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� A new lamp population survival model in the form of a difference equation.
� The metering cost minimisation model considers inflation and sample weighting.
� The sampling design conforms to CDM requirements of 90/10 accuracy.
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a b s t r a c t

An improved model for reducing the cost of long-term monitoring in Clean Development Mechanism
(CDM) lighting retrofit projects is proposed. Cost-effective longitudinal sampling designs use the mini-
mum numbers of meters required to report yearly savings at the 90% confidence and 10% relative preci-
sion level for duration of the project (up to 10 years) as stipulated by the CDM. Improvements to the
existing model include a new non-linear Compact Fluorescent Lamp population decay model based on
the Polish Efficient Lighting Project, and a cumulative sampling function modified to weight samples
exponentially by recency. An economic model altering the cost function to a net present value calculation
is also incorporated. The search space for such sampling models is investigated and found to be discon-
tinuous and stepped, requiring a heuristic for optimisation; in this case the Genetic Algorithm was used.
Assuming an exponential smoothing rate of 0.25, an inflation rate of 6.44%, and an interest rate of 10%,
results show that sampling should be more evenly distributed over the study duration than is currently
considered optimal, and that the proposed improvements in model accuracy increase monitoring costs by
21.4% in present value terms.

� 2014 Elsevier Ltd. All rights reserved.

1. Measurement and Verification in a South African context

South Africa’s national electricity utility, Eskom, oversees more
than 700 Energy Efficiency (EE) and Demand Side Management
(DSM) projects, and also supplies more than 95% of the electricity
used in the country – which is over 45% of that used on the conti-
nent [1]. In order to ensure project sustainability, the savings rea-
lised by these projects need to be measured and verified by an
independent accredited Measurement and Verification (M&V)
body for a number of years [2].

This study focuses on monitoring plans for residential lighting
projects where old incandescent lamps are replaced with energy
saving Compact Fluorescent Lamps (CFLs). M&V engineers require
two kinds of data to calculate energy usage in such projects: pop-
ulation survival data, and daily energy use data [3]. Energy usage

data are obtained from electricity meters installed in a statistically
representative number of lamps, whilst population survival data
are collected through surveys. For this study, population survival
data are assumed to be known and thus no sampling design will
be devised for this component of energy use, although a population
decay model will be proposed.

International guidelines [4] suggest that M&V costs should not
exceed 10% of savings, but the time horizons on these projects span
many years; for these projects to be eligible under the United
Nations Framework Convention for Climate Change (UNFCCC)
Clean Development Mechanism (CDM), the energy saving perfor-
mance of lighting projects should be tracked for up to 10 years,
whilst other projects may be tracked for up to 21 years. Certain
stringent statistical requirements on measured data also apply:
for projects to be eligible for recognition under CDM guidelines,
key parameters for calculating savings are to be reported at a sta-
tistical confidence level of 90%, and a relative precision around the
mean of 10%, known as the 90/10 criterion. Although other leading
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guidelines recommend an 80/20 level [5–7], the 90/10 criterion
will be used for this study. Due to the long planning horizons,
non-optimal metering may therefore affect savings detrimentally,
or may report savings with inadequate confidence and precision.
As such, cost effective longitudinal sampling designs for energy
efficiency projects should form an integral part of long-term
M&V plans.

Lighting projects are chosen because these are relatively simple
to model. Projects involve large populations adequately described
by simple statistics and binomial working or failed states.

Research grounding the theory of M&V is underway [8], but
there is a need to establish best practice by the application of sta-
tistics to the specific challenges in energy monitoring and perfor-
mance evaluation. This paper proposes certain improvements on
current models for longitudinal meter sampling designs to ensure
cost effective and accurate performance tracking.

2. Performance tracking in literature

2.1. General performance tracking literature

Very little literature pertaining to this specific problem exists.
The International Performance Measurement and Verification Pro-
tocol (IPMVP) [4], for example, does advise that the 90/10 criterion

be used, but does not provide specific guidance regarding
implementation.

Both the IPMVP and The American Society for Heating, Refriger-
ation and Air Conditioning Engineers’ (ASHRAE) Guideline on Mea-
surement of Energy and Demand Savings [6] make a useful
distinction between the different kinds of uncertainty encountered
during an M&V study. Measurement uncertainty occurs due to
equipment inaccuracy: incorrect selection, calibration, installation
or operation. Modelling uncertainty arises from inappropriate
mathematical models being used: not considering all covariates,
for example. Sampling uncertainty pertains to quantifiable uncer-
tainties arising from not measuring the whole population. This
study will focus on managing the latter kind of uncertainty in
the context of project cost.

