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" We formulate the optimal operation scheduling of a pumping station with multiple pumps as a dynamic programming problem.
" The extended reduced dynamic programming algorithm (RDPA) is proposed to solve the optimization problem.
" The extended RDPA reduces the admissible domain of the possible state values at each stage and that of the possible state transfer routes.
" The optimal scheduling strategy reduces the operational cost.
" The extended RDPA performs much more time efficient than the conventional DP algorithms.
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a b s t r a c t

The optimal operation scheduling of a pumping station with multiple pumps is formulated as a dynamic
programming problem. Based on the characteristics of the problem, an extended reduced dynamic pro-
gramming algorithm (RDPA) is proposed to solve the problem. Both the energy cost and the maintenance
cost are considered in the performance function of the optimization problem. The extended RDPA can sig-
nificantly reduce the computational time when it is compared to conventional DP algorithms. Simulation
shows the feasibility of the reduction of the operation cost.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The operation of a pumping station is very important in achiev-
ing the tasks of the station. The main task is to maintain a suitable
water volume in the reservoir and supply the demands. Another
important task is to reduce the operation cost. With the operation
scheduling optimized, remarkable reduction of the operation cost
could be achieved while no change is needed with the physical ele-
ments, such as pumps and civil infrastructures [1].

The operation scheduling problem of a pumping station can be
formulated as a cost optimization problem, of which the objective
is to minimized the operation cost while the state constraints are
satisfied. For a reservoir, the water volume/water level should be
kept within a range to satisfy the security and operation
requirements.

There are mainly two classes of operation costs for a pumping
station. One is the energy cost, and the other is the maintenance
cost. The maintenance cost, related to the wear of the rotating
equipments, is difficult to be quantified. However it is true that
ll rights reserved.
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the maintenance cost increases when the number of pump
switches increases. A simple assumption is that the maintenance
cost is proportional to the number of pump switches. Here a pump
switch refers to ‘‘turning on a pump that was not operating in the
previous period’’ [1].

Energy cost is the main part of the operation cost. When phys-
ical elements are not changed, the energy cost is related to the en-
ergy consumption and the energy pricing structure. The energy
consumption is proportional to the pump power and the opera-
tional time length. With the time of use (ToU) electricity pricing
structure implemented, the operation scheduling has a heavy
influence on the energy cost if there is room for the scheduling
of the pump operation. Such kind of load shifting has been studied
for various systems, such as in [2] for steel plants and in [3] for a
deep-mine water reticulation system.

The problem on the optimal operation scheduling of a pumping
station has been studied in many papers in recent years. The prob-
lem for a pumping station with fixed-speed motored pumps is
intrinsically an integer programming problem (linear or nonlin-
ear), depending on the mathematical models of the hydraulic
structures, networks, etc. For such a kind of integer programming
problems, various techniques have been employed in load shifting
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Fig. 1. A typical reservoir with a pumping station.
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for different processes. The linear programming is employed in [4]
for a wind/hydro hybrid water supply system while the dynamic
programming (DP) in [5–7] for a water supply system and a pump
station. The stochastic DP is considered in [8] for a water supply
system with the water demand modeled as a Markov process.
The binary integer programming (BIP) is used in [9] for the opera-
tion scheduling of a colliery. The above methods can theoretically
solve the optimal operation scheduling problems, but they are lim-
ited in practice when the underlying model is large or complex be-
cause of curse of dimensionality of the DP or interminable branch and
bound of the integer programming.

To search the global optimal solution to a programming
problem, some modern optimization methods, such as genetic
algorithm [10–13], simulated annealing [14,15], particle swarm
optimization [16], ant colony optimization [17] and fuzzy opti-
mization [18], are adopted. Those approaches improve the pos-
sibility of obtaining the global optimization solution while the
computational time is sometimes very long and the algorithms
are sometimes too complex, which again limits their
application.

In [19], a reduced dynamic programming algorithm is devel-
oped to address the optimal operation scheduling problem with
the capability of fast computation. The scheduling problem is
reformulated as a control sequence optimal scheduling problem.
This algorithm is a cost-efficient scheduling approach for the pump
operation.

