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Summary
This paper extends a control system framework for the maintenance planning
investment decision for building energy retrofitting. The interacting energy and
reliability effects that are ignored by previous models are incorporated in the
current study. A set of energy efficiency and population decay models with
interacting parameters and decision variables are established, and a state-space
model with coupled nonlinear equations is obtained. The control objectives
are maximizing the energy savings and financial paybacks with limited bud-
get during a finite time period. An model predictive control (MPC) controller is
designed for the problem. The interacting effects and effectiveness of the pro-
posed approach are verified by the case study, where improvements from the
modeling considering interaction are revealed.
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1 INTRODUCTION

Improving energy efficiency in existing buildings is an important part of today's movements for energy efficiency. The
building energy retrofitting1,2 and accordingly the energy-oriented maintenance plan optimization (MPO)3-5 are the major
approaches with this purpose. The maintenance planning aims at sustaining as much energy performances as possible
during operation, given an implemented building energy retrofitting project. Ye et al3 took into account the MPO in a
light retrofitting project for the sustainable energy efficiency and financial performances over the long term. Wang et al4

extended the MPO problem to a building retrofitting project involving lighting, HVAC, and other office appliances.
In above studies, the MPO problems are actually management level investment decision issues. The term “manage-

ment level” implies a fact that the operation and management of a single device is not the focus. Instead, the major
concern is the resource allocation and planning for an energy efficiency project under the constraints such as limited
budget and manpower. For the MPO at management level, the retrofitted items are categorized into several homoge-
neous item groups. A hypothesis suggests that three kinds of characteristics are employed to categorize the homogeneous
item groups: the inherent energy and reliability performance, the operational environment of the items, and the corre-
sponding operating schedules.4 Consequently, each item group consists of homogeneous items, which can be considered
to manifest same energy consumptions and failure rate under the same condition. Thereafter, the aggregated energy
and economy performances of a group can be obtained from the performances of one single homogeneous item and the
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corresponding population. The term “population” is adopted to represent the overall number of functioning retrofitted
items from one item group. Such a population is not constant during operation, the retrofitted item failures result in the
decrease of the number of available devices in an item group, namely the population decay. The measurement and veri-
fication (M&V) principles6 interpret that a retrofitted item contributes zero energy saving if it becomes malfunctioning.
Therefore, the population decay results in the deterioration of the overall performances, for example, the energy savings.
Such a population decay can be extracted from the statistical sources or first principle models, which leaves space for
further improvements. At the current stage, several methods have been employed to model the population dynamics in
literatures. The Clean Development Mechanism (CDM) studies adopted either a linear assumption7 or an experimental
data fitting.8 Wang et al4 employed reliability functions for different types of items from reliability engineering9 to develop
the population decay model.

The impacts of maintenance to performances have been extensively studied in past decades.10-13 From the energy
retrofitting perspective, maintenance actions can restore the energy savings via reversing the population decay, that is,
restoring a number of failed devices to normal working condition. In this way, the maintenance influences the overall
energy savings of a retrofitting project. Such maintenance can be realized by either repair or replacement. An assumption
is applied that the performances of a single device will not change after the repair or replacement, that is, the device is
restored to an “as good as new” condition. The term “maintenance intensity” is adopted to describe the number of the
implemented maintenance actions upon a specific time, namely the “maintenance instant.” The number of actions are
integers, thus there is an integer nature with the maintenance intensity. Thereafter, the maintenance plan optimization
is implemented via selecting proper maintenance intensities and time scheduling, such that energy savings and other
performances can be maximized against failures. The cash flows during operation can also be obtained from the item
group populations and maintenance intensities. The economy performances, for example, the financial payback, can be
identified consequently. In this way, the aggregated performances, which are under the influence of the population decay
and maintenance, can be evaluated.

Such a population dynamics can be characterized and formulated as a control system, where the MPO is cast into an
optimal control problem and control system approaches can be introduced. In our previous studies,4,5 a set of grouping
based energy efficiency models have been developed, subject to population decay models following statistical laws. How-
ever, the possible interacting energy efficiency effects between different categories of devices have been ignored in these
previous studies. Actually, such interplay in buildings have been a widely investigated topic. For example, the ASHRAE*

2009 fundamental handbook14 introduced the complicated composition of the heating/cooling load for an air condition-
ing system in buildings. For example, the ASHRAE† fundamental handbook of 200914 gives a detailed introduction to
the heating/cooling load for a building air conditioning system, which involves a series of heat transmissions, including
the heat transmission through the building envelope and ventilation, the heat gain from the solar radiation and appli-
ances. The air conditioner heating/cooling load computation, which is essential to the air conditioning system energy
consumption estimation, takes into account such heat dynamics.