The ASHRAE guideline is a comprehensive technical resource.
This guideline uses the fractional savings approach [9] and war-
rants further investigation for application to M&V. However, it can-
not be used for the problem at hand since the CDM guideline
specifies that the standard confidence/precision approach is to be
followed.

The UNFCCC AM0046 Guideline [10] for monitoring EE lamp
retrofit projects does provide a statistical sampling framework,
but it has been observed that this framework is not practical, and
adoption in industry has thus been poor [11]. Moreover, the

Nomenclature

Symbols
A population difference equation matrix
B number of backup meters
E daily energy use
X sample mean; in this study a random variable in distri-

bution N (li;r2
i =ni)

P cumulative relative precision
H average annual lamp operating hours
I last reporting year
L lamp rated lifetime
N lamp population size
Y percentage of lamps left at rated lifetime
Z Standard score of cumulative confidence
a meter purchasing cost per unit
b population difference equation vector
b meter installation cost per unit
c meter maintenance cost per unit per month
d Consumer price index (inflation rate)
n number of observations after finite population adjust-

ment
n0 number of effective observations
n0 number of observations before population adjustment
p precision relative to the mean
r Minimum Attractive Rate of Return, or investment

interest rate
u control input
x population difference equation parameter vector
�x sample mean
z standard score of normal distribution
C true cumulative standard deviation on energy use
U surviving proportion of lamp population
�v cumulative sample mean
a population decay rated lifetime parameter
b population decay slope parameter
c population decay initial value parameter
/ PELP study data
� exponential decay factor
g project inception cost

h true cumulative mean energy use
l true mean energy use in a given year
q lag 1 autocorrelation coefficient
r true standard deviation on energy use in a given year
x project operational cost

Abbreviations
ASHRAE American Society for Heating, Refrigeration and Air-

conditioning Engineers
AMS Approved Methodology for Small scale
CDM Clean Development Mechanism
CFL Compact Fluorescent Lamp
CL Confidence Limit
CPI Consumer Price Inflation
CV Coefficient of Variance
IPMVP International Performance Measurement and Verifica-

tion Protocol
GA Genetic Algorithm
M&V Measurement and Verification
MSE Mean Squared Error
PELP Polish Efficient Lighting Project
R South African Rand
TolCon Tolerance on Constraints
TolFun Tolerance on Function values
UNFCCC United Nations Framework Convention for Climate

Change
V Volts
W Watts

Subscripts
B baseline
J Number of groups
j group counter
k year counter
t time instant in years
0 year 0
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framework aims at a sound sampling and recording protocol,
rather than a treatment of the statistical computation methods.

Recently, more focused studies of the problem have been con-
ducted, specifically regarding the replacement of incandescent
lamps with Compact Fluorescent Lamps (CFLs). The most notable
pertains to two-sample meter cost minimisation models, where a
CFL and a Light Emitting Diode (LED) group are combined in a
stratified random sample weighted according to population sizes
and solved using frequentist statistics [12]. This model was then
applied to a case of a single population over multiple years, where
population decay is also considered [13]. It was assumed that sam-
ples are independently and identically distributed (i.i.d.) because
meters are placed in different households. However, this tacitly
assumes that samples from different years, taken by the same
meter in the same household, are independent. Such time-series
data are usually autocorrelated and not independent unless it is
a Gaussian ‘white noise’ process [14]. It has been shown that auto-
correlation does exist in hourly and daily energy use data [15], but
if observations have constant variance and a lag 1 autocorrelation
of q is assumed (as has been in literature [9]), then the number of
effective observations n0 may be modified to [16]:

n0 ¼ n
1� q

q
ð1Þ

However, given that the nature of the autocorrelation is
unknown during the modelling phase, a simple model for i.i.d.
measurements may be posited as a starting point, with a recom-
mendation that future work investigate the possibility of autocor-
relation and employ the concomitant statistical tools. Therefore
the two aforementioned studies will be used as a basis for this con-
tribution, and expanded to incorporate more advanced population
decay, weighting, and economic considerations.

2.2. Literature concerning population models

Let Ut express the proportion of functioning lamps surviving at
time t, where N0 denotes the initial population size:

Ut ¼
Nt

N0
: ð2Þ

Various models for population decay have been proposed, the sim-
plest being exponential decay [17]:

Ut ¼ e�t ð3Þ

Such a model is not realistic however, as it implies that the
product has a constant hazard rate, (denoting the failure rate for
non-repairable items). This is not the case for lamps as they exhibit
an ageing property where older CFLs are more likely to fail at any
given point in time than newer CFLs.

