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a b s t r a c t

Clean development mechanism (CDM) project developers are always interested in achieving required
measurement accuracies with the least metering cost. In this paper, a metering cost minimisation model
is proposed for the sampling plan of a specific CDM energy efficiency lighting project. The problem arises
from the particular CDM sampling requirement of 90% confidence and 10% precision for the small-scale
CDM energy efficiency projects, which is known as the 90/10 criterion. The 90/10 criterion can be met
through solving the metering cost minimisation problem. All the lights in the project are classified into
different groups according to uncertainties of the lighting energy consumption, which are characterised
by their statistical coefficient of variance (CV). Samples from each group are randomly selected to install
power meters. These meters include less expensive ones with less functionality and more expensive ones
with greater functionality. The metering cost minimisation model will minimise the total metering cost
through the determination of the optimal sample size at each group. The 90/10 criterion is formulated as
constraints to the metering cost objective. The optimal solution to the minimisation problem will there-
fore minimise the metering cost whilst meeting the 90/10 criterion, and this is verified by a case study.
Relationships between the optimal metering cost and the population sizes of the groups, CV values and
the meter equipment cost are further explored in three simulations. The metering cost minimisation
model proposed for lighting systems is applicable to other CDM projects as well.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

CDM projects are designed to assist the reduction of GHG emis-
sions in developing countries by allowing them to earn CER credits
which can be traded and used by developed countries [1]. In order
to mitigate the climate change and avoid global warming, different
types of CDM energy efficiency projects are registered under the
UNFCCC, such as the energy efficiency lighting, heat pump and
chiller projects [2]. Note that lighting consumes more than
2000 TW h of electricity globally, which corresponds to about
1800 million metric tons of GHG emission per year [3]. Therefore,
lighting harbours a great potential for energy savings and GHG
emission reductions. According to [4], the energy efficiency light-
ing projects can be implemented by either reducing input wattages
or reducing the utilisation hours of the lights, and these measures
are widely taken in residential, commercial and industrial sectors
around the world [5–7].

It is important to quantify CER credits with the expected accu-
racy in a cost-effective way so that the profits of CDM project devel-
opers can be maximised. As presented in both [8,9], the deemed
savings methodology is adopted in order to alleviate the metering
cost and monitoring needs. However, also as indicated in [8], the
deemed savings methodology generates less CERs due to very con-
servative assumptions on the key parameters to determine the
baseline and project energy consumption. Apparently, the CERs
generated by the deemed savings methodology are only
conservative but not accurate. According to the CDM general
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Nomenclature

E
�

the weighted average daily energy consumption per
lamp in the project

�xi the sample mean in the ith group
k0 the search starting point to solve the optimisation mod-

el
li the true mean value in the ith group
ri the true standard deviation in the ith group, ri ¼ �xiCVi

ai the individual meter device cost in the ith group
bi the installation cost per meter in the ith group
ci the monthly maintenance cost per meter in the ith

group
CVi the estimated coefficient of variance in the ith group
EB the daily energy consumption baseline (in kW h)
Ei the daily energy consumption per lamp in the ith group
i the counter of the subgroups of a project
k the number of months during the monitoring period
Mi the cost of individual metering system over the credit-

ing period, Mi = ai + bi + kci

N the lighting population
Ni the number of devices in the ith group
Oi the average daily utilisation hours of devices in the ith

group
p the required relative precision for the project
Pi the power of devices in the ith group
pi the precision level in the ith group
z the abscissas of the normal distribution curve that cut

off an area at the tails to give desired confidence level
zi the z value in the ith group

A ampere
AC alternating current
AMS approved methodology for small-scale
ASHRAE American society of heating, refrigerating and air-condi-

tioning engineers
CDM clean development mechanism
CER certified emission reduction
CFL compact florescent lamp
CV coefficient of variance
GHG greenhouse gas
HDL halogen downlighter
ICL incandescent lamp
IPMVP international performance measurement and verifica-

tion protocol
kB kilobyte
kW h kilowatt-hour
mA milliampere
MB megabyte
R the South African currency Rand
s second
SSC small-scale
SSD sample size determination
TW h terawatt-hour
UNFCCC united nations framework convention on climate

change
USD the United States dollar
V voltage
W watt
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guidelines [10] and the AMS CDM projects, AMS-II.C. [11], the CER
credits are calculated by the corresponding energy consumption
reduction multiplied the emission factors. The baseline and project
energy consumption need to be quantified by the monitored and
sampled key parameters based on the sampling methodologies
[12,13]. The sampling methodologies [12,13] are further required
to satisfy 90% confidence and 10% precision—the so-called 90/10
criterion1 for the SSC energy efficiency CDM projects. For the CDM
accuracy requirement, precision is an assessment of the error margin
of the final estimate and confidence is the likelihood that the sam-
pling resulted in an estimate within a certain range of the true values.