According to existing studies, the air conditioner heating/cooling load receive significant impacts from the nearby
electrical appliances, such as the computers, monitors, lights, etc, which contribute significant heat gains to the heat-
ing/cooling load. Sezgen15 and Zmeureanu16 evaluated the lights and air conditioners' interacting energy effects. Ahn
et al17 incorporates such an interaction into the energy efficiency of air conditioning system by directing the convec-
tive heat from LED lighting. When taking into account the malfunctions of the retrofitted devices, such an interacting
energy efficiency effects can further result in interplays in the population decay of different groups. Breuker and Braun18

identified that the rooftop air conditioners suffer from a series of failures that are resulted from the unmatched heat-
ing/cooling loads. For example, when the working load gets very high, the compressor motor can overload and damage
itself. When the load is too small than the designed value, liquid flood back can take place, which can cause the failure
of the compressor. Generally, the building air conditioners are sized on a basis of normal working loads. The rated power
of an air conditioner is selected to match the peak demand, which is estimated with an assumption that the appliances
are all working properly. In practice, the appliance degradation, especially the item population decay, can lead to abnor-
mal working load of the air conditioning system, resulting in a higher failure rate. For example, the population decay
of lighting can significantly reduce the working load, and the failure of fan coil units implies higher working load for
each working air conditioner in the area. Such interacting energy efficiency and reliability effects suggest that population
dynamics actually have coupled state variables. Furthermore, there can be hidden interplays within the energy efficiency

*American Society of Heating, Refrigerating and Air-conditioning Engineers.
†American Society of Heating, Refrigerating and Air-conditioning Engineers.
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models. It is reasonable to assume that significant interacting effects must be taken into account, and the previous models
in References 4 and 5 can be incomplete.

This study aims at improving the existing control system framework by incorporating the aforementioned interact-
ing energy efficiency and reliability effects. The possible impacts of such interplays are evaluated, based on which the
energy efficiency and population decay models are modified from ones with independent parameters to ones with cou-
pled parameters and decision variables. Results from the aforementioned studies are employed to evaluate the interplays
between lighting and air conditioning units. Due to the lack of the progress in these relevant studies, the current stage
model also focuses on the lighting and air conditioning unit groups, where several assumptions are employed to allow the
control system framework modeling. First, only lights and air conditioners are investigated. Second, a common space is
involved, where all items are installed and contribute to heating/cooling loads. Third, heat sources other than lights and
air conditioners are considered to have been identified a priori. The current investigation adopts the control framework
from previous studies. There are two coupled state variables in the model: the lights group and air conditioner group
populations. The decision variables are the maintenance intensities upon predecided maintenance instants. The con-
trol objectives are to maximize the aggregate energy savings and the financial payback. The constraints are the targeted
energy savings, the budget limit, and the human comfort satisfactions. The uncertainties are inevitable in such an MPO
problem. The uncertainty factors can come from various resources, for example, modeling uncertainties, measurement
uncertainties, and sampling uncertainties.19 Detailed explanations can be found from previous studies.20-22 Given the
main focus of the proposed approach is improving the existing control system framework, the uncertainties are simplified
to be a random disturbance on the state variables, as such an interpretation is incomprehensive but easier to implement.
A model predictive control (MPC) approach is adopted for the optimal control based maintenance plan optimization.
Taking advantage of the data from a practical retrofitting project, a case study is investigated, where simulation results
exhibit the effectiveness of the proposed approach. For the sake of the comparative study, a maintenance plan without
considering the interaction is generated and tested.

The remainder of the paper consists of four sections: Section 2 models the coupled system dynamics given the inter-
acting energy and reliability effects. Section 3 introduces the MPC based approach to solve the formulated MPO problem.
Section 4 introduces the simulation exercise, illustrates the results, analysis, and comparisons. Section 5 is the conclusion.

2 CONTROL PROBLEM FORMULATION

2.1 Variable definition

Given that two retrofitted item groups are investigated at the current stage. Let xL(tk) denote the lighting group population,
and xAC(tk) the air conditioner group population, where tk = kS, k = 0, 1, 2,… ,T are the sampling instants. A finite time
horizon namely the sustainability period is defined as [0,TS), over which the item group populations and performances
are estimated. S denotes the sampling interval. The system state is given as follows:

x(tk) = (xL(tk), xAC(tk))T , (1)

where x(t0) = (x0
L, x0

AC)
T . The control inputs upon time tk are represented as follows:

u(tk) = (uL(tk),uAC(tk))T . (2)

For simplicity of the derivation, let x denote the system states and u the control inputs. At the current stage, x and u are
integers given the integer nature of the population and maintenance intensities. In order to characterize the maintenance
time scheduling, Q = {m1,m2,… ,mN} is adopted to describe the maintenance instants. For simplicity, the maintenance
instants are assumed to be commensurate with tk, that is, the elements of Q are selected from k = 0, 1, 2,… ,T, such that
mi with i = 1, 2,… ,N are actually indices of the sampling instants. In this way, uAC(tk) are forced to be 0 at tk with k ∉ Q.
As aforementioned, the maintenance instants are decided a priori, therefore Q is a collection of constants.

2.2 Interacting energy efficiency modeling

The energy consumption per item is assumed to have been identified from the site visit. Let aL(tk) denote the lighting
consumption per unit time per item. The overall lighting energy consumption is the summation of all light consumptions,
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that is, EL(tk) = aL(tk)xL(tk). According to previous studies, a lighting unit manifest nearly constant power consumption
during operation.3 Such an electric light contribute to the sensible heat gain of the building. The heat gain is computed
from its instantaneous rate qel (Btu/h):

qel = 3.41WFulFsa, (3)

where W is the rated power of a light. Ful denotes the lighting use factor, which is the ratio of the light's actual power
consumption against its overall installed capacity. Fsa denotes the lighting special allowance factor, which is the ratio of
the lighting fixtures' power consumption, including lamps and ballast, to the nominal power consumption of the lamps.14

3.41 is the conversion factor. Thereafter, the lighting heat gain QL(tk) is estimated according to (3):

QL(tk) = frEL(tk), (4)

where fr denotes the fraction of lighting heat gain goes into the room, namely the space fraction. Reference values to
estimate the space fraction can be found from References 14 and 23.

