
300 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 1, JANUARY 2021

Multi-timescale Forecast of Solar Irradiance
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Abstract—Solar irradiance forecast is closely related
with efficiency and reliability of renewable energy systems.
Multi-timescale irradiance forecast is a new and efficient
way to simultaneously predict solar energy generation on
different timescales for hierarchical decision making. This
article newly adopts the multi-task learning mechanism
to study the multi-timescale forecast for improving accu-
racy and computational efficiency. A novel multi-timescale
(MTS) prediction framework is presented to fulfill the multi-
task application, and echo state network (ESN) is studied
in the proposed MTS framework. The multi-timescale ESN
(MTS-ESN) is proposed to enhance the information shar-
ing among correlated tasks. Simulation results of hourly
solar data demonstrate that the proposed MTS-ESN could
achieve promising performance at both hourly and daily
level in parallel. The MTS-ESN outperforms the single-
timescale ESN (STS-ESN), which indicates the information
sharing in the multi-task learning is effective in this appli-
cation.

Index Terms—Echo state neural network, multi-tasking
model, renewable energy, smart grid, solar irradiance fore-
casting.

I. INTRODUCTION

FOR GREEN and sustainable energy production, renewable
energy systems have been developed rapidly and widely

over the world. Amongst renewable sources, solar energy has
gained the most attention, as it is easily accessible, and envi-
ronmental friendly. In order to efficiently control and manage
solar energy systems, the solar irradiance in the target location
must be predicted in advance, and the prediction accuracy will
influence the power quality, grid security, and cost.
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As reviewed in [1] and [2], different techniques have been
successfully developed and applied to solar irradiance forecast,
including statistical methods [3], [4], artificial neural networks
(e.g., backpropagation and Elman) [5], [6], machine learning
algorithms [7], [8], spatial-temporal models [9], [10], data
mining [11], [12], and so forth. In addition, some advanced
techniques based on wavelet analysis [13], fuzzy logic [14], [15],
optimization algorithms [16], and K-means approach [17] can
also be hybridized with existing forecast methods for further
performance improvement.

The aforementioned forecast models mainly focus on a single-
timescale prediction, which means that each model (e.g., short-
term, medium-term, or long-term) can only predict the future
irradiance at a specific timescale (e.g., an hour, a day, and a
year). We call these models as single-task models. Although
single-task models could be easily and effectively implemented,
they confront two challenges in certain complicated applica-
tions with hierarchical prediction tasks, e.g., smart energy hubs.
Firstly, a single-task model with good performance on a certain
timescale cannot be directly applied to the prediction task on
other timescales, so the cumbersome way is to design many
prediction models for the situation of multi-task prediction.
Secondly, the performance of a single-task model on a certain
timescale has a limit, when only considering the information in
the single task. In other words, other correlated tasks may include
useful information, which has been neglected in the single-task
models. For example, the value of solar irradiance in the next
hour is not only affected by the values from previous hours, but
also by the values from previous days or weeks.

To handle aforementioned challenges, we propose a multi-
task learning perspective for solar irradiance prediction. Multi-
task learning offers the opportunity to improve the performance
of one learning task, by sharing the information and knowledge
learned from other correlated tasks [18]. With the perspective of
multi-task learning, multi-timescale (MTS) prediction is studied
in this article to predict solar irradiance on different timescales
at any time instant. On the one hand, only one multitask model
is required to report irradiance values of future hours, days, or
weeks at a given time instant for hierarchical decision making.
To set up a multi-task model instead of many single-task models
could significantly enhance the computational efficiency. On
the other hand, the completeness of one task is helpful to
fulfill other tasks in the multi-task models, since each correlated
task shares useful information. With respect to each task, the
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multi-tasking model could have more accurate results than the
single-task model. Therefore, the decision makers can predict
solar irradiance at different timescales in parallel, and make
comprehensive decisions, e.g., short-term control, middle-term
scheduling, and long-term investment.

