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H I G H L I G H T S  

• Modelling and optimisation of anaerobic co-digestion is reviewed 
• Co-digestion requires more research into a variety of bio-resources and their specific blend proportions 
• Modelling and optimisation of co-digestion with substrate seasonal fluctuations is yet to be explored 
• Biogas hybridisation is yet to be explored in depth 
• A multi-objective approach in technical and economic analysis is essential.  
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A B S T R A C T   

The status, recent trends and future perspectives in modelling and optimisation of anaerobic co-digestion is 
investigated. Areas that can be focused on and those which need further research towards enhancing biogas 
production are pointed out. Co-digestion, modelling and optimisation of anaerobic digestion as well as techno- 
economic aspects are reviewed in this paper. It was noted that co-digestion requires more research into a variety 
of bio-resources and their specific blend proportions. Modelling and optimisation of co-digestion with substrate 
seasonal fluctuations has not been addressed in previous studies. Controlling key process factors including 
temperature, pH, and carbon to nitrogen ratio is critical in improving biogas yield. Biogas hybridisation is yet to 
be explored in depth. The majority of researches are focused on mono-digestion, feedstock co-digestion, 
modelling, and optimisation of anaerobic digestion needs significant further investigations. A multi-objective 
approach taking all technical and economic parameters in the modelling and optimization is essential.   

1. Introduction 

The energy sectors world over are faced with a task to come up with 
alternative sources of energy to substitute fossil derived fuels. There is 
urgent need for boosting energy generation to fill in the shortfalls in 
supply to the ever increasing energy demand. Generating energy from 
alternative sources will help in climate change mitigation and mini-
misation of alarms posed to the environment (Kang et al., 2020). There 
has been a high uptake of renewable energy technologies (RETs) world 
over in a bid to deal with the detrimental effects paused by fossil related 
energy generation technologies. In a bid of increasing energy accessi-
bility whilst simultaneously restricting worldwide temperature 

increament to 2◦C, adoption of RETs and energy efficiency must be 
encouraged and raised significantly (Sawin et al., 2016). This growing 
impetus for renewable energy alternative avenues demands the 
consideration of different feedstocks, development of novel techniques, 
as well as improvements to existing technologies. 

Bio-energy can be regarded as the most substantial renewable energy 
source due to its cost-effective advantages and its great potential to 
substitute non-renewable fuel sources. Bioenergy comes from biomass 
materials: any biological organic matter obtained from plants or ani-
mals. Biomass energy sources include but are not limited to terrestrial 
plants, aquatic plants, timber processing residues, municipal solid 
wastes, animal dung, sewage sludge, agricultural crop residues and 
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forestry residues. It is one of the most versatile among the renewable 
energies since it can be made available in solid, liquid and/or gaseous 
forms. Different avenues can be explored to haverst energy from biomass 
materials. 

Biogas originates from anaerobic digestion (AD) of biodegradable 
biological materials. Biogas generation via AD has advantages of better 
compatibility with the environment. The process makes use of contin-
uously generated accumulating quantities of bio-wastes, value adding 
them into some form of energy (Adekunle and Okolie, 2015). This 
technology reduces the discharges of greenhouse gases leading to a 
sustainable form of energy and a cleaner environment (Maile et al., 
2016). 

Anaerobic digestion is the breaking down of biomaterials by bacteria 
in an environment without oxygen. It is the most favourable substitute to 
discarding of biodegradable organic municipal solid waste, agricultural 
residues and animal wastes because of its efficient energy recovery na-
ture. The bio-conversion is catalysed by a huge consortia of microor-
ganisms complementing each other, catalysing the diverse biochemical 
reactions, therefore the metabolic pathways accompanying anaerobic 
digestion are quite complex. In anaerobic digestion, co-digestion entails 
simultaneous digestion of varied wastes having harmonising features. In 
the AD process biomass materials are broken down by bacterial action in 
an oxygen free environment producing a gaseous blend comprising 
mainly of methane (Reyes et al., 2015). This gaseous blend/mixture is 
known as biogas and it consists of methane, carbon dioxide, hydrogen 
sulphide, ammonia, hydrogen and water vapour. A mineral rich diges-
tate usually referred to as spent slurry or sludge is also obtained as a 
secondary product of the biogas generation process. 

In contrast with other biofuels, biogas production is flexible to 
different substrates on condition that they are biodegradable. The waste 
streams which are the raw materials for biogas production vary signif-
icantly due to seasonal and geographical location causing a dissimilarity 
in biogas yields reported by various authors (Bong et al., 2018). The 
substrate must have the dietary rations for the microorganisms for it to 
be biodegraded optimally. Therefore, structure and constituent com-
ponents of feed is exceedingly crucial in AD to optimally produce biogas. 

Agricultural waste, Eichhornia crassipes (water hyacinth) and 
municipal solid waste are hugely available sources to be tapped into for 
the attainment biogas (Kunatsa et al., 2013; Kunatsa and Mufundirwa, 
2013). Multi-stage anaerobic digestion accompanied with co-digestion 
of different raw materials and feedstocks as well as optimisation of the 
biogas production process can bring about enhanced yields of biogas. 
With respect to substrates for anaerobic digestion, use of wastes is pri-
oritised over other options since it addresses the environmental pollu-
tion issues while simultaneously generating energy (Horváth et al., 
2016). 

According to Kangle et al. (2012), co-digestion increases biogas 
outputs, however, it has a disadvantage of largely still remaining un-
studied for many varying substrates. Biogas production is enhanced by 
co-digestion of different substrates rather than individual substrates but 
there is difficulty in getting to the exact blend ratio for optimality since it 
depends on the type of substrates together with actual reaction condi-
tions availed (Adekunle and Okolie, 2015). Co-digestion technology 
needs scrutinised supervision and controlling since no single customary 
set of working parameters could be practical to all organic biodegrad-
able wastes. Given this scenario, and that the availability of raw mate-
rials is of broad nature, further research in co-digestion and optimisation 
of biogas generation from varied substrate types should be undertaken. 

Biogas is produced using either the wet anaerobic digestion tech-
nology or the dry anaerobic digestion technology (Angelonidi and 
Smith, 2015). In the wet technology the substrates are mixed with water 
to make a bio-slurry which constitutes about 90% water. Examples of 
digesters used in the wet digestion technology include fixed dome, 
floating drum, polyethylene tube digesters and balloon digesters. In dry 
digestion technology the substrates are not mixed with water but slurry 
with cultured microbes can be added. Dry digestion is usually done on 

raw materials with a lot of fibre. The digestion chambers can look more 
like composting facilities. AD maybe classified as ”single” or ”multi” 
stage. In multi-stage digestion there are two or more reaction chambers 
separating the bioprocesses whilst in single stage there is only one re-
action chamber in which all the bioprocesses occur. The digester feeding 
mechanisms can be categorised into batch feeding and continuous 
feeding. In batch feeding substrates are fed once and left till they are 
completely digested before a new set of substrates is fed. In continuous 
digestion a certain constant quantity of feed is administered to the 
reactor at regular intervals. 

The overall aim of this review study is to retrospect previous works, 
modern trends and approaches in process enhancement and control 
strategies in anaerobic biogas production technology consequently 
contributing vital information in the direction of biogas enhancement 
and optimisation. The subject matter covered includes biochemical 
processes in AD, co-digestion, modelling and optimisation as well as 
techno-economic aspects of the same. Much emphasis is given to co- 
digestion, modelling and optimisation in order to investigate the pre-
vious works, progression and forecasts of the biogas production process 
in a bid to enhance biogas yields. This study is unique in its own regard 
in the sense that it zeroes in on reviewing issues of incorporation of co- 
digestion feedstock mixing ratios, multi-stage digestion, process condi-
tions, techno-economic aspects and biogas hybridisation among others 
in the modelling and optimisation of biogas production in view of 
enhancing the ultimate biogas yield. 