Similarly, the air conditioner working load can be estimated. It consists of two kinds, the heating load and cooling
load. An air conditioner instantaneous energy consumption is decided by its working load as well as the heating/cooling
efficiency. Let QHD(tk) denote the total heating load in the working zone and QCD(tk) the total cooling load. The estimations
of QHD(tk) and QCD(tk) are given as follows:

QHD(tk) = Q′
HD(tk) − QL(tk),

QCD(tk) = Q′
CD(tk) + QL(tk), (5)

where the heating/cooling load is separated into two parts. QL(tk) indicates the heat emitted by the working lights.14

Q′
HD(tk) indicates the total heat loss from the other resources, and Q′

CD(tk) the total heat gain from the other resources. As
aforementioned, Q′

HD(tk) and Q′
CD(tk) are identified a priori. The air conditioner energy consumption during [tk−1, tk) is

estimated by:

aAC(tk) = 𝜌h(tk)𝜀h(tk)
QHD(tk, xL(tk))

xAC(tk)
+ 𝜌c(tk)𝜀c(tk)

QCD(tk, xL(tk))
xAC(tk)

, (6)

where 𝜌h(tk) and 𝜌c(tk) are heating/cooling indicators, subject to{
𝜌h(tk) + 𝜌c(tk) = 1,
𝜌h(tk), 𝜌c(tk) = 0 or 1.

(7)

(tk, xL(tk)) is employed in (6) to emphasize the interplays between lights and air conditioners, following an assumption that
working air conditioners undertake evenly distributed heating/cooling load in a common working zone. Furthermore,
the heating efficiency is denoted by 𝜀h(tk) and cooling efficiency 𝜀c(tk). The estimation of the hearing/cooling efficiency is
difficult. The heating seasonal performance factor (HSPF) and seasonal energy efficiency ratio (SEER), defined in AHRI
Standard 210/240,‡ are the measurements of the air conditioner heating/cooling efficiency. From the documents, the
heating/cooling efficiency varies under the impact of a series of factors, for example, the ratio of the actual heating/cooling
load against the system's rated capacity. Taking into account the aforementioned interplays, 𝜀h(tk) and 𝜀h(tk) are rewritten
into 𝜀h(tk, xL(tk), xAC(tk)) and 𝜀h(tk, xL(tk), xAC(tk)). The aggregated air conditioner energy consumption is thus estimated
by EAC(tk) = aAC(tk)xAC(tk).

Given the interplays, the energy savings from retrofitted lights, denoted by SL(tk), and from retrofitted air conditioners,
denoted by SAC(tk), are estimated as the following:6

SL(tk) = xL(tk)(āL(tk) − aL(tk)),
SAC(tk) = ĒAC(tk) − aAC(tk)xAC(tk), (8)

where āL(tk) represents the preimplementation wattage per light, and ĒAC(tk) the aggregate energy consumption from
the previous air conditioners. The pose-retrofit consumptions aL(tk) and aAC(tk) are computed under the same working

‡Air Conditioning, Heating, and Refrigeration Institute in its 2008 standard AHRI 210/240, Performance Rating of Unitary Air-Conditioning and
Air-Source Heat Pump Equipment.



WANG et al. 2027

conditions as āL(tk) and ĒAC(tk). The corresponding cost savings are then estimated:

CL(tk) = p(tk)SL(tk),
CAC(tk) = p(tk)SAC(tk), (9)

where p(tk) indicates the electricity price upon time. As (5)–(9) describe the interplay between lights and air conditioners,
the coupled system states are introduced.

2.3 The population dynamics modeling with interactions

First, the population dynamics from previous studies are adopted:3,4[
xL(tk+1)

xAC(tk+1)

]
=
[

GL(xL(tk))
GAC(xL(tk), xAC(tk))

]
+
[

uL(tk)
uAC(tk)

]
, (10)

where xL(t0) = x0
L, xAC(t0) = x0

AC indicate the initial state. GL(xL(tk)) and GAC(xL(tk), xAC(tk)) denote the population decay
of the lighting group and air conditioner group, respectively. uL(tk) and uAC(tk) denote the control inputs, that is, the
respective maintenance intensities for the light group and air conditioner group upon time tk.

