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a b s t r a c t

This paper defines and simulates a closed-loop optimal control strategy for load shifting in a plant that is
charged for electricity on both time-of-use (TOU) and maximum demand (MD). A model predictive con-
trol approach is used to implement the closed-loop optimal control model, and the optimization problem
is solved with integer programming. The simulated control model yields near optimal switching times
which reduce the TOU and MD costs. The results show a saving of 5.8% for the overall plant, and the larg-
est portion of the saving is due to a reduction in MD. The effect of disturbances, model uncertainty and
plant failure is also simulated to demonstrate the benefits of a model predictive control model.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Load shifting is an aspect of demand side management (DSM)
where electricity demand is shifted out of peak demand periods
to off-peak demand periods. To encourage load shifting utilities
have structured electricity tariffs with time-of-use (TOU) and/or
maximum demand (MD) charges [1–3]. MD charges are also used
by utilities to represent infrastructure costs due to high peak
demands.

TOU charges are based on higher kWh rates during high de-
mand periods, whilst MD charges are based on fixed fees per max-
imum kVA or kW for a month in high demand periods (e.g., during
the day). MD is measured as the highest average demand in kVA or
kW during any integrating period – the integrating period is gener-
ally 30 min, and it coincides with the TOU periods [1,2]. The MD
charge is typically applied to an integration period with the highest
average consumption in an entire month. For example, the maxi-
mum average kVA in a 30 min period might be consumed in the
morning on the first day of the month. This means that customers
are encouraged to move load out of high demand periods and to
spread the load evenly throughout the whole month.
ll rights reserved.
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Various techniques have been used to solve load shifting prob-
lems in different applications. For example, fuzzy logic is used in
Ref. [4] for load shifting of a domestic hot water cylinder, a neural
network is used in Ref. [5] for load shifting in a petrochemical
plant, in Refs. [6–13] load shifting problems are modeled as opti-
mization problems, and in Refs. [14–17] load shifting problems
are modeled as optimal control problems [18].

Note that the optimization techniques used in Refs. [6–13] do
not consider external disturbances or inaccurate system models.
In other words, no feedback and subsequent re-optimization is in-
cluded to compensate for these deficiencies. From a control theory
point of view [19], these types of applications can be referred to as
open loop control models, because no feedback is used to deter-
mine if the controller’s input has achieved the desired output. This
means that the system does not observe the output of the pro-
cesses that it is controlling.

The optimization techniques (open loop optimal control mod-
els) used in Refs. [6–13] are valuable starting points to quantify
the potential for load shifting, but they cannot actively control a
load shifting process with disturbances. To actively control a load
shifting process a controller with feedback and subsequent re-opti-
mization is required. This type of controller is referred to as a
closed-loop optimal controller [19].

The load shifting techniques in Refs. [6–17] can be further cat-
egorized as follows: Refs. [6–8] consider optimization (open loop
optimal control) with TOU charges, Refs. [9–13] consider optimiza-
tion (open loop optimal control) with TOU and MD charges, Refs.
[14,15] consider closed-loop optimal control models with TOU
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Nomenclature

n the nth pump, and n = 1, . . . , N
N the total number of pumps
t the tth discrete switching interval, and t = 1, . . . , T
T the total number of discrete switching intervals
utn the binary switching status of the nth pump at the tth

switching interval; utn = 0 when the pump is off and
utn = 1 when the pump is on

r the rth reservoir, and r = 1, . . . , R0

R0 the total number of reservoirs
Ltr the level of the rth reservoir at the tth switching interval
Arn the flow rate of the nth pump at the rth reservoir
Br the constant inflow or outflow rate of the rth reservoir,

e.g., gravitational flow

S the total number of switching intervals in an MD inte-
grating period

s the sth switching interval in any MD integrating period,
and s = 1, . . . , S

pn the power consumption of the nth pump
ct the TOU energy cost in the tth switching interval
zn the nth MD integer variable for the nth pump, and

0 6 zn 6 S
C the MD charge in R/kW or R/kVA, and ‘R’ represents the

South African currency called Rand (US $1 � R 7.00)
k1 the weight assigned to the TOU energy cost
k2 the weight assigned to the MD cost
H the control horizon
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charges and only Refs. [16,17] consider closed-loop optimal control
models with TOU and MD charges. Furthermore, the closed-loop
optimal control models in Refs. [16,17] are re-optimized daily,
but should ideally be re-optimized more frequently to react to dis-
turbances closer to real-time.

Therefore, little evidence could be found to prove the applicabil-
ity of closed-loop optimal control for load shifting in different
applications, and specifically where both TOU and MD charges
are considered.

Furthermore, the switching intervals in Refs. [9–13,16,17] are
greater than or equal to the MD integrating period. This means that
optimization within the MD integrating period is not considered.
This paper shows that smaller switching intervals can reduce MD
costs.

The aim of this paper is to define and simulate a closed-loop
optimal control model for a specific plant that is charged on both
TOU and MD. A model predictive control (MPC) approach [20] with
integer programming (IP) optimization [21] is selected to model
and simulate the closed-loop model.

An MPC strategy is selected, because the periodic re-optimiza-
tion characteristic provides stability during external disturbances.
The periodic re-optimization also compensates for inaccurate or
simplified system models [22].