This work is of great importance as it value adds to the existing 
knowledge in academia and provides more opportunities for new and 
extra investigations in the biogas arena. Small to medium enterprises as 
well as commercial biogas players can also benefit from the results of 
this work. In general, more researches are being done in the broad 
spectrum of biogas and this trend suggests that biogas technology 
acceptance and adoption is increasing and is being taken seriously as an 
important contributor to the current world shift towards renewable 
energy technologies and can feed into a great extent to the mitigation of 
climate change. 

2. Anaerobic co-digestion 

Anaerobic digestion of biomass wastes can be done on individual 
materials (mono-digestion) or mixtures of numerous materials (mixed- 
digestion or co-digestion). Anaerobic co-digestion enhances digestion 
and energy generation by increasing availability of nutrients for mi-
crobes and organic load while reducing inhibitory chemical toxicity 
through co-substrate dilution. Mono-digestion is commonly employed 
for digesting animal manure in smaller biogas production facilities, but 
co-digestion is frequently employed in bigger facilities which process 
bio-wastes from various origins (farms, residential areas and industry). 
Co-digestion occurs when different feed materials are concurrently 
digested in the same reactor. Customarily, AD technology was meant for 
one feed material but lately, it has been recognised that anaerobic 
digestion turns out to be more stable when a diversity of substrates are 
co-digested simultaneously. Co-digesting varied substrates improved 
biogas production potentials in contrast to single substrates (Maragkaki 
et al., 2018; Lee et al., 2020; Vivekanand et al., 2018). 

Generally all biomaterials and organic wastes are augmented with 
numerous nutrients necessary for growth of micro-organisms. The 
differing nutrient quantities are interconnected with age, geographical 
origins and species of the organic material. A great proportion of the 
agricultural residues and aquatic plants are enriched with high nutri-
ents, however, their lignocellulosic recalcitrant nature renders them 
resistive to micro-bacterial degradation hence reduced gas outputs. Co- 
digesting these multifaceted biomaterials with animal manures and 
other biodegradable organic substances gives enough access and po-
tential to micro-organisms to foster optimised degradation (Kunatsa 
et al., 2020). 

In an investigation, Patil et al. (2011), found out that more biogas 
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was produced from co-digestion of Eichhornia crassipes, poultry waste 
and cow manure. Co-digestion presents immaculate digestibility, su-
preme mineral manure, odour and germs management together with 
costs reduction in addition to being environmentally friendly among 
other benefits (Yasar et al., 2017). Table 1 shows a review of a few 
mono-digestion and co-digestion studies some improved methane yields 
through co-digestion. 

The major advantage of co-digestion is the improvement of biogas 
yields as well as methane content of the same. Animal manures are being 
co-digested with other biodegradable materials to increase economic 
effectiveness while ensuring anaerobic digestion system stability at a 
commercial scale (Hegde and Trabold, 2019). A number of recent pre-
vious studies, mainly centred on laboratory investigations and small- 
scale bio-rectors have proven anaerobic co-digestion to be the way to 
go when it comes to biogas production and its optimisation. According 
to the authors’survey, the majority of commercial reactors employ 
mono-digestion mainly due to availability of one specific substrate in 
large quantities within the vicinity of the digester geographic location. 
Other reasons for non-implementation of anaerobic co-digestion include 
ignorance, unavailability of co-digestion technical expertise, reluctance 
to shift and adopt new technology as well as avoiding the drawbacks of 
co-digestion. Some of the major drawbacks of co-digestion which 
hamper application of the technology with large scale commercial re-
actors include accummulation of undigestable solids inside the digester, 
high nitrogen backload, and accummulation of acids from other co- 
substrates (Sembera et al., 2019). The synergistic effects of the co- 
substrate mixture which are brought about by the dynamics of the co- 
digestion process as well as the microbes involved will outweigh the 
drawbacks of the technology. With the advancement of technology, 

inclusive of process regulation and control amongst other interventions 
such as pretreatment, the benefits of anaerobic co-digestion can be fully 
realised. However, research and development into the co-substrate 
blending proportions needs to be further investigated for a wide vari-
ety of co-digestion substrates. 

Table 1 shows that there is a vast potential of biogas generation from 
the co-digestion of a wide range of biomass wastes. The recalcitrant 
nature of most of the lignocellulosic substrates can be overcome by co- 
digesting them with animal manures which already has bacteria for 
anaerobic digestion and this in turn enhances biogas yield from them. It 
can also be deduced that a different combination of substrates as well as 
different mixing ratios consequently lead to different biogas production 
volumes and hence different methane concentrations. This section 
concludes that further research has to be conducted on a wide range of 
co-digestion feedstock combinations and their respective blend ratios. 

3. Modelling and optimisation of anaerobic digestion 

Co-digestion logically and concurrently manages biological organic 
matter thereby obtaining an alternative form of energy. It is more 
vulnerable to process instability due to substantial dissimilarity in feed 
stock composition. Mechanistic models emanating from the anaerobic 
digestion model No.1 (ADM1) framework are more well-known in 
anaerobic co-digestion modelling. Nevertheless, major aspects in 
present-day anaerobic co-digestion, particularly interactions between 
system performance and co-substrate ratios and properties for optimal 
biogas yields still remain underdeveloped. 

There is a necessity of the development of models of different levels 
for the respective different categories of users. The small to medium 
enterprises (SMEs) only need a general understanding and as such 
require low level-less complicated models. Commercial entities and all 
big revenue focused companies require general to medium level models 
for the purposes of just informing on the expected biogas yields in 
relation to time, rate of return on investment, and profits. Lastly senior 
technical managers, engineers and researchers have the capacity and 
ability to understand deeper technical models with higher level of so-
phistication and complexity. It is necessary to take into consideration 
different research interests in the development of models of different 
levels. Table 2 shows the 2 major model categories and the respective 
research interests together with the aspects to be considered in model 
development. 

Optimisation of anaerobic digestion can be improved through proper 
modelling (Ramachandran et al., 2019). Process monitoring and control 
have been noted as further improvements needed for the biogas pro-
duction process (Wu et al., 2019). Research and investigations on 
modelling, together with optimisation, inclusive of control and regula-
tion of the AD reactions are critical to the biogas fraternity. In com-
parison to other well established fields, the modelling and optimisation 
of biochemical reactions such as the ones in biogas generation are still a 
challenge mainly attributed to by the peculiarity and unsimilar nature of 

Table 1 
Effect of co-digestion on biogas yield.  

Feedstocks Comparison of mono-digestion and 
co-digestion biogas yields 

Source 

Wastewater sludge and 
olive pomace 

mono-digestion yielded 0.18 and 
0.16LCH4/gVSadded for olive pomace 
and wastewater sludge respectively. 
Co-digestion yielded 
0.21LCH4/gVSadded. Co-digestion 
increased methane production by 
17 − 31%  

(Alagöz 
et al., 2018) 

Wastewater sludge (WAS) 
and fish waste (FW) or 
garden-grass (GG) 

gradual increase of fish concentration 
increased methane generation up to 
1.9 when 75% was added. With grass 
methane production only improved 
after adding 25%, adding more than 
50% grass increased the production 
rate and final product by 1.5 and 1.7 
times, respectively.  

