Ant Colony Optimization (MIDACO) solver in MATLAB.
Failed lamps are optimally replaced based on a minimum number of
surviving lamps required to maintain adequate illumination level, and
maintenance budget limit. The effectiveness of the proposed main-
tenance plan is illustrated by a case study of an actual LED-based
lighting retrofit project for residential buildings implemented in South
Africa.

The organization of the paper is as follows: The problem formula-
tion and modeling are given in Section 2. The case study is given in
Section 3. Simulation results are discussed in Section 4, followed by

conclusion in Section 5.

2. Problem formulation and modeling

For LED lighting retrofit projects registered under incentive energy
efficiency programs, energy saving rebates can only be awarded if the
lighting population is greater than or equal to 70% of the initial po-
pulation. At the beginning of the installation, all installed light bulbs
will function properly. However, as time goes by, the number of op-
erational light bulbs will decrease as well as the energy savings and
illuminance levels, because of the lumen degradation. Proper main-
tenance is required to sustain the project performance and rebates.
However, maintenance activities can be costly. This study, therefore,
proposes an optimal lighting maintenance plan that maximizes energy
savings and minimizes maintenance cost, while taking into account
lumen degradation failure.

We start with the lamp failure modeling for the formulation of the
optimization problem.

2.1. Lamp failure modeling

2.1.1. Burnout failure models
In the literature, different models have been developed to predict

the number of lamps that survived over time based on burnout failure.
The burnout failure models developed in the existing studies are dis-
cussed below.

(i) Exponential decay model
The exponential decay model quantifies growth or decay at a rate
proportional to the population size [18].

=dN t
dt

kN t( ) ( ), (1)

where N t( ) is the lamp population size at time t. Eq. (1) describes
the law of natural growth if >k 0, and the law of natural decay if

<k 0. The solution to Eq. (1) is an exponential function given as

=N t N e( ) (0) ,kt (2)

where N (0) is the size of the initial population.
(ii) Linear population model

This model is suggested in the AMS-II.J CDM guideline [19].
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where L is the average lifetime of lamps (in h), H is the number of
operating hours per year (in h), and y is the percentage of surviving
population at the end of the average lifetime.

(iii) Regression model
A regression model has been proposed to fit the PELP data [11].

=
+ −t

e
Φ( ) 1

1
,t L (4)

where tΦ( ) is the proportion of the population surviving at time t.
(iv) Improved model to Eq. (4)

Previous studies [12,13], proposed an improvement to Eq. (4),
given as

=
+ −t

c e
Φ( ) 1 ,bt L (5)

where c and b are the initial value and slope parameters, respec-
tively. The discrete dynamic form of Eq. (5) is given as [12]

+ = − +t bc t b t tΦ Φ Φ Φ( 1) ( ) ( ) ( ).2 (6)
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2.1.2. Lumen degradation failure modeling
LED lamp failure based on lumen degradation is modeled to predict

the surviving population in LED-based lighting retrofit projects.
Previous studies [20,21] analyzed the lumen degradation of LEDs and
recommended the exponential decay model (7) as an appropriate em-
pirical model to describe the lumen degradation of LEDs.

= −ϕ t ϕ e( ) (0) ,βt (7)

where ϕ t( ) is the luminous flux (in lm) at time t ϕ, (0) is the initial
luminous flux (in lm), and β is the degradation rate.

In model (2), the population failure rate k is assumed to be constant.
However, the failure rate may vary among LEDs owing to variations in
lumen degradation rates. The lumen degradation rate may vary among
LEDs owing to variations in materials, different manufacturing pro-
cesses, or different handling conditions. For this reason, in this study
LED failure is modeled by analyzing the statistical properties of the
lumen degradation rates. The modeling process is detailed as follows:

i). Lumen measurement
Currently, there is no universal standard for measuring the photo-

metric properties of LEDs. The Illumination Engineers Society (IES)
released documents (IES LM-80-08 and IES LM-IES TM-21-11) de-
scribing standards for testing LEDs [22]. These standards appear to be
the frontrunner in becoming the benchmark standards in testing pho-
tometric properties and have been adopted by most top-tier manu-
facturers such as Osram and Philips. The IES standards recommend a
minimum of 20 samples to project 6 times of test duration and 10 to 19
samples to project 5.5 times test of duration. For luminous flux data
collection, sequential measurements after the initial 1 000 h at intervals
less than 1 000 h are encouraged. For curve fit, at least 5 000 h of data
for test duration greater than or equal to 6 000 h, or at least 50% of the
total test duration for a test duration greater than 10 000 h is re-
commended.