The interacting reliability effects between the light group and the air conditioner group are estimated in the following
way. First, the lighting group population decay is characterized by a model from Carstens et al.8 The air conditioner group
population decay is subject to Weibull distribution according to Kwak et al,24 where random failures of air conditioner
systems are taken into account. The population decay formulations are therefore given:

GL(xL(tk)) =
bLcLxL(tk)2

x0
L

− bLxL(tk) + xL(tk), (11)

GAC(xL(tk), xAC(tk)) =

(
1 −

𝛽t𝛽−1
k

𝜂𝛽

)
xAC(tk). (12)

The identifications of decay parameters bL and cL can be found from Reference 1. For the Weibull distribution based
population decay, the shape parameter 𝛽 and scale parameter 𝜂 must be figured out. According to Reference 9, the mean
time between failure (MTBF) can be adopted to estimate 𝜂. For an air conditioner, too heavy or too small loads can incur
the compressor overloads, which imply a higher chance of failures.18 As a result, 𝜂(tk, xL(tk), xAC(tk)) is employed, which
is considered to be a variable related to item group populations. Due to the lack of accurate quantification of 𝜂 for an air
conditioner upon damages and deterioration, an 𝜂 estimator is employed, based on a piecewise exponential formulation.

Given the qualitative result from the existing study:18 when the working load qAC increases or decreases far enough
from the rated capacity, failures can occur more frequently, implying the reduced MTBF, that is, 𝜂. Such an estimation of
𝜂 can result in additional uncertainties, as soft faults are also possible during operation and there lacks prior knowledge
on its impacts to the population decay. In our investigated model, such uncertainties result in the parameter uncertain-
ties in the linear system dynamics (12). The MPC approach has been verified in existing studies to be able to overcome
such parameter uncertainties, for example.25,26 Therefore, such uncertainties are believed to be nondominant for the
performance of MPC.

A heating load ratio ph(tk) is introduced to indicate the ratio of the actual heating load QHD(tk) against the rated heating
capacity qh. Similarly, a cooling load ratio pc(tk) indicates the ratio of the actual cooling load QCD(tk) against the rated
heating capacity qc. According to (5) and (6)), ph(tk) and pc(tk) can be formulated as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ph(tk) =
QHD(tk)

qhxAC(tk)
∗ 100%,

= Q′
HD(tk)−qL(tk)xL(tk)

qhxAC(tk)
∗ 100%, if 𝜌h = 1,

pc(tk) =
QCD(tk)

qcxAC(tk)
∗ 100%,

= Q′
CD(tk)+qL(tk)xL(tk)

qcxAC(tk)
∗ 100%, if 𝜌c = 1.

(13)
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𝜂0 is adopted to represent the nominal value of the scale parameter 𝜂. The context based 𝜂(tk, xL(tk), xAC(tk)) is estimated
upon the varying load ratios ph(tk) and pc(tk):

𝜂(tk, xL(tk), xAC(tk)) =

⎧⎪⎪⎨⎪⎪⎩
𝜂0

1
ah,l+e−kh,lph(tk )+bh,l

, ph(tk) < Thh,l%,

𝜂0, Thh,l% ≤ ph(tk) ≤ Thh,r%,
𝜂0

1
ah,r+ekh,r ph(tk )−bh,r

, ph(tk) > Thh,r%,
(14)

𝜂(tk, xL(tk), xAC(tk)) =

⎧⎪⎪⎨⎪⎪⎩
𝜂0

1
ac,l+e−kc,lpc (tk )+bc,l

, pc(tk) < Thc,l%,

𝜂0, Thc,l% ≤ pc(tk) ≤ Thc,r%,
𝜂0

1
ac,r+ekc,r pc (tk )−bc,r , pc(tk) > Thc,r%,

(15)

where the parameters are positive constants. A pair of threshold points are involved, denoted by Thh,l and Thh,r, respec-
tively. The threshold points are heating load ratios. 𝜂 stays constant, when the actual heating load ratio ph(tk) is between
Thh,l% and Thh,r%. It becomes decreasing when ph(tk) < Thh,l% or ph(tk) > Thh,r%. Similarly, Thc,l and Thc,r represent the
pair of threshold points for the cooling load ratio pc(tk). Equation (15) applies when 𝜌h = 1 and (15) applies when 𝜌c = 1.

In this way, a control system formulation with coupled state variables is derived by (10)-(15). In practice, the model
estimation is realized by model parameter identification, and such an estimation can be done from several perspectives.
For an existing building, data collection and data fitting over a significant time interval is the best choice. If such a data
collection is unavailable, the expert knowledge from the relevant field and the experience on similar problems can be
taken advantage of to estimate the parameters.

2.4 Performance indicators formulation

As aforementioned, taking advantage of the preimplementation audits and evaluation of some parameters are considered
known a priori, that is, the lights and air conditioners working load, the lights and air conditioners maintenance cost
per item, and the maintenance time scheduling. The unit maintenance costs are represented by mcL(tk) and mcAC(tk),
respectively. Furthermore, with (8), the energy savings are formulated as the following:{

ES(tk) = SL(tk) + SAC(tk),
ES|all =

∑T
k=1 ES(tk),

(16)

where ES(tk) denotes the aggregate energy savings over a sampling interval and ES|all the total amount of the sustainability
period energy savings. The cost savings are formulated accordingly:{

C(tk) = CL(tk) + CAC(tk),
C|all =

∑T
k=1 C(tk).