(Cardona 
et al., 2019) 

Sugarcane press mud (P) 
and vinasse (V) 

The combination V75/P25 had the best 
methane generation rate of 
69.6NmLCH4g− 1COD− 1

fedd− 1. In co- 
digestion, methane outputs of 
365LCH4kg− 1VS and biogas 
production output of 1.6LL− 1 were 
achieved, which was 64% greater than 
mono-digestion.  

(González 
et al., 2017) 

Microalgae and primary 
sludge 

Co-digestion of microalgae and 
primary sludge (25/75% on a volatile 
solids basis) was compared to 
microalgae mono-digestion. co- 
digestion improve methane 
generation by 65%.  

(Solé-Bundó 
et al., 2019) 

Poultry droppings (PD) 
and lignocellulosic co- 
substrates (LCSs) (wheat 
straw (WS) and meadow 
grass (MG)) 

In co-digestion, maximum methane 
concentrations were found to be 330.1 
and 340.1 Nl kg1 VS at a blending 
ratio of 70:30 (PD:WS) and 50:50 (PD: 
MG) respectively. This was an increase 
of 1.14 and 1.13 times higher than the 
LCSs individually. 

(Rahman 
et al., 2017)  

Table 2 
Research interests and model level categories.  

Model Category Aspects to be considered 

Production level medium to high level modelling 
Process control and regulation (temperature and pH 
monitoring) 
Substrate blend ratios (in case of co-digestion) 
Reaction kinetics 

Utilisation and 
management level 

low to medium level modelling 
Optimising CH4 proportion in biogas  
biogas production vs demand side management 
Impurity removal and quality improvement for 
advanced uses 
Slurry and other by-products management 
biogas yields in relation to time, rate of return on 
investment and profits  
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the reaction progressions (Fedailaine et al., 2015). The bacteria involved 
in the biogas generation process drastically respond to environmental 
alterations hence making it a challenge to predict and control the pro-
cess (Thorin et al., 2012). Thorin et al. (2012) concluded that for 
anaerobic digestion processes, the available detailed models are too 
complex for practical use and recommended the use of a combination of 
empirical and physical and/or biological models as a possible approach. 

3.1. Modelling 

3.1.1. The Buswell biogas prediction equation 
(Buswell and Sollo, 1948) developed a mechanism for methane 

fermentation which describes biogas constituent composition after 
anaerobic digestion as per the chemical composition of the initial sub-
strates entering into the digestion process. The elemental composition of 
the majority of substrates employed in biogas production comprises of C, 
H, O, N and S in a complex molecular structure. The complex structure is 
subjected to the biochemical reactions and biogas is obtained as the 
main product together with slurry as a by-product. If it is assumed that a 
total coversion of biomass to biogas occurs after the complex inter-
dependant bio-chemical reactions, then the elemental composition 
approach developed by (Buswell and Mueller, 1952), is arrived at; that 

biogas is constituted mainly of CH4,CO2,NH3 and H2S and that other 
trace elements and gases are negligible. This is typical high level steady 

state modelling which takes material balances into account. Since some 

of the biomass is not completely converted to biogas but goes to slurry, a 
conversion factor of 0.8 is assumed and applied to the resultant biogas 
quantity to arrive at a more accurate representation of the entire pro-
cess. The Buswell equation for predicting biogas output is as shown in 
Eq. (1).   

a, b, c, d and e are given by percentage composition by mass of each of 
the elements devided by the relative atomic mass (Ar) of each of the 

elements as depicted below: 

a =
Carbon ultimate mass

ArC
, (2)  

b =
Hydrogen ultimate mass

ArH
, (3)  

c =
Oxygen ultimate mass

ArO
, (4)  

d =
Nitrogen ultimate mass

ArN
, (5)  

e =
Sulphur ultimate mass

ArS
. (6) 

Eq. (1) helps to build a material balance model. Reference is made to 
Kunatsa et al. (2020), when there are three different substrates. In this 
previous work, a biogas generation model for the determination of 
optimal substrate blend ratios is formulated and optimised. Eq. (1) can 
be expressed in the form of Eqs. (7)–(9) for substrates 1,2 and 3 
respectively.       

The aggregate biogas yield obtainable from these 3 substrates was 
modeled as: 

Bcod = 0.8 ×
∑3

i=1
V (10) 

CaHbOcNdSe +

(

a −
b
4
−

c
2
+

3d
4
+

e
2

)

H2O⇒
(

a
2
+

b
8
−

c
4
−

3d
8
−

e
4

)

CH4 +

(
a
2
−

b
8
+

c
4
+

3d
8
+

e
4

)

CO2 + dNH3 + eH2S. (1)   

Ca1 Hb1 Oc1 Nd1 Se1 +

(

a1 −
b1

4
−

c1

2
+

3d1

4
+

e1

2

)

H2O⇒
(

a1

2
+

b1

8
−

c1

4
−

3d1

8
−

e1

4

)

CH4 +

(
a1

2
−

b1

8
+

c1

4
+

3d1

8
+

e1

4

)

CO2 + d1NH3 + e1H2S, (7)   

Ca2 Hb2 Oc2 Nd2 Se2 +

(

a2 −
b2

4
−

c2

2
+

3d2

4
+

e2

2

)

H2O⇒
(

a2

2
+

b2

8
−

c2

4
−

3d2

8
−

e2

4

)

CH4 +

(
a2

2
−

b2

8
+

c2

4
+

3d2

8
+

e2

4

)

CO2 + d2NH3 + e2H2S, (8)   

Ca3 Hb3 Oc3 Nd3 Se3 +

(

a3 −
b3

4
−

c3

2
+

3d3

4
+

e3

2

)

H2O⇒
(

a3

2
+

b3

8
−

c3

4
−

3d3

8
−

e3

4

)

CH4 +

(
a3

2
−

b3

8
+

c3

4
+

3d3

8
+

e3

4

)

CO2 + d3NH3 + e3H2S. (9)   
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where Bcod is the summative biogas that is realised from the co-digestion 
of the 3 substrates and 0.8 is the substrates’ biomass to biogas conver-
sion factor. V1,V2 and V3 are the biogas volumes from substrates 1, 2 and 
3 respectively and are determined as shown below: 

V1(m3) =
(22.4 × 10− 3) × (CO21 + NH31 + H2S1 + CH41 )

MrWH
, (11)  

V2(m3) =
(22.4 × 10− 3) × (CO22 + NH32 + H2S2 + CH42 )

MrMSW
, (12)  

V3(m3) = (22.4 × 10− 3) × (CO23 + NH33 + H2S3 + CH43 )

MrCD .
(13) 

CO21,2,&3 ,NH31,2,&3 ,H2S1,2,&3andCH41,2,&3 are the number of moles of 
carbon dioxide, ammonia, hydrogen sulphide and methane for water 
hyacinth (WH), municipal solid waste (MSW) and cow dumg (CD) 
respectively and are determined as shown below. 

CH41 =
a1

2
+

b1

8
−

c1

4
−

3d1

8
−

e1

4
;

CO21 =
a1

2
−

b1

8
+

c1

4
+

3d1

8
+

e1

4
;

NH31 = d1and

H2S1 = e1  

CH42 =
a2

2
+

b2

8
−

c2

4
−

3d2

8
−

e2

4
;

CO22 =
a2

2
−

b2

8
+

c2

4
+

3d2

8
+

e2

4
;

NH32 = d2and

H2S2 = e2  

CH43 =
a3

2
+

b3

8
−

c3

4
−

3d3

8
−

e3

4
;

CO23 =
a3

2
−

b3

8
+

c3

4
+

3d3

8
+

e3

4
;

NH33 = d3and

H2S3 = e3 

MrWH is the relative molecular mass of water hyacinth, MrMSW is the 
relative molecular mass of municipal solid waste and MrCD is the relative 
molecular mass of cow dung. These relative molecular masses are as 
denoted in Eqs. (14)–(16) respectively. 