The purpose of this paper is to maximise the profits of project
developers by minimising metering cost while at the same time
meet the 90/10 criterion. An obvious observation is that the meter-
ing cost is lower whenever less number of samples is metered. For
this reason, many different kinds of SSD methodologies have been
proposed in literature. These SSD methodologies can be classified
into two broad groups, the frequentist methods and the Bayesian
methods [14]. The frequentist methods have been applied to deter-
mine sample size for the evaluation of the reliability performance
of the United States fleet [15] and the control of both size and
power in clinic trials [16]. For the Bayesian methods, [17] summa-
ries the theory and practice of Bayesian statistics while [18] de-
scribes a Bayesian approach in choosing the sample size by
optimising utility functions.

All the aforementioned SSD methodologies are mainly decided
by the required confidence and precision level. According to [19],
the SSD for the CDM projects is also influenced by different choices
of the sampling approaches such as the simple random sampling,
stratified random sampling, systematic sampling, cluster sampling
1 Following the notation of the 90/10 criterion, x/y denotes x% confidence and y%
precision in this study. 2 http://cdm.unfccc.int/methodologies/index.html.
and multi-stage sampling. Based on the available information on
the UNFCCC’s website,2 more than 20 energy efficiency lighting pro-
jects have been registered under SSC CDM projects. All these regis-
tered CDM lighting projects refer to the sampling guidelines
[12,13] to design the monitoring and sampling plans. However, these
projects usually apply the simple random sampling approach to
determine the sample sizes since the entire lighting population is as-
sumed to be homogeneous and each lights has the same probability
of being selected [20,21].

In this paper, the metering cost minimisation under the situation
where the lighting population under study are not homogeneous
has been considered. The total population, i.e., all the lights in the
project, is divided into different groups according to their energy
consumption uncertainties. Therefore, the stratified random sam-
pling approach is applied given that the characteristics of the popu-
lation elements are more similar within groups than across groups
[19]. With the selected stratified random sampling approach, the
idea to reduce the overall metering cost whist maintaining the 90/
10 criterion is explained as follows. The sampling guidelines
[12,13] require that the sampling target for the project population
must satisfy the 90/10 criterion. However, it does not mean that
the accuracy criterion for each lighting group must achieve 90/10.
It is possible to let the group with lower uncertainty to have a very
good confidence/precision such as 95/5, and let the group with
higher uncertainty to have a relative poor confidence/precision such
as 85/15, so that the overall project population satisfies the 90/10
requirement. The proposed metering cost minimisation model
follows the above idea to determine the optimal confidence/preci-
sion levels such that the metering cost can be minimised while
the overall 90/10 criterion is still maintained. This model can be
easily applied to various lighting projects with more than two
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Table 1
Details of the lighting project.

Technology Wattage Operating schedule Quantity

ICL ? CFL 60 W ? 14 W 8:00–16:00 263,519
HDL ? CFL 100 W ? 20 W Motion sensor control 140,777

Table 2
Summary of the cost analysis.

Total number of CFLs to be installed 404,296 Units
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uncertainty groups.
The paper is organised as follows. In Section 2, background

information of the CDM lighting project is provided with a total
project cost analysis. The lighting baseline methodology, lighting
classification, the monitoring and sampling plan for this project
are then discussed. Subsequently, a brief uncertainty analysis is gi-
ven and some essential assumptions are made in order to build the
metering cost minimisation model. In Section 3, the solutions to
the optimisation problem are provided and analysed. Section 4
provides some further investigations of the metering cost optimi-
sation model. The conclusion comes at the last section.
Costs
Average price of CFL 27 Rand per

unit
CFL distribution 5 Rand per

unit
Subtotal 12.94 Million

Rand
HDL, ICL, CFL collection, transportation, and disposal 1.03 Million

Rand
CDM process cost (PDD writing, validation,

monitoring and verification, etc.)
1.72 Million

Rand

Total project cost 15.69 Million
Rand
2. Formulation of the metering cost minimisation model

2.1. Backgrounds of the CDM lighting project

A lighting retrofit project that aims to reduce the lighting load
in 44 government hospitals in South Africa is in the process of
being registered as a CDM energy efficiency lighting project. In or-
der to accelerate the registration process, the project developers
decide to register the project as a SSC CDM project. Approximately
404,296 CFLs will be installed to replace less energy efficient HDLs
and ICLs that are currently in use. The 14 W and 20 W CFLs will be
installed in exchange of equal number of normal luminous flux
60 W ICLs and 100 W HDLs, respectively. Motion sensors are cur-
rently in use for the 100 W HDL lighting systems. The CFLs will
be directly installed to replace the HDLs without any modification
on the existing lighting control systems. The exchanged HDLs and
ICLs will be stored and destroyed, corresponding counting and
crushing certificate of the disposed lamps will be issued by a dis-
posal company. The CFLs with a rated lifetime of 10,000 h, manu-
factured by Philips, have the equivalent or higher lumen to the
replaced HDLs and the ICLs. An energy audit is conducted to gather
all relevant information of this project to help with the project de-
sign. Detailed information of this project is listed in Table 1.

