
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

Mathematical description for the measurement and verification
of energy efficiency improvement q

Xiaohua Xia ⇑, Jiangfeng Zhang
Centre of New Energy Systems, Department of Electrical, Electronic and Computer Engineering, University of Pretoria, South Africa

h i g h l i g h t s

� A mathematical model for the measurement and verification problem is established.
� Criteria to choose the four measurement and verification options are given.
� Optimal measurement and verification plan is defined.
� Calculus of variations and optimal control can be further applied.

a r t i c l e i n f o

Article history:
Received 6 February 2013
Received in revised form 17 April 2013
Accepted 18 April 2013

Keywords:
Energy efficiency
Measurement and verification
Modeling

a b s t r a c t

Insufficient energy supply is a problem faced by many countries, and energy efficiency improvement is
identified as the quickest and most effective solution to this problem. Many energy efficiency projects
are therefore initiated to reach various energy saving targets. These energy saving targets need to be mea-
sured and verified, and in many countries such a measurement and verification (M&V) activity is guided
by the International Performance Measurement and Verification Protocol (IPMVP). However, M&V is
widely regarded as an inaccurate science: an engineering practice relying heavily on professional judge-
ment. This paper presents a mathematical description of the energy efficiency M&V problem and thus
casts into a scientific framework the basic M&V concepts, propositions, techniques and methodologies.
For this purpose, a general description of energy system modeling is provided to facilitate the discussion,
strict mathematical definitions for baseline and baseline adjustment are given, and the M&V plan devel-
opment is formulated as an M&V modeling problem. An optimal M&V plan is therefore obtained through
solving a calculus of variation, or equivalently, an optimal control problem. This approach provides a
fruitful source of research problems by which optimal M&V plans under various practical constraints
can be determined. With the aid of linear control system models, this mathematical description also pro-
vides sufficient conditions for M&V practitioners to determine which one of the four M&V options in
IPMVP should be used in a practical M&V project.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

With the current economic growth, energy supply cannot meet
the increasing demand in many countries. To solve the energy sup-
ply problem and also to protect the environment, renewable en-
ergy sources are developed, and many energy efficiency projects
are also implemented across the world. These energy projects are
often started with specific energy saving targets, and the success
of these projects need to be determined by checking whether the
relevant energy saving targets have been reached. This kind of
checking process is called measurement and verification (M&V),

and is often carried out by project developers or an independent
third party inspection body. The M&V inspection body will under-
take a monitoring process and deliver the corresponding energy
saving assessment. These energy saving M&V activities are usually
guided by the International Performance Measurement and Verifi-
cation Protocol (IPMVP) [1]. There are also some other energy sav-
ing M&V guidelines which are essentially similar to IPMVP, and
these guidelines include, but are not limited to, the M&V Guideline
for the Federal Energy Management Program [2]; the M&V Guide-
line of the American Society of Heating, Refrigeration and Air Con-
ditioning Engineers (ASHRAE) [3]; the South African M&V
guideline for Demand Side Management projects [4]; and the Aus-
tralian best practice guideline [5].

Helpful M&V methodologies and examples are given in the
above energy saving M&V guidelines. These M&V methodologies
from different guidelines are essentially the same with what is
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proposed in the IPMVP, in which four M&V methods, Option A, Op-
tion B, Option C, and Option D, are given. The first two methods,
Options A and B, are applicable to energy subsystems which can
be isolated from the whole energy system, where the notion of en-
ergy system refers to a system consisting of all energy related facil-
ities and factors under consideration. The later two methods,
Options C and D, are applicable to the whole energy system level
and do not consider subsystems independently. Option A is defined
as partially measured isolated retrofit and only key system param-
eters are monitored. Option B is applied to the isolated retrofit with
full measurement, and all the system parameters are monitored.
Option C is designed for monitoring at the whole facility level,
and interactions within the system are often ignored. Option D is
a comprehensive calibrated simulation, whereby computer simula-
tions for the system performance is performed to calculate energy
savings. Although these M&V methods are discussed in these exist-
ing M&V guidelines, it is still difficult to find a proper M&V method
or plan for a complex energy project so that the reported perfor-
mance is accurate enough. It is therefore interesting to find out
how these general M&V guidelines can be applied in various spe-
cific energy projects. Ref. [6] discusses the M&V method for a mo-
tor sequencing control of a conveyor belt system, [7] gives a
general method for calculating plant-wide industrial energy sav-
ings, [8,9] propose a bottom-up approach to energy saving calcula-
tions; [10–14] study the uncertainties in M&V, [15] considers the
Louisiana home energy rebate offer program, [16] proposes general
guidelines for energy modeling in M&V, [17] provides the M&V
strategies for energy savings certificates, [18] discusses the M&V
for demand response, [19,20] describe the M&V experiences in
the United States and South Korea, [21] gives an M&V system de-
sign for buildings, [22] provides a case study for a underground
pumping system in a mine, and [23] discusses the general M&V
process in South Africa.

As defined in [1], the concept Energy Conservation Measure
(ECM) is ‘‘used to mean measures to improve efficiency or conserve
energy or water, or manage demand’’. All the existing ECM M&V
studies compare the energy/power consumption after an ECM with
the baseline energy/power consumption to find the corresponding
savings. The baseline consumption is assumed to be the corre-
sponding energy/power consumption at the post-implementation
period if the ECM was not implemented so that the baseline con-
sumption and actual consumption during the post-implementa-
tion period will have the same exact ambient environment such
as temperature, and production. However, the baseline consump-
tion at the post-implementation period is never measurable.
Therefore, it is either assumed to be the same as the baseline mea-
sured or calculated at the pre-implementation period, or adjusted
to the post-implementation period based on the pre-implementa-
tion baseline consumption data. There is no theoretical analysis to
explain how the post-implementation baseline consumption can
be obtained from the pre-implementation consumption. In practi-
cal ECM M&V projects, the selection of the IPMVP M&V Options A,
B, C, and D is usually determined by experience. An M&V plan is
also obtained by the experience of M&V professionals, and as such
an M&V plan may be far from optimal when there are particular
requirements on accuracy and M&V cost. Therefore, scientific ways
to select IPMVP M&V options and optimize M&V plans need to be
addressed.