Because of their longevity, up to now, no actual measurement data
of lumen degradation of LEDs have been collected over their complete
lifetime. In this study, the data used to model lumen degradation failure
were obtained from the Illuminating Engineering Society of North
America (IESNA) LM-80 test report of Philips Lumileds [23]. It reports
on the lumen degradation of 25 LUXEON Rebel, Lumileds Philips being
tested in compliance with the LM-80-08 standard. Luminous flux data
of tested units were collected every 1 000 h over an evaluation period of
7 000 h. All collected luminous flux data were normalized to 1 at the
original test point. Sample test units were tested in homogeneous op-
erating and environmental conditions. The lumen degradation
threshold Lpth (30% degradation from the initial lumen output) com-
monly used in the general lighting application was considered. When
the lumen degradation of a unit at any time t is below Lpth, the unit is
deemed to have failed.

ii). Estimation of degradation rates and statistical property analysis
The degradation rate of each test unit is estimated using regression

analysis. Regression analysis examines the relationship between time
and lumen degradation. Each test unit is represented by time and lumen
degradation data points, ⋯t Lp t Lp( , ), , ( , )K K1 1 . The model function of
each unit is given as

= = ⋯ = ⋯Lp f t β i n t K( , ), 1, 2, , , 1, 2, , ,i i (8)

where Lpi and βi are the lumen measurement and degradation rate of
the ith unit, respectively. It is found that the test units data are char-
acterised by exponential models with the coefficient of determination
(R2) between 0.97 and 0.99. The estimated degradation rate for each
unit is given in Table 1.

To analyze the statistical properties of the degradation rates, the
probability distribution fitting is used to determine the statistical dis-
tribution that best fits the degradation rates. There are different dis-
tribution fitting programs, including EasyFit, Matlab, Excel, ExpertFit,

and R. In this study, EasyFit1 is used. Kolmogorov Smirnov, Anderson
Darling, and Chi-squared tests are used to test the best fit. Table 2
presents different tested distributions and their statistics. The dis-
tribution fits are tested at a 95% confidence level. The results show that
the degradation rates fit 40 distributions out of 57 fitted distributions. It
has been found that GEV distribution is the best fit, and it is used to
estimate the cumulative probability of failure distribution.

iii). Model prediction
The probability that a brand new LED will fail at or before a spe-

cified time is represented by a cumulative distribution function F t( ).
F t( ) is expressed as [24]

= ∊ ⩽F t P t( ) [ ], (9)

where ∊ is the lifetime of LED (hours of use before the LED fails). As-
suming β of the LED is known and Lpth is set, ∊ can be expressed as [21]

∊ =
−
Lp
β

ln[ ]
.th

(10)

Substituting (10) in (9) we obtain
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βi follows the GEV distribution with location parameter ι, scale para-
meter ν, and shape parameter κ. β ι ν κ~GEV( , , ), the GEV cumulative
distribution is given as [25].
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After modeling the failed proportions (F t( )), the surviving popula-
tion is estimated using the Kaplan–Meier method [26] as

∏ ⎜ ⎟
⎛

⎝
⎜ +

⎞

⎠
⎟ = ⎛

⎝
− ⎞

⎠=

N t N t
d j
N j

1 ( ) 1
( )
( )

,
j

t

1 (13)

where = −d j N j F j( ) ( 1) ( ) is the number of LEDs failed at time j (with
luminous flux below the threshold).

iv). Model parameter estimation
Parameter estimation methods, including the mixed method [27],

maximum likelihood method [25], and probability weighted moment
(PWM) method [28], have been used to estimate GEV distribution
parameters. Reference [28] shows that maximum-likehood estimators

Table 1
Lumen degradation rates of test units over the evaluation period of 7 000 h.