The second population decay model considered is that in the
AMS-II.J CDM Guideline, as implemented in current studies on
which this paper is based [13]. It is a straight line graph where H
denotes annual operating hours and i denotes years. Y is the per-
centage of lamps left at the rated lifetime L (Y ¼ 50 is
recommended):

Nt ¼
N0 � i� H � 100�Y

100�L for i� H < L

0 for i� H P L

(
ð4Þ

The California Public Utilities Commission (CPUC) requires that sur-
vival analysis techniques be used to assess the effective useful life
(EUL) of devices in retrofit projects [18]. These survival curves have
sigmoid shapes; a phenomenon confirmed by empirical studies. For
example, the Polish Efficient Lighting Project (PELP), conducted by
the World Bank through the International Finance Corporation,
tracked 1.2 million lamps over a number of years in order to assess

various facets of such retrofit projects [19]. The results correlated
with another study conducted by the contractor in the New York
area [20], and it was found that the decay rate was approximately
6.2% p.a. The result is a logistic population decay curve shown in
Fig. 1.

This study is regarded as having the most reliable data for the
South African context [21], and it has been proposed that the fol-
lowing model be fitted to these data:

Ut ¼
1

1þ et�L
: ð5Þ

This model is part of a family of logistic populations first pro-
posed by Verhulst [22], and take the form

Ut ¼
1

1þ e�t
: ð6Þ

These models were shown to describe the limiting effect that
the carrying capacity of the land has on population growth, where
population growth was seen as exponential and unlimited previ-
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Fig. 1. PELP data [19].
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Fig. 2. Decay curves from Eq. (5) for different lamp lives L.
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ously. It may also be used as a decay model by altering the sign of
the exponent. Since the standard logistic equation is a symmetri-
cally odd function centred around 0, the �L term was introduced
in order to accommodate different lamp lives as is illustrated in
Fig. 2.

3. Improved population decay model

3.1. Decay model formulation

The proposed improvement to Eq. (5) is similar to Lotka’s refor-
mulation of Verhulst’s model as a dynamic equation with addi-
tional parameters [23]. As previous work suggests, the difference
equation form of this decay model is especially applicable to the
engineering context [24].

It is proposed that CFL decay be described by

dU
dt
¼ �bUð1� cUÞ: ð7Þ

In discrete form it is written as

Ukþ1 ¼ bcU2
kDt � bUkDt þUk; ð8Þ

and in general form:

Ut ¼
1

cþ aebt
; ð9Þ

which could be written as:

Ut ¼
1

cþ ebt�L
; ð10Þ

where

a ¼ e�L: ð11Þ

It is apparent that Eq. (7) is similar to Eq. (5) for b ¼ c ¼ 1. However,
the parameter b in Eq. (7) allows different decay rates to be mod-
elled as shown in Fig. 3. This is important because it is not necessar-
ily the case that the decay rate is close to unity (even though this is
shown to be the case for the PELP study [19]). With different oper-
ating conditions, different manufacturing quality control, or differ-
ent technologies, it is expected that the assumption of b ¼ 1
would not necessarily hold. A steeper slope would indicate a smal-
ler manufacturing and operating variance, with more lamps failing

closer to the mean lamp life. Thus the parameter b increases the
applicability of the model significantly, and it is possible that other
technologies may also be modelled in this way.

Parameter c is approximately inversely proportional to the
starting population because at t ¼ 0,

U0 ¼
1

cþ e�L
; ð12Þ

but for any realistic L,

U0 �
1
c
¼ U0: ð13Þ

Although c ¼ 1 should always be the case, it has been found to vary.
These variations may be ascribed to project phenomena rather than
true population behaviour. For example, Free Ridership (where sub-
sidised CFLs would have been installed without the subsidy) may
cause some units to be installed at a later date than project incep-
tion, since they are stored by home owners first. This would alter
the initial population in a way that can be accounted for by c. How-
ever, c cannot be used to account for a whole monitoring project
starting after t ¼ 0, e.g. setting c ¼ 2 if project monitoring starts
where N ¼ 0:5, as the decay rate dN

dt would approach 0 asymptoti-
cally where it should be maximum as at t ¼ 6:8 in Fig. 4). Also, it
may not be used to compensate for non-homogeneous populations,
for example where only half of the population is composed of CFLs.
In such a case, stratified random sampling should be used.

The difference equation formulation means that fewer data
points need to be used for the identification of system parameters,
since the parameter L need not be determined. This also means
that the lamp installation date is not relevant for determining
the state of the system at t ¼ kþ 1, as Ukþ1 is not a function of t,
but only of Uk and parameters b and c.