This paper aims to provide a mathematical description for ECM
M&V problems so that scientific rules behind existing M&V prac-
tices are discovered, and M&V option selection and M&V plan
development in M&V practices are also guided by scientific princi-
ples. In this way, M&V becomes a rigorous branch of science. To
this end, general energy system modeling and ECM M&V modeling
processes from existing M&V practices are summarized, the con-
cepts of baseline and optimal M&V plan are further defined. The

notions of exogenous functions and service level functions are
introduced so that baseline at the post-implementation stage can
be characterized as functions of exogenous and service level func-
tions. The criteria to select the four M&V Options A, B, C, and D are
discussed from a control system point of view. With the above
mathematical description, the optimal M&V plan problem is for-
mulated as a calculus of variation or optimal control problem.
Since M&V cost and/or M&V uncertainty can be put as objectives
or constraints in the M&V plan optimization model, M&V cost
and M&V uncertainty can be minimized.

The paper is organized as follows. A mathematical description
on energy modeling, M&V modeling, and the corresponding appli-
cations are given in Section 2. The mathematical formulation of
optimal M&V plan is introduced in Section 3, and conclusions are
made in Section 4.

2. A mathematical description of M&V for ECM projects

2.1. What is M&V

The general principle of M&V is illustrated in Fig. 1. The power
consumption before the implementation of any ECM project is
called the baseline power consumption. This baseline power con-
sumption is marked in red1 and expressed as the function y = f(t)
in Fig. 1, where y is the power consumed at time t. If the ECM was
not implemented, the power consumption could still be represented
by the function y = f(t) (see the red dotted line). With the implemen-
tation of the ECM, power consumption level becomes lower at the
post-implementation period, and this post-implementation power
consumption can be characterized by another function, y = g(t).
The difference between f(t) and g(t) gives the savings from the
ECM. However, the determination of the savings f(t) � g(t) is not
straightforward since f(t) at the post-implementation stage does
not physically exist and therefore cannot be measured. The determi-
nation of f(t) at the post-implementation stage becomes the most
tricky part in M&V, and it will be discussed in the following
subsections.

2.2. Energy system modeling

There are plenty of study on various energy system modeling in
literature (see, for example, [24–27]). This section introduces gen-
eral energy modeling notations and terminologies to facilitate the
discussions on M&V modeling. Consider the performance of an
energy system over a given time period [t0, tf]. Let z(t) =
(z1(t), . . . ,zn(t))T be an n-dimensional vector denoting all variables
in the energy system, and p(t) = (p1(t), . . . ,pm(t))T an m-dimensional

Fig. 1. What is M&V.

1 For interpretation of color in Fig. 1, the reader is referred to the web version of
this article.
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vector representing parameters in this energy system. The vari-
ables and parameters in (z(t),p(t)) will be properly chosen to fully
describe the energy system over the period [t0, tf]. For example,
(z(t),p(t)) could consist of variables and parameters from power,
energy, current, voltage, impedance, magnetic flux, frequency,
time, etc., in an electrical system; or water flow rates, steam pres-
sure and temperature in a thermal system. The difference between
z(t) and p(t) is that p(t) represents given information of the system
over [t0, tf], while z(t) does not, and its values over [t0, tf] needs to be
identified through studying the underlying physical process. For
simplicity, we often abuse the notation and call (z(t),p(t)) variables
of the system. In this energy system, z and p are usually interre-
lated and constrained such as

/ðzðtÞ; pðtÞÞ ¼ 0; ð1Þ

where /(z) = (/1(z), . . . ,/s(z))T is an s-dimensional function repre-
senting constraints such as energy balance and physical limitations,
and the component functions /1(z), � � � ,/s(z) are elements of a set of
functions under consideration. To be more specific, let Cðz; pÞ de-
note the set of all the functions of the variables (z,p) = (z1, . . . ,zn,p1, -
. . . ,pm)T under consideration, where C indicates that constants in
the functions are real or complex numbers. For example, Cðz;pÞ
can be defined in strict mathematical terminologies as the field of
analytic functions or meromorphic functions over the complex field
C, or the fraction field of the polynomial ring generated by multi-
variable complex coefficient polynomials in variables (z,p). Note
that the interrelations between z(t) and p(t) are taken as the equal-
ity constraint in (1), which will cover almost all the practical inter-
relations. This is because most of the practical interrelations
between z(t) and p(t) can be written mathematically as equality
or inequality relations, while inequality relations can always be
written as equivalent equalities with the introduction of extra vari-
ables. For instance, the relation z1(t) � p1(t) P 0 is equivalent to
z1ðtÞ � p1ðtÞ � z2

nþ1ðtÞ ¼ 0, where zn+1(t) is a new variable.
A performance indicator of the energy system (1) is a time func-

tion y(t) evaluating a chosen energy efficiency performance of the
system. If a given performance indicator of a system over a period
of time can be expressed by a mathematical function incorporating
the variables and parameters that fully describe the energy system
in question, this function can be called the baseline - mathemati-
cally this can be expressed as below. The performance indicator
y(t) is said to have a baseline function a(z,p) over [t0, tf] if the func-
tion aðz; pÞ 2 Cðz; pÞ satisfies

yðtÞ ¼ aðzðtÞ;pðtÞÞ; t 2 ½t0; tf �: ð2Þ

Note that an ECM will usually change the values of the perfor-
mance indicator y(t) after project implementation, and thus y(t)
needs to be characterized by a new function different from a(z,p)
after the ECM implementation. However, the baseline function
relation a(z,p) is not affected by the ECM since it will provide a
benchmark to check the impact of the ECM; in other words, the
baseline function a(z(t),p(t)) remains unchanged after the imple-
mentation of the ECM, and the comparison of this a(z(t),p(t)) with
the changed value of y(t) at post-implementation period provides a
measure of ECM impact (e.g., energy or power savings). Since the
values of the baseline function a(z,p) at the post-implementation
stage of the ECM are not physically measurable, therefore, the fol-
lowing hypothesis is made to assume the existence of baseline
function over the whole project period.

Hypothesis 1. Given the energy system (1) on [t0, tf], assume that
the performance indicator y(t) always has a baseline function over
[t0, tf].