The multi-timescale echo state network (MTS-ESN) algo-
rithm is proposed with the multi-tasking perspective, in which
ESN is an effective and simple form of recurrent neural network
(RNN) [19]. ESN is a kind of neural network with three layers,
in which the hidden layer (called dynamical reservoir) contains
a large number of sparsely connected neurons. The dynamical
reservoir could encode the temporal information of input signals
from low dimensional input space to high dimensional state
space. Therefore, ESN has stronger expressive and mapping
capabilities than traditional RNN, whose hidden layer size is
in the level of tens. In addition, only the connection weights
from reservoir to output layer in ESN need to be updated by
linear regression algorithms. It avoids the heavy computational
burden, slow convergence and local optimization of classical
RNN based on gradient descent training algorithm. Due to the
simple training procedure and strong expressive and mapping
capabilities, ESN has been widely applied to many practical
fields, including pattern recognition [20], [21], optimal energy
management [22], and especially nonlinear time series predic-
tion [23]–[25]. The proposed MTS-ESN has employed multiple
reservoirs to express input dynamics on multiple timescales, and
the reservoir states will be further integrated for information
sharing. Compared with ESN with the single task, MTS-ESN is
expected to improve the prediction accuracy and computation
efficiency due to the information sharing.

In summary, the main contributions of this article are in three
folds.

1) Multi-task prediction of solar irradiance is newly mod-
eled. The correlations between each prediction task is
unveiled in multi-task models, which are neglected in the
single-task models.

2) A novel MTS prediction framework is presented in this
article. The model can fulfill multi-task forecast at differ-
ent timescales in parallel for a given time instant.

3) The proposed MTS-ESN is an effective algorithm to
predict the solar irradiance of future hours, days, and other
timescales.

The rest of this article is organized as follows. Section II
provides a comprehensive review of irradiance forecast methods.
Section III describes the multi-task perspective of solar irra-
diance. In Section IV, the proposed MTS-ESN algorithm is
developed. Section V presents the experimental design and
results. Finally, Section VI concludes this article.

II. OVERVIEW OF SOLAR IRRADIANCE FORECAST

As reported in [1], [2], a number of solar irradiance forecast
approaches have been developed, mainly including the following
three kinds of models with respect to regression technique:

1) Classical statistical models: Examples include per-
sistence (PSS) model, autoregressive moving average
(ARMA) model and autoregressive integrated moving

average (ARIMA) [3], [4]. For the PSS model, the pre-
dicted solar irradiance of the next time Ĝi+1 is the same as
the current one Gi, namely, Ĝi+1 = Gi. The PSS model
can be taken as a benchmark for very short term forecast
horizon (less than 1 h). Recently, the autoregressive with
exogenous input model (ARX) is proposed as follows:

Ĝi = α1Gi−1 + α2Gi−2 + · · ·+ αpGi−p

+ β11μ1(i− d1) + β21μ1(i− d1 − 1) + · · ·
+ βm1μ1(i−d1−m1+1) + · · ·+ β1jμj(i− dj)

+ β2jμj (i− dj − 1) + · · ·
+ βmjμj (i− dj −mj + 1) + εi (1)

where α, β are model coefficients, εi is a Gaussian white
noise series with zero; μj is related exogenous input
signal, such as temperature, humidity, and so forth; j is the
dimension of exogenous input,m is the order of historical
exogenous input, d is the time delay between the input μj

and output Gi; The time index i could denote a certain
time interval, e.g., hourly (h), daily (d), and so forth, and
Gi is the solar irradiance at the ith interval.

2) Artificial neural network (ANN) models: These ANN
methods can be categorized into univariate and multivari-
ate models. The univariate ANN models are built only
based on the historical solar irradiance data [26], [27],
whose mathematical expression is given as:

Ĝi+k= f̃(Gi, Gi−1, . . . , Gi−m) (2)

where k denotes the prediction step, Gi could be the solar
irradiance from a certain time interval, f̃ is the nonlinear
mapping relationship between historical and future sig-
nals using ANN. In addition to the historical solar irradi-
ance data, some related meteorological parameters, such
as temperature, humidity, wind speed and so on, are also
considered in the multivariate ANN models [28], [29].
Mathematically, let μ denote meteorological parameters,
the multivariate approach can be expressed as:

Ĝi+k = f̃(Gi, Gi−1, . . . , Gi−m, μ). (3)

Both the univariate and multivariate models can be used
for multi-step ahead prediction. In particular, considering
k = 1, (2) and (3) are one-step forecasting models. In this
article, we mainly study the artificial ANN models, in
which only historical irradiance data is utilized.

3) Other hybrid models: In order to further improve the
forecast performance, some advanced methodologies can
be hybridized with existing models, such as data analysis,
optimization algorithms, and so forth.

Aforementioned forecast models are mostly single-task mod-
els. In other words, the hourly forecast models are only respon-
sible to report hour-ahead values, and the daily forecast models
are only responsible to report day-ahead values. Such single-task
models have limited performance improvement, as some useful
information among correlated tasks is neglected. For example,
the value of solar irradiance in the next hour is not only affected
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by the values from previous hourly timescale, but also by the
values from previous daily or weekly timescale.