(17)

The aggregate maintenance cost is:

h(tk) = mcL(tk)uL(tk) + mcAC(tk)uAC(tk), (18)

as well as the overall investment:

h|all = h0 +
T∑

k=1
h(tk). (19)

The initial investment, namely the retrofitting cost, is denoted by h0. Let P = C|all − h|all denote the project profit. How-
ever, the net present value (NPV) is a more common way to evaluate the project's financial payback over [0,TS). The
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formulation of NPV is given as follows:

NPV =
T∑

k=1

C(tk) − h(tk)
(1 + d)𝜙(tk)−1 − h0, (20)

where d denotes the discount rate. The NPV is computed on an annual basis, therefore 𝜙(tk) = 1, 2, 3… is employed, such
that tk within a same year can refer to the same 𝜙(tk). Thereafter, the financial payback is quantified by the internal rate
of return (IRR), which is represented by dR|T . The dR|T is computed via the following:

T∑
k=1

B(tk) − h(tk)
(1 + dR|T)𝜙(tk)−1 − h0 = 0. (21)

Equation (21) finds a discount rate, such that the NPV equals to 0 over the sustainability period. It is difficult to represent
IRR in an analytical manner. However, given a nonzero amount of h0, the IRR is guaranteed to be bounded.27

2.5 Optimal control problem formulation

The maintenance plan optimization is formulated in an optimal control manner as follows:
Optimization Problem :
Find the optimal maintenance plan u = {uL(tm1),uAC(tm1),… ,uL(tmN ),uAC(tmN )}, which minimizes the following

performance index:

J(x0,Q,u(⋅)) = −𝜆1
ES|all

𝛼
− 𝜆2dR|T , (22)

subject to (10)-(15), the predecided maintenance time schedule Q = {m1,… ,mN}, and the following constraints:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ES|all ≥ 𝛼,∑T
k=1 h(tk) ≤ 𝛽,

NPV |Tp
0 > 0,

xL(tk) ≤ x0
L, xAC(tk) ≤ x0

AC,

xL(tk) ≥ x0
L∕3, xAC(tk) ≥ x0

AC∕2.

(23)

where the initial condition is x0
L, x0

AC. The objective function is a weighted sum of the energy efficiency objective ES|all and
economy objective dR|T . 𝜆1 and 𝜆2 are the weights. 𝛼 denotes the targeted energy saving amount, and 𝛽 the budget limit.
Tp denotes the payback limit, such that the NPV over time horizon [0,TpS) must be greater than zero. The state variables
xL(tk) and xAC(tk) are physically limited by the initial condition x0

L and x0
AC, as the maintenance actions only apply to

existing items. Lastly, due to the comfort satisfaction limit, it constrains the xL(tk) to be greater than x0
L∕3, and xAC(tk) to be

greater than x0
AC∕2. Given the finite number of maintenance instants N, u(⋅) ∈ 2×N , that is, the minimization problem

(22)–(23) is a finite dimensional one. The MPC controller is thus designed as follows.

3 MPC CONTROLLER DESIGN AND NUMERICAL SOLVER

3.1 MPC controller

A modified MPC based approach from Reference 5 is employed to address the long-term performance indicators involved
in constraints (23) of . The modified MPC approach adopts a decreasing horizon manner, such that a varying pre-
dictive horizon N = T − m is employed to predict the aggregate performances over the whole remaining sustainability
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period.5 The open loop problem is accordingly transformed to be an minimization problem with the following objective:

J′(x(tm),Q,u′|m(⋅)) = −𝜆1
ES′|m
𝛼

− 𝜆2R′
T , (24)

where RT
′ denotes the discount rate solved from NPV′ |m = 0. ES′ |m and NPV′ |m are formulated as follows:

⎧⎪⎨⎪⎩
ES′|m =

∑m
k=1 ES(tk) +

∑T
k=m+1 ES(tk),

NPV′|m =
∑m

k=1
C(tk)−h(tk)
(1+R)n−1 +

∑T
k=m+1

C(tk)−h(tk)
(1+R)n−1 − h0,

(25)

subject to (10)-(15), and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ES′|m ≥ 𝛼,

h′|m ≤ 𝛽′,

NPV′|Tp
m ≥ 0,

xL(tk) ≤ x0
L, xAC(tk) ≤ x0

AC,

xL(tk) ≥ x0
L∕3, xAC(tk) ≥ x0

AC∕2,

(26)

where

⎧⎪⎪⎨⎪⎪⎩
h′|m =

∑T
k=m+1 h(tk),

𝛽′ = 𝛽 −
∑m

k=1 h(tk),

NPV′|Tp
m =

∑m
k=1

C(tk)−h(tk)
(1+R)n−1 +

∑Tp

k=m+1
C(tk)−h(tk)
(1+R)n−1 − h0.

(27)

ES(tk) and C(tk) denote the existing energy savings and cost savings, respectively. The maintenance costs from the existing
maintenance actions are represented by h(tk). They are observed as a consequence of the control inputs prior to tm. Given
an m ∈ Q, the open loop problem (24)–(27) is solved over the remaining interval [tm,TS). Let u′|m = {u′(tk) ∶ k = m,

m + 1,… ,T − 1} denote the obtained sequence of optimal maintenance intensities. Let u|m = {u′|m(tm)} = {u|m(x(tm))}
denote the obtained maintenance intensity over [tm, tm+1). Only u|m is applied, where the rest from the sequence are
abandoned. u|m applies with a consequence of the new state variable x(tm+1), which is adopted as the input condition
of the next step MPC computation, that is, the prediction over horizon [tm+1,TS). The optimal control inputs u are thus
obtained upon the consecutive implementation of the process.