This paper is organized as follows. In Section 2 a generic dis-
crete time linear optimal control model is defined [23,24]. In Sec-
tion 3 this generic optimal control model is applied to a case
study. In Section 4 the applied optimal control model is simulated
and the results are compared with the current control model of the
case study. Concluding remarks and recommendations are covered
in Section 5.
2. Generic Control Model for a water pumping scheme

2.1. Definition and benefits of an MPC strategy

MPC is a closed-loop optimal control approach that uses an ex-
plicit model of the plant to predict future response (outputs). The
basic structure of the MPC approach is shown in Fig. 1.
Optimization Plant
Input 

Measurements 

Objective Output

Constraints

Fig. 1. Structure of an MPC model (adapted from Ref. [20]).
With an MPC approach an open loop optimal control problem is
solved repeatedly over a finite control horizon at each switching
interval, and only the first control step (input) is implemented after
each iteration. At the next sampling interval (iteration) the state of
the plant is re-sampled (measured) and the process of optimization
is repeated [20,22].

This means that an optimization algorithm is executed at each
switching interval to determine the optimal control input for the
plant. Optimization of electricity costs is an example of an optimi-
zation objective in a water pumping scheme.

Furthermore, the periodic re-sampling (feedback) and optimi-
zation provide stability against disturbances and inaccurate sys-
tem modeling. For example, real time changes in water demand
or inaccurate flow assumptions.

The first step required to define a generic closed-loop MPC opti-
mal model for a water pumping scheme is to define a generic open
loop optimal control model. This is covered in Section 2.2. The sec-
ond step is to convert the open loop model to a closed-loop MPC
model. This is covered in Section 2.3. Note that the closed-loop
MPC optimal control approach is explained further within the con-
text of a water pumping scheme in Section 2.3.

2.2. Generic open loop optimal control model

Various references were used as a basis to define a generic open
loop optimal control model for a water pumping scheme
[11,12,16,17,25–28]. The state model of the generic open loop opti-
mal control model is defined as

Lðtþ1Þr ¼ Ltr þ
X

n

Arn � utn þ Br : ð1Þ

The aim is to optimize the switching of a number of pumps (N)
to reduce the cost of both TOU and MD charges over a control hori-
zon (H), for example 24 h. The objective function to minimize is de-
fined as

min
utn

k1

XN

n¼1

XT

t¼1

utn � pn � ct

 !(

þk2 max C
XN

n¼1

Xk�SþS

t¼1þk�S
utn � pn; k ¼ 0; . . . ;

T
S
� 1

� �( ))
: ð2Þ

The first part of (2) represents the energy cost, whilst the sec-
ond part represents the MD cost. Due to the definition of the MD
cost in (2) the objective function is nonlinear. Therefore, an extra
variable zn and extra constraints (4) are introduced to remove
the nonlinear maximum function in (2). The linear objective func-
tion is defined as
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min
utn; zn

XN

n¼1

k1

XT

t¼1

utn � pn � ct þ k2
pn

S
� zn � C

 !
; ð3Þ

where zn represents the nth MD integer variable for the nth pump,
and 0 6 zn 6 S. The variables utn and zn need to be solved by the
optimization algorithm over the control horizon (H).

The variable zn counts the maximum number of switching inter-
vals that the nth pump is switch on during any MD integrating per-
iod. Note that the technique to represent the MD costs with a
variable in the objective function is based on Ref. [17]. In this paper
the variables utn and zn are modeled as binary integer and pure
integer variables respectively, whilst in Ref. [17] all the variable
are modeled as continuous variables. The benefit of the integer
variables is that it avoids a second scheduling step within the
MD period.

The following constraints are required to force zn to represent
the highest MD across all MD integrating periods:

XN

n¼1

Xk�SþS

t¼1þk�S
utn � pn � pn � zn

 !
6 0 for k ¼ 0; . . . ;

T
S
� 1

� �
; ð4Þ

where k represents the number of MD periods in the control hori-
zon. In other words, the purpose of (4) is to constrain each individ-
ual MD period to the maximum value of the MD that is represented
by zn in the objective function in (3).

The relationship between the variables in (2)–(4) is shown in
Fig. 2. Fig. 2 shows that a control horizon is divided into T switch-
ing intervals, and each MD interval consists of one or more switch-
ing intervals (S). For example, if a control horizon (H) of 24 h is
divided into 15 min switching intervals, then the total number of
switching intervals is 96 (T = 96). This means that each MD interval
is divided into two switching intervals (S = 2) if the MD integrating
intervals are 30 min long. If the first pump in this example runs for
only one switching interval in any MD integrating period then
z1 = 1.

The reservoir level constraints are defined as

Dr 6 Ltr 6 Er; ð5Þ

where Dr represents the minimum level constraint of the rth reser-
voir and Er represents the maximum level constraint of the rth
reservoir.

2.3. Generic closed-loop MPC optimal control model

The closed-loop MPC optimal control model is defined with the
same state model as the open loop optimal control model in (1),
and the objective function is defined as

min
utn; zn

XN

n¼1

k1

XTþm

t¼1þm

utn � pn � ct þ k2
pn

S
� zn � C

 !
; ð6Þ

where m = 1, . . . , M, and M represents the last switching interval of
the controller. The last switching interval could be considered as
H = 24 hours

h42h2h1h0
u1 u2 u3 u4 u5 u6 u7 u8

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8

MD interval 
= 30 minutes

s1 s2 s1 s2
z = s1 + s2

Switching 
intervals

Pump statuses

T=96

Two switching intervals per 
MD period (S=2)

Fig. 2. Relationships between control variables.
infinite unless the controller is stopped. The formulation of (6) is
based on [22].