Test unit β Test unit β

1 × −0.1382 10 4 14 × −0.0908 10 4

2 × −0.1211 10 4 15 × −0.1609 10 4

3 × −0.1346 10 4 16 × −0.1008 10 4

4 × −0.1274 10 4 17 × −0.1097 10 4

5 × −0.1001 10 4 18 × −0.1287 10 4

6 × −0.1177 10 4 19 × −0.1462 10 4

7 × −0.1192 10 4 20 × −0.0902 10 4

8 × −0.1142 10 4 21 × −0.1312 10 4

9 × −0.1368 10 4 22 × −0.1015 10 4

10 × −0.1142 10 4 23 × −0.1508 10 4

11 × −0.1428 10 4 24 × −0.1053 10 4

12 × −0.1269 10 4 25 × −0.1206 10 4

13 × −0.1386 10 4

1 http://www.mathwave.com/easyfit-distribution-fitting.html.
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are unstable for a small samples and recommends PWM estimators. The
PWM estimators are equivalent to L-moment estimators [29]. By using
the L-moment estimators, the GEV distribution parameters are given as
[29]

̂ ̂ ̂
̂ ̂= − − +ι λ ν

κ
κ(1 Γ(1 )),1 (14)

̂ ̂ ̂
̂̂=

− +−
ν λ κ

κ(1 2 )Γ(1 )
,

κ
2

(15)

= + =
+

− ⎛
⎝

⎞
⎠

κ c c c
τ

^ 7.8590 2.9554 , 2
3 ^

ln 2
ln 3

,2
(16)

where ̂ ̂ ̂=τ λ λ/3 2, and Γ(·) is the complete gamma function. Parameters
̂ ̂ ̂λ λ λ, , and1 2 3 are given as [30]

̂ =λ b ,1 0 (17)

̂ = −λ b b2 ,2 1 0 (18)

̂ = − +λ b b b6 6 ,3 2 1 0 (19)

where b b b, ,0 1 2 are an unbiased estimator calculated using Eq. (20)

Table 2
Tested distributions using goodness fit tests.