Multi-task learning offers a novel opportunity for further
performance improvement of one task, by learning multiple
correlated tasks simultaneously and sharing the knowledge or
information of each task [18]. The completeness of one task is
helpful to fulfill other tasks in the multi-task models, since each
correlated task shares useful information or knowledge. In recent
years, the multi-task learning has been applied to identification
and classification [30]–[32], time series prediction [33]–[35],
and so forth. To our best knowledge, few results exist in solar
irradiance or PV outputs prediction based multi-task learning.
[36] proposes novel iterative multi-task learning for PV output a
prediction, where their task is to learn the missing observations
by information sharing among multiple similar solar panels.

In this article, a novel MTS-ESN model is proposed for solar
irradiance prediction, based on multi-task learning mechanism.
Different from [26]–[29], the proposed MTS-ESN can learn
multiple tasks in parallel, making multi-task decisions in prac-
tical situations. Unlike [36], MTS-ESN considers the fact that
the solar irradiance on multiple timescales are correlated. The
correlations on different timescales are therefore utilized for
multi-task modeling in MTS-ESN. In addition, only the histor-
ical solar irradiance data of target station is used for MTS-ESN
modeling.

III. NEW PERSPECTIVE OF MULTITASK LEARNING

With the perspective of multi-task learning, the completeness
of one task is helpful to fulfill other correlated tasks, since each
task in the multi-task model interacts with information sharing.
For these purposes, a novel multi-task forecasting model is pro-
posed to take advantages of correlations on different timescales,
and to simultaneously report future irradiance values on multiple
timescales.

In the proposed MTS model, the main idea is to predict the
solar irradiance on different timescale in parallel. The timescale
of each task is depending on the collected solar data format. For
example, if the solar irradiance is collected in the hourly interval,
the proposed model can fulfill multiple tasks of hour-ahead,
day-ahead, and week-ahead prediction in parallel, but it cannot
conduct the minute-ahead prediction due to information missing.
In this article, based on the hourly irradiance data, two tasks at
hourly and daily scale are adopted to illustrate the principle of
the proposed method.

Following statistical methods in (1), the ARX-based hourly
and daily MTS model are formulated as follows:

Ĥi = a11Hi−1 + · · ·+ a1nh
Hi−nh

+ b11Di−1 + · · ·+ b1nd
Di−nd

+ c11Wi−1 + · · ·+ c1nw
Wi−nw

+eh (4)

D̂i = a21Hi−1 + · · ·+ a2nh
Hi−nh

+ b21Di−1 + · · ·+ b2nd
Di−nd

+ c21Wi−1 + · · ·+ c2nw
Wi−nw

+ed (5)

Fig. 1. Hourly (first row) and daily (second row) prediction results by
ARX versus actual value.

where nh, nd, and nw denote the length of relative solar irradi-
ance on different timescales, Hi, Di, and Wi are hourly, daily
and weekly solar irradiance. As shown in (4) and (5), the value
of solar irradiance at a certain timescale is predicted by those
solar irradiance values from different timescales. In this article,
the daily and weekly solar irradiance value are denoted as

Di−k =

i−24 k+23∑
j=i−24k

Hj (6)

Wi−k =

i−168 k+167∑
j=i−168k

Hj . (7)

Then, the linear multi-input and multi-output (MIMO) ARX
model can be generalized as

Λ = OM + E (8)

where Λ = (Ĥi, D̂i)
T , E = (eh, ed)

T and

O =

⎡
⎢⎣

a11 . . . a1nh

a21 . . . a2nh︸ ︷︷ ︸
hourly

b11 . . . b1nd

b21 . . . b2nd︸ ︷︷ ︸
daily

c11 . . . c1nw

c21 . . . c2nw︸ ︷︷ ︸
weekly

⎤
⎥⎦ (9)

M =[Hi−1, . . . , Hi−nh
, Di−1, . . . , Di−nd

,Wi−1, . . . ,Wi−nw
]T .

(10)

Finally, based the historical data, coefficientsO can be calculated
to fit the relationship between the predicted and historical values.
A test example is used to verify the feasibility of MTS ARX, and
the simulation results are shown in Fig. 1. It can be noted that
ARX can handle the daily forecast task that has slow dynamics,
while ARX has limited ability to handle hourly task that has fast
dynamics.