The optimal operation scheduling in [19], is studied for a pump-
ing station with only one pump. The admitted domain of the con-
trol variable is {0,1}. When more pumps’ operation is required to
be optimized, the method in [19] could not be directly employed.
The optimal operation scheduling of a pumping station with multi-
ple pumps are considered in this paper. The approach of RDPA is
re-investigated and extended to implement in a pumping station
with multiple pumps. The problem studied here for a pumping sta-
tion with multiple pumps is different from the one in [19] in the
following aspects.

(1) The domain of the control variable is larger (the domain is
{0,1, . . . , Np}, where Np is the number of pumps).

(2) The number of possible values for the water volume at the
sth stage is larger. For one pump, the number is s + 1 while
for multiple pumps, it is s � Np + 1.

(3) The number of possible routes from the (s � 1)th stage to the
sth stage is larger, too. For one pump, the number is at most
two while for multiple pumps, it can be as large as Np + 1.

(4) The maintenance cost is considered in the operation cost.

Compared with the conventional DP algorithm, the nature of
fast computation of the extended RDPA is owing to two aspects.
One is that the number of possible values at stage s is reduced from
s � Np + 1 with RDPA to ku

s � kl
s þ 1, which is much less than

s � Np + 1 when s is large. The other is that the number of state
transfer routes and the comparison of the cost function at stage
(s + 1) are significantly reduced to less than (sNp + 1)(Np + 1) from
(sNp + 1)((s � 1)Np + 1) with a conventional DP algorithm.

Simulation shows the feasibility of extended RDPA in the reduc-
tions of the energy cost and the number of pump switches. Both
the penalty on a pump switch and the time step of the scheduling
in extended RDPA have influences on the number of pump
switches.

The main contributions of this paper are: (1) The optimal oper-
ation scheduling of a pumping station with multiple pumps is for-
mulated as a dynamic programming problem; (2) The maintenance
cost can be explicitly considered in the cost function; (3) The RDPA
in [19] is extended to solve the problem of a pumping station with
multiple pumps.
The structure of this paper is: in Section 2, the optimal opera-
tion scheduling problem of a pumping station with multiple
pumps is formulated under the ToU electricity tariff structure, fol-
lowed by the extension of the RDPA in Section 3. Simulation of the
extended RDPA for a pumping station with three pumps is given in
Section 4. Some conclusions are give in Section 5.
2. Problem formulation

A typical reservoir with a pumping station is shown in Fig. 1.
There are several pumps in the station. Generally, the pumps are
identical, including the outflow capacity and the corresponding
power. The pump’s outflow capacity and the power are denoted
as b and Pm, respectively.

The water volume in the reservoir is v(t), which satisfies the fol-
lowing equation,

_vðtÞ ¼ a� b
XNp

i¼1

uiðtÞ; ð1Þ

where a is the inflow rate and ui(t) is the ith pump state in the sta-
tion, which can be either one for the pump being on or zero for the
pump being off. Then the sum

PNp

i¼1uiðtÞ is an integer denoting the
number of pumps being ‘on’ in the station at time t.

The electricity price structure is as follows,

PeðtÞ ¼ CðpÞ; t 2 ½Tp
e ; T

pþ1
e �; p ¼ 1; . . . ; P

where P is the number of the time intervals within the time period
[t0, tf] and in each of the intervals the electricity price is constant.

The ToU electricity rate can differ by time of day, day of week
and season. A typical ToU electricity pricing structure is shown in
Fig. 2, which shows the rate by time of a week with off-peak,
mid-peak and on-peak intervals given in Table 1.

Generally, an optimal operation scheduling problem of the
pumping station is: to find, a control sequence fUðkÞg
ðUðkÞ ¼ ½u1ðkÞ;u2ðkÞ; . . . ;uNp ðkÞ�

TÞ and the corresponding switching
time sequence {t(k)} such that the energy cost within the time per-
iod [t0, tf] is minimized with the water volume constraints
v(t) 2 [vl,vu] satisfied. Here ui(k) is either zero or one within the
time interval [t(k), t(k + 1)].

Such a problem is reformulated in [20] as a control sequence
optimization problem when the time sequence {t(k)} is given.
Especially, when t(k) = t0 + k � Tsampling, k = 0, . . . , K where Tsampling

is the sampling time period and constant, the problem is intrinsi-
cally a BIP problem.