The project participants conduct a cost analysis for the discus-
sion of investment barrier. The average price of CFLs used in this
project is R 27 per CFL,3 other financial details associated with this
project can be found in Table 2.
2.2. Lighting baseline methodology

The AMS-II.C. [11] is adopted to develop the energy baseline for
this project. The AMS-II.C. offers indicative simplified baseline and
monitoring methodologies for the demand-side energy efficiency
activities for specific technologies such as installing new energy
efficiency lamps, ballasts, refrigerators, motors, and fans. There
are several other approved CDM lighting methodologies that are
available on the UNFCCC’s website, such as: AM0046 [22], AMS-
II.J. [23], and AMS-II.N. [24]. The AM0046 is the first end-use en-
ergy efficiency methodology for distribution of CFLs to households.
However, this guideline focuses on large scale CDM projects and
the monitoring requirements of the project are very cumbersome
[8]. The AMS-II.J. is actually a deemed savings methodology that
has relaxed the heavy monitoring requirements of AM0046. How-
ever, the AMS-II.J. generates significantly less CERs than the other
methodologies due to a very conservative assumption on average
daily utilisation of CFLs. The AMS-II.N. is newly approved in March
2012 and it offers guidance to the demand-side energy efficiency
projects for the installation of energy efficient lights and/or con-
trols in building. Up to December 2012, this guideline has not been
used in any registered CDM energy efficient lighting projects.
3 The annual average USD to Rand exchange rate in 2012 is 1 USD = R 8.209.
According to the AMS-II.C., if the lighting population is classified
into K groups, then the baseline energy for the lighting system is
calculated by Eq. (1)

EB ¼
XK

i¼1

ðNi � Pi � OiÞ: ð1Þ

As discussed in the AMS-II.C., Pi and Oi may be determined sepa-
rately or in combination, i.e., as energy consumption. In this study,
Pi and Oi are considered in combination in order to simplify the
uncertainty analysis of the measurement. Therefore, Eq. (1) could
be simplified into

EB ¼
XK

i¼1

ðNi � EiÞ ¼ NE; ð2Þ

where

E ¼
PK

i¼1ðNi � EiÞPK
i¼1Ni

:

When the energy consumption baseline EB multiplied by the num-
ber of days during the monitoring period and the relevant emission
factor, the baseline emission of the involved lighting systems can be
obtained. Energy consumption at the post-implementation stage
can also be determined by Eq. (2) when apply the monitored daily
energy consumption of the CFLs.

2.3. Lighting classification and stratified random sampling

The stratified random sampling approach is adopted for the
sampling target since this sampling methodology is most applica-
ble when there are obvious grouping of population elements
whose characteristics are more similar within subgroups than
across subgroups [19]. For the government hospital lighting pro-
ject, the daily energy consumption patterns of the lighting popula-
tion are not homogeneous. Therefore, the involved HDL and ICL
lamps are naturally classified into two subgroups. Group I is the
263,519 ICLs which have low uncertainties of daily energy con-
sumption, and Group II is the 140,777 HDLs which have high
uncertainties of the daily energy consumption. The uncertainties
in the two groups are characterised by CV, which is defined as
the standard deviation of the metering records divided by the
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mean. CV values are between 0 and 1. If CV value is close to 0, then
it indicates that the uncertainty of measurement is small. Other-
wise, if CV is close to 1, then it means the monitored parameter
of a sample group has large uncertainty. According to the sampling
technology [25], a higher CV indicates more sample sizes are re-
quired to achieve reliable sampling results.

The estimated CV values for the aforementioned lighting project
can be obtained as follows. During the on site energy audit, the dai-
ly utilisation hours for a small sample of the lamps with no control
devices are recorded. The sampled lamps are burning 8 h on aver-
age with a standard deviation of 1.5. The rated power of an ICL
lamp is 60 W in Group I. Therefore, the estimated mean value of
baseline daily energy consumption per lamp in Group I is
0.48 kW h with the standard deviation of 0.09. By the definition
of CV, the CV value of Group I is around 0.18. To be conservative,
CV of Group I is taken as 0.20. In Group II, the rated power of an
HDL lamp is 100 W. Although the lighting operating schedule is
unknown, it could be assumed that on average the lamps in Group
II are burning 6 h per day with a low confidence by the energy
audit. In this case, a CV value as high as 0.5 is historically recom-
mended by [26] for the lamps in Group II. Thus, the estimated daily
energy consumption of Group II is 0.6 kW h with a standard devi-
ation of 0.3.