Kolmogorov Smirnov Anderson Darling Chi-Squared

No Distribution Statistic Rank Statistic Rank Statistic Rank

1 Beta 0,13345 37 4,2804 42 N/A –
2 Burr 0,07417 6 0,14771 6 0,40447 10
3 Burr (4P) 0,72372 53 15,225 52 0,08885 5
4 Cauchy Reject
5 Dagum 0,0989 27 0,27946 27 0,91312 16
6 Dagum (4P) Reject
7 Erlang 0,10107 28 0,21429 19 1,1869 33
8 Erlang (3P) 0,10167 29 0,21717 20 1,2339 34
9 Error 0,065 3 0,11954 3 0,05274 4
10 Error Function Reject
11 Exponential Reject
12 Exponential (2P) Reject
13 Fatigue Life 0,09586 25 0,22367 21 1,1334 29
14 Fatigue Life (3P) 0,07848 11 0,15991 9 0,38145 9
15 Frechet 0,15555 41 0,80594 35 1,9925 37
16 Frechet (3P) 0,11238 31 0,37649 30 0,86061 13
17 Gamma 0,0868 16 0,1815 14 1,0919 21
18 Gamma (3P) 0,08357 15 0,17538 11 1,1005 22
19 Gen. Extreme Value 0,06181 1 0,11934 2 0,02251 1
20 Gen. Gamma 0,08757 18 0,19079 16 1,1054 24
21 Gen.Gamma (4P) 0,17954 42 4,7381 45 N/A –
22 Gen. Logistic 0,07572 8 0,17576 12 0,89488 15
23 Gen. Pareto 0,09732 26 Reject
24 Gumbel Max 0,13582 38 0,69617 34 1,1247 27
25 Gumbel Min 0,12555 35 0,50988 31 1,1048 23
26 Hypersecant 0,09581 24 0,33599 28 2,0534 38
27 Inv. Gaussian 0,09461 21 0,24275 25 1,1103 25
28 Inv. Gaussian (3P) 0,13287 36 1,0899 36 1,4291 35
29 Johnson SB 0,06343 2 0,12404 4 0,04739 3
30 Kumaraswamy 0,14292 39 4,365 44 N/A –
31 Laplace 0,11644 32 0,54984 32 1,8644 36
32 Levy Reject
33 Levy (2P) Reject
34 Log–Logistic 0,12391 34 0,34163 29 0,86605 14
35 Log–Logistic (3P) 0,07821 10 0,18234 15 0,91584 17
36 Log-Pearson 3 0,07743 9 0,15157 7 0,34299 7
37 Logistic 0,08736 17 0,23458 24 1,0031 19
38 Lognormal 0,09577 23 0,22402 22 1,1293 28
39 Lognormal (3P) 0,08127 14 0,17376 10 1,1136 26
40 Nakagami 0,07875 12 0,15949 8 0,36317 8
41 Normal 0,07244 5 0,13822 5 0,03183 2
42 Pareto Reject
43 Pareto 2 Reject
44 Pearson 5 0,10372 30 0,26755 26 1,0735 20
45 Pearson 5 (3P) 0,09124 19 0,19634 17 1,1607 32
46 Pearson 6 0,09168 20 0,20607 18 1,1498 30
47 Pearson 6 (4P) Reject
48 Pert Reject
49 Power Function 0,118 33 Reject 1 18
50 Rayleigh Reject
51 Rayleigh (2P) 0,15047 40 0,64834 33 0,57672 12
52 Reciprocal Reject
53 Rice Reject
54 Uniform Reject
55 Wakeby 0,06932 4 0,11185 1 0,13297 6
56 Weibull 0,07419 7 0,23448 23 0,54344 11
57 Weibull (3P) 0,08051 13 0,1758 13 1,1583 31
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[31],
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In practice, the parameters ι ν, , and κ may not be known accurately
beforehand. Based on lumen degradation data available at each time t,
the failed proportions function can be expressed as

=F t f t ι ν κ( ) ( , , , ),t t t (21)

where ι ν,t t, and κt can be determined at each time interval using Eq.
(20).

v). Applicability of the model
The models (12) and (13) are applicable to LUXEON rebel LEDs

operating under normal indoor conditions. In this study, these models
are used to design an optimal maintenance plan of the LUXEON-based
LED lighting retrofit project in residential buildings.

2.2. Optimization formulation

A lighting maintenance optimization problem is formulated to
maximize energy savings and minimize maintenance cost. The design
variables, objective function, and constraints of the optimization pro-
blem are given in the following subsections.

2.2.1. Design variables
The design variables are the number of light bulbs to be replaced

over the evaluation period. Let u t( ) denote the number of light bulbs to
be replaced at time t. For = ⋯t K U1, 2, , , the design variable set,
which characterizes the optimization problem, is given as

= ⋯U u u u K[ (1), (2), , ( )] .T (22)

The design variables are integers bound between 0 and the initial
lighting population.

= ⋯ = ⋯× ×L U N N[0, ,0] , and [ (0), , (0)] ,b K
T

b K
T

1 1 (23)

where Lb andUb are the lower and upper bounds of the design variables,
respectively.

2.2.2. Objective function
The objectives of the lighting maintenance optimization problem

are to maximize energy savings and minimize maintenance cost, which
can be formulated into a multi-objective optimization problem as

⎧
⎨⎩

−W
M

min ,
min .c (24)

The weighted sum method [32] is used to translate the problem (24)
into a single objective optimization problem as

= − +ω W ω MΘmin ,c1 2 (25)

where ω1 and ω2 are the weighting coefficients, which are in the range
[0, 1], and + =ω ω 11 2 . The weighting coefficients are determined by
the project developers, based on their preferences.