In (6) the open loop optimal control problem is solved repeat-
edly over a finite control horizon (H) at each switching interval t,
and only the first control step utn is implemented after each itera-
tion. At the next sampling interval (t + 1) the state of the plant (Ltr)
is re-sampled and the process of optimization is repeated over the
new control horizon [m, m + T].

The same constraints for the open loop model in (4) and (5) ap-
ply to the closed-loop MPC model. The only difference is that the
constraints need to be updated after each switching interval is
implemented.

The MPC control strategy can be explained further with Fig. 3,
which shows the result of a hypothetical controller that controls
the level of one reservoir. The reservoir has a constant inflow rate
and the outflow is controlled with only one pump.

The control model in Fig. 3 uses 15 min switching intervals
(S = 2), and a control horizon (H) of 8 h. Fig. 3 shows the level of
the reservoir Lt1 (output), the statuses of the pump ut1 (inputs)
and the TOU energy charges (ct) over 14 h.

Fig. 3 shows that the current time is 6 h which means that the
inputs and output prior to 6 h are historical and the inputs and out-
put after 6 h are the future predicted values. Note that the MPC
sampling intervals are chosen to coincide with the switching inter-
vals of the pumps.

The process of the MPC controller in Fig. 3 can be described as
follows: At the current time (6 h) the controller samples the cur-
rent reservoir level, applies all the constraints, and predicts the fu-
ture statuses of the pump that will optimize cost over the next 8 h.
The calculated statuses of the pump are referred to as the predicted
inputs (ut1). The results in Fig. 3 show that the pump needs to be
switched on for the next 15 min (6 h–6 h 15 min), and that pump
needs to be switched on for a few more 15 min intervals between
10 h and 14 h. Fig. 3 also shows how the level of the reservoir is
predicted over the next 8 h from 6 h to 14 h.

However, once the predicted inputs are calculated only the first
predicted input is implemented and the rest of the predicted in-
puts are discarded. After the first predicted input is implemented
the entire optimization process is repeated. This means that the
pump is switched on for 15 min, and when the 15 min interval
lapses the level of the reservoir is sampled again, the constraints
are re-applied and the future statuses of the pump over the next
Fig. 3. MPC strategy; only the first predicted input is implemented (adapted from
Ref. [20]).
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8 h are predicted again. When the new statuses of the pump are
determined only the first status (predicted input) is implemented
again. Therefore, the optimization process repeats indefinitely at
each switching interval (t).

3. Application of the Generic Control Model to a case study

3.1. Plant overview

A water purification plant in the Tshwane municipality in South
Africa is selected for the case study. The plant can be divided into
the purification plant itself and the pumping scheme of the puri-
fied water (see Fig. 4). This paper focuses on the water pumping
scheme, because it consumes the bulk of the electricity and it
has potential for load shifting.

Water flows from the dam through the purification plant into a
reservoir (R1) at 40 ML/day (mega liter per day). R1 is also supplied
with water from a fountain at 5 ML/day. R1 has a capacity of 1.4 ML.

The water from R1 is pumped to two reservoirs: R2 and R3, with
a capacity of 120 ML and 60 ML respectively. The water to R2 is
pumped by motors K1, K2 and K3; each rated at 300 kW with
the ability to pump 22 ML/day per motor. The water to R3 is
pumped by motors G1, G2 and G3; each rated at 275 kW with
the ability to pump 10 ML/day per motor.

The primary source of water to R2 and R3 is a water utility in
the province called Randwater, and R3 is also supplied by bore-
holes at a rate of 10 ML/day.

The remainder of this section focuses on the water pumping
scheme at the purification plant, which includes reservoir R1 and
motors K1, K2, K3, G1, G2 and G3.

The constraints of R1 and the relevant pumps are:

(1) At least one of the pumps to both R2 and R3 must run contin-
uously, otherwise the water in the pipes flows back into R1.

(2) As much water as possible must be pumped to R3, because
the reservoir is small and therefore the risk of running out
of water is high.
Reservoir(R1)
1.4 ML

Boreholes
10 ML/day, 
R 0.30/kL

Randwater
R 2.98/kL

20ML/day
R 1.03/kL

Purification
40 ML/day
Gravitational flow

Fountain
5 ML/day
Gravitational flow

25ML/day
R 1.03/kL

Reservoir (R3)
60 ML

Reservoir (R2)
120 ML

275 kW, 10 ML/day/pump300 kW, 22 ML/day/pump

Randwater
R 2.98/kL

Purification 
Plant

Consumers Consumers

Dam

G1

G2

G3

K1

K2

K3

Fig. 4. Pumping scheme of the water purification plant.
(3) Running three pumps to either R2 or R3 is not desirable,
because the mechanical losses are too high.

(4) A motor should not be started more than three times per
hour.

(5) Randwater supplies most of the water to R2 and R3 at a cost
of R 2.98/kL (Rand per kilolitre). The boreholes and the puri-
fication plant are used as alternative water supplies with sig-
nificant lower costs, i.e., R 0.30/kL and R 1.03/kL
respectively. This means that the maximum amount of
water from R1 must be pumped to R2 and R3, irrespective
of the electricity costs –including peak electricity periods.