Since the energy consumption in Group II changes more fre-
quently than that in Group I, the metering devices to be installed
in Group II must have a very high sampling frequency based on
Shannon’ sampling theorem [27]. In addition, the meters to be in-
stalled in Group II need to have advanced control chips with high
clock frequency and large memory capacity for the data storage.
The metering device specifications of the two recommended
meters (M1 and M2) are provided in Table 3. The specifications indi-
cate that the M2 meters are capable of capturing the uncertainties
in Group I. However, the M1 meters are not applicable for the
measurement of Group II.

Group I will be installed with less expensive meters to check its
energy consumption variations, and Group II will be installed with
expensive meters to monitor its real time energy consumption.
According to [28], the key components of the metering cost include
meter purchasing cost, installation cost and maintenance cost. The
costs of M1 and M2 are listed in Table 4 as given by the meter
company.

The overall 90/10 criterion for this project can be maintained by
letting Group I have a very high confidence/precision while letting
Group II have a relatively low confidence/precision. This results in
a greater number of less expensive meters being installed in Group
I, and a smaller number of expensive meters being installed in
group II in order to minimise the metering cost.
Table 3
Metering device specifications.

Categories M1 M2

Voltage range (AC) 150–270 V 100–380 V
Current range 50 mA–50 A 10 mA–100 A
Accuracy ±0.01% ±0.002%
Time resolution 300 s 0.5 s
Memory capacity 32 kB 8 MB

Table 4
Metering equipment cost (per unit).

Categories Cost of M1 Cost of M2

Meter purchase (once-off) R 876 R 3146
Meter installation (once-off) R 195 R 320
Meter maintenance (monthly) R 45 R 98
2.4. Monitoring and sampling plan

As mentioned in the introduction, more than 20 energy efficiency
lighting projects have been registered under SSC CDM projects. For
these projects, simple random sampling approach is adopted and
sample sizes are generally decided by professional judgements or
the experience from previous CDM projects. For instance, 200
meters are randomly installed to monitor the lighting population
for the Visakhapatnam (India) OSRAM CFL distribution CDM project
[20]. These registered CDM lighting projects do not seem to have
considered the optimisation of the monitoring and sampling plan
by taking advantage of lighting classification. In this study, an
optimal monitoring and sampling plan is designed as follows.

(1) The crediting period of this project is designed to be
10 years. The first monitoring report will be compiled 1 year
after the implementation of this project, while other moni-
toring reports will be compiled in a fixed interval of every
3 years.

(2) Meters will be randomly distributed and installed during
baseline period to measure the daily energy consumption
of each sampled lamp in both Group I and Group II for 3 cal-
endar months. The sample sizes are decided by the proposed
metering cost minimisation model. Each sampled lamp is
monitored by one meter.

(3) Once decided in the baseline period, the same sample sizes
are applied at the post-implementation stage. The daily
energy consumption of the sampled CFLs will be continu-
ously measured during the crediting period.

(4) Meters with different functionalities and prices will be
applied in different lighting groups. The metering equipment
will be installed by a meter company. Calibration and main-
tenance of the metering systems will be performed regularly.

2.5. Uncertainty analysis and modelling assumptions

According to the ASHRAE guideline 14 [29] and IPMVP 2012
[30], the uncertainties can be classified into three categories: the
measurement uncertainty, modelling uncertainty and sampling
uncertainty. Measurement uncertainties usually come from the
inappropriate calibration of the measurement equipment, inexact
measurement, or improper meter selection, installation and opera-
tion. The modelling uncertainties arise from the improper mathe-
matical function form, inclusion of the irrelevant variables or
exclusion of relevant variables. Sampling uncertainties are resulted
from inappropriate sampling approaches or insufficient sample
sizes.

In this study, only two parameters N and E
�

are involved in the
lighting baseline model Eq. (2). N can be easily verified by the
counting and crushing certificate. E

�
will be obtained by the meter-

ing and sampling effort. As discussed in SubSection 2.3, the accu-
racy specifications of both the meters M1 and M2 are as high as
0.01% which are negligible when comparing to the required 90/
10 criterion. Therefore, the sampling uncertainties will be the ma-
jor concern in the metering cost minimisation modelling under the
following assumptions.

(1) Assume that no failure will happen to the metering system
during the monitoring period since the meters are in good
maintenance. In addition, the inflation of the maintenance
cost will not be considered.

(2) Let Xi, i = 1, 2 be the random variables that denote the base-
line daily energy consumption data sets in Group I and
Group II, respectively. From the well-known central limit
theorem [31], it is assumed that X1 and X2 follow normal dis-
tributions, that is, Xi �N li;r2

i

� �
. Then for any n1 samples in
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Group I, the sampling distribution of the mean satisfies a
normal distribution X1 �N l1;r2

1=n1
� �

[32]. Similarly, the
sampling distribution of the mean for any n2 samples from
Group II satisfies X2 �N l2;r2

2=n2
� �

.
(3) Assume that X1 and X2 are independent. Then the sample

mean for the overall project, which is defined as E previous
will follow another normal distribution [32]

N1X1 þ N2X2

N
�N

N1l1 þ N2l2

N
;
r2

1

n1
� N

2
1

N2 þ
r2

2

n2
� N

2
2

N2

 !
: ð3Þ
2.6. Metering cost minimisation model

As provided in [25], the initial sample size n0 at the sampling
plan stage can be calculated by

n0 ¼
z2CV2

p2 : ð4Þ

Fig. 1 plots the sample sizes against different CV values with
some popular confidence/precision levels. Fig. 1 shows that more
sample sizes are required to achieve a higher confidence level
and a better precision level for a given CV value.