The discrete form of the equation formulated in Eq. (8) holds
three advantages [24]: First, estimated savings at Ukþ1 informs
the project manager of the feasibility of continuing the project.
Second, since survival data are binomially distributed, and for
binomial data the sample size n ¼ f ðUÞ, this provides information
about the estimated population size (and thus required sample
size) at the next time step. Third, control techniques may be
applied to the problem of lamp replacement by reformulating Eq.
(8) as

Ukþ1 ¼ bcU2
k � bUk þUk þ uk ð14Þ
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Fig. 3. Decay curves for Eq. (10) using L ¼ 5; c ¼ 1, and varying b.
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Fig. 4. Equation Eq. (8) least-squares fit to PELP data.
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for Dt ¼ 1, where uk is a control input. This finds practical applica-
tion in a scenario where a project developer is paid by Eskom based
on the savings realised in a certain EE project. The developer would
then want to optimise his control inputs (replacing lamps) over the
duration of the project in order to ensure that he maximises profit.

3.2. System identification

System parameters b and c can be identified using a least-
squares approach with decision variables b and c. Let /t be the sur-
viving proportion of lamps at time t in the PELP study. For year I as
the last reporting year, the objective function is defined as

min
XI

t¼2

ðUt � /tÞ
2
; ð15Þ

where Ut is defined by Eq. (8). The function considers data from
t ¼ 2 and onward since t ¼ 1 is assumed to be known such that
U1 ¼ /1. It is found that the PELP data can be characterised by
b ¼ 0:921 and c ¼ 0:986, with a Mean Squared Error (MSE) of
0.0015. The result is shown in Fig. 4. By way of comparison, the
optimal least-squares fit of Eq. (5) yields L ¼ 6:866, with an MSE
of 0.0368.

It is noted that in practice, parameters b and c may not be
known accurately beforehand. Let Dk be the data available at time
k, in this case the sample population survival proportions. Then:

ðUkþ1jDkÞ ¼ f ðUk;bk; ckÞ; ð16Þ

where bk and ck are determined incrementally at each time t ¼ k so
that

ðbk; ckÞ ¼ ðb; cjDkÞ: ð17Þ

Since Eq. (8) has two parameters instead of one, more data are
needed to define Eq. (8) than would be the case for Eq. (5). How-
ever, it is argued that a two-parameter model such as Eq. (8) is
not merely convenient, but necessary. For example, Eq. (5) assumes
b ¼ 1, i.e. all populations decay at the same rate (incidentally the
PELP population decay rate). As such, it appears accurate for pre-
dicting the decay of the PELP data, but would not be able to predict
other population survival curves satisfactorily. For this reason b
should be a variable.

The accuracy of Eq. (16) would be improved if b and c are
known or expected from previous studies. Since c � 1 for all cases,
it is recommended that this assumption be made in the early
stages of project monitoring with unknown parameters. This
reduces the number of unknown parameters to one, thereby reduc-
ing the amount of data needed to define the model accurately.

In future, population decay models may be improved by taking
sample sizes into account. In the current context Dk only contains
the proportion of lamps surviving at time t according to a sampling
survey taken. However, Dk can also include more information such
as the sizes of samples corresponding to each population propor-
tion, as well as censoring information. Since larger samples should
carry more weight when calculating model parameters than smal-
ler samples, more accurate parameter estimation can be achieved.
Such considerations can be incorporated by the use of conditional
probability methods.

4. Sampling model formulation

When calculating energy savings for a lighting retrofit project
with a total number of groups J there are two main components
that constitute energy use. The first is the average daily energy
use per device Ej, and the second number of surviving devices Nj

[25]. Taking a baseline energy use per device EB, this may then
be expressed as

EB ¼
XJ

j¼1

ðNjEjÞ: ð18Þ

Nj is affected by population decay as described in Section 2.2,
and Ej is determined by metering measurements. Meter measure-
ments will be the focus of the rest of this paper.

A statistical model for describing sequential metering samples
has been described [13]. As the aforementioned model was used
as the basis for the current research, the assumptions and key
equations will be reproduced below.

The assumptions on which this model is based have been stated
as [13]:

1. Metering data are independent and normally distributed.
2. The lamp population does not decay during the CDM-spec-

ified 90-day baseline period.
3. During the reporting period maintenance is performed on

active meters only.
There are also additional latent assumptions in the afore-
mentioned model. It is recommended that the sensitivity
of the model to these assumptions be investigated in a
future study:

4. The mean energy use (the integral of the daily load profile)
is stationary throughout the study.

5. Samples of the same population, taken in different years,
can be treated as independent.

6. Statistical power (Type II-errors) is not considered in calcu-
lating sample size.

7. The meter purchasing cost is constant in future value
terms. I.e., R4032 (South African Rand) would purchase a
meter in any given year. ($374.37, assuming an exchange
rate of R10.77 to the United States Dollar).