MrWH(kgmol− 1) = a1 ∗ ArC + b1 ∗ ArH + c1 ∗ ArO + d1 ∗ ArN + e1 ∗ ArS,

(14)  

MrMSW(kgmol− 1) = a2 ∗ ArC + b2 ∗ ArH + c2 ∗ ArO + d2 ∗ ArN + e2 ∗ ArS,

(15)  

MrCD(kgmol− 1) = a3 ∗ ArC + b3 ∗ ArH + c3 ∗ ArO + d3 ∗ ArN + e3 ∗ ArS.

(16)  

where Ar is the relative atomic mass of each respective element in the 
substrate molecule. 

The aim of Kunatsa et al. (2020) was to find feedstock mixing ratios 
which maximise biogas output in the co-digestion combination. In a case 
study analysis, optimum co-digestion resulted in mixing ratios of 53.27 :

24.64 : 22.09 for WH, MSW, and CD, respectively. Biogas produced from 
1 kg of substrate mixture amounted to 124.56m3. Biogas production was 
enhanced by co-digestion and optimising the substrate blend pro-
portions. An increase by 157.11% in biogas output was noted. 

3.1.2. First order dynamic model 
The first order dynamic model is a high level-production level, dy-

namic modelling approach that looks at the overall production response. 
Membere et al. (2013) described and evaluated a dynamic model to 
generate biogas from co-substrates, it was concluded that applying the 
modified first order dynamic model produced higher biogas yield when 
compared to experiments in which it was not applied. Raw material 
digestability was analysed through computational formulation of first 
order nature for batch systems as was highlighted by Yusuf et al. (2011) 
as shown in Eq. (17): 

ym

ym − yt
=

Co

Ct
, (17)  

and ln
Co

Ct
= kt (18)  

where: “Co is the initial volatile solid, Ct is the volatile solid concen-
tration at any given time (t), yt is the volume of biogas produced per unit 
mass of VS fed at any time (t) and ym is the volume of biogas per unit of 
mass of VS converted at maximum time” (Yusuf et al., 2011). 

Therefore
ym

ym − yt
= ekt, (19)  

yt = ym(1 − e− kt). (20) 

To ascertain the change in the amount of biogas with time, the first 
order derivative of Eq. (20) is determined 

y′

t = kyme− kt (21) 

Eq. (20) can now be written as: 

yt = ym −
y′

t

k
(22)  

y′

t = kym − kyt (23) 

Eq. (23) gives the dynamic version of Eq. (20) that is potentially 
useful in future biogas production modelling using the first order dy-
namic model. The dynamic model offers easy foretelling of the response 
of the system and its output to mass and energy variations over time, 
easy parameter identification, easy control and optimisation variable 
introduction as well as easy evaluation and comparison of process 
control strategies (Silva, 2015). Biogas generation kinetics are key in 
aiding the assessment of organic matter digestibility characteristics 
(Karki et al., 2021). 

3.1.3. The modified Gompertz model 
Unlike the first order dynamic model which gives supplementary 

data on hydrolysis rate, the modified Gompertz model gives time delay 
to biogas generation together with the highest methane generation rate 
(Pramanik et al., 2019). The modified Gompertz was verified to be an 
outstanding emperical non-linear regression model informing of gas 
generation time delay in addition to describing bacterial growth as 
exponential (Zahan et al., 2018; Pramanik et al., 2019). Many re-
searchers reported that biogas formation rate is assumed to relate pro-
portionally to the increase of methanogens in the bio-digester and as 
such biogas prediction follows the modified Gompertz equation as in Eq. 
(24) (Etuwe et al., 2016; Opurum et al., 2017). 

P = A.exp
(

− exp
[

Ue
A
(λ − t) + 1

])

(24)  

in which P is the cummulative biogas production at a given time t, ml/ 
gVS; A is biogas production potential, ml; U is highest biogas generation 
rate (ml/gVS.day); e is a mathematical constant, 2.718; λ is the biogas 
formation delay time (minimum time to produce biogas), day; and t is the 
aggregate time for biogas formation, day. A,λ, and U are ascertained by 
non-linear regression. The higher U exhibits, the higher the biogas 
production rate. Biogas generation increases with increased values of U. 
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3.1.4. Artificial Neural Networks (ANNs) 
Neural networks comprise of nodes (similar to human brain neurons) 

classified in sequences of layers interlinked in different ways and they 
can regulate a reaction progression through immitating the functioning 
human of brain (Nguyen et al., 2015). Fig. 1 shows a schematic of ANNs. 
Artificial Neural Networks (ANNs) can be used to forecast output data 
for complex systems having numerous operational input variables (Esfe 
et al., 2015). ANNs work using initial data provided, trains on it and 
simulates the reaction progression by resembling the actual process. 
Many researchers used ANNs to predict, model and optimise biogas 
production from different substrates (Ghatak and Ghatak, 2018; Almo-
mani, 2020; Neto et al., 2021). ANNs employ data-driven high level 
modelling, however, without physics, it is less useful in terms of opti-
mising physical parameters. Another disadvantage of ANNs is that by its 
nature of being data driven, it disregards process kinetics. 

3.1.5. The anaerobic digestion model No.1 (ADM1) 
ADM1 simulates the biological transformation of intricate biode-

gradable matter to CH4,CO2 and other inert by-products (Batstone et al., 
2002). The structured model has several phases that describe biological 
and physicochemical process reactions. The ADM1 is a complex model 
well suited for simulation but has significant limitations when it comes 
to optimisation and process control applications. The ADM1 model 
simulates constant volume, completely mixed systems which is not the 
case in many anaerobic digestion reactors especially when it comes to 
bigger systems. 

ADM1 has physico-chemical steps integrated together with biolog-
ical steps. 19 process reactions, 33 state variables in addition to 105 
stoichiometry based relations and kinetic parameters (Batstone et al., 
2002). According to Yu et al. (2014), the complexity of the ADM1 model 
necessitates requirement of several parameters, eventually leading to 
complicated reaction progression equations. Identification of parame-
ters and handling of these several equations can be very difficult. 
(Kleerebezem and Van Loosdrecht, 2006) highlighted issues to do with 
stoichiometric impreciseness, glitches in solids retention time, and 
absence of restraints on thermodynamic bounds. However, due to the 
variations in the substrates under digestion only a few parameters will 

considerably affect the output of the model. ADM1 modelling is complex 
and as such an improved practicality is required when it comes to co- 
digesting substrates anaerobically (Xie et al., 2016). 

Modelling the biogas generation process will lead to improvement of 
the biogas yield by manoeuvring into enhanced options for controlling 
the digestion process. Table 3 gives the key existing anaerobic digestion 
models. It can be deduced from Table 3 that the dynamic model and the 
steady state model dominate in the existing anaerobic digestion models. 
The hydrolysis kinetics are mainly of first order. The Monod and the 
modified Monod are the prevailing growth kinetics. Another deduction 
that can be made from Table 3 is that a lot of modelling has been done on 
sludge but only a few articles present research on organic wastes, ma-
nures and aquatic biomass. Many diverse attributes and factors are able 
to inhibit biogas generation as shown in the table. Inhibition is primarily 
influenced by nature of substrate and reaction conditions and/or pa-
rameters to which the process is subjected to. 