Maximum values of energy savings (W ) and maintenance cost (Mc)
are used to normalize the objective function (25). Eq. (25) is re-written
as

= − +ω W
W

ω M
M

Θmin .c

c
1 2 (26)

The energy savings of the EE lighting retrofit project are estimated
as the product of energy savings of each EE lamp and the number of
surviving lamps.

∑= ×
=

W ES N t( ).
t

K

1 (27)

By considering maintenance, the surviving population Eq. (13) is ex-
pressed as
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where ES is the energy savings (in kWh) per retrofit unit. The ES is
determined using an M&V approach [33]. M&V approach quantifies the
energy consumption before and after energy efficiency measure is im-
plemented to verify and report energy savings achieved. It is char-
acterized by installing and maintaining energy meters, gathering data,
developing methods for computation and estimates, using data for
computations, and reporting verified results.

Time =t 0 is regarded as the installation stage, and the surviving
population at =t 0 is equal to the initial installed lighting population
N (0). The failed lamps will be replaced by the same type of lamps,
which will not change the population’s degradation distribution. The
maintenance cost of replacing the failed light bulbs by new ones is
given as

∑= + ×
=

M σ L u t( ) ( ),c
t

K

c
1

0
(29)

where σ0 is the price (in R2) of each bulb, and Lc is the labor cost (in R)
to replace a bulb.

2.2.3. Constraints
The objective function (26) is constrained by economic and popu-

lation size constraints expressed in the following equations:

× ⩽ ⩽N N t N0.7 (0) ( ) (0), (30)

∑ + × ⩽
=

σ L u t ζ( ) ( ) ,
t

K

c
1

0
(31)

where ζ is the initial retrofit investment given as

= + ×ζ σ L N( ) (0).c0 (32)

The constraint (30) indicates that the EE lighting retrofit project
registered under an incentive energy efficiency program will earn en-
ergy saving rebates only if N t( ) is greater than or equal to 70% of the
initial population. Also, N t( ) should not be higher than the initial po-
pulation. The maintenance budget constraint (31) indicates that the
maintenance cost over the evaluation period should not exceed the
initial retrofit investment.

2.3. Solution methodology

The optimization problem (22)–(32) is an integer programming
problem and is solved with the MIDACO solver, which is a numerical
high-performance solver for single and multi-objective optimization
problems. The MIDACO solver can be applied to continuous, discrete/
integer, and mixed-integer problems. It is available for several pro-
gramming languages including MATLAB, Octave, and Python [34]. In
this study, it is used in MATLAB R2017b.

3. Case study

The formulated model is used to plan effective strategic main-
tenance for a large-scale lighting retrofit project. In South Africa,
Eskom3 in its program of residential mass roll-out (RMR) encourages
project developers to implement EE lighting retrofit projects [35]. In
one of the sub-RMR projects, LED light bulbs are replacing halogen light
bulbs in households in different provinces of South Africa. LEDs that are

2 South African currency (1 Rand = 0.066 USD), as at 19 December 2019.
3 A South African electricity public utility
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installed have the equivalent lumen output to the replaced halogen.
LUXEON-based LED light bulbs with a rated power of 10 W and lumen
output of 800 lm are considered to replace halogen light bulbs of the
rated power of 50 W and lumen output of 800 lm. The lighting retrofit
project is evaluated for the duration of K = 10 years, with a sampling
interval of one year. The replacement cost Lc refers to the labour cost to
change a bulb. This cost is calculated as minutes to change a bulb (task
takes an average of eight minutes) divided into 60 min in an hour times
hourly rate for lighting maintenance (this value is obtained from South
Africa labour cost data 2008–2016). The hourly rate for lighting
maintenance used is for indoor lighting applications. Thus, the unit
labour cost considered is for indoor lighting retrofits. The case study
key information is given in Table 3.