The assumption of a stationary mean is potentially significant.
First it should be noted that since the same lamps are being mea-
sured repeatedly, continuity is expected. Seasonal effects should be
visible in the month-to-month energy use, however, since annual
energy use is considered for calculation, they may be neglected.
At a finer surveillance resolution, a model correcting for seasonal-
ity and other periodic autocorrelative effects should be imple-
mented. Assuming a stationary mean for modelling purposes
simplifies calculation, and is the preferred choice in the absence
of data to the contrary. It would also be possible for account for
varying parameters during actual studies, using non-routine
adjustments. This is because the sampling interval allows for recal-
culation to be done where Eq. (19) could be rewritten as a less ele-
gant summation with different mean and standard deviations for
different years. Likewise, hK and CK below may be adjusted when
this is deemed necessary.

4.1. Calculation of mean and variance

Because of the assumption of a stationary mean in 5 above, the
cumulative sample mean �v varies according to

�vK � Normal hK ;C
2
K

h i
; ð19Þ

where the true mean hK is defined as

hK ¼
PK

i¼1NiliPK
i¼1Ni

; ð20Þ

and the cumulative sampling standard deviation is defined as

CK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK

i¼1

r2
i

ni
� N2

iPK
i¼1Ni

� �2

vuuut : ð21Þ
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Because of the assumption of a stationary mean, samples taken
at different times may be combined to give a cumulative sample
size with which calculations may be done.

Assuming that a given sampling mean for year i follows the dis-
tribution Xi ¼ N li;r2

i =ni
� �

, the cumulative sample mean in year K
is defined as

�vK ¼
PK

i¼1NiXiPK
i¼1Ni

: ð22Þ

By substituting the variables defined above into the standard
score transformation

z ¼
�x� l
r=

ffiffiffi
n
p ð23Þ

and rearranging, we find that

ZK ¼
�vK � hK

CK
ð24Þ

and

PK ¼
�vK � hK

�vK
ð25Þ

where PK and ZK denote the cumulative precision and standard
scores up to the Kth crediting year.

Practically, however, the true mean l and true standard devia-
tion r are not known; only the sampling mean �x and sampling
standard deviation s are known. In order to do simulations for
meter placement planning, these values have to be assumed. By
realising that if the coefficient of variation, CV, is defined as

CV ¼ r
l
; ð26Þ

then

s ¼ �xCV ; ð27Þ

Substituting Eq. (27) into Eq. (23), the way in which it has been
formulated in previous studies [13] has been that for year i,

Zi ¼

Pi
j¼1

Njzjffiffiffi
nj
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi

j¼1
N2

j

nj

r ð28Þ

and

Pi ¼

Pi
j¼1

CVjNjzjffiffiffi
nj
pPi

j¼1Nj

: ð29Þ

It should be noted that this formulation does not allow for sam-
ple sizes of zero, i.e. for studies where there are years where no
samples are taken. This presents a problem when optimising, as
not considering sample sizes of zero constrains the problem unnec-
essarily. Thus, Z may be formulated as

Zi ¼
Eq: ð28Þ 8 ni > 0
0 8 ni ¼ 0

�
ð30Þ

There is no need to constrain Pi since it is a function of zi for
years subsequent to a zero-sample year, and it may therefore be
left as undefined or ‘Not a Number’ (NaN) in Matlab:

Pi ¼
Eq: ð29Þ 8 ni > 0
undefined 8 ni ¼ 0

�
ð31Þ

4.2. Sample size calculation

The well-known standard normal sampling formula shows that

n0 ¼
z2CV2

p2 ; ð32Þ

where z is the standard score corresponding to a given confidence
level.

The relative precision p is defined as the maximum difference
between the confidence limits (CL) and the mean, normalised with
respect to the mean:

p ¼ jCL� lj
l

: ð33Þ

Therefore, for the 90/10 criterion (90% confidence interval, 10%
precision), and assuming a CV of 0.5 as is recommended in M&V
[4,26] the required sample size would be

nunadjusted ¼
1:6452 � 0:52

0:12 � 68: ð34Þ

For small populations, it is necessary to include a finite popula-
tion adjustment:

ni ¼
nunadjusted;iN

nunadjusted;i þ N
: ð35Þ

This adjustment affects the sample size for n=N > 5% [27]. By
combining these equations, the required sample size is found to be

ni ¼
z2

i CV2
i Ni

z2
i CV2

i þ Nip2
i

: ð36Þ

4.3. Project cost calculation

Project costs may now be calculated, and consist of two parts:
the project inception cost, and operational costs.