To enhance nonlinear fitting capability, the ANN-based MTS
model is established. According to (2), the hourly and daily
solar irradiance can be separately forecasted in traditional ANN
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Fig. 2. Single-task (left column) and multi-task (right column) ANN
models for solar irradiance forecast.

models as follows:{
Ĥi = f̃h(Hi−1, Hi−2, . . . , Hi−nh

)

D̂i = f̃d(Di−1, Di−2, . . . , Di−nd
)
. (11)

With the perspective of multi-task learning, the ANN-based
MTS model is proposed as:

Λ = F̃(Hi−1, . . . , Hi−nh
, Di−1, . . . , Di−nd

,Wi−1, . . . ,Wi−nw
)

(12)
where Λ = (Ĥi, D̂i)

T . Fig. 2 illustrates the difference between
single-timescale single-task forecasting model (left column) and
multi-timescale multi-task prediction model (right column). For
the single-timescale models in Fig. 2(a) and (b), each task only
makes use of historical data on a specific timescale, although
historical data on other timescale is correlated with the task.
For the MTS model shown in Fig. 2(c), the completeness of
one task may be helpful to fulfill other tasks, since each task in
the multi-task model has shared information on multi-timescale,
and taken advantages of correlations with other tasks.

IV. ESN-BASED MTS FORECAST MODEL

In this section, an MTS-ESN algorithm is put forward for
the proposed multi-timescale forecast model. The MTS-ESN
has integrated the multi-task learning perspective, so it is able
to fit multiple complex irradiance curves. Our experimental re-
sults could validate the effectiveness of the proposed multi-task
learning perspective and MTS-ESN algorithm.

A. Echo State Network

ESN is a kind of recurrent ANN that is composed by an
input layer, a hidden recurrent layer (referred to as a dynamical
reservoir), and an output layer. In ESN, the input signal, reservoir
states, and the output signal are denoted as u(i), x(i), y(i),
respectively.

The dynamical reservoir plays a core role in the ESN. It con-
tains a large number of sparse connected neurons, whose con-
nection weights are randomly initialized and remain unchanged
during the process of training and testing. On the one hand, the
reservoir encodes the temporal information of input signals from

low dimensional input space to high dimensional state space;
On the other hand, the reservoir provides a complex nonlin-
ear transformation of input signals. Then, supervised learning
mechanism is adopted to train readout connection weights in the
output layer. The training of ESN only consists of updating the
connection weights from reservoir to output layer. Therefore, the
training process is simple and very fast compared with classical
recurrent ANNs.

Assume that ESN has K, N , and L neurons in the input,
hidden, and output layer, respectively. Win ∈ RN×K , Wres ∈
RN×N and Wout ∈ RL×N represent the input-hidden, hidden-
hidden and hidden-output connection weight matrices, respec-
tively. The update equations of reservoir states and network
outputs are expressed as follows:

x(i+ 1) = tanh
(
Winu(i+ 1) +Wresx(i)

)
(13)

y(i+ 1) = Woutx(i+ 1) (14)

where tanh denotes the hyperbolic tangent nonlinear function.
In ESN, the main effort is to train the output connection weight

Wout. During the learning stage, ESN is trained according to
the teacher-forced signal. Simultaneously, the reservoir states
updated by (13) are collected in a matrix X. Let ltr represent the
length of training data sets, then the reservoir states matrix is
denoted as

X =

⎡
⎢⎢⎢⎣
x1(1) x2(1) . . . xN (1)
x1(2) x2(2) . . . xN (2)

...
...

...
...

x1(ltr) x2(ltr) . . . xN (ltr)

⎤
⎥⎥⎥⎦
ltr×N

(15)

and the corresponding teacher signal vector matrix is denoted as

D =

⎡
⎢⎢⎢⎣
d1(1) d2(1) . . . dL(1)
d1(2) d2(2) . . . dL(2)

...
...

...
...

d1(ltr) d2(ltr) . . . dL(ltr)

⎤
⎥⎥⎥⎦
ltr×L

. (16)

The ridge regression training mechanism written in (17) is
adopted in this article, in order to overcome the over-fitting
phenomenon.

(Wout)T = (XTX+ ρI)−1XTD (17)

I is theN -order identity matrix, and ρ denotes the regularization
parameter which should be determined through a large number
of experiments for given learning tasks. After the output weights
matrix Wout is obtained, the ESN is ready for testing. The
training procedure of ESN is shown in Algorithm 1.