Within the framework of the dynamic programming problem
studied here, a given time period [t0, tf], for example, the period
of the ToU pricing, could be scheduled into S subintervals accord-
ing to the ToU electricity pricing structure and the sampling time
period Tsampling. Within each time subinterval, the time length of
the subinterval is Tsampling and the electricity price is constant.



Fig. 3. A process scheme of the BIP problem.

0 6 15 20 30 39 46 54 63 70 78 87 94 102 111 118 126 142 168

off−peak

mid peak

on−peak

time (hour)

To
U

 e
le

ct
ric

ity
 p

ric
e

Mon. Tue. Wed. Thu. Fri. Sat. Sun.

Fig. 2. General ToU electricity price structure.

Table 1
Time of use pricing by time a week.

Time period Hours of a day Days of a week

On-peak 3–8 p.m. Monday–Friday

Mid-peak 6 a.m.–3 p.m. Monday–Friday
8–10 p.m. Monday–Friday
6 a.m.–10 p.m. Saturday

Off-peak 10 p.m.–6 a.m. Everyday
6 a.m.–10 p.m. Sunday
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With the above time sequence, the optimization problem of the
pumps in the pumping station is formulated as follows: to find a
control sequence {U(k)}, such that the energy cost within the
scheduling time period [t0, tf] is minimized and meanwhile the
water volume of the reservoir is bounded in the range [vl,vu].

In the following, the notations are given as follows: Pe(s) is the
energy price in the sth subinterval, ui(s) is the ith pump’s status in
the sth subinterval, UðsÞ ¼ ½u1ðsÞ;u2ðsÞ; . . . ;uNpumpðsÞ�

T is a vector
denoting the pumps’ states within the sth subinterval, and
V(s + 1, j) is the jth possible value of the water volume at the end
of sth subinterval.

The mathematical model of the above optimization problem is,

min J ¼ Pm �
XS

s¼1

PeðsÞ �
XNp

i¼1

uiðsÞ
 !

þ f ðvðSþ 1ÞÞ

s:t: vðsþ 1Þ ¼ vðsÞ þ �a� �b
XNp

i¼1

uiðsÞ; s ¼ 2; . . . ; S;

vðsÞ 2 ½v l;vu�; uiðsÞ 2 f0; 1; g

ð2Þ

where Vð1;1Þ ¼ vð1Þ; �a ¼ a� Tsampling;
�b ¼ b� Tsampling and f(v(S + 1))

is a penalty for the final water volume. In the following, it is as-
sumed that

f ðvðSþ 1ÞÞ ¼ Pm �
vðSþ 1Þ

b
� PeðSÞ:

With the domain of the ui(s) 2 {0,1} considered, the above prob-
lem is intrinsically a BIP problem. Because the direct solving algo-
rithm to a BIP problem may lead to the problem of curse of
dimensionality, the reformulation of the above problem into a dy-
namic programming problem will facilitate solving the problem.

3. Extended reduced dynamic programming algorithm

The above problem can be depicted in Fig. 3.
It can be seen that if J(s, j) denotes the minimum cost from the

initial water volume V(1,1) to jth possible value at the sampling
point s, then J(1,1) = 0,
Jðsþ 1; jÞ ¼minfJðs; iÞ þ dJðsþ 1; j; iÞg; s ¼ 1; . . . ; S� 1;

and

JðSþ 1; jÞ ¼ minfJðS; iÞ þ dJðSþ 1; j; iÞ þ f ðVðSþ 1; jÞÞg;

where dJ(s + 1, j, i) represents the cost for V(s + 1,j) transferred from
V(s, i) with ui(s) 2 {0,1}. The corresponding state transfer equation is

Vðsþ 1; jÞ ¼ Vðs; iÞ þ �a� �b
XNp

i¼1

uiðsÞ: ð3Þ

The cost dJ(s + 1, j, i) will be determined by ui(s), i = 1, 2, . . . , Np. If
there is no suitable route from V(s, i) to V(s + 1,j), the cost will be
infinity.

The above reformulated problem is actually in a DP problem
structure and could be solved with the conventional DP algorithms.

In a DP algorithm, one task is to obtain the domain of possible
values of v(s + 1), s = 1, 2, . . . , S, i.e., the range of j in (3).