Let ai be the meter purchasing cost in year i; bi be meter instal-
lation cost, and ci be the monthly meter maintenance cost, all
expressed in per unit present value. The project inception cost
(which includes 3 months’ maintenance in baseline period) would
then be

g ¼ ða0 þ b0 þ 3c0Þn0; ð37Þ

and project operational costs would be

x ¼

XI

i¼1

½12cini � Biðai þ biÞ� 8B < 0

XI

i¼1

ð12ciniÞ 8B > 0

8>>>><
>>>>:

ð38Þ

where Bi is the backup meters (meters previously installed, but no
longer needed) available in year i, defined as

Bi ¼ maxðBi�1;0Þ þ ni�1 � ni: ð39Þ

4.4. Optimisation formulation

Therefore one could formulate the optimisation program for a
project up to year I as:

Decision variable:

k ¼ ðz1; p1; . . . zI;pIÞ ð40Þ

Objective function:

Mingþx ð41Þ

Constraints:

Zi P 1:645 8 i 2 d ð42Þ

Pi 6 10% 8 i 2 d: ð43Þ
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where d represents the set of reporting years. For example, if it is
required that savings be reported in years 1, 5, and 10, d ¼ ð1;5;10Þ.

4.5. Model improvement

The model thus far is standard theory, but may be improved
upon by implementing the changes discussed below.

4.5.1. Non-linear decay model
The first improvement that has been implemented is a non-lin-

ear population decay model as described in Section 2.2.

4.5.2. Exponential windowing function
Previously, all measurements in the time series were weighted

equally as a legacy of single-time, multiple-sample models. How-
ever, in practice data obtained during earlier measurements are
not accorded the same weight as data obtained more recently.
Therefore an exponential decay window, akin to exponential
smoothing functions used in time series analysis, has been intro-
duced. This can be thought of as a moving weighted average.

Whereas the cumulative mean distribution was formulated as
Eq. (20), for an exponential decay factor �, it is now written as

�vi ¼
XK NK

NK
þ
PK�1

i¼1 XiNið1� �ÞK�iPK�1
i¼1 Nið1� �ÞK�i

; ð44Þ

thereby weighting measurements not only by sample size, but also
by recency.

4.5.3. Time-value of money considerations
Because the kind of projects under investigation have long plan-

ning horizons, it is prudent to consider the time-value of money
when calculating project cost. Two factors were taken into
account: the depreciation of meter purchasing values, and the
opportunity cost incurred from spending money early in the pro-
ject, when that money could have been invested to generate
interest.

Let d ¼ 6:44% be the Consumer Price Inflation (CPI) [28], and
r ¼ 10% be the Minimum Attractive Rate of Return, or investment
interest rate. For year n, the true meter purchasing cost is calcu-
lated as

an ¼
a0

ð1þ dÞn
þ a0ð1þ rÞK�n

ð1þ dÞK
: ð45Þ

It is assumed that the meter purchasing cost stays constant in
future value terms, i.e. Ra0 would purchase a meter in any given
year. Due to inflation, however, the meter purchasing cost declines
in real terms according to the inflation rate.

Furthermore, it is assumed that the money used to purchase a
meter could be invested at a rate of return of r ¼ 10% until the
end of the study in year K. This is the opportunity cost incurred
by purchasing the meter in year n.

Since meter installation and maintenance costs are labour costs,
it is assumed that they will increase with inflation, and thus stay
constant in real value terms. However, opportunity costs are still
taken into account during calculation.

5. Case study

A previous case study and model [13] is used as a benchmark to
ensure fair comparison. In this case study, incandescent lamps
were replaced with CFLs in a number of provinces in South Africa
[29]. The relevant parameters are listed in Table 1.

5.1. Model validation

First, the nature of the search space was investigated. The pre-
viously reported case study was used with its reported optimal
solution (labelled ‘Solution 1’), and a line section was drawn to
another solution (‘Solution 2’), as shown in Fig. 5. This proved that
the search space is both stepped and discontinuous, and explains
the finding that solutions given by gradient methods such as the
interior-point algorithm are sensitive to the initial solution x0.

Thereafter, a cross section was drawn at a random dimension of
the solution, in this case k7, and this was made to vary with Dh. It
can be seen in Fig. 6 that for k7 the algorithm did indeed converge
on the optimal solution, and that it is constrained on one side.
Although not shown here, this is also the case for the other dimen-
sions of k.

The cost calculation was validated by reprogramming the cost
equations into Microsoft Excel and comparing the costs of various
sampling plans to the results given by the Matlab subroutine.