The initial sample size n0 that calculated by Eq. (4) needs to be
adjusted by the finite population correction factor [25]

n ¼ n0N
n0 þ N

¼ CV2z2N

CV2z2 þ Np2 : ð5Þ

For the 90/10 criterion, z = 1.6450 for 90% confidence and
p = 10% as the allowed margin of error in Eq. (5). The objective is
to find the optimal solution of k = (z1,z2,p1,p2) which minimises

f ðkÞ ¼
X2

i¼1

ðai þ bi þ kciÞ � ceilðniÞ; ð6Þ

where the ceil function ceil(�) rounds a real number to the nearest
integer which is greater than or equal to this real number. ceil(ni)
denotes the required sample sizes in the ith group and ni can be cal-
culated by Eq. (5). For this project, k = 123 including the baseline
monitoring period (3 months) and the crediting period (10 years,
120 months).

Note that Group I is expected to have better confidence/preci-
sion than Group II, thus the two linear constraints z1 P z2 and
p1 6 p2 are obtained. The values of z at various confidence levels
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Fig. 1. Sample sizes versus CV values.
are tabulated in many statistics books [33]. z can be calculated
by the Z-transformation formula

z ¼
�x� l
r=

ffiffiffi
n
p ; ð7Þ

and the constraints based on the 90/10 criterion are expressed as
follows:

z ¼
N1�x1þN2�x2

N � N1l1þN2l2
Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
1

n1
� N1

N

� �2 þ r2
2

n2
� N2

N

� �2Þ
q ¼ N1ð�x1 � l1Þ þ N2ð�x2 � l2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
1N2

1
n1
þ r2

2N2
2

n2

r

¼
N1

z1r1ffiffiffiffi
n1
p þ N2

z2r2ffiffiffiffi
n2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
1N2

1
n1
þ r2

2N2
2

n2

r P 1:6450; ð8Þ

and

p ¼ N1�x1 þ N2�x2 � ðN1l1 þ N2l2Þ
N1�x1 þ N2�x2

¼
N1

z1r1ffiffiffiffi
n1
p þ N2

z2r2ffiffiffiffi
n2
p

N1�x1 þ N2�x2
6 10%: ð9Þ

In summary, the problem is to find k = (z1,z2, p1, p2) that mini-
mises the objective function

f ðkÞ ¼
X2

i¼1

ðai þ bi þ kciÞ � ceil
CV2

i z2
i Ni

CV2
i z2

i þ Nip2
i

 !
; ð10Þ

subject to the constraints

z P 1:6450;
p 6 10%;

z1 P z2;

p1 6 p2:

8>>><
>>>:
3. Solution of the metering cost minimisation problem

Before solving the optimisation problem, the metering cost to
achieve the 90/10 criterion without optimisation is calculated as
a benchmark for comparison purposes. According to the energy
audit and metering equipment cost in Table 4, the initial values
to solve model Eq. (10) are summarised in Table 5.

For the government hospital lighting project, if the simple ran-
dom sampling approach is applied to the entire lighting popula-
tion, a worst possible CV value of 0.5 can be used for the sample
size calculation by Eq. (5), the obtained sample size is 68 with a
metering cost of R 1,055,360 given that the expensive meters
should be used when CV is high. For this solution, the 90/10 crite-
rion is achieved without spending unnecessary money on meter-
ing. In this scenario, the metering cost shares 6.76% of the total
project cost. However, without considering optimisation, another
possible solution might be that the 90/10 criterion is applied to
Group I and II, where k = (1.6450, 1.6450,0.1,0.1). The correspond-
ing sample sizes and metering cost are calculated as shown in
Table 6. It shows that the overall confidence and precision are
97.76% and 9.94%, respectively, at the total metering cost of R
1,128,206, which occupies 7.19% of the total project cost. In this
Table 5
Initial values.

Parameters Group I Group II

Meter unit price a1 = R 876 a2 = R 3146
Installation per meter b1 = R 195 b2 = R 320
Monthly maintenance c1 = R 45 c2 = R 98
Monitored months k = 123 k = 123
CV values CV1 = 0.20 CV2 = 0.50
Estimated �xi �x1 ¼ 0:48 kW h �x2 ¼ 0:60 kW h
Population sizes N1 = 263,519 N2 = 140,777



Table 6
Sample size and metering cost without optimisation.