With recursively calculation with (3), it holds that

Vðsþ 1; jÞ ¼ Vð1;1Þ þ s�a� �b
Xs

m¼1

XNp

i¼1

uiðmÞ: ð4Þ

Because ui(m) 2 {0,1}, it is true that

Xs

m¼1

XNp

i¼1

uiðmÞ 2 f0;1; . . . ; sNpg;

which implies that at stage s + 1, the number of possible values of
state is sNp + 1.

Intuitively, for a specific value V(s + 1, j), all the (s � 1)Np + 1
possible values of v(s) can lead to V(s + 1, j), i.e., the number of
the possible state transfer routes at stage s + 1 is (sNp + 1)
((s � 1)Np + 1). The number of the comparison of the objective
function is (sNp + 1)((s � 1)Np + 1).

With the conventional DP algorithms intuitively employed, the
dimension of the problem will be very large and the computational
tasks become very heavy when S and Np are large [19].

The reduced dynamic programming algorithm in [19] could be
extended to such an optimization problem with multiple pumps
in the pumping station.

Proposition 1. The domain of possible values of v(s + 1) can be
written in the following form

Vðsþ 1; jÞ ¼ Vð1;1Þ þ s�a� ðj� 1Þ�b; ð5Þ

where j is a natural number between kl and ku with kl and ku deter-
mined by

kl ¼max 1; ceil
Vð1;1Þ � vu

�b
þ s�a

�b
þ 1

� �� �
;

ku ¼min sNp; floor
Vð1;1Þ � v l

�b
þ s�a

�b

� �� �
þ 1:

ð6Þ
Proof. The Eq. (4) can be rewritten in the following form,

Vðsþ 1; jÞ ¼ Vð1;1Þ þ s�a� �b
Xs

m¼1

XNp

i¼1

uiðmÞ

¼ Vð1;1Þ þ s�a� ðj� 1Þ�b ð7Þ
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where j ¼
Ps

m¼1

PNp

i¼1uiðmÞ þ 1.

Because
Ps

m¼1
PNp

i¼1uiðmÞ 2 f0;1;2; SNpg, thus it is true that

j 2 f1;2; . . . ; sNp þ 1g: ð8Þ

Considering V(s + 1, j) 2 [vl,vu], part of the above possible values for j
are admitted, i.e.,

Vð1;1Þ þ s�a� ðj� 1Þ�b 2 ½v l; vu�:

The following is true,

j 6
Vð1;1Þ � v l þ s�a

�b
þ 1;

j P
Vð1;1Þ � vu þ s�a

�b
þ 1:

ð9Þ

With (8) and (9) combined, the domain of j is the set of the natural
numbers between kl and ku determined by (6). h
Remark 1. With j ¼ kl
sþ1 þ i, the Eq. (4) can be written as follows

Vðsþ 1; iÞ ¼ Vð1;1Þ þ s�a� ðkl
sþ1 þ i� 1Þ�b;

where i is an element in the set 1;2; . . . ; ku
sþ1 � kl

sþ1 þ 1
n o

, and

kl
sþ1 ¼max 1; ceil

Vð1;1Þ � vu þ s�a
�b

� �
þ 1

� �
;

ku
sþ1 ¼min sNp; floor

Vð1;1Þ � v l þ s�a
�b

� �� �
þ 1:

ð10Þ
Remark 2. From the above remark, it can be seen that there are

only ku
sþ1 � kl

sþ1 þ 1
� �

numbers in the practical domain of the

water volume at the sampling point s + 1.
It can be seen that with (10), the following holds

ku
sþ1 � kl

sþ1 þ 1 ¼min sNp þ 1; floor
Vð1;1Þ � v l þ s�a

�b

� �
þ 1

� �

�max 1; ceil
Vð1;1Þ � vu þ s�a

�b

� �
þ 1

� �
þ 1;

6 minfsNp þ 1; floorð�Þ � ceilð�Þ þ 1g

6 floorð�Þ � ceilð�Þ þ 1 6
vu � v l

�b
þ 1:
Remark 3. As Tsampling gets small, �b correspondingly decreases and

the upper bound vu�v l

�b
þ 1 increases. For a given sampling time period

Tsampling within the scheduling time period ½t0; tf �; v
u�v l

�b
þ 1 is con-

stant, which means that there is an upper bound on the number of
the possible values for v(s + 1), "s 2 (1, . . . , S). As with the intuitive
determination, the dimension of the domain of possible values of
v(s + 1) is sNp + 1, increasing with s and Np. By contrast, Proposition 1
reduces the dimension of the DP problem. Even if s,Np get very large,
the number of possible values of v(s + 1) has an upper bound.