The EE lighting retrofit project entails a large lighting population,
thus installing a light meter at each light bulb is not feasible because of
the high cost of light meters. A simple random sampling approach is
used to determine the required sample of lights for a given population
to achieve some confidence and precision. The sample size (n) for the
lighting population is calculated as [36]

=n z CV
p

,
2 2

2 (33)

where z is the z-score, p is the relative precision, and CV is the standard
deviation of the sampling records divided by the mean.

The CDM guidelines of 90% of the confidence interval and 10% of
relative precision, and a CV of 0.5 are applied in the calculation. To
ensure accurate and representative luminous flux data, the following
protocols are applied to measure the luminous flux: (i) only the light
provided by the lamp being tested is measured; (ii) luminous flux
measurements are recorded at a typical office desk height (0.76 m); (iii)
the same type of calibrated lux meters are used; iv) adjacent electric
lights are switched off during measurement, and (v) measurements are
scheduled and taken every day after sunset to avoid daylight dis-
turbance. The luminous flux collected at each sampling interval is
normalized to the initial luminous flux.

4. Simulation results

To evaluate the effectiveness of the proposed maintenance plan, the
no maintenance and full maintenance scenarios are calculated for
comparison purposes.

4.1. No maintenance scenario

In the no maintenance scenario, the lighting project in Section 3 is
implemented without maintenance. The number of failed and surviving
lamps is estimated at each sampling interval using Eqs. (12) and (13).
As shown in Fig. 1, the number of surviving lamps decreases over time
and reaches the minimum number (70% of N(0)) required for an ade-
quate illumination level after operating for 21 860 h. The total energy
savings over 10 years are ×177.9 103 MWh.

4.2. Full maintenance scenario

Full maintenance refers to maintenance by which all lamps will be
replaced by new ones once the number of surviving lamps has reached
70% of N(0). All lamps will be replaced after every 21 860 h of op-
eration. Full maintenance will be performed once over the evaluation
period. The total energy savings under full maintenance are ×297.6 103

MWh, and the cost of full maintenance is R11 838 501.

4.3. Optimal maintenance scenario

In this scenario, the proposed maintenance plan is applied to the
lighting retrofit project in the case study. The optimization problem is
solved using the MIDACO solver. The parameters used in the solver are
given in Table 4. The objectives in Eq. (26) are treated as equal, thus the
weighting coefficients are equal (i.e. = =ω ω 0.51 2 ). At each sampling
interval, the luminous flux collected is normalized to the initial lumi-
nous flux and used to calculate Eq. (20), then distribution parameters
and the number of failed lamps are calculated. The energy savings and
surviving population are calculated using Eqs. (27) and (28), respec-
tively. Results show that the first replacement of 7 996 lamps will
happen at 18 250 h, and 143 456 failed lamps will be replaced over the
evaluation period. The optimal number of lamps to be replaced and the
surviving population at each sampling interval are shown in Fig. 2. The
total energy savings under the optimal maintenance plan are

×282.2 103 MWh, and the maintenance cost is R8 176 992.
Compared to the no maintenance scenario, the optimal maintenance

plan increases energy savings by 59%. A full maintenance plan pro-
duces more energy savings than optimal maintenance plan because
more failed lamps are replaced, but at a higher maintenance cost. Fig. 3
compares energy savings under the no maintenance, full maintenance,

Table 3
Case study information.

Parameter Existing lights (halogen) LED light bulb

Power 50 W 10 W
Light output 800 lm 800 lm
Lifetime 1 500 h 15 000–40 000 h
Operating hours/day 10 h 10 h
Initial population 207 693 207 693
Unit price R 35 R 50
Replacement cost/bulb - R 7

Fig. 1. Surviving lamp population under no maintenance and threshold sur-
viving lamps.

Table 4
Solver parameters.