B. Novel MTS-ESN

In the MTS model, a novel ESN structure with the ability
of multi-task learning is established, as shown in Fig. 3. For
simplicity, in this article we study benchmarks with three input
signals and two output signals. That means that historical signals
on three different timescales are adopted to predict two different
tasks. The input signals are historical hourly, daily and weekly
irradiance values. The output signals are the hourly and daily
solar irradiance values in the future intervals. In this proposed
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Algorithm 1: Training Procedures of ESN.
Input: u
Output: Wout

1: Data preprocessing: divide the collected data into
training and testing sets;

2: Network initialization: initialize an untrained ESN
{Win,Wres}, and set the number of input units K,
internal units N , output units L and the spectral radius;

3: Compute and collect internal states and corresponding
target outputs based on (13), (15) and (16) based on
the training samples;

4: Calculate the output weights Wout according to (17).

Fig. 3. Structure of MTS-ESN.

MTS-ESN model, each task interacts with information sharing
through multiple reservoirs.

As shown in Fig. 3, the number of reservoirs is the same with
the number of input signals on different timescales, so three
reservoirs exist in the MTS-ESN model. These three reservoirs
are used to map the historical hourly, daily and weekly records
to their feature space, separately. Then, these three reservoirs are
aggregated at the output layer to predict the future hourly and
daily solar irradiance.

Remark 1: When the number of reservoir in MTS-ESN is
equal to 1, and a single-task is conducted in the output layer, the
resulted structure is the same with the classical ESN. The single-
task ESN can be taken as a benchmark, to show the contribution
of the correlations between each task to the prediction accuracy
of MTS-ESN in later simulation.

Denote input vectors asu1(i) = [H(i), H(i− 1), . . . , H(i−
K1)]

T , u2(i) = [D(i), D(i− 1), . . . , D(i−K2)]
T , and

u3(i) = [W (i),W (i− 1), . . . ,W (i−K3)]
T , where K1,

K2 and K3 are the length of each input signal, i.e.,
the length of historical hourly irradiance values nh,
daily irradiance values nd, and weekly irradiance val-
ues nw in Fig. 3, respectively. The internal states of
three reservoirs are x1(i) = [x1

1(i), x
2
1(i), . . . , x

N1
1 (i)]T ,

x2(i) = [x1
2(i), x

2
2(i), . . . , x

N2
2 (i)]T , and x3(i) =

[x1
3(i), x

2
3(i), . . . , x

N3
3 (i)]T , where N1, N2 and N3 are the

number of internal units of three reservoirs. The output vector
is y = [y1;y2], where y1 = [H(i+ 1), . . . , H(i+ L1)] and
y2 = [D(i+ 1), . . . , D(i+ L2)]. L1 and L2 are the length of
output single for each task.
Win

l ∈ RNl×Kl
and Wres

l ∈ RNl×Nl
represent the input-

hidden, hidden-hidden connection weight matrices for reser-
voir l (l = 1, 2, 3). Wout

1 ∈ RL1×(N1+N2+N3) and Wout
2 ∈

RL2×(N1+N2+N3) represent the hidden-output connection weight
matrices for each task. In particular, we study a one-step multi-
task forecasting model, i.e., L1 = 1 and L2 = 1.

Based on the input signals and initialized weights, the reser-
voir states at time i+ 1 can be computed as:⎧⎨

⎩
x1(i+ 1) = tanh

(
Win

1 u1(i+ 1) +Wres
1 x1(i)

)
x2(i+ 1) = tanh

(
Win

2 u2(i+ 1) +Wres
2 x2(i)

)
x3(i+ 1) = tanh

(
Win

3 u3(i+ 1) +Wres
3 x3(i)

) . (18)

Then, the network outputs at time i+ 1 are expressed as follows:{
y1(i+ 1) = Wout

1 [x1(i+ 1);x2(i+ 1);x3(i+ 1)]
y2(i+ 1) = Wout

2 [x1(i+ 1);x2(i+ 1);x3(i+ 1)].
(19)

Let y(i+ 1) = [y1(i+ 1);y2(i+ 1)] ∈ R(L1+L2)×1, x(i+
1) = [x1(i+ 1);x2(i+ 1);x3(i+ 1)] ∈ R(N1+N2+N3)×1, and
Wout = [Wout

1 ;Wout
2 ] ∈ R(L1+L2)×(N1+N2+N3). Then, we

can obtain that {
y1(i+ 1) = Wout

1 x(i+ 1)
y2(i+ 1) = Wout

2 x(i+ 1)
(20)

and that

y(i+ 1) = Woutx(i+ 1) . (21)

Similar to traditional ESN, the ridge regression training mech-
anism can also be adopted to compute the output weights.
Equation (17) is rewritten as:

(Wout)T = (QTQ+ ρI)−1QTT (22)

where I is the (N1 +N2 +N3)-order identity matrix. Let ltr
represent the length of training samples, then the reservoir states
matrix Q and corresponding teacher signal vector matrix T are
denoted as

Q =

⎡
⎢⎢⎢⎣
xT

1 (1) xT
2 (1) xT

3 (1)
xT

1 (2) xT
2 (2) xT

3 (2)
...