With the reduction of the number of possible values of v(s), the
number of the state transfer routes for a specific value of v(s + 1) is
accordingly reduced. Furthermore, the number of routes can be re-
duced with the following proposition.

Proposition 2. Assume the domain of possible values of v(s) is
{V(s,k)} as follows,

Vðs; kÞ ¼ Vð1;1Þ þ ðs� 1Þ�a� kl
s þ k� 1

� �
�b; ð11Þ

where k ¼ 1;2; . . . ; ku
s � kl

s þ 1. Then for a specific value V(s + 1,j)

Vðsþ 1; jÞ ¼ Vð1;1Þ þ s�a� kl
sþ1 þ j� 1

� �
�b; ð12Þ
where j ¼ 1;2; . . . ; ku
sþ1 � kl

sþ1 þ 1, there exists suitable operationPNp

i¼1uiðsÞ such that

Vðsþ 1; jÞ ¼ Vðs; kÞ þ �a� �b
XNp

i¼1

uiðsÞ; ð13Þ

where k is a natural number between kl
b and ku

b determined by

kl
b ¼max kl

sþ1 � kl
s þ j� Np;1

n o
;

ku
b ¼min kl

sþ1 � kl
s þ j; ku

s � kl
s þ 1

n o
:

ð14Þ

It can be seen that with (14), the following holds

kl
b � ku

b þ 1 ¼min kl
sþ1 � kl

s þ j; ku
s � kl

s þ 1
n o

�max kl
sþ1 � kl

s þ j� Np;1
n o

þ 1;

6min Np þ 1; ku
s � kl

s þ 1
n o

6 Np þ 1:

ð15Þ
Proof. From (11)–(13), it holds that

k ¼ kl
sþ1 � kl

s þ j�
XNp

i¼1

uiðsÞ: ð16Þ

Since
PNp

i¼1uiðsÞ 2 f0;1; . . . ;Npg,

k P kl
sþ1 � kl

s þ j� Np;

and

k 6 kl
sþ1 � kl

s þ j:

With k 2 1;2; . . . ; ku
s � kl

s þ 1
n o

considered, k is a natural num-
ber between kl

b and ku
b determined by (14). h

From Proposition 2, the practical state transfer routes for a spe-
cific value V(s + 1, j) is limited to several possible values of V(s,k).
This domain of k is denoted as D(s + 1, j).

Remark 4. It can be seen the above domain is less than Np + 1.
Both the number of state transfer routes and the comparison of the
cost function at stage (s + 1) are significantly reduced from
(sNp + 1)((s � 1)Np + 1) to less than vu�v l

�b
þ 1

� �
ðNp þ 1Þ.
Remark 5. With Propositions 1 and 2, the dimension of the DP
problem is significantly reduced, which facilitates the fast compu-
tation of optimal scheduling process.
Proposition 3. For the process shown in Fig. 3, if the controlPNp

i¼1uiðsÞ is maintained to be constant within the time interval
t 2 [Ts,Ts+1], the water volume v(t),"t 2 [Ts,Ts+1] is constrained within
the range [vl,vu] when the initial and final water volumes within this
time interval are constrained within the range [vl,vu].
Proof. From the reservoir dynamics (1), it holds that

vðtÞ ¼ vðsÞ þ
Z t

Ts

�a� �b
XNp

i¼1

uiðsÞ
 !

dt:

Because
PNp

i¼1uiðsÞ is constant within the time interval [Ts,Ts+1], the

water volume v(t) is either monotonically increasing (when �a� �bPNp

i¼1uiðsÞ > 0) or monotonically decreasing (when �a� �b
PNp

i¼1uiðsÞ <
0) or constant (when �a� �b

PNp

i¼1uiðsÞ ¼ 0).