3.2. Optimisation 

According to the dictionary Rock.Holdings (2019), to optimise is ”to 
determine the maximum or minimum values of (a specified function that 
is subject to certain constraints)”. Hagos et al. (2017) highlighted that 
process optimisation and improvement of biogas production still needs 
more investigations to be done and that the use of simulation ways and 
means can lead to realisation of substantial enhancement of biogas 
yields. Diverse optimisation approaches are established in literature in a 
bid to obtain the best reaction conditions, best reaction parameters and 
best substrate ratios for different feed stocks so as to enhance and 
optimise the biogas production process. 

The conventional method of optimisation of anaerobic digestion 
comprise of laboratory batch experiments with different ratios of co- 
digestion feedstocks to assess the extent of digestion of the substrates. 
Co-digestion of varied substrates has shown that an improved biogas 
production potential is achieved in comparison to mono-digestion of 
single substrates (Volpi et al., 2021; Muenmee and Prasertboonyai, 
2021; Petrovič et al., 2021). ANNs, GAs, ant colony optimisation (ACO) 
and particle swarm optimisation (PSO) are possible tools for simulating 
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Fig. 1. Artificial Neural Network schematic (Cheng et al., 2015).  
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and optimising the anaerobic biogas generation process. ANNs and GAs 
are some of the modern optimisation approaches applied to deal with 
complex biogas maximisation problems. Palma-Heredia et al. (2021) 
employed the ACO optimisation approach to anaerobic co-digestion. 
According to their results, employment of the ACO algorithm proved 
to be a beneficial way for optimising anaerobic digestion blends, leading 
to the effective simulation of various co-digestion optimisation sce-
narios. (Kegl and Kralj, 2020) investigated the appropriateness and 
effectiveness of a gradient-based optimiser for multi-objective anaerobic 
digestion process optimisation. Various optimisation problems were 
designed and solved using this model to gain insights into the effec-
tiveness of this strategy. The proposed optimisation method was found 
to be extremely effective. 

Genetic algorithms employ a random search algorithm that is created 
in an attempt to mimic the principles of natural selection and genetics 
(Roetzel et al., 2019). They work with string structures, similar to bio-
logical structures, that evolve over time and use a randomized but sys-
tematic exchanging of information to follow the theory of survival of the 
fittest. As a result, a fresh batch of strings is generated in every 

generation, using portions of the old batch’s fittest members. GAs are 
able to cope with parallelism and complicated scenarios. They can be 
employed with an objective function that is static or dynamic, linear or 
nonlinear, continuous or discontinuous, or with random noise (Yang, 
2020). Since multiple offspring in a population function as autonomous 
agents, the population will concurrently navigate the search space in 
various multiple directions, and consequently, an optimal solution is 
arrived at. This function makes parallelising algorithms for imple-
mentation much easier. 

Linear programming approaches, response surface methodologies as 
well as simplex-centroid mixture design and central composite design 
are also among the optimisation approaches which have been applied in 
anaerobic digestion (Gil et al., 2019; Lu et al., 2017). Prospects of 
enhancing biogas generation from varied substrates such as water hya-
cinth, cow dung and municipal solid waste via the avenues of co- 
digestion and use of optimisation tools and techniques are investi-
gated herein. Table 4 shows a summary of some of the key biogas op-
timisations which were done. 

As noted earlier on, mathematical and analytical optimisation tech-
niques that can be applied to biogas production include the linear pro-
gramming approach, non-linear programming approaches, such as non- 
linear model predictive control (NMPC), artificial intelligence theory 
approaches, such as ANNs, fuzzy logic, GAs, PSO, ACO, simulated 
annealing and immunity algorithm. Gaida et al. (2014) applied the 
ADM1 model biogas production. NMPC was used as the optimisation 
approach to control the constituency and quantity of the feed. Huang 
et al. (2016), carried out an investigation to concurrently maximise 
chemical oxygen demand (CODeff ) and biogas flow rate (Qgas). The au-
thors reported that by using GA-ANN model, an increased biogas was 
attained when compared to ANNs alone. García-Gen et al. (2014), used 
linear programming optimisation approach to maximise methane pro-
duction by way of determining the feedings into the processes. The 
ADM1 model was used and the method was validated experimentally. 
Implimentation was done in MATLAB, ’linprog’ was used to determine 
substrate blends and ’fminbnd’ was used to ascertain HRT that optimises 
methane production. The objective function was expressed as in Eq. (25) 

maxf objective =

∑N

i=1
pMeti × CODti × xi

HRT
(25) 

According to the authors, the objective function was subjected to the 
following linear restrictions: ”(i) organic loading rate (OLR); (ii) total 
Kjeldahl nitrogen (TKN); (iii) moisture or liquid fraction; (iv) lipid 
content; (v) total alkalinity; salinity as (vi) Na+ concentration and (vii) 
K+ concentration; (viii) H2S content in biogas; and (ix) effluent COD 
content”. 

Beltramo et al. (2016), optimised biogas flow rate using the ACO 
approach, the ADM1 model was used to generate data and the ANNs 
model was used for simulations. The ACO algorithm was used for vari-
able selection. The selection probability of a variable prob(n) was 
described as in Eq. (26) 

prob(n) =
p(n)

∑N

i=1
p(n)

(26) 

Most of the biogas production models presented and discussed in 
subSection 3.1 were barely used in biogas optimisations. This can also be 
noted from Table 4. Of the models that were applied, the ADM1 was 
applied more often followed by ANNs and then the first order kinetic 
model. The majority of the reported researches on biogas optimisation 
were by way of laboratory experimental approaches. These laboratory 
experiments would be under specific conditions which might not be 
universal to all subatrates and geographic locations. This eventually 
results in gaps and lack of confidence and reliability in their data being 
used to commercialise biogas technologies. The authors of this current 

Table 3 
Summary of key existing anaerobic digestion models.  

Model type Substrate Hydrolysis 
kinetics 

Type of 
inhibition 

Source  

stoichiometric - - - 1 (Buswell and 
Sollo, 1948)  

dynamic; 
steady state 

sludge - VFA1, pH (Andrews, 
1969)  

dynamic; 
steady state 

organic 
waste 

- VFA, pH 
and NH3  

Hill and 
Barth, 1977  

dynamic complex 
organic 
material 

first order H2, pH, 
NH, H2S, 
Propionate  

(Vavilin 
et al., 1994)  

dynamic; 
steady state 

organic 
waste 

first order LCFA, 
acetic acid, 
NH3  

(Angelidaki 
et al., 1999)  

dynamic swine 
manure 

first order - (Massé and 
Droste, 
2000)  

dynamic; 
steady state 

sludge first order H2, pH, 
NH3, acetic 
acid  

(Siegrist 
et al., 2002)  

dynamic; 
steady state 

wide variety 
of substrates 

first order H2, pH, 
NH3, 
butyric 
acid  

(Batstone 
et al., 2002)  

dynamic cattle 
manure 

first order pH, VFA 
and NH3  

(Keshtkar 
et al., 2003)  

dynamic wastewater - - (Sarti et al., 
2004)  

dynamic sludge Contois H2  (Sötemann 
et al., 2005)  

steady state sludge first order, 
Monod, 
saturation 

- (Sötemann 
et al., 2005)  

dynamic; 
steady state 

sludge first order H2, pH, 
NH3, 
butyric 
acid  

(Blumensaat 
and Keller, 
2005)  

dynamic; 
steady state 

agro-waste first order H2, pH, iN2 

NH3,H2S  
(Galí et al., 
2009)  

steady state horse 
manure and 
cow dung 

first order - (Yusuf et al., 
2011)  