(6) This also means that there is no imposed limit on the
amount of water that can be pumped from the purification
plant to R2 and R3, because the demand of water from R2
and R3 is larger than the supply from the purification plant.

The pumps K1, K2, K3, G1, G2 and G3 are currently controlled
with a level based control system. This means that each pump
switches on and off when R1 reaches a specific level. The current
switching levels are shown in Table 1. Based on the on/off switch-
ing levels in Table 1, G1, G2 and K1 are running most of the time,
whilst K2 switches on and off to control the level. The exception is
during outages when the level of R1 may drop into the switching
ranges of the other pumps. Note that K3 and G3 are used as
back-up pumps. As a result this configuration pumps approxi-
mately 25 ML/day to R2 and 20 ML/day to R3, as shown in Fig. 4.

Therefore, the most viable load shifting option for the pumping
scheme at the purification plant, within the listed constraints, and
without large infrastructure expenditure, is the switching times of
K2. The problem with the current switching times of K2 is that K2
operates approximately six times per day, for more than 30 min at
a time. This means that the maximum demand per month equals
the maximum capacity of the motors. With the current control
model K2 could also operate during peak demand periods, because
the motor simply starts when the reservoir level is too high. There-
fore, it would be more desirable if K2 can run more frequently, for
shorter periods, and preferable not during peak demand periods.

Therefore, the requirement for the control model is to deter-
mine the optimal switching statuses for K2 that minimizes elec-
tricity cost for both TOU and MD charges. The control models
must also be able to compensate for external disturbances and
inaccurate system modeling. As explained, a closed-loop MPC opti-
mal control strategy satisfies this requirement.

This means that a simple on/off control strategy is not feasible.
Firstly the on/off strategy would not be an optimal solution, unless
an open loop (optimization) strategy is used to determine the opti-
mal on/off statuses. Secondly, if an open loop (optimization) strat-
egy is used, the solution would not be able to compensate for
disturbance or an inaccurate system modeling.

3.2. Electricity tariff

The purification plant is supplied with electricity from the
Tshwane municipality on the standard 11 kV bulk supply tariff.
This tariff includes a flat energy charge and an MD charge [2].
Table 1
Switching levels of motors in the Rietvlei pumping scheme.

Pump Current ‘‘on’’ level Current ‘‘off’’ level Revised ‘‘off’’ level

K1 0.6 0.3 0.05
K2 1.3 0.9 0.2
K3 Back-up
G1 0.8 0.4 0.1
G2 1.0 0.7 0.15
G3 Back-up
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However, for this case study the municipality’s 11 kV TOU tariff is
used instead. The 11 kV TOU tariff includes a TOU and an MD
charge [2]. The TOU tariff is used instead of the current flat energy
charge to demonstrate the benefit of load shifting. The variable fees
of the TOU tariff for September 2008 are summarized in Table 2.

3.3. Current electricity costs

The calculated electricity cost of the overall pumping scheme
over 30 days is shown in Table 3. The overall cost calculation is re-
quired to determine the overall saving for the plant.

The simulated energy cost for K2 from Section 4 is used in Ta-
ble 3, whilst the energy cost for K1, G1 and G2 is calculated with
the high demand (winter) TOU tariff. A uniform load throughout
the month is assumed in the calculations. The calculated results
in Table 3 correlates with the actual consumption for the plant dur-
ing June 2008 where an MD of 1152 kVA was registered with a to-
tal energy consumption of 640416 kWh.

3.4. Revising of the switching levels

To enable more effective load shifting of K2 the ‘‘off’’ switching
levels of all the motors are revised to allow K2 with a wider oper-
ating band. The revised switching levels are shown in Table 1.
Based on the revised switching levels G1, G2 and K1 will still run
most of the time, whilst K2 switches on and off to control the level.

3.5. Assumptions for the control models

(1) The revised switching levels from Table 1 is used.
(2) Only K2 is considered in the optimal control model. Pumps

K1, K3, G1, G2 and G3 are assumed to be controlled with
the existing level based control model, which (as explained)
results in K1, G1 and G2 to always run.

(3) The high demand season (winter) tariffs are used.
(4) The off-peak, standard and peak times for all days are con-

sidered the same as a week day. This is to simplify simula-
tion over a 30 day period.

(5) A motor power factor of one is used for the simulations. This
means the kVA and kW consumption is equal.
Table 2
Summary of the Tshwane 11 kv TOU tariff.

Period Cost

Off-peak (0 h–6 h and 22 h–24 h)
High demand (winter) 0.1187 R/kWh
Low demand (summer) 0.1049 R/kWh

Standard (6 h–7 h and 10 h–18 h)
High demand (winter) 0.1411 R/kWh
Low demand (summer) 0.1383 R/kWh

Peak (7 h–10 h and 18 h–22 h)
High demand (winter) 0.8205 R/kWh
Low demand (summer) 0.2628 R/kWh
Maximum demand

charge (applicable
in peak and
standard times)

66.50 R/kVA

Table 3
Calculated electricity costs of the overall pumping scheme over 30 days.