Parameters Group I Group II Overall

Confidence (%) 90 90 97.76
Precision (%) 10 10 9.94
Meter numbers 11 68 79
Number of samples 11 68 79

Total cost R 72,666 R 1,055,360 R 1,128,026

Table 9
Metering cost analysis.

Solutions Accuracy Samples Metering
cost (R)

Metering
cost (%)

No optimisation 1 90/10 68 R 1,055,360 6.76
No optimisation 2 97.76/9.94 79 R 1,128,026 7.19
Optimal solution 1 90.25/9.85 30 R 340,804 2.17
Optimal solution 2 90.15/9.82 30 R 340,804 2.17
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scenario, the expected sampling accuracy is higher than the re-
quired 90/10 criterion which is not necessary.

Now consider the metering cost minimisation model given in Eq.
(10) which is a nonlinear programming problem. For simplicity, the
MATLAB function ‘‘fmincon’’ is applied to find the optimal solution
of Eq. (10). The optimisation settings of the ‘‘fmincon’’ function are
shown as follows: the interior-point algorithm is chosen as the
optimisation algorithm; the termination tolerance on the function
value,‘TolFun’, the termination tolerance on the constraint viola-
tion, ‘TolCon’, as well as the termination tolerance on the design
variables,‘TolX’ are all set to 10�15; in addition, ‘‘fmincon’’ also cal-
culates the Hessian by a limited-memory, large-scale quasi-Newton
approximation, where 20 past iterations are remembered. From a
theoretical perspective, the sample size should be integer for the
solution. Since this study focuses on practical issues of minimising
the metering cost, real-valued sample sizes are used during the
optimisation. After the optimal solution k = (z1,z2,p1,p2) is found,
the ceil function is applied to calculate the integer sample size.

Besides these settings, a search starting point k0 as well as the
boundaries of the design variable are also required for ‘‘fmincon’’
to work. Table 7 gives the optimal solution with k0 =
(0.21,0.86,0.85,0.26), lower bound lb = (0,0,0,0) and upper bound
ub = (+1, +1,1,1).

It is found that with the constraints of the 90/10 criterion for
the overall project, the obtained confidence/precision 93.09/9.77
for Group I and 57.84/10.35 for Group II contribute to the overall
90.25/9.85 accuracy. With these optimal (z1,z2,p1,p2), the optimal
metering cost is R 340,804, occupies 2.17% of the total project cost,
which is largely reduced than the overall metering cost without the
optimisation as given in Table 6. Comparing with the results in Ta-
ble 6, the metering cost for Group I increases, however, the meter-
ing cost of Group II reduces sharply. The overall metering cost is
reduced whilst the 90/10 criterion is satisfied.

Due to the nonlinear nature of the minimisation problem, the
optimal solutions may not be unique although the minimal
objective function value is unique. Table 8 gives another optimal
Table 7
Optimal results 1.

Parameters Group I Group II Overall

Confidence (%) 93.09 57.84 90.25
Precision (%) 9.77 10.35 9.85
Meter numbers 14 16 30
Number of samples 14 16 30

Total cost R 92,484 R 248,320 R 340,804

Table 8
Optimal results 2.

Parameters Group I Group II Overall

Confidence (%) 84.87 70.30 90.15
Precision (%) 7.71 13.43 9.82
Meter numbers 14 16 30
Number of samples 14 16 30

Total cost R 92,484 R 248,320 R 340,804
solution with the initial search point k0 = (2.1,2.4,0.62,0.22). It is
clear that although the confidence and precision of the two groups
are different from the values in Table 7, the 90/10 criterion is still
achieved and the optimal sample sizes and the metering cost re-
main unchanged.

According to the discussions and analysis in this section, the
metering costs with or without the optimisation are summarised
in Table 9. Note that the figures in the ‘‘Metering cost (%)’’ column
are calculation against the total project cost of 15.69 million Rand.
Comparing to the metering plan without the optimisation, the
metering cost savings of 0.71 million Rand, which is 4.52% of the
total project cost, are achieved without sacrificing the overall sam-
pling accuracy.

4. Model analysis and discussion

The metering cost minimisation model in Section 3 is built for a
particular CDM lighting retrofit project. When analysing model Eq.
(10), it is found that three key components, Mi, CVi and Ni will affect
the overall metering cost for a given accuracy requirement. Actu-
ally, for different CDM energy efficiency lighting projects, the pop-
ulation sizes Ni, the initial CV values CVi and the individual
metering system cost Mi may vary. In order to further analyse
the metering cost reduction for other similar lighting energy effi-
ciency projects, it is worth investigating how these variations will
influence the optimal metering cost.