Computational organic 
fraction of 
municipal 
solid waste 
(OFMSW) 

first order - (Membere 
et al., 2013)  

1Volatile Fatty Acids. 
2inorganic Nitrogen. 
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Table 4 
Summary of key biogas optimisations  

Substrates Model used Optimisation approach Highlights Source 

Cassava (manioc, tapioca) processing 
wastewater 

- experimental effect of pH and temperature variations with biogas 
production were analysed, the control strategy was 
based mainly on pH control 

(Boncz et al., 
2008) 

Cob Corn Mix (CCM), Rye and pig 
manure 

ADM1 GA and PSO quantity and composition of substrates were varied, 
authors noted huge improvement capability by 
optimising substrate feed. It was noted that PSO was 
about 14% quicker than GA in this instance  

(Wolf et al., 
2009) 

variety of lignocellusosic biomass ADM1, Lignogas & Lignogas- 
SIM 

experimental, nonlinear 
least squares, & simplex 
in AQUASIM 

the Lignogas model gave a closer match of modelling 
and measurement results 

(Martin, 
1979) 

grass, wheat straw, silage wastewater - experimental anaerobic digestion was devided into a two-phase 
process and higher methane yields were realised 

Wilkie et al., 
1983 

organic fraction of MSW first order kinetic experimental variations of organic loading rates were done, 
repercussions of varying total solids and retention time 
were analysed. A high CH4 proportion was realised  

(Rao and 
Singh, 2004) 

Miscanthus Fuscus mixed with cow 
dung 

- RSM and Box-Behnken 
(BBD) design 

Investigation was done to evaluate the effect of varying 
parameter settingson co-digestion was done. A pH of 6, 
a temperature of 30◦C, HRT of 20 days and F/I ratio of 
75% were idientified as the optimal process parameters. 
F/I ratio was observed to have a major impact on biogas 
production. 

(Tetteh et al., 
2018) 

glycerine, gelatine and pig manure ADM1 adaptive linear 
programming, 
experimental 

a linear programming to maximise chemical oxygen 
demand (COD) transformation which mantains reactor 
media as well as biogas quality was developed. 

(García-Gen 
et al., 2014) 

cow-manure and grass-silage ADM1, ANNs ant colony optimisation 
(ACO) 

ADM1 model was used for simulations, ANNs to 
forecast biogas flow rate and ACO was used to depict 
important process parameters 

(Beltramo 
et al., 2016) 

maize silage, manure and the solid 
fraction of manure 

ADM1 nonlinear model 
predictive control 
(NMPC) 

an online NMPC algorithm was analysed. Authors 
highlighted that biogas production can be controlled 
and optimised 

(Gaida et al., 
2012) 

maize silage and liquid cow manure ADM1 nonlinear model 
predictive control 
(NMPC) 

a closed-loop substrate feed control was suggested. A 
multi-objective NMPC was used for feed constituents 
regulation 

(Gaida et al., 
2014) 

rural household domestic waste - RSM RSM was employed using central composite rotatable 
design. Biogas production was optinised through 
variation of PH, detention time and ratio of substrate to 
water. Highest biogas yield was obtained from a 
combination of detention time of 30 days, substrate to 
water ratio of 1:1 and pH of 7 

(Jiya et al., 
2019) 

Carica papaya peels, poultry 
droppings 

- RSM and ANN C. papaya was shown to be an excellent substrate for 
biogas production when co-digested with poultry 
droppings. Both RSM and ANN models proved to be 
effective in predicting methane generation from C. 
papaya peels and poultry dropping, according to the 
results of the modeling and optimisation 

(Dahunsi 
et al., 2016) 

organic fraction of municipal solid 
wastes, cow manure, and municipal 
sewage sludge 

GA simplex-centroid mixture 
design (SCMD) and ANN 

combination of the SCMD and ANN model and 
optimising with GA helped to predict biomethane 
generation 

(Saghouri 
et al., 2020) 

palm oil mill effluent (POME) and 
cattle manure (CM) 

ANN combined ANN-PSO 
framework 

biogas production from POME was predicted and 
optimised using ANN and PSO in a co-digestion setup in 
a solar bioreactor. According to the results reported, the 
suggested method was successful and flexible in 
estimating biogas output from the co-digestion of POME 
and CM 

(Zaied et al., 
2020) 

cow dung and flower waste ANN, RSM statistical optimization The ANN model predicted biogas output more precisely 
and effectively than the RSM model. Statistical 
optimisation and pretreatment approaches dramatically 
boosted biogas generation 

(Gopal et al., 
2021) 

goose manure and wheat straw experimental statistical (regression) methane was increased by up to 94.10% due to C/N 
ratio optimisation  

(Hassan et al., 
2017) 

Siam weed (Chromolaena odorata) and 
poultry manure 

experimental RSM increased quanties of biogas were attained due to co- 
digestion. The biogas quality was also improved. RSM 
proved to predict biogas well 

(Dahunsi 
et al., 2017) 

algal-bacteria biomass and cellulose kinetic model - Biogas production time delay was decreased by 50 % 
and methane generation was improved by 35 % 

(Bohutskyi 
et al., 2018) 

cow manure and oat straw modified Gompertz and non- 
linear regression 

Box-Behnken test design addition of cow manure at levels below 2/3 boosted 
methane yields and decreased biogas production 
startup time, however the methane generation rate was 
not affected  

(Zhao et al., 
2018) 

carrot, cabbage, tomato, bread 
(French baguette), beef meat at 5 % 
fat and manure (a mix of cow dung 
and straw) 

experimental, kinetic - the predicted results using the model with constant 
endogenous generation and kinetics determined at 80 % 
of total batch time matched the observed methane 
yields well under rising organic loading rates. Data 

(Kouas et al., 
2018) 

(continued on next page) 
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review work would like to stress out and comment that there is a disjoint 
or rather a discontinuity between the biogas production models devel-
oped to date and their respective application to optimise and control the 
the overall biogas generation process progression with a prior objective 
to maximise the ultimate biogas yield. 

4. Techno-economic analysis of anaerobic biogas production 

A techno-economic assessment enables the creation of an investment 
and operational cost framework for the estimation of biogas genera-
tion’s possible present and future economic sustainability. Informed 
financial and technical decisions such as biogas plant size or scale of 
operation as well as commercialisation prospects amongst other key 
considerations can be made based on techno-economic analysis. 

Al-Wahaibi et al. (2020) produced biogas from a variety of food 
wastes and conducted a techno-economic analysis to determine the 
financial feasibility of establishing a small-scale biogas plant. Economic 
examination gave a break even at $0.2944/m3, with all pricing beyond 
that yielding a positive net present value. The researchers noted that 
incorporation of waste management charge savings could have 
increased the total savings. 

A techno-economic investigation by Oreggioni et al. (2017), on bio- 
methane generation from agricultural and food wastes indicated that 
pressure swing adsorption cycles gave 37% lower capital costs and a 
10% lower average life-time cost when compared to solvent-based 
technologies. This indicates that biomass processing, pretreatment and 
feeding techniques have a great impact on the overall techno-economic 
results. 