Now assume that an ECM project for this energy system starts
installation or retrofitting from the time instant t1 and completed
at t2, t0 < t1 < t2 < tf, such that [t0, t1] is the pre-implementation per-

iod, and [t2, tf] is the post-implementation period of the ECM. Note
that the period [t1, t2] is the installation period of the ECM and sys-
tem variables and performance are usually not stable, therefore
this period is often not discussed in M&V. Generally an ECM would
cause the following changes to the energy system: to change cer-
tain constant variable values to new constants (i.e. the change of
system operating point), to change the values of (z(t),p(t)) on
[t2, tf], or change the functional relationships between (z(t),p(t))
on [t2, tf] such that the performance indicator y(t) on [t2, tf] has to
be calculated by a new function c(z,p). Under these cases, the val-
ues of (z(t),p(t)) will often change, and this is described mathemat-
ically by the following definition.

Definition 1. An ECM is mathematically defined as a map
h : CðzB; pBÞ ! CðzA; pAÞ such that h(zB) = zA, and h(pB) = pA, where
zB,pB,zA,pA satisfy

zAðtÞ ¼ zðtÞ; t 2 ½t0; tf �;
pAðtÞ ¼ pðtÞ; t 2 ½t0; tf �;
zBðtÞ ¼ zðtÞ; t 2 ½t0; t1�;
pBðtÞ ¼ pðtÞ; t 2 ½t0; t1�;

ð3Þ

(zA(t),pA(t)) over [t0, tf] represents the actual value of (z(t),p(t)) for
which the energy system is impacted by the ECM, and (zB(t),pB(t))
over [t2, tf] equals what the value of (z(t),p(t)) would have been if
such an ECM was not implemented.

The equations in (3) imply that zA and pA are actual values of z
and p, respectively, for the overall project period; while zB and pB

represent only the values of z and p, respectively, over the pre-
implementation period. With the change of values of (z(t),p(t))
caused by the ECM, the system constraint Eq. (1) holding on
[t0, t1] will not hold any more in most cases, this means that new
mathematical equations need to be found to characterize the inter-
relations of (z(t),p(t)). In the following equation, it is assumed that
these new interrelations of (z(t),p(t)) are characterized by the func-
tion w:

wðzðtÞ;pðtÞÞ ¼ wðzAðtÞ;pAðtÞÞ ¼ 0; t 2 ½t2; tf �: ð4Þ

Assume that zm ¼ zm
1 ; . . . ; zm

n0
� �T , where zm

1 ; . . . ; zm
n0

� �
is the set of

all the variables from zA(t) such that zm
1 ðtÞ; . . . ; zm

n0 ðtÞ are measur-
able on [t0, tf]. A function cðz; pÞ 2 Cðz; pÞ is called measurable on
[t0, tf] if c(zA(t),pA(t)) can be represented as a function of (zm(t),pA(-
t)) for all t 2 [t0, tf]. Since the parameter pA(t) is always known, the
measurable function c(z,p) is also called representable by the mea-
surable variable zm. Note that the measurable variables defined
here refer to those variables which are measurable over both the
pre-implementation and post-implementation period, while in
practice some variables may be measurable only at the pre-imple-
mentation (or post-implementation) period but not at the post-
implementation (or pre-implementation) period. These variables
can still be discussed in similar fashion, however, to simplify the
discussion, these variables are ignored and the full measurability
over [t0, tf] is assumed for all measurable functions mentioned in
this paper.

Definition 2. The performance indicator y(t) is said to have a
measurable baseline function for the ECM if y(t) has a baseline
function a(z,p) over [t0, t1], and there exits a function b 2 Cðz; pÞ
such that

aðzBðtÞ;pBðtÞÞ ¼ bðzmðtÞ; pBðtÞÞ; t 2 ½t0; t1� ð5Þ

and b is hereditary in the sense that for any t 2 [t2, tf], the value of
b zm

B ðtÞ; pBðtÞ
� �

can be determined by the value of b(zm,pB) on
[t0, t1], where zm

B ðtÞ on [t2, tf] is defined as what the value of the var-
iable of zm(t) would have been if the ECM was not implemented, and
zm

B ðtÞ � zmðtÞ for all t 2 [t0, t1].

X. Xia, J. Zhang / Applied Energy 111 (2013) 247–256 249
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Eq. (5) implies that the baseline function over the pre-imple-
mentation period can be calculated from measurable variables.
Note that zm

B ðtÞ over [t2, tf] is not measurable, however, the heredi-
tary property allows the ability to infer its performance on [t2,tf]
from past values on [t0, t1].

For any function cðz; pÞ 2 Cðz; pÞ, the change of values of
(z(t),p(t)) on [t2, tf] after the ECM will cause a possible change of
values of c(z(t),p(t)), and the following notion of exogenous func-
tion will characterize those functions whose values at the post-
implementation period are not affected by the ECM.

Definition 3. A function cðz; pÞ 2 Cðz; pÞ is called an exogenous
function to the ECM if it is measurable, and

cðzBðtÞ;pBðtÞÞ ¼ cðzAðtÞ;pAðtÞÞ; t 2 ½t2; tf �: ð6Þ
Denote SEx the set of all the exogenous functions in Cðz; pÞ. Ex-

cept for exogenous function, there is also another important class
of functions in Cðz; pÞ called service level functions. These are func-
tions that are affected by the ECM, can be determined by measur-
able variables in zm on [t0, tf], and have acceptable physical
meanings so that the baseline function of the performance indica-
tor y(t) can be expressed as a function of exogenous functions and
service level functions. Service level functions are often used to ad-
just the baseline at the post-implementation period. Denote the set
of all the service level functions by SSL. In order that a practical en-
ergy project can be measured and verified, the baseline function a
must be a function of exogenous functions and service level func-
tions, and the following definition follows.