...
...

xT
1 (ltr) xT

2 (ltr) xT
N (ltr)

⎤
⎥⎥⎥⎦
ltr×(N1+N2+N3)

(23)

and

T =

⎡
⎢⎢⎢⎣
d1(1) d2(1)
d1(2) d2(2)

...
...

d1(ltr) d2(ltr)

⎤
⎥⎥⎥⎦
ltr×L

(24)

d1 and d2 are the teacher signal during training stage, i.e., the
hourly and daily solar irradiance to be predicted. The training
procedure of MTS-ESN for solar irradiance is shown in Algo-
rithm 2.

Remark 2: In the proposed MTS-ESN model, correlations
among solar irradiance from different timescales are utilized for
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Algorithm 2: Training Procedures of MTS-ESN.
Input: u1,u2,u3

Output: Wout

1: Data preprocessing: divide the original collected
hourly solar irradiance data into daily and weekly data
sets according to (6)-(7), and then split these data sets
into training and testing sets according to Table I;

2: for l← 1 to 3
3: Initialization: {Win

l ,Wres
l ,Kl, Nl, ρ};

4: end
5: for i← 1 to ltr
6: for l← 1 to 3
7: xl(i+ 1)← tanh(Win

l ul(i+ 1) +Wres
l xl(i));

8: end
9: d(i)← [H(i), D(i)];

10: x(i)← [x1(i);x2(i);x3(i)];
11: end
12: Q← (x(1);x(2); . . . ;x(ltr));
13: T← (d(1);d(2); . . . ,d(ltr));
14: (Wout)T ← (QTQ+ ρE)−1QTT;

multi-task modeling. Each task in MTS-ESN interacts with in-
formation sharing through multiple reservoirs. Due to the simple
training mechanism and information sharing among each task,
MTS-ESN can fulfill multiple tasks in parallel more efficiently
and and accurately than multiple single-task ESN models. It
should be noted that the correlation among tasks is crucial
for multi-task learning, as unrelated tasks will transmit noisy
information. In this case, single-task models are better than
multi-task models.

V. EXPERIMENTAL DESIGN AND RESULTS

A. Performance Evaluation Matrices

In this article, four different metrics in [1] are adopted to
evaluate the accuracy of MTS-ESN, i.e., root mean square error
(RMSE), mean absolute error (MAE), normalized root mean
square error (nRMSE), and correlation coefficient (R). These
metrics are expressed in the following equations:

RMSE =

√√√√ 1
n

n∑
i=1

(yforecasted,i − ymeasured,i)
2 (25)

MAE =
1
n

n∑
i=1

|yforecasted,i − ymeasured,i| (26)

nRMSE =
1

ȳ

√√√√ 1
n

n∑
i=1

(yforecasted,i − ymeasured,i)
2 × 100%

(27)

R =
cov(yforecasted, ymeasured)

σyforecastedσymeasured

(28)

where yforecasted,i is the forecasted solar irradiance, ymeasured,i is
the measured solar irradiance, ȳ is the mean of actual irradiance

Fig. 4. Map information of six different stations.

TABLE I
TRAINING AND TESTING PERIOD FOR PREDICTION MODELS

values at the test period, and n is the length of testing step.
cov(yforecasted, ymeasured) is the covariance between forecasted
and measured values, σyforecasted and σymeasured are the standard
deviations of yforecasted and ymeasured.

B. Data Description

In this article, the hourly solar irradiance records of 6 different
stations at California are obtained from California Irrigation
Management Information System (CIMIS). The six stations are
Davis, Markleeville, Owens Lake South, Salinas North, Seeley
and Blythe NE, as shown in Fig. 4. Since the solar irradiance
before sunrise and after sunset can be negligible, the data from
8 A.M. to 5 P.M. in one day are therefore chosen in the current
study. That is to say, the length of a supposed day equals to
10. For any station, the training and testing period are shown in
Table I.