Pump kWh MD (kVA)

K1 calculated 216,000 300
K2 simulated 30,348 300
G1 calculated 198,000 275
G2 calculated 198,000 275
Total 642,348 1150
(6) A utilization factor of one is used for the simulations. This
means that the motors run at full load.

(7) The pumping scheme consumes more than 90% of the elec-
tricity of the total plant, and therefore the overall cost saving
is evaluated against the consumption of the pumping
scheme only.

3.6. Formulation of the control models

(1) Current level based control model: The current level based
control model is also defined as a discrete time model, which
is based on the state model in (1). Since there is only one res-
ervoir (R1) and one pump (K2) to consider, the level of res-
ervoir R1 at the t-th switching interval is defined as
Energ

59,4
83

54,4
54,4

176,7
Ltþ1 ¼ L0 þ
Xt

t¼1

FLOWINt � FLOWOUTt � ut ; ð7Þ
where L0 is the initial level of reservoir R1, and t = 1, . . . , T. The
upper level limit is used as the initial level, i.e., L0 = 1.3 ML. FLOWINt

is the relative inflow to R1 over the tth switching interval, which is a
constant flow from the fountain and the purification plant, minus
the outflows from the level controlled motors, i.e., FLOWINt = purifi-
cation plant + fountain � G1 � G2 � K1 = 3 ML/day. FLOWOUTt is
the outflow of K2 for the tth switching interval, which is a constant
value of 22 ML/day.The control status of the pump (K2) is based on
the revised switching levels, and it is defined as�
ut ¼
0; when Lt 6 0:2 ML
1; when Lt P 1:3 ML

: ð8Þ
(2) Open loop optimal control model with IP optimization: Since
there are only one reservoir (R1) and one pump (K2) to be
considered, the state model in (7) also applies to the open
loop optimal control model, and the generic objective func-
tion in (3) is simplified as !

min
ut ; z

k1

XT

t¼1

ut � p � ct þ k2
p
S
� z � C ; ð9Þ
where C = R 66.50 for the maximum kVA/kW over any 30 min inte-
grating period, p = 300 kW, S = 2, T = 2HS, and k1 = k2 = 1. Setting
k1 = k2 = 1 means that the total cost in (9) represents actual costs
with no preference between a TOU or MD reduction. Note that since
only one pump is considered, variables pn and zn are represented as
p and z in Eq. (9).The objective function in (9) is subject to the con-
straints in (11)–(13).

Based on Table 2, the cost of energy in Rands for the high de-
mand season is defined as

ct ¼
0:1187=2S; t 2 ½0;12S� [ ½44S;48S�
0:1411=2S; t 2 ½12S;14S� [ ½20S;36S�
0:8205=2S; t 2 ½14S;20S� [ ½36S;44S�

8><
>: : ð10Þ

The generic level constraints in (5) are defined as the upper and
lower level constraints as

Lt 6 1:3 ML for t ¼ 1; . . . ; T; ð11Þ

and
y cost (R) MD cost(R) Total costs (R)

38 19,950 79,388
51 19,950 28,301
85 18,288 72,772
85 18,288 72,772
58 76,475 253,233
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Lt P 0:2 ML for t ¼ 1; . . . ; T: ð12Þ

The generic MD constraints in (4) (applicable in peak and stan-
dard times) are simplified defined as

Xk�SþS

t¼1þk�S
ut � p� p � zs 6 0 for k ¼ 0; . . . ;

T
S
� 1

� �
: ð13Þ

Note that the constraint of the number of allowable starts per
hour for K2 is automatically adhered to as part of the optimization,
i.e., K2 will be switched on at most once per MD period, which re-
sults in a worst case of two starts per hour.

The optimization problem is solved with IP, because the variables
ut and z are defined as binary integer and pure integer variables.

(3) Open loop optimal control model with linear programming (LP)
optimization: If the integer variables (ut and z) in the open
loop optimal control model (9)–(13) are treated as real vari-
ables, then the optimization problem becomes a linear pro-
gramming problem. This strategy is not practical for the
selected case study, because the pumps are binary con-
trolled. However, the LP optimization strategy is included
as a benchmark to evaluate the effectiveness of the IP
solutions.

The LP solution is considered as a benchmark, because the vari-
ables are not constrained to integers, which results in one optimal
result that satisfies all the constraints. The LP optimization also
solves very quickly (less than 10 s).

Therefore, the result from the LP optimization is better or equal
to the result form the IP optimizations, which provides a possible
least bound for the objective function value evaluated at integer
feasible solutions.

The definition of the open loop control model with LP optimiza-
tion is the same as the open loop optimal control model with IP
optimization in the previous subsection. The only difference is that
ut and z are not constrained to integer values –ut is only con-
strained as 0 6 ut 6 1.

(4) Closed-loop MPC optimal control model with IP optimization:
The closed-loop MPC optimal control model is defined with
the same state model as the current control model and the
open loop optimal control model in (7).

Since there is only one pump (K2) and one reservoir (R1) to con-
sider, the generic closed loop objective function in (6) is simplified
as

min
ut; z

k1

XTþm

t¼1þm

ut � p � ct þ k2
p
S
� z � C

 !
: ð14Þ

The objective function in (14) is minimized subject to the con-
straints in (11)–(13) over the prediction horizon [m, m + T], as de-
scribed in Section 2.3. This means that the closed-loop MPC
model is not a simple optimization problem, but a series of optimi-
zation solutions with iterative implementations of obtained solu-
tions.Note that the TOU cost function in (10) applies to the
objective function in (14) as well.