In practice where uncertainties are often significant enough to influence the prediction of state variables, the input
state variables to each open loop problem must be adjusted. A simplification of the uncertainties is adopted, where the
impact is interpreted as a disturbance on the state variables. Let d(tk) = (dL(tk), dAC(tk))T denote such a disturbance.
The actual state is thus estimated by x̂(tm+1) = x(tm+1) + d(tk), and adopted as the input condition of the prediction over
[tm+1,TS). In , x̂(tm+1) is assumed measurable in practice. Given the physical boundaries of the system states, the
stability of such a closed-loop system can be identified. The relevant discussion can be referred to in Reference 28.

MPC algorithm for 

Initialization: Given the initial state x(t0) = x0 and m = 0.

1. Solve (24)–(27) to obtain the open loop optimal solution {u′ |m(tk)}, with k = m,m + 1,… ,T − 1.
2. The MPC controller u|m = {u′|m(tm)} is applied at the maintenance instant tm. The remains of the open loop opti-

mal solution {u′ |m(tk) ∶ k = m + 1,… ,T − 1} are discarded. Apply u|m to (10)-(15) to obtain the predicted x(tm+1).
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Assuming the uncertainties d(tm), the actual system state over the next sampling period is updated by:[
x̂L(tm+1)

x̂AC(tm+1)

]
=
[

xL(tm+1)
xAC(tm+1)

]
+
[

dL(tm)
dAC(tm)

]
,

which can be measured at tm+1 and executed over [tm, tm+1).
3. Let x̂(tm+1) = (x̂L(tm+1), x̂AC(tm+1))T be the initial state for the next predictive horizon, m ∶= m + 1 and go back to step 1.

When m ∉ Q, u(tm) = 0, step 1 is skipped and x̂(tm+1) is obtained by:[ x̂L(tm+1)
x̂AC(tm+1)

]
=
[ GL(xL(tm))

GAC(xL(tm), xAC(tm))

]
+
[

dL(tm)
dAC(tm)

]
.

The above MPC algorithm will go over the sustainability period to obtain the optimal control strategy. The open loop
problem of step 1 is solved by the a differential evolution (DE) algorithm based numerical solver. The details of the
numerical solver can be found from some of our previous studies.4,5 To be noticed, given the integer nature that has been
discussed above, the adopted numerical solver employs a binary coding as introduced in Reference 5. The integer nature
increases the difficulty to obtain the optimal solution. However, given the nonlinear and nonanalytic items in the MPO
formulation, the DE algorithm is still an efficient tool as the numerical solver.

4 A CASE STUDY RESULTS AND ANALYSIS

A simulation is conducted with the data input from an actual retrofitting project in Pretoria, South Africa. The preimple-
mentation audit data is employed from the project. As a result of the retrofitting plan, the old appliances are replaced with
480 compact fluorescent lamp (CFL) lights and 16 latest air conditioners. A sustainability period of 10 years is considered,
over which the maintenance is scheduled to take place over a 6-month interval. The sampling interval is 1 month. Given
that the MPO involves long-time data collection, the simulation verification is adopted at the current stage. For simplic-
ity, the sustainability period is considered to start in January. According to the Pretoria typical year weather profile, May,
June, July, and August are categorized into the heating season, and rest months are categorized into the cooling season.
It hereby assumes that the set point for the heating system is 24◦C, and for the cooling it is 26◦C. Table 1 exhibits the
exploited data for the simulation.

The Q′

HD and Q′

CD are given in Table 1 in order to apply (5). Such estimations are obtained based on the history
occupancy profiles. The āL and ĒAC are also given according to (8). āL represents the energy consumption per light per
month. ĒAC indicates the previous air conditioners' overall consumptions with respect to each month. The typical year
weather profile is also given. The temperature profile is developed based on the historical weather profile of the district,
it is assumed to be deterministic based on the statistical average. Given that the main focus of the proposed method is
extending the control system framework for the maintenance planning investment decisions, improving the precision of
the energy consumption estimation is excluded at the current stage. It is however a topic worthy further exploring and
will be one major focus in our future studies.

Table 2 gives the necessary specifications of the retrofitted appliances. First, the initial populations of the retrofitted
items groups are given by x0

L and x0
AC. The monthly consumption per retrofitted light can be considered constant, which

is given in Table 2. The consumption per air conditioner varies upon time, as analyzed in the previous sections, it is
therefore omitted in Table 2. As aforementioned, the working load formulations (5)–(9) and system dynamics (10)-(15)
are exploited to compute the air condition consumptions. The retrofitted costs are also given, which imply that the initial
investment h0 is $14 171.2. The expenditures per maintenance action per item are indicated by the maintenance cost row.
The unit of the MTBF values is month. The population decay models are given as follows:

GL(xL(tk)) = 0.0692xL(tk)2∕68 − 0.1094xL(tk) + xL(tk), (28)

GAC(xL(tk), xAC(tk)) =
(

1 − 1
𝜂(tk, xL(tk), xAC(tk))

)
xAC(tk). (29)

The estimated average lifespan of one CFL is 11.9 months. According to Reference 1, it is assumed that GL(xL(t0)) = 1
and GL(xL(t12)) = 0.5. By solving the two equations, bL = 0.0692 and cL = 0.1094 can be obtained, as suggested in (12).
Equation (29) is developed from (12), where the shape parameter 𝛽 = 1. The MTBF of the retrofitted air conditioner unit
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Month Jan Feb Mar Apr