Fig. 4. A simplified model of the water purification plant.
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Fig. 5. Time partition of the ToU tariff in Tshwane.
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If �a� �b
PNp

i¼1uiðsÞ ¼ 0, then v(t) is independent of the time t, and

equal to v(s). If v(s) 2 [vl,vu], then v(t) 2 [vl,vu],"t 2 [Ts,Ts+1].
If �a� �b

PNp

i¼1uiðsÞ – 0, then v(t) 6max{v(s),v(s + 1)}, implying

that v(t) 2 [vl,vu], "t 2 [Ts,Ts+1], when v(s), v(s + 1) 2 [vl,vu].
In summary, the constraints on the water volume within the

time interval are satisfied when the initial and final water volumes
are constrained. h

With the above propositions, the DP algorithm is given as follows.
At the sampling time (s + 1), the minimum cost function for

V(s + 1, j) is

Jðsþ 1; jÞ ¼ min
i2Dðsþ1;jÞ

fJðs; iÞ þ dJðsþ 1; j; iÞg;

¼ Jðs; i�Þ þ dJðsþ 1; j; i�Þ ð17Þ

where dJ(s + 1, j, i) is the cost with the state transferred from V(s, i) to
V(s + 1, j).

With Duðsþ 1; j; iÞ ¼ kl
sþ1 � kl

s þ j
� �

� i, the state transfer equa-
tion is rewritten as

Vðsþ 1; jÞ ¼ Vðs; iÞ þ �a� b
XNp

n¼1

unðsÞ;

¼ Vðs; iÞ þ �a� b� Duðsþ 1; j; iÞ: ð18Þ

The optimal decision for V(s + 1, j) is denoted by
Dopt

u ðsþ 1; jÞ ¼ Duðsþ 1; j; i�Þ.
The corresponding cost from V(s, i) to V(s + 1, j) is

dJðsþ 1; j; iÞ ¼ Pm � PeðsÞ � Duðsþ 1; j; iÞ

¼ Pm � PeðsÞ � kl
sþ1 � kl

s þ j� i
� �

: ð19Þ

If the cost of pump switches (an indicator for pump maintenance)
considered and assumed to be Pswitch for a pump switch, the above
equation is modified as follows, when Duðsþ 1; j; iÞ 6 Dopt

u ðs; iÞ

dJðsþ 1; j; iÞ ¼ Pm � PeðsÞDuðsþ 1; j; iÞ; ð20Þ

and when Duðsþ 1; j; iÞ > Dopt
u ðs; iÞ,

dJðsþ 1; j; iÞ ¼ PswitchðDuðsþ 1; j; iÞ � Dopt
u ðs; iÞÞ þ Pm

� PeðsÞDuðsþ 1; j; iÞ: ð21Þ

With the above analysis, a reduced dynamic programming algo-
rithm for the scheduling problem can be reached.

4. Simulation

A South African water purification plant [21] is employed as a
baseline. The reservoir R1 of the plant could be modeled as a single
tank with several identical pumps, of which the pumps G1, G2 are
kept ‘on’ and the pump G3 is kept ‘off’ (the current configuration)
and the operation of the pumps K1, K2 and K3 are required to be
optimized.

A simplified model of the plant is shown in Fig. 4. The three
identical pumps’ (K1, K2, K3) power is 300 kW with the flow capac-
ity 22 ML/day. The inflow of R1 is 45 ML/day and the total outflow
of pumps G1 and G2 is 20ML/day. The water volume of R1 is re-
quired to be maintained within [0.2,1.3] ML for the security con-
sideration and requirements of pump operation.

The uncontrollable inflows and outflows of R1 are assumed to
be continuously distributed in 24 h, and then the dynamical equa-
tion of R1 is

_vðtÞ ¼ 45� 20
24

� 22
24

X3

n¼1

uiðtÞ ¼
25
24
� 11

12

X3

n¼1

uiðtÞ; ð22Þ

where the unit of the water volume v(t) is ML and the unit of the
time t is hour.
The time partition of the ToU tariff structure of Tshwane city in
South Africa is as shown in Fig. 5. The off-peak, mid-peak and on-
peak price are 10.49, 13.83 and 26.28 cents/kW h in summer sea-
sons while they are 11.87, 14.11 and 82.05 cents/kW h in winter
seasons.
4.1. Scenarios in winter season with Tsampling = 0.5 h

The winter season pricing is applied in this scenario and the
sampling time period is 0.5 h.

When the cost of pump switches is not considered, an optimiza-
tion result is shown in Fig. 6. In the figure, the scheduling time
length is 48 h. The energy consumption and cost in this scenario
are 16,200 kW h and R4909.71, respectively. The number of pump
switches is 27.