Glivin et al. (2018) carried out techno-economic studies on the 

installation of a biogas plant at an institution. Biogas production proved 
to be viable, with payback periods ranging from 1.65 to 0.61 years for 
cow dung based biogas plants and 1.47 to 0.38 years for kitchen waste 
based biogas plants. It can be deduced that the type of feedstock has a 
huge influence on the total biogas yield which will in turn implicate on 
the economic parameters such as payback period, net present value, 
internal rate of return, among others. 

Several other researchers investigated techno-economic aspects of 
anaerobic biogas production (Tan et al., 2021; Imeni et al., 2020; 
Mahmod et al., 2021). However, the majority of the works were focussed 
towards ascertaining if the process was feasible or not. The previous 
works lack the merging of the technical and the economic aspects to 
come up with analytical models for the optimisation of the entire pro-
cess. It is vital to examine the tradeoffs arising from the relationships 
between technical developments and financial aspects in order to come 
up with an effective biogas production system. Optimising feedstock 
availability, controlling and regulating process conditions, maximising 
biogas output through co-digestion, feeding in of optimal substrate 
blend proportions and process stabilisation are among the technological 
aspects which are lacking in previous research works and still need to be 
investigated in greater detail. Objectives of reducing investment and 
operational costs as much as possible while increasing economic benefits 
are among the economic considerations which need to be explored in 
depth. 

Process designs should incorporate anticipated operational and 
maintenance cost evaluations as well as the investment requirements for 
the entire biogas production facility. This will provide a concrete 
foundation for techo-economic analysis. Dynamic linkages will be 
formed with regards to the variation of the different techno-economic 

Table 4 (continued ) 

Substrates Model used Optimisation approach Highlights Source 

obtained from batch reactors predicted semi- 
continuous biogas production in an effective manner 

hemicelluloses hydrolysate, vinasse, 
yeast extract and sugarcane bagasse 
fly ashes 

experimental, modified 
Gompertz model and the two- 
phase exponential model 

experimental biochemical methane potential tests were used to 
optimize anaerobic co-digestion of sugarcane 
biorefinery by-products. The sugarcane biorefinery 
wastes blend enhanced anaerobic co-digestion and 
boosted methane generation 

(Adarme 
et al., 2019) 

pig manure and corn straw experimental - the beffect of organic loading rate, total solids and 
crbon to nitrogen ratio was investigated in co-digestion 
of pig manure and corn straw. Maximum biogas output 
was discovered to be attained at a C/N ratio of 25, 
whilst the optimum biogas slurry performance was 
found to be at a C/N ratio of 35. Increased organic 
loading rates and total solids also led to significant 
biogas generation and biogas slurry performance. 

(Ning et al., 
2019) 

acorn slag waste, dairy manure and 
bio-based carbon 

experimental - the use of bio-based carbon in the co-digestion of acorn 
slag and dairy manure was researched. The carbon- 
based accelerant was reported to have improved the 
biogas yield in co-digestions 

(Wang et al., 
2019) 

food waste and chicken manure experimental, computational 
fluid dynamics (CFD) 

- Experimental and numerical studies of the impact of 
mixing time on anaerobic digestion performance were 
conducted. Extending the mixing time did not enhance 
biogas output, but did increased overall input. 

(Mao et al., 
2019) 

Laminaria digitata and animal dung dynamic bioconversion model 
(BioModel) and a hybrid 
MATLAB-Microsoft Excel 
software 

- biogas yield was boosted by co-digesting Laminaria 
digitata and animal dung. Laminaria digitata increased 
biogas output, whereas cattle manure assisted in 
buffering. BioModel simulation validated the results 
from the batch and continuous reactors. 

(Sun et al., 
2019) 

food waste and cow manure experimental, modified 
Gompertz and first-order kinetic 

- start-up conditions were optimised. Optimal substrate 
mixing ratio, substrate to inoculum ratio, and initial pH 
were verified by experimentation. A steady anaerobic 
digestion was started with FW/CM  = 2.5, S/I less than 
0.07, and an initial uncontrolled pH. These conditions 
were verified in a dynamic membrane bioreactor 

(Xing et al., 
2020) 

spent coffee grounds, spent tea waste, 
glycerin, and macroalgae 

experimental, modified 
Gompertz, linear regression 

- Different wastes were co-digested with oil-extracted 
spent coffee grounds. With the oil extraction procedure, 
specific methane output rose by 10 %. The results of the 
modified Gompertz model were generally consistent 
with those of the experiments. 

(Atelge et al., 
2021)  
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aspects with time leading to the development of informed anaerobic 
digestion modelling and optimisation frameworks for biogas enhance-
ment. Consequently, the techno-economic implications will not only aid 
technology investors and financiers in decision making but will also 
guide research and development in the anaerobic biogas production 
niche. As such, generation of multi-objective techno-economic functions 
are imperative to the modelling and optimisation of anaerobic digestion. 

This section concludes by discussing the whole process of conducting 
techno-economic assessments of typical anaerobic digestion projects as 
well as highlighting on how the analysis of costs and benefits is done. 
Investment appraisal computations are carried out based on the tech-
nical parameters of the project in order to ascertain the overal techno- 
economic viability of the project. The following procedure is sug-
gested by the authors:  

1. The initial investment costs (I0) are determined basing mainly on the 
capital requirements of the specific project. Capital requirements 
include the digester construction costs, biomass harvesting equip-
ment for use in cases where agricultural residues and aquatic bio- 
materials such as water hyacinth are among the substrates. Pre-
treatment equipment such as dryers and choppers can be included to 
the capital requirements. Construction and erection costs of biogas 
plant infrastructure and other ancillary facilities such as substrate 
storage compartments are included to the capital requirements and 
are integral components of the initial investment costs.  

2. Transport costs for ferrying feedstocks/substrates to the digesters are 
calculated and teken into consideration. The siting of most anaerobic 
digestion plants is usually done within the vicinity of feedstocks and 
water. However, transport costs have to be factored in for cases 
whereby the resources have to be ferried from some other locations 
to the biogas generation plant.  

3. The operation and maintenance (O&M) costs are ascertained. The 
O&M costs of anaerobic digestion are a bit difficult to arrive at as 
these fluctuate with time and availability of replacement and/or 
refurbishment parts and accessories. As a rule of thumb a certain 
percentage of the initial investment costs for instance 2% is taken to 
be the value of O&M costs.  

4. The price of biogas is prescribed. The price of fuel on the market has 
a huge bearing on the determination of the price of biogas. In many 
countries, the energy sectors have a regulatory board which stipu-
lates and governs fuel prices. However, it is worthwhile to set the 
selling price of biogas below that of conventional fuels such as Nat-
ural Gas and Liquid Petroleum Gas (LPG) for the reason that the 
conventional fuels are more efficient and as such for biogas to be 
competitive on the market its price has to be relatively lower. Biogas 
generation costs generally range from USD 0.22 to USD 0.39 per 
cubic meter of methane for animal dung-based biogas, and from USD 
0.11 to USD 0.50 per cubic meter of methane for industrial waste- 
based biogas (International, 2017).  

5. Carbon dioxide emissions are dtermined and carbon credits are 
calculated. The Paris climate agreement intends to keep global 
warming below 2 degrees Celsius and promote initiatives to keep it 
below 1.5 degrees Celsius (Intergovernmental, 2019). There are 
specific limits which companies cannot exceed when it comes to 
greenhouse gas emissions. Carbon taxes are in operation world-over 
whereby entities pay for the amount of carbon dioxide they produce 
and emission trading schemes are operational creating a carbon 
market where businesses buy and sell carbon credits. Entities that 
avoid carbon dioxide emissions sell their rights to those having 
higher emission reduction costs (Hartmann, 2017). Proceeds from 
carbon credits are taken as benefits and they positively influence the 
revenue of a company.  