Definition 4. The performance indicator y(t) is said to have an
M&V baseline function if it has a measurable baseline function b
for the ECM, and there exist integers ‘ and k, measurable
ci 2 SEx; dj 2 SSL; 1 6 i 6 ‘; 1 6 j 6 k, and a function F such that

bðzm
B ðtÞ; pBðtÞÞ ¼ F c1ðzm

B ðtÞ; pBðtÞÞ; � � � ;
�

c‘ zm
B ðtÞ;pBðtÞ

� �
; d1 zm

B ðtÞ;pBðtÞ
� �

; � � � ; dk zm
B ðtÞ; pBðtÞ

� �� ð7Þ

holds for all t 2 [t0, t1] [ [t2, tf].
Eq. (7) means that the baseline function b can be completely

determined by some exogenous functions and service level func-
tions. To characterize the change of the performance indicator after
the ECM, the performance indicator in the old system is called
baseline performance indicator and is denoted by yB(t), while the
performance indicator in the new system after the ECM is called
the actual performance indicator and is denoted by yA(t).

The following hypothesis is needed in M&V to calculate the im-
pact from the ECM.

Hypothesis 2.

(i) The actual performance indicator yA(t) is measurable on
[t2, tf] in the sense that there exists a function �bðzmðtÞ; pAðtÞÞ
on [t2, tf], such that yAðtÞ ¼ �bðzmðtÞ; pAðtÞÞ for all t 2 [t2, tf].

(ii) The energy system has an M&V baseline function as defined
in (7).

With the help of the above hypothesis, the impact of the ECM to
the performance indicator is calculated below:

yBðtÞ � yAðtÞ ¼ b zm
B ðtÞ; pBðtÞ

� �
� �bðzmðtÞ; pAðtÞÞ

¼ F c1 zm
B ðtÞ; pBðtÞ

� �
; � � � ; c‘ zm

B ðtÞ;pBðtÞ
� �

;
�

d1 zm
B ðtÞ;pBðtÞ

� �
; � � � ; dk zm

B ðtÞ; pBðtÞ
� ��

� �bðzmðtÞ;pAðtÞÞ; t 2 ½t2; tf �: ð8Þ

2.3. M&V modeling

It may happen that only a subset of the variables in zm is phys-
ically measurable in a particular M&V project. This is possible due
to the availability of measuring equipment, and the cost of such a
measurement. For instance, the cost for the measurement of veloc-
ity is higher relative to displacement, etc. Note again that system
performance indicator yB(t) or yA(t) might not be directly measur-
able in a particular M&V project, and the purpose of the M&V prob-
lem is to establish a model which approximates the performance
indicator yB(t) on [t0, t1] [ [t2, tf] and yA(t) on [t2, tf] by the selected
measurable variables from zm, respectively. For this purpose, it is
often necessary to remodel the M&V problem.

Definition 5. For any given � > 0, let x be vectors consisting of
selected variables from zm. Then the M&V modeling problem for
the energy system defined by (1)–(8) is to find functions f(x,p),
g(x,p), n(x,p), and x(x,p) such that

jf ðxðtÞ;pBðtÞÞ � F c1 zm
B ðtÞ;pBðtÞ

� �
; � � � ;

�

c‘ zm
B ðtÞ;pBðtÞ

� �
; d1 zm

B ðtÞ;pBðtÞ
� �

; � � � ;
dk zm

B ðtÞ;pBðtÞ
� ��

j < �; t 2 ½t0; t1�;

jgðxðtÞ; pAðtÞÞ � �bðzmðtÞ; pAðtÞÞj < �; t 2 ½t2; tf �;
nðxðtÞ;pðtÞÞ ¼ 0; t 2 ½t0; t1�;
xðxðtÞ;pðtÞÞ ¼ 0; t 2 ½t2; tf �;

8>>>>>>>>>>><
>>>>>>>>>>>:

ð9Þ

where n and x are vector valued functions representing possible
constraints that x satisfies before and after the ECM.

In (9), the first two inequalities imply that f and g can be used to
approximate the baseline function b and the post-implementation
performance function �b, respectively; and the last two equalities
are the interrelations that variables (x(t),p(t)) will satisfy at differ-
ent time periods. When the M&V model in (9) is built, F and �b can
be approximated by f(x(t),pB(t)) and g(x(t),pA(t)) respectively. For
simplicity, the M&V model is rewritten as

yBðtÞ ¼ f ðxBðtÞ;pBðtÞÞ; t 2 ½t0; t1�;
yAðtÞ ¼ gðxAðtÞ;pAðtÞÞ; t 2 ½t2; tf �;
nðxBðtÞ; ;pBðtÞÞ ¼ 0; t 2 ½t0; t1�;
xðxAðtÞ;pAðtÞÞ ¼ 0; t 2 ½t2; tf �;

8>>><
>>>:

ð10Þ

where xA(t) and xB(t) are defined as follows:

xAðtÞ ¼ xBðtÞ ¼ xðtÞ; t 2 ½t0; t1�;
xAðtÞ ¼ xðtÞ; t 2 ½t0; tf �; and
xBðtÞ equals what the value of xðtÞ would have been
if the ECM was not implemented for t 2 ½t2; tf �:

Now the baseline performance yB(t) on [t2, tf] is approximated as

yBðtÞ ¼ f ðxBðtÞ; pBðtÞÞ; t 2 ½t2; tf �; ð11Þ

and the impact from the ECM is

yBðtÞ � yAðtÞ ¼ f ðxBðtÞ;pBðtÞÞ � gðxAðtÞ; pAðtÞÞ; t 2 ½t2; tf �: ð12Þ

Fig. 2. An illustration of conveyor belt [29].
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2.4. M&V modeling examples

Examples in this subsection are edited from practical M&V
projects.

2.4.1. Physical model
The following example shows that an M&V model can some-

times be obtained directly from physical laws.

Example 1. Conveyor belt systems are widely applied in material
handling. Fig. 2 is an illustration of a conveyor belt. The power
consumption of the conveyor belt system can be calculated as
follows [28]:

PT ¼ VðFH þ FN þ Fst þ FsÞ; ð13Þ

where PT is the conveyor belt power, V is the belt speed, and FH, FN,
Fst, Fs are, respectively, the primary resistance, secondary resistance,
slope resistance and special resistance. Formulae to derive these
resistances can be developed from Newton’s laws. Many parameters
such as frictions are not variable. The above energy model is com-
plex and a simplified M&V model can be built. Ref. [29] builds the
following model using only the belt speed V and the mineral feeding
rate T.