Parameter name Value

problem.o (number of objectives) 1
problem.n (number of variables) 10
problem.ni (number of integer variables) 10
problem.m (number of constraints in total) 21
problem.me (number of equality constraints) 0
problem.xl (lower bound) 0×ones(1,problem.n)
problem.xu (upper bound) N(0)×ones(1,problem.n)
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and optimal maintenance scenarios. Both the full maintenance and
optimal maintenance plans maintain the lumen degradation within the
threshold. Table 5 presents and compares the project key performance
factors under the full maintenance and optimal maintenance plans. It is
observed that the optimal maintenance plan is more cost-effective (with
R78.3 per MWh saved) than a full maintenance plan. The ratio between
the maintenance cost and additional energy savings is calculated to
indicate the cost-effectiveness of different maintenance plans.

4.4. Sensitivity analysis

Uncertainties associated with parameters used in the optimization
are discussed below.

4.4.1. Weighting coefficients
The weighting coefficients are selected depending on the project

developers’ preferences. The higher the weighting coefficient, the more
preference is given to the associated objective. Results show that the
optimal number of lamps to be replaced varies with the weighting
coefficients. For example, for = =ω ω 0.51 2 , 143 456 failed lamps will
be replaced, while for =ω 11 , and =ω 02 , 166 154 failed lamps will be
replaced.

4.4.2. Daily light usage
In the case study, the daily light usage of 10 h is considered, but the

daily usage may increase or decrease depending on users’ behavior and
occupancy patterns. Simulation results show that the optimal number of
lamps to be replaced is sensitive to the number of operating hours.
When the operating hours increase, the number of lamps to be replaced
increases, and when the operating hours decrease, the number of re-
placements decreases.

4.4.3. Light price
The price of LED lights has dropped significantly over the past few

years and the trend is expected to continue owing to the rapid devel-
opment of LED technology. Results show that the optimal number of
lamps to be replaced is sensitive to the unit price of LEDs. When the unit
price of the LEDs decreases, the number of lamps to be replaced in-
creases.

4.4.4. Lighting population size
In lighting retrofit projects, the initial population size differs from

one project to another. Results show that the optimal number of lamps
to be replaced increases when the initial population increases and de-
creases when the initial population decreases. For example, if the initial
population is increased by 25%, the number of lamps to be replaced
increases to 173 302 lamps. Table 6 presents the sensitivity of the op-
timization parameters.

5. Conclusion

An optimal maintenance plan for an LED lighting retrofit project is
studied. A lumen degradation failure model is developed for LUXEON-
based LED lights. Based on the statistical properties of the degradation
rates, the cumulative probability of failure distribution and the survival
function are modeled. The formulated survival function is incorporated

Fig. 2. Optimal number of lamps to be replaced and surviving population.

Fig. 3. Energy savings under no maintenance, full maintenance, and optimal
maintenance scenarios.

Table 5
Project key performance factors analysis under full and optimal maintenance
plans.

Factor Full maintenance
(FM)

Optimal maintenance
(OM)

Energy savings (MWh) ×297.6 103 ×282.2 103

Number of replaced lamps 207 693 143 456
Maintenance cost (R) 11 838 501 8 176 992
Performance indicator (R/

MWh)
98.9 78.3

Table 6
Sensitivity analysis of the optimization parameters.

Weighting coefficients Daily light usage Light price Initial population

Factor = =ω ω 0.51 2 = =ω ω1, 01 2 10 h 4 h R 50 R 40 207,693 259,617

Energy savings (GWh) 282.2 287.4 282.2 286.3 282.2 283.7 282.2 191.6
Number of replaced lamps 143,456 166,154 143,456 0 143,456 145,231 143,456 173,302
Maintenance cost (R) 8,176,992 9,470,778 8,176,992 0 8,176,992 6,825,857 8,176,992 9,878,214
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into the lighting maintenance optimization problem to balance energy
savings and maintenance costs. A case study carried out shows that, in
10 years, the optimal lighting maintenance plan would save up to 59%
of lighting energy consumption with acceptable maintenance costs. It is
found that the proposed maintenance plan is more cost-effective than
full maintenance. It is concluded that lumen degradation failure should
be considered when investigating the performance of lighting retrofit
projects, as this may not only affect energy savings but also reduce the
level of illumination, which can cause visual discomfort.
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