C. Performance of MTS-ESN

In this section, the prediction performance of MTS-ESN is
evaluated in the hourly and daily forecasting. The network
parameters are selected by trial and error, and they are set as
follows: each reservoir size is set as 200, the total input number
is 6 (K1 = 2, K2 = 2 and K3 = 2), and the output number is set
as 2; Weight matrix Win is sampled from a uniform distribution
over [−1,1], and the spectral radius ofWres is set to be 0.85; The
regularization parameter ρ of ridge regression training algorithm
is set as 10−1.
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Fig. 5. (a) Hourly and (b) daily prediction results by MTS-ESN versus
actual values for CASE IV at Blythe NE station.

TABLE II
HOURLY STATISTICAL TEST COMPARISON BETWEEN SINGLE-TASK ESN

MODEL AND MULTITASK MTS-ESN MODEL FOR CASE I AT DAVIS STATION
AND CASE IV AT BLYTHE NE STATION

TABLE III
DAILY STATISTICAL TEST COMPARISON BETWEEN SINGLE-TASK ESN

MODEL AND MULTITASK MTS-ESN MODEL FOR CASE I AT OWENS LAKE
SOUTH STATION AND CASE IV AT BLYTHE NE STATION

To show the contribution of the correlation between each task
to the prediction accuracy, two single-task ESN model and a
multi-task MTS-ESN model are firstly conducted, based on the
historical signals on three different timescales. Take CASE I
at Davis station and CASE IV at Blythe NE station as two
examples. The hourly and daily statistical test results in terms of
RMSE, nRMSE, MAE, and R are compared in Tables II and
III, respectively. Obviously, the multi-task MTS-ESN model
performs better than single-task ESN model, at both hourly and
daily levels. The results illustrate that the correlation between
each forecasting task contributes to the prediction accuracy
improvement of MTS-ESN.

Fig. 5 shows the hourly and daily forecasted value of MTS-
ESN versus the actual value for CASE IV at Blythe NE station,
respectively. 200 time points in the testing stages are selected.

Fig. 6. Output weights distribution comparison for hourly and daily
prediction.

TABLE IV
HOURLY STATISTICAL TEST BETWEEN MEASURED AND FORECASTED

VALUES FOR FOUR CASES AT SIX STATIONS

From Fig. 5, it can be observed that the MTS-ESN model can
not only fit hourly solar irradiance, but also fit the daily solar
irradiance data.

Fig. 6 shows the corresponding trained output weights dis-
tribution at three timescales. It can be seen that for hourly and
daily prediction tasks, the output weights are concentrated in the
corresponding timescale.

For each case, the prediction accuracy of MTS-ESN is evalu-
ated and computed in terms of RMSE, MAE, nRMSE and R for
each station, as reported in Tables IV and V. According to the
statistical results obtained, it can be observed that nRMSE varies
in the range of 0.36%− 3.33% for daily prediction results, and
4.38%− 32.48% for hourly simulation results. The statistical
results also illustrate that the prediction task at daily timescale is
easier than hourly timescale, as the daily dynamics is slower than
the hourly dynamics. In sum, the developed MTS-ESN model
is suitable for the simultaneous prediction of solar irradiance at
hourly and daily timescale.
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Fig. 7. (a) Hourly and (b) daily comparison between the measured and predicted solar irradiance by MTS-ESN and STS-ESN models for four
cases at Owens Lake South station.

TABLE V
DAILY STATISTICAL TEST BETWEEN MEASURED AND FORECASTED

VALUES FOR FOUR CASES AT SIX STATIONS

D. Comparisons of MTS-ESN With STS-ESN

In addition, the performance of MTS-ESN is further eval-
uated by comparing with that of single-timescale ESN model

TABLE VI
STATISTICAL TEST COMPARISON BETWEEN MEASURED AND FORECASTED

VALUES BY MTS-ESN AND STS-ESN MODELS FOR FOUR
CASES AT OWENS LAKE SOUTH STATION

(STS-ESN) shown in Fig. 2(a) and (b). For STS-ESN, the
hourly and daily forecast models are constructed, respectively.
In order to ensure the fairness of experiments, the parameters of
STS-ESN are set to be same with MTS-ESN. Take Owens Lake
South station as an example. The statistical results in terms of
RMSE, MAE, nRMSE, R and computation time are shown in
Fig. 7 and Table VI. In Table VI, STS-ESN(h) and MTS-ESN(h)
denote the hourly forecast results by STS-ESN and MTS-ESN,
respectively. STS-ESN(d) and MTS-ESN(d) denote the daily
forecast results by STS-ESN and MTS-ESN, respectively. It is
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TABLE VII
HOURLY STATISTICAL TEST COMPARISON BETWEEN DIFFERENT