Given the findings discussed above, it was decided that a
Genetic Algorithm (GA) is appropriate for solving the problem at
hand. The optimisation parameters are shown in Table 2. In order
to validate the code, the model parameters were altered to
d ¼ ð3;8Þ and � ¼ 0:99, effectively constraining the model to two
different sampling problems. As would be expected, the model
converged on the solution of 67 meters for years 5 and 8, and 0
meters in other years (adjusted from 68 using Eq. (36)).

Table 1
Case study parameter values (before changes).

Parameter name Value

Reporting years d ¼ ð2;4;6;8;10Þ
Meter purchasing cost a0 = R 4032
Meter installation cost b = R420
Meter maintenance cost c = R122
Coefficient of variation CV = 0.5
CPI inflation rate d = 6.44%
Investment interest rate r = 10%
Exponential decay factor � ¼ 0:25
Population size N0 = 607,559
Rated lamp life L = 20,000 h
Daily usage 4.5 h
Incandescent lamp power rating 100 W
CFL power rating 20 W
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Fig. 5. Line section through search space for Solution 1þ h� ðSolution2� Solution1)
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In order to establish a basis for comparison, the original prob-
lem was first solved using the GA. Since a GA is a heuristic, it does
not guarantee that a global optimum will be found. However, the
optimisation parameters were set such that the heuristic con-
verged reliably to high-quality solutions, with parameters listed
in Table 2. No improved solutions to the ones originally published
for this case study were found, because of the alteration made in
the way the algorithm rounds decimal sample sizes. The closest
the heuristic came to the original value of R338,028 ($31,386)
was R339,942 ($31,563) which is 0.59% higher than previous stud-
ies [13]. The sampling plan for this value is as follows:

n ¼ ð34;34;34;13;9;8;8;4;3;5;2Þ: ð46Þ

It is also proposed that the reporting years be changed from
d ¼ ð2;4;6;8;10Þ to d ¼ ð1;2;4;6;8;10Þ. This is because one would
expect the reported energy usage during the baseline phase (part
of year 1) to adhere to the 90/10 criterion just as much as any other
reporting year. In fact, if statistical power were a consideration, it
would be more cost-effective to increase the baseline measure-
ment accuracy, rather than to compensate on all subsequent accu-
racies. This may be a topic for future investigation. With this new
constraint to year 1 as well as the baseline period (assumed to be
taken together [13]), a solution is found to be:

n ¼ ð68;68;28;16;8;8;6;6;4;4;2Þ; ð47Þ

at a cost of R545,760 ($50,674). It is noted that adhering to the 90/
10 criterion during the baseline phase adds significantly to project
costs.

5.2. Model comparison

The first model improvement considered was that of the non-
linear PELP population decay rate model proposed in Eq. (7). The

PELP model predicts 8.3% more electricity savings than the CDM
population decay rate model for the current case study parameters.
The optimisation heuristic could not find a better solution to this
problem than the one found for the CDM decay curve. The two
sampling regimes could be different, though, with the CDM curve
requiring smaller samples because of the finite population adjust-
ment. More research is warranted in this area, but if the sampling
plan proposed for a CDM model were used when in fact the PELP
study is closer to the true decay shape, the 90/10 criterion would
not be adhered to because the population difference would require
a different finite population adjustment factor as incorporated into
Eq. (36). The population would be undersampled, and savings
underestimated.

The parameters of the PELP model were set to induce the same
population at the end of the study than was present in the original
study. As such, b ¼ 0:543; c ¼ 0:99. The model converged to the
following result:

n ¼ ð68;68;28;16;8;8;6;6;4;4;2Þ; ð48Þ

at a cost of R545,760 ($50,674).
Second, and additionally, the exponential windowing function

of Eq. (44) was introduced. As would be expected, since older
and more recent results are not weighted equally, more samples
would be required to adhere to the 90/10 criterion. The result was

n ¼ ð68;68;33;16;28;21;19;16;16;15;20Þ ð49Þ

at a cost of R696,552 ($64,675).
Last, the time-value of money was also taken into account. Since

costs are now calculated in a different way, these results cannot be
compared to previous results. A sampling regime for this consider-
ation is:

n ¼ ð68;68;32;31;20;16;18;20;16;14;20Þ ð50Þ

at a cost of R1,459,121 ($135,480).
The cost of Eq. (47) in terms of the economic model is

R1,199,061 showing that the proposed changes increase monitor-
ing costs by 21.4% in NPV terms. This may be taken to mean that
earlier models underestimated true project costs by this amount.

A comparison of the three proposed modifications (excluding
the improvement on the previous optimal solution Eq. (46) or
the correction of the baseline reporting requirement Eq. (47)) is
plotted in Fig. 7.

5.3. Discussion of results

As expected, number of meters never exceed 68 in any given
year, as indicated by Eq. (34). However, each subsequent model
improvement considered does increase the cost of metering above
the previous case.