PðV ; TÞ ¼ V2T
3:6
þ h1T2V þ h2V þ h3

T2

V
þ h4T; ð14Þ

where hi are constants, i = 1, 2, 3, 4. Now consider an ECM in which
the belt speed is changed from V0 to 0.5V0 at peak time period
16:00–18:00 while the feeding rate T0 remains constant. Let the
conveyor belt work over the period 7:00–22:00 before the ECM,
and over the period 7:00–24:00 after the ECM to maintain a fixed
amount of production. The purpose of this ECM is to shift the peak
time load only and does not aim to reduce the energy consumption.
Therefore, the performance indicator is the power consumption. Let
zm = x = (V,T), then x(t) � (V0,T0) holds before the ECM, while
xB(t) � (V0,T0) and xA(t) � (0.5V0,T0) hold after the ECM. Therefore,
yBðtÞ ¼ f ðxBðtÞÞ � PðV0; T0Þ; yAðtÞ ¼ gðxAðtÞÞ ¼ �bðzmðtÞÞ � Pð0:5V0; T0Þ.
Then the power savings at peak hours are easily calculated as:

f ðxBðtÞÞ � gðxAðtÞÞ ¼ PðV0; T0Þ � Pð0:5V0; T0Þ

¼ V2
0T0

4:8
þ h1T2

0V0

2
þ h2V0

2
� h3

T2
0

V0
:

In this example, the feeding rate T(t) is an exogenous function in
CðV ; TÞ, V(t) is neither an exogenous nor a service level function,
and the total daily production Q ¼

R
24 h period TðtÞVðtÞdt, as a func-

tion of V(t) and T(t), is the service level function.

2.4.2. Data model
An M&V data model can be built through methods like regres-

sion analysis if there are enough metered data for energy con-
sumption and other major system variables.

Example 2. Table 1 gives the monthly energy consumption (E) of a
laboratory.

Let T be the monthly average temperature, then the relation
between E and T can be obtained from linear regression:
E = h(T) = 75T + 1297. Motion sensors are installed in January

2011 as an ECM to control the lights and air conditioners, and
this ECM is completed at the end of January 2011. The average
ambient temperature and measured energy consumption are 26 �C
and 2900 kW h, respectively, in February 2011; and 24 �C and
2767 kW h, respectively, in March 2011. The objective of M&V for
this ECM is to determine the savings in February and March 2011.
Note that the energy consumption at February and March in 2011
are already known, it is unnecessary to find the function g(x). The
savings for February and March 2011 are calculated as yB(Febru-
ary) � yA(February) = f(26) � 2900 = (75�26 + 1297) � 2900 = 347,
and yB(March) � yA(March) = f(24) � 2767 = (75�24 + 1297) �
2767 = 330.

2.4.3. Stochastic model
Although the above deterministic models can be accurate en-

ough for many applications, stochastic variables are sometimes
not negligible in an energy system, and the M&V model needs to
incorporate these stochastic variables. This can be illustrated by
the following example, while more involved M&V models based
on Gaussian processes can be found in [13].

Example 3. In a coal mine, an ECM project is taken on the
production line to save electrical energy while still maintaining
normal production. This production line includes the transporta-
tion of excavated coal by cars to conveyor belts, then the coal is
sent to either a crusher or a spare stockpile; after crushing, the coal
is further transported by conveyor belts for screening and re-
crushing; screened coal will be transported by conveyor belts to a
production silo for storage, and coal from this production silo will
be transported by conveyor belts to other places for sale. The ECM
includes the installation of variable speed drives for the conveyor
belts and the crusher, and optimal load shifting for energy cost
savings purpose. Meters are installed to measure the total electri-
cal power consumption of the production line. The coal production
and the excavation of raw coal are also monitored. Coal production
at the ith hour, denoted by Ci, and power consumption at the ith
hour, denoted by Pi, are monitored before and after the ECM. To
facilitate the discussion, assume that the pre-implementation
period includes the hours from i = 1 to i = 1000, and the post-
implementation period refers to the hours from i = 1501 to
i = 2500. This implies that the variable speed drives and the
optimal load shifting systems are installed during the hours from
i = 1001 to i = 1500, and during this period the measured data will
be ignored in the M&V calculations. A usual idea for the savings
calculation is to find a linear relation between production and the
power consumption to calculate the baseline, then substitute post-
implementation production data to find what the power con-
sumption would have been without the ECM, and the savings will
be the difference of this calculated power consumption with the
measured power consumption. However, the power consumption
of the crusher depends also on the size of the coal excavated which
is usually a stochastic process and impossible to measure. Note
that the difference in coal sizes will cause the changes of power
consumption in the crusher, and thus the change of the total power
consumption. The objective of M&V is to calculate the power
savings under the post-implementation coal size levels. For
simplicity, the following model is assumed for the power
consumption.

Table 1
Monthly energy consumption of a laboratory in 2010.

Month January February March April May June July August September October November December

T (�C) 27.1 26.5 24.5 23.1 21.5 19.9 17.4 20.1 23.5 24.9 25 26.8
E (kW h) 3526 3126 2834 3020 2947 2649 2806 2844 2904 2874 3414 3626
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Pi ¼ aCi þ bþ ji; i ¼ 1;2; . . . ;1000;
Pj ¼ cCj þ dþ gj; j ¼ 1501;1502; . . . ;2500;

ð15Þ

where a, b, c, d are constants, {ji} and {gi} are zero mean stochastic
processes, and b + ji and d + gj are the impacts from the random
coal size to the power consumption before and after the ECM,
respectively. By the least squares estimates in [30], the constants
a, b, c and d can be found. An example is that a = 180, b = 65,
c = 125, d = 44, and the saving Sj at time j is calculated by

Sj ¼ 180Cj þ 65þ jj � ð125Cj þ 44þ gjÞ � 55Cj þ 21:

Note that the above approximation is reasonable since the
means of {ji} and {gi} are zero.

2.5. Baseline adjustment

Eq. (12) gives the calculation of the savings or impact from the
ECM. This calculation indeed coincides with the definition of base-
line routine adjustment in [1] as explained below.