3.7. Simulation environment

(1) Choice of simulation timeout: The simulation timeout value
for the IP optimizations in this case study is selected as 10
s. In the initial simulations it was found that a longer time-
out has no effect on the MD cost and a negligible effect on
the TOU energy costs. For example, the TOU energy costs
of the plant reduced by only 0.03% with simulation timeouts
between 2 and 24 h. This result was for a specific simulation
scenario with an open loop optimal control model with IP
optimization (H = 24, S = 2). A simulation timeout is
important in a closed-loop MPC optimal control model
where the optimization cannot run indefinitely, i.e., a less
optimal solution that satisfies the constraints in a practical
timeframe is preferred.

(2) Choice of switching intervals: The switching intervals are cho-
sen to coincide with the TOU and MD periods, i.e., at least
one switching interval per 30 min MD integrating period
(S = 1). To reduce the MD charge S needs to be bigger than
one (S > 1), which divides the MD integrating period into
smaller intervals. However, the size of S is a trade-off
between computational time, equipment constraints and
cost saving. For this paper a value of S = 2 has been selected.

(3) Choice of control horizon: Like the switching interval, the con-
trol horizon (H) is a trade-off between computational time
and cost saving. The control horizon in this paper is selected
as 24 h (i.e. H = 24).

(4) Solving the problem with Matlab and LPSOLVE: The current
control model and the optimal control models are simulated
with Matlab [29].

The IP optimization problem is solved with the Matlab and
LPSOLVE [30]. LPSOLVE is an open source library that is callable
from Matlab and it solves IP problems. LPSOLVE is selected, be-
cause it provides good performance with many variables within
reasonable optimization times. LPSOLVE uses a branch and bound
strategy with LP relaxation to solve the IP optimization problem
[30,31].

The following LPSOLVE settings are used in the IP simulations to
improve performance: the bound on the objective function is set to
15,000 for the open loop and closed-loop MPC simulations; the tol-
erance on the integers is selected as 0.01; and the timeout on the
optimization is selected as 10 s.

The LP optimization problem is solved with the Matlab LP func-
tion (linprog).

The LPSOLVE and linprog functions can be used to solve the fol-
lowing minimization problem:

min
x

f T � x such that A � x 6 b and Aeq ¼ beq; ð15Þ

where f, b, and beq are vectors; A and Aeq are matrices; and the solu-
tion x is an integer vector for bintprog and a decimal vector for lin-
prog. In the LPSOLVE simulations the values of x that represent ut

are constrained to binary integers, whilst the value of x that repre-
sents z is constrained to a pure integer.
4. Results

4.1. Comparison of the control models

This subsection simulates and compares the control models that
are defined in Section 3. This comparison includes:

(1) The current level based control model.
(2) The open loop optimal control model with LP optimization.
(3) The open loop optimal control model with IP optimization.
(4) The closed-loop MPC optimal control model with IP

optimization.

The main objective of this subsection is to prove that the closed-
loop MPC optimal control model reduces both TOU and MD costs,
and that the closed-loop MPC model is just as effective as the open
loop control model when there are no disturbances, system model
inaccuracies, or plant failures.

Table 4 shows the costs and savings of the overall plant for each
simulated scenario, and Fig. 5 shows savings from Table 4 in a
graphical format. Note that the overall calculated cost from
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Section 3 is used to determine the saving of the overall plant in Ta-
ble 4 and Fig. 5.

(1) Current control model –the baseline: The current control
model is simulated over a 30 day period with 15 min switch-
ing intervals (S = 2). The current model is simulated with the
revised switching band for K2 as defined in Table 1 and (8).
The energy and MD costs for the current control model are
shown in Table 4.

Fig. 6 shows the results of the current control model on the 30th
day. The 30th day is selected, because it is a good example where
K2 switches on in peak times, i.e., in Fig. 6 K2 runs for 2½ h in peak
time and a ½ h in standard time.

(2) Open loop optimal control model with LP optimization – the
benchmark: The open loop LP optimal control model is sim-
ulated over a 30 day period. The reservoir level at the end of
each day is used as the initial reservoir level for the next day.
Fig. 7 shows the simulated results of the open loop LP opti-
mal control model with S=2 and H=24 on the first day.

The load in Fig. 7 is moved out of the peak energy charge peri-
ods, and the load in the standard energy charge periods is reduced.
The MD is also reduced by spreading the load evenly over the
applicable 30 min MD periods, i.e., peak loads during the applicable
MD periods are minimized.

The monthly energy and MD costs for this scenario are shown in
Table 4. Fig. 5 (Table 4) shows that this scenario results an MD sav-
ing of 7.17% and a TOU energy saving of 1.84%. This gives a total
saving (MD and TOU) of 9.01%.

As mentioned, the open loop LP model is not considered as a
control solution for the specific case study, because the pumps
are binary controlled, i.e., it is only a benchmark for comparisons.
Table 4
Comparison of the savings with the simulated control models.