In Fig. 6, the three pumps are all ‘off’ within some time intervals,
and they are all ‘on’ within some other time intervals. There is at
most one pump operated within the on-peak time intervals. The
water volume within the whole time period is bounded in the
range [0.2,1.3].

When the cost of pump switches is considered and the cost per
pump switch is assumed to be R1000, simulation is shown in Fig. 7.
The energy consumption is the same as in Fig. 6. However the en-
ergy cost in this scenario is R5116.89, a little more than that in
Fig. 6. This is because the operation of the pumps is more careful
to reduce the number of the pump switch. The number of pump
switches is eight, which is much less than in Fig. 6. The water vol-
ume within the whole time period is bounded in [0.2,1.3], too.

With different settings for the cost per pump switch, simulation
results are summarized in Table 2, where Econ and Ecost are energy
consumption (unit: kW h) and energy cost (unit: Rand) within the
time periods respectively. It can be seen that the energy consump-
tion and the corresponding cost when the cost per pump switch is
zero are the same as that when the cost per pump switch is R0.1 to
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Fig. 6. 48-h Optimal scheduling with pump switch frequency ignored.
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Fig. 7. 48-h Optimal scheduling with pump switch considered.

Table 2
Simulation in the winter season.

Pswitch Econ Ecost Switch number

0 16,200 4909.71 27
0.1 16,200 4909.71 10
1 16,200 4909.71 10
10 16,200 4909.71 10
100 16,200 5011.62 9
1000 16,200 5116.89 8
100,000 16,200 5116.89 8
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Fig. 8. 48-h Optimal scheduling with Tsampling = 1 h.
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R10. This is because the optimal solution is not unique when the
pump switch cost is not considered. Among the solutions, the
number of pump switches may be different.

A trend can be seen that with the switch number reduced, the
energy cost is increasing although the energy consumption is the
same. The increase of the energy cost is the result of increase of en-
ergy consumption within the on-peak/mid-peak time intervals. For
example, in Fig. 7, two pumps are in operation within [44,44.5] h
(on-peak time period) while only one pump is in operation within
this period in Fig. 6.

From Table 2, it can be seen that the penalty on a pump switch
can reduce the number of pump switches. However, the increase of
the penalty weight has a marginal and even no impact when the
number of pump switches reaches a certain value.
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Fig. 9. Optimal scheduling with Tsampling = 0.25 h and with cost of pump switches
ignored.
4.2. Scenarios in winter season with Tsampling = 0.25/1 h

Simulation is also done with Tsampling = 0.25 h and Tsampling = 1 h,
respectively.

When Tsampling = 1 h and no matter what the cost of pump
switches is, simulation is the same and shown in Fig. 8, where
the energy consumption is 16,200 kW h, energy cost is R5425.98
and the number of pump switches is seven. The energy consump-
tion is the same as those in Table 2, while the energy cost is more
than those in Table 2.

This result shows that the increase of the sampling time period
could also reduce the number of pump switches and that the capa-
bility of the reduction of the number of pump switches is limited.

With the results obtained with Tsampling = 0.5 h compared to
those obtained with Tsampling = 1 h, it can be seen that the increase
of the sampling time period can possibly reduce the number of
pump switch, but it also results in more energy cost even with
the same energy consumption because less load (energy consump-
tion) is shifted from the on-peak (or mid-peak) time intervals to
mid-peak and off-peak (or off-peak) time intervals.

When Tsampling = 0.25 h, results are shown in Figs. 9–11. In Fig. 9,
the cost of pump switches is not considered, while it is considered
in Figs. 10 and 11, where the cost per pump switch is assumed to
be R10 and R1000 respectively. With different settings of the cost
per pump switch, simulation results are shown in Table 3.

From those figures, it can be seen that the consideration of the
cost of pump switches can reduce the number of pump switches on
one hand, and increase the energy cost even with the same energy
consumption on the other hand. The energy cost with the cost per
pump switch R1000, is R5008.26, a little more than R4999.40 in the
other settings with the same number of pump switch, i.e., with the
cost per pump switch R100 and R100000. This is because more
water volume is pumped, which can be seen from the comparison
of Figs. 10 and 11, and thus more energy is consumed. It can be
seen that the difference of the energy consumption is 75 kW h,
and the additional cost is 5008.26–4999.4 = R8.86. Therefore the
average price of the additional energy consumption is R0.1181,
very similar to the off-peak electricity price. When the number of
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Fig. 10. Optimal scheduling with Tsampling = 0.25 h and with the cost per pump
switch R10.
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Fig. 11. Optimal scheduling with Tsampling = 0.25 h and with the cost per pump
switch R1000.