In the following, three simulations are run to characterise the im-
pacts of the parameters Ni, CVi and Mi to the optimal metering cost
for similar lighting energy efficiency projects. For each simulation,
only one parameter will change. More precisely, N2 is changed in
the first simulation to investigate the relationship between the pop-
ulation size and the optimal metering cost; CV1 is changed in the sec-
ond simulation to identify the relationship between initial CV values
and the optimal metering cost; M1 is changed in the third simulation
to analyse the relationship between the individual metering system
cost and the optimal metering cost. The optimal settings remain the
same as the settings provided in Section 3. The search starting point
is k0 = (0.21,0.86,0.85,0.26) for the three simulations. As mentioned
in Section 3, due to the nonlinear nature of the minimisation
problem, the optimal confidence/precision levels are not unique
since there exist different combinations of optimal confidence/pre-
cision levels that satisfy the 90/10 criterion constraints. Different va-
lid combinations of optimal confidence/precision levels are
obtained by applying a different search starting point k0. Some arti-
ficial initial values are applied for the three simulations.

Results of the simulations are shown in Figs. 2–13. For the leg-
ends in Figs. 2, 3, 6, 7, 10 and 11, the confidence/precision levels of
Group I and Group II are denoted by the dotted line (in red4) and
the dashed line (in blue), respectively. The confidence/precision lev-
els for the overall project that are calculated by the real-valued sam-
ple sizes, are denoted by the solid line (in green) while the overall
project confidence/precision levels calculated by the integer-valued
sample sizes are denoted by the dash-dotted line (in black).
4 For interpretation of colour in Figs. 2, 3, 6, 7, 10, and 11, the reader is referred to
the web version of this article.
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4.1. Optimal metering cost versus population sizes

In this simulation, let N2 increase from 10,000 to N1 = 1,000,000
by a step of 10,000. Initial values for this simulation are listed in
Table 10. The corresponding optimal results are presented in
Figs. 2–5.

In Fig. 2, the confidence levels of Group I are always higher than
those of Group II. The green solid line shows that the desired 90%
confidence of the overall project is satisfied. However, since the
sample size calculated by Eq. (5) may not be integers, the ceil func-
tion is applied to round the real values of n1 and n2 to integers. The
rounded n1 and n2 are used to calculate the overall project confi-
dence and metering cost. It can be observed that the confidence
levels calculated by the rounded n1 and n2 are greater than or equal
to the project confidence calculated by the real-valued n1 and n2.

In Fig. 3, as N2 increases, the precision levels of both Group I and
Group II increase. The precision levels of Group II increase more
quickly than those of Group I in order to balance the overall project
precision within 10%. In addition, the project precision levels that
calculated by the real-valued sample sizes and the integer-valued
sample sizes are within the desired 10% precision.

In Figs. 4 and 5, it is clear that both the sample sizes and the
metering cost increase as N2 increases.

According to the results shown in Figs. 2–5, the influence of
Group II to the overall accuracy is small when N2 is small. When
N2 < 10,000, only one meter is needed. The confidence for Group II
is less than 50% and the precision is poorer than 40% while the over-
all 90/10 criterion can still be maintained. However, as N2 increases,
the uncertainties of Group II increase rapidly because CV2 is high.
Therefore, the required sample size of Group II goes up quickly.

4.2. Optimal metering cost versus CV values

In this simulation, let CV1 increase from 0.005 to CV2 = 0.5 by a
step of 0.005. Initial values for this simulation are listed in Table 11.
The optimal solutions are presented in Figs. 6–9.

Fig. 6 shows that the confidence levels of both Group I and
Group II decrease when CV1 increases. The confidence levels of
Group I are higher than Group II. The overall confidence as shown
in the solid line (in green) satisfies the 90% confidence. However, it
is noted that the rounded overall confidence level is a little lower
than the 90% confidence when CV1 is between 0 and 0.1. The reason
is that real-valued sample sizes are allowed during the optimisa-
tion in this study. The optimal solutions for real-valued sample
sizes may sometimes become suboptimal when ceil function is ap-
plied to these optimal solutions. In the worst case, the real-valued
sample sizes satisfy the 90% confidence while the integer-valued
sample sizes obtained by the ceil function do not satisfy the 90%
Table 10
Initial values for the simulation 1.

Parameters Group I Group II

Mi M1 = R 5000 M2 = R 50,000
CVi CV1 = 0.2 CV2 = 0.5
�xi �x1 ¼ 0:56 kW h �x2 ¼ 0:36 kW h

Table 11
Initial values for the simulation 2.

Parameters Group I Group II

Mi M1 = R 5000 M2 = R 50,000
�xi �x1 ¼ 0:56 kW h �x2 ¼ 0:36 kW h
Ni N1 = 1,000,000 N2 = 300,000
confidence as shown in Fig. 6. In this case, it is suggested to in-
crease necessary sample size to achieve the desired accuracy. To
illustrate, consider the lowest confidence level 86.87% of the
rounded overall confidence as shown by the first point in the
dash-dotted line (in black) in Fig. 6. Detailed information for this
point is listed in Table 12. From Table 12 it is clear that the confi-
dence level in Group I is very close to 100%. Calculation shows that
even the confidence level in Group I increases to 99.99%, the overall
confidence can only achieve 89.36%. Therefore, the only solution is
to increase meters in Group II. When 3 meters are installed in
Group II, the rounded overall confidence becomes 90.99% which
meets the 90% confidence requirement. Since the installation of
only 2 meters in Group II will never meet the 90/10 criterion, while
the installation of 3 meters in Group II will meet the 90/10 crite-
rion, this solution must be optimal.