Current
model – baseline

Open-loop
with LP –
benchmark

Open-loop
with IPa

Closed-loop
MPC
with IPa

Energy cost R 176,758 R 172,101 R 172,158 R 172,175
MD Cost R 76,475 R 58,306 R 66,500 R 66,500
Total costs R 253,233 R 230,407 R 238,658 R 238,675
Energy saving 0.00% 1.84% 1.82% 1.81%
MD saving 0.00% 7.17% 3.94% 3.94%
Total saving 0.00% 9.01% 5.76% 5.75%

Simulated over 30 days, with H = 24, S = 2, and timeout = 10 s.
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Fig. 5. Comparison of the savings with the simulated control models.

Fig. 7. Open loop optimal control model for K2 with LP optimization (H = 24, S = 2,
timeout = N/A).
(3) Open loop optimal control model with IP optimization: The
open loop IP optimal control model is simulated over a
30 day period. The reservoir level at the end of each day is
used as the initial reservoir level for the next day. Fig. 8
shows the results of the open loop IP optimal control model
with S = 2 and H = 24 on the first day.

The load in Fig. 8 is moved out of the peak periods, and the load
in the standard periods is also reduced. The MD is reduced, because
K2 runs more frequently, but for shorter times, i.e., only 15 min per
30 min MD period. Note that between 17 h and 18 h K2 runs for
two consecutive switching intervals. However, these two switch-
ing intervals fall within two separate MD charge periods.

The monthly energy and MD costs for this scenario are shown in
Table 4. Fig. 5 (Table 4) shows that this scenario results an MD sav-
ing of 3.94% and a TOU energy saving of 1.82% for K2 over 30 days.
This gives a total saving (MD and TOU) of 5.76%.

Fig. 8 shows that the optimal control model foresees the
approaching peak energy charge periods and reduces the reservoir
level to prevent pumping during the peak energy charge periods.
This results in an optimal pump schedule, which is difficult to
accomplish with a simpler scheduling strategy.

A disadvantage with the pump schedule in Fig. 8 is that K2 is
switched on and off unnecessarily in off-peak times, e.g., between
0 h and 6 h. Since the MD charge is not applicable in this period it
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would be ideal to keep K2 running continuously for longer inter-
vals rather than switching K2 on and off over many short intervals.

(4) Closed-loop MPC optimal control model with IP optimization:
The closed-loop MPC optimal control model is simulated
over a 30 day period. The reservoir level at the end of each
switching interval is used as the initial reservoir level for
the next switching interval, over the 30 day period.

Fig. 9 shows the results of the closed-loop MPC optimal control
model with S = 2 and H = 24 on the first day. The load is moved out
of the peak periods, and the load in the standard periods is also re-
duced.The MD in Fig. 9 is reduced, because K2 runs more fre-
quently, but for shorter times, i.e., only 15 min per 30 min MD
period.

Note that the final reservoir level on the first day in Fig. 9 is low-
er than the open loop control model for the same scenario in Fig. 8,
i.e., 0.6 ML vs. 1 ML. This is caused by the moving control horizon
(H) of the closed-loop MPC optimal control model, which means
that after each implemented control step the MPC model is opti-
mizing more into the next 24th cycle. In other words, the open loop
optimal control model optimizes over the first 24 h only, and will
therefore leave the reservoir as full as possible by the end of the cy-
cle to avoid unnecessary pumping. However, the closed-loop MPC
optimal control model optimizes the model over each continuous
Fig. 8. Open loop optimal control model for K2 with IP optimization (H = 24 h, S = 2,
timeout = 10 s).

Fig. 9. Closed-loop MPC optimal control model for K2 with IP optimization
(H = 24 h, S = 2, timeout = 10 s).
24-h period to cater for any possible system change, which means
that a full reservoir at the end of the first 24 h cycle is not seen as
optimal by the closed-loop MPC optimal control model.

The monthly energy and MD costs for this scenario are shown in
Table 4. Fig. 5 (Table 4) shows that this scenario results in an MD
saving of 3.94% and a TOU saving of 1.81% for K2 over 30 days. This
gives a total saving (MD and TOU) of 5.75%.

Fig. 5 (Table 4) shows that both the open loop IP control model
and the closed-loop MPC control model result in a TOU energy sav-
ing of 1.8% and an MD saving of 3.94%. This proves that the closed-
loop MPC optimal control model is as good as the open loop opti-
mal control model with IP optimization if there are no distur-
bances, system model inaccuracies, or plant failures. The effect of
disturbances, system model inaccuracies, or plant failures on the
control models is evaluated in the next subsection.

Fig. 5 (Table 4) shows that the open loop LP control model re-
sults in a similar TOU energy saving of 1.8%, but a higher saving
of 7.17% on MD cost. This means that the TOU energy saving of
the open loop IP control model and the closed-loop MPC control
model can be considered optimal, because the open loop LP control
model is used as the benchmark.

It is assumed that the MD saving with the open loop IP control
model and the closed-loop MPC control model will converge to the
MD saving of 7.17% when more switching intervals per MD period
is used i.e. S > 2. In other words, a higher switching resolution will
enable more, but shorter running intervals. For example, instead of
running for a full 15 min (S = 2) in the applicable MD period, the
pump can run for only 5 min (S = 6), which will result in lower
MD costs.

It is important to note that the MD saving is larger than the TOU
energy saving in the open loop LP control model, the open loop IP
control model, and the closed-loop MPC control model.

Note also that the total amount of energy consumed is the same
for the current control model, the open loop LP control model, the
open loop IP control model, and the closed-loop MPC control mod-
el. The electricity cost is only optimized by improving the timing of
the energy consumption in the optimal control models.