Fig. 3 from [1] illustrates that at the post-implementation stage,
the increase in the production causes an increase in baseline con-
sumption, and the energy saving is the difference between the ad-
justed baseline and the reporting period energy consumption after
the ECM. [1] further defines the following formula for savings
calculation:

Savings ¼ ðBaseline� Period Use or Demand� Reporting

� Period Use or DemandÞ 	 Adjustments: ð16Þ

Baseline adjustments can be classified as Routine Adjustments
and Non-Routine Adjustments [1]. In a routine adjustment, the base-
lines will be adjusted according to energy-governing factors, such
as production volume or weather, which will change routinely dur-
ing the reporting period. A Non-Routine Adjustment means that
the baselines are adjusted according to energy-governing factors,
such as facility size, design and operation of equipment, which
are not usually expected to change [1]. The energy-governing fac-
tors involved in baseline adjustments are called independent vari-
ables [1], and the baselines are modeled in terms of the
independent variables. Recall that (12) defines the savings as the
difference between the baseline performance yB and the actual per-
formance yA, where yB is calculated by f(xB(t),pB(t)) which equals
what the performance would have been over the period [t2, tf] if
the ECM was not implemented. This is to say, any routine change
of the variable x and parameter p on [t2, tf] is already included in
f(xB(t),pB(t)), therefore the routine baseline adjustment is automat-
ically included by the savings calculation f(xB(t),pB(t)) �
g(xA(t),pA(t)).

Non-routine adjustments are applicable to the cases when (x,p)
cannot represent all energy-governing factors, or one of the func-
tions, f(x,p) and g(x,p), cannot adequately and accurately describe
the system performance y. This is to say, if the variables in (x,p)
and/or the functional relationships of f(x,p) or g(x,p) are changed,
then a non-routine adjustment is needed. However, if (x, p) is rede-
fined to include all variables which cause the non-routine changes,
then the system can be re-modeled and the newly defined baseline
function f(x,p) is still able to characterize the baseline.

Fig. 3. Baseline and its adjustment [1].

Table 2
Energy related data in a production process.

Month Energy (kW h) Temperature
(�C)

Production
(ton)

Water (ton)

1 55,361 20.5 240 55
2 47,183 22 180 48
3 51,796 20.9 210 50
4 48,015 19 187 46
5 52,366 15 220 53
6 59,409 13 250 58
7 64,096 10.5 255 60
8 56,713 14.7 240 56
9 48,181 20.3 220 47

10 50,737 21.4 200 51
11 46,275 21 175 45
12 45,235 22.8 165 47

Table 3
Comparison of linear regression models.

x1 x2 x3 x1 & x2 x2 & x3 x1 & x3 x1 & x2 & x3

R2 0.753 0.848 0.938 0.901 0.951 0.954 0.962
SEy 3019 2368 1510 2017 1415 1370 1318
Cm 10 100 200 110 300 210 310

252 X. Xia, J. Zhang / Applied Energy 111 (2013) 247–256



Author's personal copy

The following example shows that there might be several M&V
plans available for an M&V project. Following the requests of con-
strained budget and M&V precision, a proper M&V plan can be cho-
sen by using the functional relations of f(x,p) and g(x,p) in
Definition 5. Routine and non-routine baseline adjustments can
also be characterized by this mathematical description.

Example 4. Table 2 gives the 12-month energy consumption
baseline data for a production process and the corresponding
temperature, production and the amount of water needed for
cooling purpose. These data will be needed to build a baseline in
order to measure and verify the saving from a future ECM. In order
to write the monthly energy consumption (y) as a function of
temperature (x1), production (x2), and/or the amount of water
needed for cooling (x3), linear regression is applied. The coefficient
of determination (R2) and the standard error of the energy
consumption (SEy) are used to evaluate the regression results.
There are several choices for building the linear regression model
because the energy consumption data y can be used together with
all or any combination of x1,x2, and x3. These different choices are
compared in Table 3, where Cm is the cost in US dollars ($) to obtain
the data for the corresponding choice. If the budget for the M&V
modeling is only $50, then temperature can be used together with
energy data for the linear regression. If the budget is increased to
$150, with an extra requirement that R2 must be 0.9 at least, then

temperature and production can be measured and the relation of
energy consumption with respect to temperature and production
can be found. If there is no constraint on budget, but the precision
must be as high as possible, then the measurement on all the three
variables will be performed. Assume that the M&V inspector
eventually measures all the x1,x2,x3 to obtain the model
y = �271.36x1 + 39.66x2 + 720.09x3 + 11747.02. Assume further
that the production line is replaced by an energy efficient one
which still uses certain amount of water for cooling. A routine
adjusted baseline can be obtained by substituting the measured
post-implementation data of x1,x2,x3 into y = �271.36x1 + 39.66-
x2 + 720.09x3 + 11747.02. If, however, the ECM is to replace the
production line by an advanced one which does not need any
water for cooling, then the non-routine baseline adjustment
method is needed, and x3 is removed from the baseline model,
the corresponding model obtained by linear regression is
y = �536.01x1 + 117.99x2 + 36996.14.

2.6. M&V options

The mathematical description of M&V can also be applied to
determine whether the IPMVP Option A or B for retrofit isolation
needs to be chosen. Assume that a plant consists of two intercon-
nected energy subsystems, subsystem 1 and subsystem 2, and an
ECM has been implemented on subsystem 1. For simplicity, as-
sume further the M&V models for the two subsystems are linear
and constraints on the variables are ignored:

f1ðx1; x2Þ ¼ a11x1 þ a12x2 þ a13; t 2 ½t0; t1� [ ½t2; tf �;
g1ðx1; x2Þ ¼ b11x1 þ b12x2 þ b13; t 2 ½t2; tf �;
f2ðx1; x2Þ ¼ a21x1 þ a22x2 þ a23; t 2 ½t0; t1� [ ½t2; tf �;
g2ðx1; x2Þ ¼ b21x1 þ b22x2 þ b23; t 2 ½t2; tf �;

8>>><
>>>:

ð17Þ

where x1 is the measurable variable of the subsystem 1, f1 and g1 on
[t2, tf] are the baseline and post-implementation performance indi-
cators for subsystem 1 respectively, and similarly x2, f2 and g2 are
the corresponding notations for subsystem 2. Then the energy mod-
el in (17) can be used to select the IPMVP Options A and B, or C and
D as shown in the following proposition.