Q′

HD (kWh) n/a n/a n/a n/a

Q′

CD (kWh) 4651.77 4560.96 4042.32 3971.5

āL (kWh) 17.28 17.28 17.28 17.28

ĒAC (kWh) 6340.34 6268.04 6309.68 6150.91

High (◦C) 32 31 30 29

Low (◦C) 17 17 16 12

Month May Jun Jul Aug

Q′

HD (kWh) 7856.72 9224.1 9473.4 7928.16

Q′

CD (kWh) n/a n/a n/a n/a

āL (kWh) 17.28 17.28 17.28 17.28

ĒAC (kWh) 0 0 0 0

High (◦C) 20 17 15 16

Low (◦C) 7 3 3 7

Month Sep Oct Nov Dec

Q′

HD (kWh) n/a n/a n/a n/a

Q′

CD (kWh) 4228.48 4342.72 4492.7 4542.7

āL (kWh) 17.28 17.28 17.28 17.28

ĒAC (kWh) 6111.19 6339.49 6421.05 6600.86

High (◦C) 29 30 31 32

Low (◦C) 11 14 15 16

T A B L E 1 The estimations of air conditioner
working loads from the preretrofit lights and other
resources, the previous appliance energy
consumptions, and the typical year temperature profile

is 18 months, therefore 𝜂0 should be 25.97 according to Reference 1. During the heating season, the estimation of 𝜂 is as
follows:

𝜂(tk, xL(tk), xAC(tk)) =
⎧⎪⎨⎪⎩

25.97
0.835+e−7.105pc (tk )+1.397 , ph(tk) < 45%,

25.97, 45% ≤ ph(tk) ≤ 100%,
25.97

0.719+e1.195pc(tk )+2.465 , ph(tk) > 100%,

(30)

and during cooling season:

𝜂(tk, xL(tk), xAC(tk)) =
⎧⎪⎨⎪⎩

25.97
0.835+e−7.105pc (tk )+1.397 , pc(tk) < 45%,

25.97, 45% ≤ pc(tk) ≤ 100%,
25.97

0.683+e1.239pc(tk )+2.389 , pc(tk) > 100%.

(31)

The heating/cooling efficiency 𝜀 is estimated as follows:

𝜀h(tk, xL(tk), xAC(tk)) =

⎧⎪⎪⎨⎪⎪⎩

2.8
0.9485+1.1364e−7.105pc (tk )+1.397 , ph(tk) < 45%,

−2.7768ph(tk)2 + 5.0672ph(tk) + 1.0312, 45% ≤ ph(tk) ≤ 100%,
2.8

0.7492+1.0417e1.1949pc (tk )+2.4649 , ph(tk) > 100%,

(32)

𝜀c(tk, xL(tk), xAC(tk)) =

⎧⎪⎪⎨⎪⎪⎩

3.62
0.9274+1.1e−7.105pc (tk )+1.397 , pc(tk) < 45%,

−4.3386pc(tk)2 + 6.4881pc(tk) + 1.2167, 45% ≤ pc(tk) ≤ 100%,
3.62

0.7348+1.0753e1.239pc (tk )+2.389 , pc(tk) > 100%.

(33)
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T A B L E 2 Retrofitted items specifications

26W CFL Lighting 8500 Btu/h Air Conditioner

Maximum possible quantities 480 16

Rated power heating (W) 26 926.8

Rated power cooling (W) 26 740

Rated heating capacity (Btu/h) n/a 8500

Rated cooling capacity (Btu/h) n/a 8500

Average monthly consumption (kWh) 6.24 n/a

Electricity price ($/kWh) 0.1661 0.1437

Installation price ($) 14.19 460

Maintenance cost ($) 14.19 180

MTBF (months) 11.9 18

F I G U R E 1 The shapes of 𝜂,
𝜀h, and 𝜀c with the load ratio against
rated capacity [Colour figure can be
viewed at wileyonlinelibrary.com]

Figure 1 depicts the shapes of 𝜂, 𝜀h and 𝜀c.
There is a targeted overall energy saving amount in this project, which is 671 380.1 kWh over 10 years, against an esti-

mated baseline consumption 1 500 743.6 kWh. A saving below the targeted value is considered unacceptable. In order to
achieve this target, several maintenance budget limits are taken into account, including $31 500, $37 500 and $42 500,
from very tight to sufficient. The maintenance time schedule for the energy efficiency purpose, as aforementioned,
is Q = {6, 12, 18, 24,… , 114}. For the financial payback calculation, a discount rate at 11% per year is adopted, with a
maximum acceptable payback period 48, that is, 4 years. According to (22), a weighted sum approach is employed, with
weighting factors 𝜆1 = 0.5 and 𝜆2 = 0.5.