4.2. Robustness of the closed-loop MPC optimal control model

This subsection evaluates the robustness of the closed-loop
MPC optimal control model. The objective of this subsection is to
prove that the closed-loop MPC optimal control model compen-
sates for disturbances and model uncertainty in real time, whilst
the open loop optimal control model does not.

(1) Effect of disturbances on the optimal control models: Fig. 10
shows the results of the open loop optimal control model
with IP optimization and the closed-loop MPC optimal con-
trol model with a positive random inflow disturbance, i.e.,
FLOWINt is replaced with
FLOWIN þ 0:2 � FLOWIN � rðmÞ; ð16Þ
t t
where r(m) is a random number between 0 and 1. This means that
the constant inflow rate is altered with a random disturbance.

Disturbances in flow rates are common in practical applications
that are affected by external factors such as temperature, rain, and
equipment age.

Fig. 10 shows that the level of R1 exceeds the maximum level
constraint (1.3 ML) in the open loop control model, whilst the
closed-loop MPC control model compensates for the disturbances
and keeps the level of R1 within the maximum level constraint.

Note that the switching pattern of the open and closed-loop
optimal control models is not exactly the same. This is caused by
the moving control horizon (H) of the closed-loop MPC optimal
control model, which means that after each implemented control
step the MPC model is optimizing more into the next 24th cycle.
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Also note that there is not only one unique switching sequence that
yields optimal results.

(2) Effect of an inaccurate system model on the optimal control
models: Fig. 11 shows the results of the open loop optimal
control model with IP optimization and the closed-loop
MPC optimal control model with an inaccurate outflow
model for K2. For demonstration purposes it is assumed that
the actual outflow is only 90% of the assumed outflow, i.e.,
Fig. 10.
and the
S = 2, ti

Fig. 11.
and the
(H = 24
FLOWOUTt ¼ 0:9 � 22 ML: ð17Þ

Fig. 12. Reservoir level of the open loop optimal control model with IP optimization
and the closed-loop MPC optimal control model with a plant failure disturbances
(H = 24 h, S = 2, timeout = 10 s).
Inaccurate system models are common in practical applications,
because it is likely that the defined plant model will contain some
error. The plant model could also be incorrect due to a simplifica-
tion of the model for practical reasons.

Fig. 11 shows that the level of R1 exceeds the maximum level
constraint (1.3 ML) in the open loop control model, whilst the
closed-loop MPC control model compensates for the inaccurate
system model and keeps the level of R1 within the maximum level
constraint.

(3) Effect of plant failure on the optimal control models: Fig. 12
shows the results of the open loop optimal control model
with IP optimization and the closed-loop MPC optimal con-
trol model with a plant failure. It is assumed that between
Reservoir level of the open loop optimal control model with IP optimization
closed-loop MPC optimal control model with inflow disturbances (H = 24 h,

meout = 10 s).

Reservoir level of the open loop optimal control model with IP optimization
closed-loop MPC optimal control model with an inaccurate system model

h, S = 2, timeout = 10 s).
12 h and 18 h only one of the G1 to G3 pumps are available
for pumping. This means that K2 must compensate with an
additional flow of 10 ML/day in this 6 h period.

Fig. 12 shows that the level of R1 exceeds the maximum level
constraint (1.3 ML) in the open loop control model, whilst the
closed-loop MPC control model compensates for the plant failure
and keeps the level of R1 within the maximum level constraint.
The level of R1 for the closed-loop MPC scenario without a plant
failure is also shown in Fig. 12. This scenario is included in
Fig. 12 to demonstrate exactly how the MPC model compensates
for the plant failure, and thereafter returns to the normal switching
pattern.

Plant unavailability is common in practical applications, be-
cause the entire plant will not always be available due to failures
or maintenance outages. Ideally major disturbances like plant fail-
ures and outages should automatically feed back to the MPC con-
troller so that the controller can optimize for the new temporary
model. This feedback of model changes is also an advantage of a
closed-loop MPC model that is not possible with an open loop
model.
5. Conclusions and recommendations

This paper defined and evaluated the efficiency of a closed-loop
optimal control strategy for load shifting in a plant with TOU and
MD charges. The closed-loop optimal control model was imple-
mented with an MPC approach. IP optimization was used to solve
the optimization problem, and the water pumping scheme at the
water purification plant in Tshwane municipality was selected
for the case study.

The closed-loop MPC optimal control model was compared
against open loop optimal control models with LP and IP optimiza-
tion. The LP optimization was included as a benchmark which is
considered optimal.

The results showed that the closed-loop MPC optimal control
model reduces the TOU energy cost by 1.81%, and the MD cost
by 3.94%. This gave a total saving (MD and TOU) of 5.75%. This
means that MD optimization had a significant effect on the overall
saving.

This result is similar to the saving obtained by the open loop
optimal control model with IP optimization. However, the open
loop optimal control model with LP optimization resulted in a sim-
ilar saving on TOU energy cost, but a higher saving of 7.17% on MD
cost.
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The open loop optimal control model with IP optimization and
the closed-loop MPC optimal control model were also simulated
with disturbances, an incorrect system model, and a plant failure
scenario. The results showed that the open loop control model does
not compensate for these disturbances, whilst the closed-loop MPC
optimal control model does.
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