6. The amount of bio-slurry/bio-fertilizer is determined. It is not all the 
biomass material fed into the biogas reactor that is digested 
completely. The residue sludge normally referred to as sludge or bio- 
slurry can be used as a bio-fertiliser as it is rich in nutrients. This bi- 

product of anaerobic digestion can be sold to farmers and other 
interested stakeholders after drying it or in its wet form. Revenue is 
realised from selling this bio-fertiliser.  

7. The Net Present Value (NPV), Internal Rate of Return (IRR) and 
Payback Period (tPB) among other project appraisal criterion pa-
rameters are employed to ascertain the financial viability of the 
project under study. The following formulae can be used in calcu-
lating the parameters highlighted:  
• Net Present Value (NPV) 

NPV = − I0 +
∑n

1

B − C
(1 + r)n

= − I0 + [PWAF × (B − C)]

(27)  

where I0 is the initial investment, B represents the benefits (reve-
nue), n is the project life time, r is the interest rate or discount rate, 
C represents the project costs, B-C is equivalent to the Net Profit, 
PWAF is the Present Worth Annuity Factor which is given by: 

PWAF =
1 − (1 + r)− n

r
(28)    

• Payback Period (tPB) 

tPB =
− ln(1 − I0r

CF)

ln(1 + r)
(29)  

where CF = Annual cash flow = B − C  
• Internal Rate of Return (IRR) 

IRR = r1 +
(r2 − r1 × NPV1)

NPV2 + NPV1
(30)  

where r1 is the initial discount rate, r2 is a new assumed discount 
rate which brings the NPV closer to zero, NPV1 is the initial Net 
Present Value and NPV2 is the new Net Present Value arrived at 
using r2. 

5. Research gaps and future perspectives 

Co-digesting different substrates is reported to increase biogas 
output volumes owing to the optimistic interactions created in the 
digestion medium, microbial variations in diverse substrates as well as 
provision of missing nutrients by the co-substrates. Anaerobic co- 
digestion still remains largely unstudied for many varying substrates. 
Application of the co-digestion technology therefore needs close man-
agement since no one customary laid out operating parameters and 
settings are practical for all organic biodegradable wastes. Considering 
the availability of many different organic materials which can be feed-
stocks for co-digestion, further research in enhancement and controlling 
of biogas production from varied substrate types should be undertaken. 

There is need of modelling and optimisation using specific substrates 
such as water hyacinth, cow dung and municipal solid waste so as to 
sustainably deal with the issues of environmental sustainability as well 
as energy demand and supply. This study notes that many previous 
works (Ferreira et al., 2021; Oladejo et al., 2020; Mukumba et al., 2019; 
Mahato, 2020), used arbitrary suppositions from a selection of unin-
formed different mixing ratios in co-digestion. Optimisation of the 
anaerobic biogas production process needs to be done so as to arrive at 
informed optimal substrate blend ratios and reaction parameters 
through co-digestion. Mathematical modelling can help researchers and 
the entire biogas fratenity to optimise operations more effectively and 
forecast biogas production in a variety of scenarios, conditions and/or 
constraints. The use of modelling and simulation in conjunction with 
analytical tools such as those in MATLAB will go a long way in planning, 
controlling, and predicting anaerobic co-digestions. The modelling and 
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simulations can be coupled to optimisation of different specific target 
objectives such as maximising biogas output, minimising energy cost, 
minimising environmental detriments, amongst many others. The ma-
jority of the models in literature lack this coupling and this needs to be 
deeply looked into. 

A lot of research and development is yet to be done with respect to 
mathematical modelling and application of optimisation tools in biogas 
production. As such it will be of interest to further develop, evaluate and 
compare the empirical, biological and mathematical models with 
regards to biogas prediction and optimisation. In line with the devel-
opment of models and optimisation of the biogas production process, a 
wide spectrum of control options needs to be incorporated in the models 
in a bid to regulate the entire process for better optimal gas yields. Some 
control systems and/or strategies are lacking in the overall anaerobic 
biogas production optimisations. Incorporation of some simple con-
trollers such as the on–off switching devices to advanced ones like the 
proportional integral derivative (PID) devices and fuzzy logic among 
others can lead to entire bio-process automation and enhancement. 

The resultant AD process biogas outputs are dependant upon the 
amount, nature and standard of the biomass fed into the system. Thus 
the overall optimal yields are affected by the time of the year and the 
environment from which the substrates are derived from since these 
dictate the amount and quality of the same. Biogas production and 
optimisation models developed to date do not account for the 
geographical (environmental) and seasonal (time) variation of substrates. 
This offers an opportunuty for research in this direction. 

This current study also highlights, from reviewing of previous works 
the necessity of accelerating integration of RETs into the existing energy 
supply mix. It is hereby reported that lots of research have been done on 
hybridisation of solar, wind, diesel, grid and in other instances coupled 
with storage such as batteries. However, the hybridisation of biogas with 
these and other conventional fuel supply alternatives like liquid petro-
leum gas (LPG) and other distributed renewable energy supply sources 
to meet energy and/or fuel demand is still at infancy in terms of research 
and development and as such is presented as an avenue for possible 
further research work. 

Most of the previous works majored on experimental investigations 
and prospects of optimising single phase mono-digestion processes in-
clusive of the factors that affect the same. This agrees with Ilo et al. 
(2021) who also gave demerits to the laboratory experimental ap-
proaches owing to inconsistency in specific conditions under which the 
experiments are carried out. It is however realised in this study that 
research gaps do exist in regard to optimisation of co-digestion processes 
using biogas production models incorporating the concept of a multi- 
stage AD reaction mechanism inclusive of the factors that affect the 
same, mainly the pH and temperature parameters. This is as well being 
presented herein as a future research work direction. 

There is need of taking a multi-objective approach when it comes to 
the techno-economic analysis of the anaerobic biogas production pro-
cess. The modelling and optimisation will be more effective if all tech-
nical and economic parameters and conditions are employed. Given the 
current bid to combat climate change world-over, environmental as-
pects such as CO2 equivalent emissions avoided can also be incorporated 
into the overall techno-economic analysis and this will contribute 
immensely towards the research and development of anaerobic biogas 
production technology. 

The application of anaerobic digestion does not only tackle waste 
management issues, but also comes with a new paradigm to energy 
generation. Anaerobic digestion, co-digestion in particular, has sparked 
a lot of interest among scientists because of its good potential health 
implications, environmental merits, economic advantages, and most 
importantly its enhanced waste-to-energy biogas generation yields (Van 
et al., 2020). However, its adoption world over at large scale is still at 
infancy especially when it comes to the management of solid wastes by 
municipalities among other commercial biogas production entities. 
Widespread awareness of this technology needs to be extensively 

accelerated for commercial adoption worldwide given its renewable 
nature and many other benefits. 

6. Conclusions 

The status, current trends and future perspectives in the field of 
biogas production with regards to co-digestion, modelling, and optimi-
sation were reviewed in this study. Co-digestion needs a great deal of 
further research on varied feedstocks and optimal mix ratios. Modelling 
and optimisation incorporating co-digestion feedstock seasonal varia-
tions is yet to be studied. Control of process conditions is key to 
achieving optimal biogas. Hybridisation of biogas with conventional and 
non-conventional energy sources needs to be explored in depth. The 
majority of research investigations are centred on mono-digestion. 
Coupling of co-digestion, modelling, and optimisation needs signifi-
cant further research and investigations. 
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