MODELS FOR CASE I AT DAVIS STATION AND CASE III
AT OWENS LAKE SOUTH STATION

TABLE VIII
DAILY STATISTICAL TEST COMPARISON BETWEEN DIFFERENT MODELS FOR
CASE I AT DAVIS STATION AND CASE III AT OWENS LAKE SOUTH STATION

worth noting that the prediction accuracy of MTS-ESN is higher
than STS-ESN, at both hourly and daily levels. Furthermore, the
computation time of STS-ESN and MTS-ESN are reported. Note
that the computation time of MTS-ESN(h) and MTS-ESN(d) is
the average time, as these two values are obtained simultane-
ously in the overall computation of MTS-ESN. Experimental
results indicate that the MTS-ESN has much less computation
time than STS-ESN for each task. With respect to prediction
accuracy and computational efficiency, MTS-ESN performs
better than STS-ESN to deal with multi-task prediction of solar
irradiance. The reason is that the information in one task could
help to fulfill other tasks.

E. Comparisons of MTS-ESN and Other Typical Models

In order to further validate the effectiveness of the proposed
MTS model, the performance of MTS-ESN, multi-timescale El-
man (MTS-Elman) and multi-timescale BP (MTS-BP) networks
are compared in this section. In addition, the classical PSS and
ARX are taken as two comparative benchmarks for hourly solar
irradiance prediction task.

Take CASE I at Davis station and CASE III at Owens Lake
South as two examples. Comparative results in terms of RMSE,
nRMSE, MAE, computation time and R are listed in Tables VII
and VIII.

It is obvious that the multi-task learning perspective still works
in MTS-BP and MTS-Elman. MTS-ESN performs better than
MTS-Elman and MTS-BP at both hourly and daily levels, with
higher prediction accuracy and less computation time. For the
hourly task, MTS-ESN also outperforms than PSS and ARX
benchmarks. Those time slots in the testing stages are sampled
to evaluate the results between actual and predicted values, as

Fig. 8. (a) Hourly and (b) daily comparison between the measured and
predicted solar irradiance by different models for Case I at Davis station.

shown in Fig. 8. From Fig. 8(a), it can be seen that there exist
large fluctuations in the forecasted hourly values by MTS-BP,
ARX and MTS-Elman models at the sampling slots, compared
with the MTS-ESN model. From the daily comparison between
the measured and predicted solar irradiance by three ANN
models shown in Fig. 8(b), it can be observed that the accuracy
of daily prediction increase for three models, compared with that
of hourly prediction. The reason is that the daily solar irradiance
has slower dynamics than hourly solar irradiance. However, the
MTS-ESN model could also perform better than MTS-BP and
MTS-Elman models. As a result, it can be concluded that the
proposed multi-task learning perspective could be applied to
different ANNs, and that MTS-ESN algorithm has better perfor-
mance to deal with multi-timescale solar irradiance prediction
task than the MTS-BP and MTS-Elman algorithms.

VI. CONCLUSION

In this article, a new multi-task learning perspective is pro-
posed to fulfill the MTS forecast of solar irradiance. A novel
MTS-ESN algorithm is proposed to verify the usefulness of
task correlation in the multi-timescale irradiance prediction. In
the MTS-ESN, the information on different tasks are shared
by integration of multiple reservoirs. Simulation results demon-
strate that our proposed MTS-ESN algorithm could perform
effectively at both hourly and daily prediction in parallel, which
also indicate the effectiveness of multi-task learning in this
application.

In the comparative study, the proposed MTS-ESN could
outperform the existing STS-ESN with respect to prediction
accuracy and computational efficiency. The multi-task learning
perspective could be applied to other ANNs, e.g., BP, Elman
neural networks. As the MTS-ESN has better performance than
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MTS-BP and MTS-Elman for multi-task prediction, we only
focus on ESN and MTS-ESN in this article. The outputs of this
article simultaneously complete multiple prediction tasks, which
could help make hierarchical decisions for energy systems. In a
hybrid solar energy system, the outputs can also help customers
re-adjust the load demand in advance. In addition, the proposed
method can also be applied to existing single-task ANN models
and other learning tasks for further performance improvement.
In future work, more ANNs could be evaluated in the multi-
timescale forecast of solar irradiance.
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