Proposition 1. Consider the two energy subsystems in (17), assume
a21 = 0, b21 = 0, then Option A or B is applicable to subsystem 1, that is
to say, the M&V for the whole plant can be done at subsystem 1 and
the savings from the whole system equal the saving from subsystem 1.

When a21 = 0 and b21 = 0, functions f2 and g2 in Proposition 1 do
not contain the variable x1, hence, subsystem 2 is not affected by
the ECM at subsystem 1, and subsystem 1 can be isolated from
subsystem 2 which corresponds to Option A or B. This proposition
can be illustrated by Fig. 4. Note that if f2 and g2 depend on the var-
iable x1, then subsystems 1 and 2 cannot be isolated, and Option C
or D has to be applied, see Fig. 5 for illustration.

The following is an example for Proposition 1.

Example 5. Consider an energy system which consists of two
subsystems. The two subsystems at baseline stage are modeled as

y1 ¼ a11x1 þ a12x2 þ b1u; y2 ¼ a21x1 þ a22x2 þ b2u:

An ECM is implemented at subsystem 1, and its savings must be
found through M&V. At the baseline stage, 12 metered data for
(x1,x2,y1,y2) are available, see Table 4. At the post-implementation
stage, there is only one measurement taken. In this case, the sav-
ings equal the difference between the baseline and the measured
post-implementation system performance y1 + y2.

Table 4
Measured data.

x1 x2 y1 y2

35 28 3197 2264
34 27 3134 2225
31 27 3053 2108
37 29 3287 2342
37 25 3143 2342
36 26 3152 2303
38 24 3134 2381
36 21 2972 2303
32 27 3080 2147
32 28 3116 2147
38 26 3206 2381
36 22 3008 2303

Fig. 5. Selection of Option C or D.

Fig. 4. Selection of Option A or B.
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It follows from a linear regression that y1 = 36x1 + 27x2 + 1244,
y2 = 3.50734 
 10�15x1 + 39x2 + 899. The coefficient
3.50734 
 10�15 is approximately 0, therefore, it can be assumed
that y2 is not affected by x1. Then measurement can be taken only
at subsystem 1, which corresponds to the selection of Option A or B
so that subsystem 1 is isolated from the whole system.

The following proposition follows directly from the definitions
of Options A, B, C, and D.

Proposition 2. Consider the energy system (1)–(8) and the corre-
sponding M&V model (10).

(i) Assume that retrofit isolation, namely, Option A or B, will be the
M&V methodology. If x is a proper subset of zm, i.e., x – zm, then
Option A is selected; otherwise x = zm and Option B is selected.

(ii) Assume that Option C or D will be the M&V methodology. If the
approximated measurable baseline in (11) exists, then Option C
can be selected, otherwise Option D is selected.

3. Main results

With the above discussions on the mathematical descriptions of
M&V, the M&V cost and M&V plan can be optimized through the
solution of an optimization problem.

M&V cost is usually recovered from the corresponding project
savings, and it must be minimized so that project investors can
have more energy cost savings. As a guideline, [1] requests that
the average annual M&V cost should be less than 10% of the aver-
age annual saving being assessed. Ref. [1] shows that M&V cost de-
pends on many factors. These include, but are not limited to, the
amount and complexity of the measurement equipment; sampling
sizes; M&V options; quantity, complexity and interactions of en-
ergy efficiency measures; number and complexity of independent
variables; accuracy requirement; and the experience and qualifica-
tions of the M&V inspectors. Assume that x in model (10) has in-
cluded all the variables affecting M&V cost. The measurement
cost is usually easy to quantify, while the labor cost is difficult to
quantify since it depends on the time spent by the M&V inspectors
and some other unmeasurable factors such as knowledge, skills
and experience. For simplicity, only measurement cost is consid-
ered in this paper.

The purpose of an M&V plan is to select a number of variables
from x for measurement, and to use the metered data to approxi-
mate the performance indicator y and calculate the impact from
the ECM. Note that if two variables x1 and x2 need to be measured
in an M&V project, then the cost to measure x1 and x2 simulta-
neously, denoted by C{1,2}, might be different from the total cost
to measure x1 and x2 separately. This is to say, C{1,2} may not equal
C1 + C2, where C1 and C2 are the costs to measure x1 and x2 respec-
tively. In many examples, C{1, 2} is less than or equal to C1 + C2. For
an M&V plan, assume that the vector xa :¼ ðxi1 ; xi2 , � � � , xik Þ

T with
component variables from x is measured, then the corresponding
cost for measurement over the period [t0,t] is denoted by Ca(-
t):¼Ca(xa, t), where a = (i1, i2, . . . , ik) is a multi-index with 1 6 i1 < -
i2 < . . . < ik 6 n00, and n00 is the dimension of x.

In Example 1, the function x = (V,T), and the cost functions C1(t)
and C2(t) are, respectively, the costs to measure and process the
values of V and T during the time period [t0, t]. The cost function
C1,2(t) will be the cost for the measurement of both V and T.

Definition 6. Consider the M&V problem in (10), a given upper
bound U for available M&V budget, and any �1 > 0, this M&V
problem is said to have a feasible M&V plan with precision �1 and
an allowable M&V cost if there exist a multi-index a = (i1, i2, . . . , ik),
1 6 i1 < i2 < . . . < ik 6 n00, and functions

Gðxa;pÞ; t 2 ½t0; t1� [ ½t2; tf �;
Hðxa;pÞ; t 2 ½t2; tf �;
Nðxa; pÞ; t 2 ½t0; t1�;
Xðxa; pÞ; t 2 ½t2; tf �;

8>>>><
>>>>:

ð18Þ

such that

jf ðxBðtÞ;pBðtÞÞ � GðxaðtÞ;pBðtÞÞj < �1; t 2 ½t0; t1�;
jgðxAðtÞ;pAðtÞÞ � HðxaðtÞ; pAðtÞÞj < �1; t 2 ½t2; tf �;
NðxaðtÞ;pBðtÞÞ ¼ 0; t 2 ½t0; t1�;
XðxaðtÞ;pAðtÞÞ ¼ 0; t 2 ½t2; tf �;
Caðtf Þ :¼ Caðxa; tf Þ < U;

ð19Þ

where xa ¼ ðxi1 ; xi2 ; . . . ; xik Þ, and N and X define the constraints that
xa satisfies. Denote this M&V plan by MðG;H;N;X; �1;aÞ.