Two simulation tests are conducted in the case study. First, the uncertainties are ignored, where an open loop dynamic
programming problem is solved as the MPO. A comparative case is also simulated, where a maintenance plan is optimized
on the basis of the model without considering interplays. The control system (10)-(15) applies both open loop optimal
maintenance plans with and without considering interacting effects. Table 3 illustrates the results of the first test. Second,
the uncertainties are taken into account as a random noise describe in the MPC algorithm. The random noise varies
between ±10% of the state variables x(tk). Thereafter, the maintenance plan is derived from the MPC controller. For the
second test, an open loop maintenance plan is obtained to be the comparative baseline. Similarly, both the maintenance
plans with and without considering uncertainties are applied to the control system (10)-(15). Table 4 gives the results of
the second test.

http://wileyonlinelibrary.com
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T A B L E 3 Comparison of with and without interaction solutions under different budget limits

Cases

Budget
Limit
($)

Energy
Savings
(kWh)

Saving
Ratio
Exceeding
Target IRR

Payback
Period
(years)

NPV
($)

Maintenance
Cost ($)

Comfort
Violation

With interactions 31 500 682 461.3 1.65% 69.89% 1.52 37 041.77 31 414.17 Yes

Without interactions 31 500 660 406.1 −1.64% 67.84% 1.55 34 737.33 31 460.43 Yes

With interactions 37 500 725 261.8 8.02% 68.77% 1.52 35 917.37 37 379.22 No

Without interactions 37 500 720 228.5 7.27% 66.85% 1.54 36 239.4 37 473.3 No

With interactions 42 500 822 015.9 22.43% 70.76% 1.51 41 791.32 42 422.7 No

Without interactions 42 500 818 781.6 21.95% 70.59% 1.53 41 584 42 427.95 No

Abbreviations: IRR, internal rate of return; NPV, net present value.

T A B L E 4 Comparison of closed-loop and open loop solutions under different budget limits

Cases
Budget
Limit ($)

Energy
Savings
(kWh)

Percentage
Saved Over
Baseline IRR

Payback
Period
(years)

NPV
($)

Maintenance
Cost ($)

Comfort
Violation

Closed-loop solution 31 500 669 008.9 −0.35% 68.18% 1.53 36 462.9 31 526.3 Yes

Open loop solution 31 500 607 177.6 −9.56.% 62.34% 1.56 32 020.5 31 560.27 Yes

Closed-loop solution 37 500 709 476.3 5.67% 66.29% 1.54 35 258.5 37 487.1 No

Open loop solution 37 500 666 778.8 −0.685% 63.15% 1.54 33 389.8 37 479.3 Yes

Closed-loop solution 42 500 795 327.1 18.46% 67.95% 1.54 40 791.4 42 499.7 No

Open loop solution 42 500 707 188.9 5.33% 64.2% 1.53 36 062.4 42 417.6 No

Abbreviations: IRR, internal rate of return; NPV, net present value.

The parameters of the DE-based numerical solver has been tuned to obtain the most effective convergence. The tuned
parameters include the population size of individual solutions, the learning rate, and the crossover rate. Detailed expla-
nations of the parameters can be found from Reference 4. The problem dimension in the case study is 38, therefore the
DE population size is selected to be 120. The learning rate adopts a nonlinear decreasing function as introduced by Ref-
erence 29. The crossover rate is 0.75. The results in Tables 3 and 4 are the average of 20-run results. In order to manifest
the effectiveness, several performances are illustrated in the tables. The “saving ratio exceeding target” demonstrates the
amount of extra savings obtained from the maintenance plans against the targeted saving value. In this way, it empha-
sizes the improvements resulted from the MPO. The IRR, NPV, and payback period in years are also given to manifest
the economy performances. Furthermore, for the sake of comfort requirements, an upper and lower bounded constraint
is introduced in (23) to regulate the feasible range of the state variables. Tables 3 and 4 also demonstrated that whether
the comfort constraint is violated.

According to Table 3, a negative impact range between 2% and 3% can be delivered in cases where interacting energy
and reliability effects are incorrectly addressed. It is believed that the negative impact implies an approximate 2% uncer-
tainty resulting from the interactions between lights and air conditioners. In Table 4, comparing with the MPC controller
performances, the open loop solutions are decreased by 5%-10%, which verifies that in practice, where uncertainties are
inevitable, the control system framework as well as the closed-loop optimization strategy can effectively improve the
performances.

5 CONCLUSIONS

In this paper, the interacting energy and reliability effects between the light group and air conditioner group in a building
energy maintenance plan optimization context is investigated. An interpretation of the interplays between the two item
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groups are proposed, based on which the maintenance plan optimization problem is cast into an optimal control problem
with coupled state variables and system dynamics. The interactions are mainly identified from the energy consumption
estimations and the population decay model parameters. A simulation exercise that exploits the data from a practical
retrofitting project is conducted to test the effectiveness of the proposed approach. From the simulation results, the effects
of the interactions are identified, such that the interactions can deliver an approximate 2% impact to the final energy
efficiency.

The suggested approach provides a management level evaluation of the cost-effectiveness of the budget and the man-
power over a long future period. As aforementioned, the population decay models are extracted from the statistical
sources, which restricts the model accuracy. The optimized maintenance plan can be the reference for actual operation
and maintenance; however, due to the very large timescale, implementing the actual maintenance actions must take into
account the practical situations, including the load profiles and available manpower at the maintenance instant. Such a
risk is inevitable for the investment decision at management level. Addressing such a risk and combining the long period
planning and actual operation is one very important topic of our future research.
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