Depending on the size of the population, possible increased
metering cost due to using the sigmoid decay curve rather than
the CDM straight-line curve may be offset by the increase in true
savings reported. In the present study, the sampling plans are
identical.

The second improvement – the exponential windowing func-
tion – does not allow the model to rely on high initial sample sizes
to support much lower sample sizes in later years. The smoothing
parameter was set at � ¼ 0:25 (a time constant of 4), although it
should be case-dependent and determined by the M&V engineer’s
judgement.

The last improvement, taking the time-value of money into
account, also tends to shift metering towards the end of the study.
This is because meter cost was modelled as depreciating, rein-
forced by opportunity costs which also penalise early expenditure
on ‘expensive’ meters, when money could be invested and spent
later on ‘less expensive’ meters. It is interesting to note that
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Fig. 6. Cross section of solution at k7 þ Dh.

Table 2
Optimisation parameter values.

Parameter name Value

Algorithm GA
TolFun 10�12

TolCon 10�12

Population size 500
k0 (1.645, 0.1, 1.645, 0.1, . . .)
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introducing this consideration does not increase sample sizes
significantly, although it does skew their size distribution
towards the later years of the study. The increased cost of this
consideration in NPV terms is 0.5% when compared to the
exponential windowing function modification. However, if e were
changed to a different value, this comparison may well show a
greater discrepancy.

Although this model may be applied to technologies other than
lighting, caution should be exercised in such cases. This model is
derived from first principles, but certain assumptions have been
made that need to be adhered to ensure compliance to the 90/10
reporting criterion. First, lighting retrofit projects usually have
large population sizes, making them suitable for statistical analy-
sis. Second, normally distributed residuals are also assumed; this
may not always the case for other technologies, and the engineer
involved should consider this possibility. Third, lighting technolo-
gies are relatively insensitive to seasonality effects such as outside
air temperature. For heating technologies where such covariates
may be significant, it is recommended that an optimal sampling
model be derived from the ASHRAE models [6] described in Sec-
tion 2.1. Simple power meters may therefore not be suitable for
such studies, and a combined uncertainty analysis is then war-
ranted. Last, a CV value is assumed at the commencement of the
study, but it may be underestimated as a small CV leads to smaller
sample sizes and lower costs. However, sampling done on such a
basis results in inadequate confidence or precision during report-
ing. Therefore it should be tested over a short period of time, and
then updated, bearing in mind that seasonal effects may affect this
value. In long-term projects the CV value should be evaluated on
an annual basis.

6. Conclusion and future work

A number of improvements to current sampling design studies
have been proposed and implemented, altering the sampling
regime and cost significantly.

The improved CFL population survival model was found to fit
known data very well, with a mean squared error (MSE) of
0.0015 compared to an MSE of 0.0368 for the previous model.
The new model in discretised form also allows for optimal control
theory to be applied to the problem with Pkþ1 ¼ f ðPk;ukÞ, and also
reports greater savings than existing linear models.

By plotting line sections through the search space and investi-
gating the gradient around known solutions, the nature of the
search space was proven to be stepped and discontinuous, and
the Genetic Algorithm was determined to be an appropriate heu-
ristic for optimisation. The model was validated by applying it to
certain test cases and checking performance against test cases. This
approach allows for greater confidence in optimisation results.

A more accurate cumulative sampling function was devised and
implemented. This function allows for the exponential decay of
weights on past data, thereby increasing the relative contribution
of more recent data during mean calculation.

An economic model incorporating the time-value of money was
also implemented. This model not only accounts for inflation, but
also takes investment opportunity costs and the difference
between labour and capital costs into account. Using a minimum
acceptable rate of return of 10% and an interest rate of 6.44% based
on Consumer Price inflation, it was found that the project costs for
optimal sampling plans are 21.4 % higher in Nett Present Value
(NPV) terms than previously calculated, although this figure is
dependent on project-specific assumptions.

Neither the improved population survival model nor the addi-
tion of NPV considerations altered the sampling plans in a notable
way, contributing 0% and 0.5% respectively. However, not weight-
ing all samples equally did have a significant effect, contributing
the bulk of the increased project cost.

6.1. Recommendations

Although numerous improvements to the aforementioned
changes may be made, it is recommended that future work focus
on the sensitivity of the model to the latent assumptions identified
in existing literature on longitudinal CFL sampling design: that the
mean energy usage is stationary throughout the study, which lim-
its the resolution of surveillance to annual calculation, and that
samples taken in different years are independent. The statistical
power during sample size calculation should also be considered,
as well as the structure of meter pricing and contracting schemes.
A future study may investigate the sensitivity of the model to these
assumptions.
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