In Fig. 7, it is noted that as CV1 increases, the precision of Group
I becomes worse but remains within 10%. The precision of Group II
improves but the precision is always worse than that of Group I.
The overall precision maintains within the 10% margin of error.

In Fig. 8, the sample size of Group I keeps increasing as CV1 goes
up. It means that when CV increases, more samples are needed to
maintain the 90/10 criterion. The sample size of Group II also in-
creases, but not as quick as Group I.

Fig. 9 shows the overall metering cost keeps going up since the
sample sizes of both Group I and Group II increase.

The results provided in Figs. 6–9 show that, when CV1 < 0.1, less
than 10 samples can maintain the confidence of Group I over 90%
and the precision within 10%. However, as CV1 becomes greater,
the uncertainties of this group increase rapidly since the popula-
tion size of Group I is dominant. Therefore the sample size of Group
I increases more quickly.
4.3. Optimal metering cost versus individual meter cost

In this simulation, assume that the individual meter cost M1 in-
creases from 500 to M2 = 50,000 by a step of 500. The initial values
for this simulation are listed in Table 13. The optimal solutions are
presented in Figs. 10–13.

In Fig. 10, as M1 increases, the confidence levels of both Group I
and Group II go down slowly. The confidence levels of Group I are
higher than those of Group II. Both the project confidence levels
that calculated by the real-valued sample sizes and the integer-val-
ued sample sizes satisfy the desired 90% confidence.

In Fig. 11, it is clear that the precision levels of Group II increase
continually as M1 goes up. However, the precision of Group I be-
comes worse since less meters are installed in Group I when M1

increases.
Table 12
Solution analysis.

Parameters Group I Group II Overall

Confidence (%) 99.19 81.29 86.88
Precision (%) 2.44 49.20 8.65
Meter numbers 1 2 3

Total cost R 5000 R 100,000 R 105,000

Table 13
Initial values for the simulation 3.

Parameters Group I Group II

CVi CV1 = 0.2 CV2 = 0.5
�xi �x1 ¼ 0:56 kW h �x2 ¼ 0:36 kW h
Ni N1 = 1,000,000 N2 = 300,000
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In Fig. 12, the sample size of Group I decreases but the sample
size of Group II increases as M1 goes up.

Fig. 13 clearly shows that the general trend of the metering cost
is going up when M1 increases. Sometimes, the metering cost de-
creases a little because the sample size of Group I decreases while
the sample size of Group II does not change.

Based on the results shown in Figs. 10–13, when M1 is small,
more samples are drawn from Group I to achieve both high confi-
dence and precision. However, as M1 increases, the sample size of
Group I tends to decrease in order to achieve the minimal metering
cost of the project.
4.4. Remarks on the simulations

The three simulations indicate that the proposed metering cost
minimisation model is also applicable to reduce the metering cost
for other similar energy efficiency lighting projects.

The simulation results also reveal the possibilities of further
reducing the metering cost. For instance, instead of using the worst
case of 0.5 as the CV value, the project participants may be willing
to install a few less expensive meters to monitor the lighting daily
energy consumption for a short period. In that scenario, it is more
likely to obtain an estimated lighting daily energy consumption
with a smaller CV value. A small CV means that less sample sizes
are needed to achieve the accuracy requirements.

In addition, the simulation results can also be taken as an exam-
ple of simplifying the metering cost minimisation methodology. In
order to further simplify this methodology, it is suggested to pre-
calculate and tabulate optimal metering cost and samples for sim-
ilar energy efficiency lighting projects with different population
sizes, CV values or metering device costs.
5. Conclusion

In this study, a metering cost minimisation model is proposed
to assist the sampling plan of the CDM energy efficiency lighting
project. The minimal metering cost is achieved by optimising the
confidence and precision of each lighting group under the con-
straint of the 90/10 criterion for the overall project. In order to fur-
ther analyse the metering cost reductions for other similar lighting
energy efficiency projects, three simulations are conducted to
investigate the relationships between the optimal metering cost
and the population sizes of the groups, CV values and the individ-
ual meter equipment cost. The simulation results indicate that the
proposed metering cost minimisation model can be applied to dif-
ferent CDM projects with different characteristics. In addition, the
proposed model is also applicable to minimise the metering cost
for project with more than two lighting groups. Moreover, this
model can also be applied to projects with accuracy requirements
other than the 90/10 criterion.
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