Table 3
Simulation in the winter season (Tsampling = 0.25 h).

Pswitch Econ Ecost Switch number

0 16,125 4693.60 42
0.1 16,125 4693.60 13
1 16,125 4693.60 13
10 16,125 4693.60 13
100 16,125 4999.40 7
1000 16,200 5008.26 7
100,000 16,125 4999.40 7

Table 4
Simulation in summer season (Tsampling = 0.25 h).

Pswitch Econ Ecost Switch number

0 16,200 2511.95 39
0.1 16,200 2511.95 13
1 16,200 2511.95 13
10 16,125 2560.1 7
100 16,125 2560.1 7
1000 16,125 2560.1 7
100,000 16,125 2560.1 7

Table 5
Simulation in summer season (Tsampling = 0.5 h).

Pswitch Econ Ecost Switch number

0 16,200 2554.30 25
0.1 16,200 2554.30 10
1 16,200 2554.30 10
10 16,200 2572.98 9
100 16,200 2596.70 8
1000 16,200 2596.70 8
100,000 16,200 2596.70 8

Table 6
A comparison of the time efficiency of the algorithms.

vu (ML) Tsampling (h) Conventional DP (s) RDPA (s)

1.3 0.5 0.0081 0.0070
1.3 0.25 0.0540 0.0289
6.5 0.5 0.0673 0.0292
6.5 0.25 0.3767 0.1659
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pump switches is the same, the energy cost are the same for the
same energy consumption.

With Table 3 compared to Table 2, it is observed that, the smal-
ler the sampling time period is, the less the energy cost is, which
implies the better load shifting from on-peak/mid-peak periods
to off-peak periods. The penalty on a pump switch can reduce
the number of pump switches.

These conclusions can be drawn from the comparison of the re-
sults with the summer season pricing, which are shown in Tables 4
and 5. The energy consumption with Tsampling = 1 h in the summer
season is 16,120 kW h, and the corresponding cost is R2657.70. The
number of pump switches is 39 when the cost of pump switches is
not considered while it is seven when the cost of pump switches is
considered (no matter what the cost per pump switch is).

4.3. Comparison of simulation time

A comparison of RDPA with several algorithms for a pumping
system (one pump) was given in [19]. Here a further comparison
of the extended RDPA proposed in this paper with the conventional
DP algorithm is summarized in Table 6. In the conventional DP
algorithm, Proposition 1 is applied, while Proposition 2 is not,
which means that the admitted domain of the states at stage s is
reduced for both algorithms. To further illustrate the time effi-
ciency of the extended RDPA algorithm, a case with a large upper
bound (vu = 6.5 ML) for the reservoir’s volume has been studied.
Under such a circumstance, the possible values of the water vol-
ume at the sth stage state increases compared with that in the base
case (vu = 1.3 ML).

From Table 6, it is clear that the computational time of the pro-
posed RDPA is much less than that of the conventional DP algo-
rithm. As Tsampling decreases and/or vu increases, the number of
state-transferring routes gets large and thus the computational
time of both algorithms increases. Moreover, the larger the number
of state-transferring routes is, the more obvious the advantage of
the RDPA is. The RDPA is proved to be a good choice for operation
scheduling of a pumping station with multiple pumps.
5. Conclusions

The optimal operation scheduling problem of a pumping station
with multiple pumps is studied in the paper. Similar to [19], this
problem can be reformulated as a DP problem. The RDPA in [19]
is extended here to solve such a problem. In this paper, besides
the energy cost, the maintenance cost is considered and expressed
in term of the number of pump switches.

Compared with the conventional DP algorithms, the extended
RDPA can significantly reduce the computational time because of
the reduction of the number of possible state values at each stage
and the reduction of the number of the possible state transfer
routes from stage s to stage (s + 1).

Simulation in open-loop scheduling shows the feasibility of the
extended RDPA in the reduction of the energy cost and the reduc-
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tion of number of pump switches (an indicator for maintenance
cost) with the main function achieved.
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