This definition implies that an M&V plan needs to take advan-
tage of the measurable variable x to construct the functions G, H,
N, and X in (18) and then approximate the system to a precision
of �1 within the available budget. The first and second inequalities
in (19) imply that functions G and H need to be found by the M&V
plan to approximate the baseline function f and post-implementa-
tion function g, respective. The third and fourth equalities in (19)
mean that the measured variables xa and system parameter p(t)
will satisfy necessary constraints defined by N and X. The last
inequality in (19) ensures that the M&V cost is within the allow-
able budget.

Definition 7. Given �1 > 0, letSð�1;UÞ be the set of all the M&V plan in
the form of (18) for the M&V problem (10). An M&V plan
M� G�;H�;N�R;X�; ��1;a

�� �
is called optimal in the sense of performance

precision and measurement cost if it is the optimal solution within
Sð�1;UÞ for the following multi-objective minimization problem:

min
R

t2½t0 ;t1 �
jf ðxBðtÞ; pBðtÞÞ � GðxaðtÞ;pBðtÞÞjdt;

min
R tf

t2
jgðxAðtÞ; pAðtÞÞ � HðxaðtÞ;pAðtÞÞjdt;

min Caðxa; tf Þ:

8>><
>>:

ð20Þ

The first minimization objective in (20) is to minimize the
approximation errors of G to the baseline function f over the pre-
implementation period [t0, t1], the second objective is to minimize
the approximation errors of H to the actual performance function g
over the post-implementation period [t2, tf], and the last objective
is to minimize the M&V cost. Note that the variables in the optimi-
zation problem (20) are not any usual real variables, but the index
a and the functions G(xa), H(xa), N(xa), and X(xa). Therefore, (20) is
a special problem in calculus of variation or optimal control.

After an optimal or near optimal M&V plan is determined, then
the baseline and energy savings can be reported, and the saving is
G(xa(t),pB(t)) � H(xa(t),pA(t)). The following is an example for the
optimal M&V plan modeling.

Example 6. Consider an ECM in an office building which installs
intelligent switches to switch off air conditioners and lights when
people leave the office rooms for more than 15 min. Lights will be
switched on immediately when people come back, and the air
conditioners are switched on only if people are back and also the
room temperature or humidity is deviated from the set point. The
building has 200 office rooms, and all the rooms will install these
intelligent switches. In the M&V project, meters will be installed at
selected rooms to monitor power consumption. Ambient temper-
ature and humidity data will be obtained from weather services.
Through the energy audit, it is found that each room has an air
conditioner, and all air conditioners have the same make and
technical specifications. The power consumption model for a single
air conditioner is:
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P ¼ f ðT;H;uÞ;

where P is the power, T is the temperature, H is the humidity, u is
the on/off status of the air conditioner, and f is a function. For sim-
plicity, one can assume a simplified linear model as

P ¼ auþ bT þ cH þ d;

where a, b, c, d are constants. With the measurement on the pre-
implementation and post-implementation power consumptions,
the savings of a single room can be determined by finding the coef-
ficients a, b, c, d and calculating the corresponding baseline at the
post-implementation stage. However, the impact of the 200 intelli-
gent switches cannot be simply estimated by metering only one
room because that different room occupants may have different
job duties and thus different energy usage profiles. Due to the high
cost of metering, it is impossible to install a meter for each of the
200 rooms. Market investigation shows that each meter costs
$200. It is obvious that the M&V accuracy depends on meter accu-
racy, the number of meters installed and also whether the metered
rooms are representative enough for the remaining un-metered
rooms. For simplicity, the meter inaccuracy is ignored and only
the sampling inaccuracy is discussed. Assume that the 200 rooms
are classified into Group 1, Group 2, Group 3, and Group 4 in terms
of the job duties of the room occupants such as administrative,
technical, financial, and managerial. Assume further that there are
si rooms in Group i with s1 = 90, s2 = 80, s3 = 20, s4 = 10. The M&V
saving calculations will be 100% accurate if each room installs a me-
ter. The saving calculations will be at least 0.5% accurate if only 1 m
is installed. Now assume that li meters are installed in Group i, then
the M&V accuracy is li

si
100% for Group i, and is l1 l2 l3 l4

s1s2s3s4
100% for the

overall 200 rooms. Since the total metering cost is 200
P4

i¼1li, the
following multi-objective optimization model for simple M&V plans
is obtained.

min 200
X4

i¼1

li

max
l1l2l3l4

s1s2s3s4
%

subject to 200
X4

i¼1

li 6 B;

l1l2l3l4

s1s2s3s4
P 70%;

where B is the maximum budget for the M&V project, and 70% is the
required sampling accuracy. The optimal solution of this problem
will give the number of meters installed in each group of rooms,
and thus an optimal M&V plan is obtained.

The above example illustrates an optimization model to deter-
mine an optimal M&V plan. This idea has been successfully applied
in a large scale lighting retrofit project to find the optimal metering
plan [31].

4. Conclusions

By providing a mathematical description of the measurement
and verification (M&V) process for energy efficiency improvement,
this paper endeavors to alter the perception that M&V is a pure
engineering practice, and establish it as a rigorous science. With
this mathematical description, the M&V model and M&V plan are
defined by mathematical functions. The baseline function is further
characterized as a function of the exogenous functions and service
level functions. Criteria to select M&V options are given under a
control system framework. Optimal M&V plan is also defined as a
solution of an optimization problem in calculus of variations and
optimal control. Examples show how the M&V models can be de-

rived, and how an optimal M&V plan can be obtained. For future
work, uncertainties other than sampling inaccuracy will be in-
cluded in the optimal M&V plan model, and practical applications
will also be studied.
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