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a b s t r a c t

In the electricity market, customers have many choices to reduce electricity cost if they can economically
schedule their power consumption. Renewable hybrid system, which can explore solar or wind sources at
low cost, is a popular choice for this purpose nowadays. In this paper optimal energy management for a
grid-connected photovoltaic-battery hybrid system is proposed to sufficiently explore solar energy and to
benefit customers at demand side. The management of power flow aims to minimize electricity cost sub-
ject to a number of constraints, such as power balance, solar output and battery capacity. With respect to
demand side management, an optimal control method (open loop) is developed to schedule the power
flow of hybrid system over 24 h, and model predictive control is used as a closed-loop method to dispatch
the power flow in real-time when uncertain disturbances occur. In these two kinds of applications, opti-
mal energy management solutions can be obtained with great cost savings and robust control
performance.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Renewable energy (RE) sources, including wind, solar and their
hybrid systems, have become attractive options of providing
energy globally for reasons such as low cost, no pollutant emission,
energy security, easy accessability and reduction fossil fuel
consumption [1–4]. Photovoltaic (PV) array, which is the main
technology to convert solar energy into electric power, can be
stand-alone installed for providing electricity in some remote areas
or be connected to the grid for selling power generated. Because of
instantaneous and unstable nature of solar energy, PV usually
works with battery storage to provide continuous and stable
power, i.e., the PV-battery hybrid system. Battery storage can
reduce the risk of PV’s intermittent power supply, and always
ensure demand satisfaction. Generally, grid-connected PV systems
without battery storage do not require sophisticated management
strategies. Prioritizing use of PV power is the only rule when the PV
power is less than the load demand. In contrast, battery storage
brings more challenges to energy management, as more compli-
cated scenarios must be considered, such as charging the battery
from the grid or PV and discharging when necessary. As a result,
controllers are required for hybrid PV-battery systems, such that
the performance of solar usage can be significantly enhanced and
the grid regulation can be improved in terms of safety and
efficiency.

For grid-connected hybrid PV-battery systems, the changing
electricity price, the timing of power transaction, and the mis-
match between solar power generation and load demand are main
challenges in application [5,6]. From the perspective of demand
side management (DSM), solar energy or grid power may be stored
when the PV can generate surplus power or when the grid
electricity is inexpensive. The stored energy can be managed for
economic usage in future when the electricity price is high over
peak load periods, or when the PV power is unavailable [7]. The
grid-connected hybrid system with DSM can help customers to
reduce electricity cost, and also can help utility to regulate the grid
in terms of security and efficiency issues, such as peak shaving,
direct load control (DLC), and capacity market programs [8].
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Therefore, at both sides of electricity market hybrid systems may
introduce new opportunities to smart grid but also cause many
challenges in the following DSM programs.

(1) Peak shaving: it is necessary to decide when and how much
to charge the battery from the grid or PV before peak hours,
so that power consumed from the grid at peak hours can be
reduced to satisfy the requirement of shaving.

(2) Direct load control (in which a utility operator remotely
shuts down or cycles a customer’s electrical equipment at
short notice to address system or local reliability): cus-
tomers have to control the operation of hybrid system to
ensure their demand is satisfied at the shutting time based
on the frequency and time of shutting at DLC.

(3) Capacity market programs (in which customers commit to
respond pre-specified load reduction when system
contingencies arise and are subject to penalties if they do
not curtail power consumption when directed): such pro-
grams involve issues such as how to decide on the amount
of power stored in the battery, how to use the instantaneous
and stored power cooperatively to complete the pre
-specified load reduction, and how to minimize the penalty
if the customer demand exceeds the pre-specified demand.

(4) Time-of-use (TOU, where the electricity price is high in the
peak load time and low in the off-peak time): scheduling
problems arise, such as determining how to optimally oper-
ate the hybrid system in peak and off-peak periods for mini-
mizing electricity cost and satisfying the customer demand
as well.

It must be noted that the hybrid systems with battery storage
may have potential to take part in every DSM program or com-
bined programs, which can help the utility to regulate the grid
and help customers to reduce energy cost. For simplicity, this
paper will mainly focus on evaluating a grid-connected PV-battery
system under the TOU program with contracted selling as an
example. It will be answered how customers optimally schedule
the hybrid system to earn cost savings with varying prices in the
TOU program, and how they manage their consumption to sell sur-
plus power to the grid over peak period.

Although storage systems are not common in large generation
farms, for residential and small-scale power producers many stor-
age systems (battery, ultra-capacitor and so on) have been incorpo-
rated in energy supply systems. Nair and Garimella [9] argued that
battery storage systems will have a significant impact on the small-
scale integration of renewable sources into the commercial and
residential sectors. For hybrid systems with battery storage, energy
management is a vital and difficult issue that has attracted great
interest among researchers [7,10]. Many energy management sys-
tems (EMS) have been developed for the utility to regulate micro-
grids and reduce generation cost. Some rule-based strategies were
designed for energy management of hybrid systems [11–13], which
can obtain promising but not optimal solutions to ensure practical
constraints are satisfied. In [14], a deterministic planning method
was proposed to perform robustly day-ahead power flow schedul-
ing for conventional and renewable generators. To improve the per-
formance of EMS, optimal control is a useful method to schedule
power flows of hybrid systems with minimum cost and maximum
benefit [15,16]. In [17], an EMS for a virtual power plant was pro-
posed to minimize the electricity generation cost and to utilize
renewable energy sufficiently. Authors in [18] presented a dynamic
optimal power flow control for power and heat generation schedul-
ing while considering PV generations coupled with storage systems.
A flexible battery management system was developed to optimize
the duration (hours) of charging and discharging battery for opti-
mal power flow control in distribution networks [19].

Beyond existing work, more emphasis should be made on two
important issues of renewable hybrid systems. Firstly, most
researchers have considered energy management and demand
response for large-scale integration of renewable energy at the
utility side [20,21]. There is lack of comprehensive work in con-
sideration of optimal planning and DSM for small-scale hybrid sys-
tems at the demand side, because many customers install hybrid
systems for stand-alone or back-up usage without any partic-
ipation of DSM program. DSM can be studied more in appliance
scheduling of household [22] than in scheduling of small-scale
hybrid system. Secondly, uncertainties within forecast errors of
renewable energy and demand have been studied for large-scale
integration of renewable energy [23], but uncertainties at the
demand side are not well evaluated. Most related optimal schedul-
ing methods cannot handle complicated cases when hybrid sys-
tems experience external disturbances; only a few closed-loop
control methods have been designed [7,24]. Therefor, it is neces-
sary to model the small-scale hybrid system, to comprehensively
study optimal schedule with DSM over different seasons, and to
analyze uncertainty and robustness for the closed-loop control.
This paper will be organized to respond to the above two issues.

Some remote areas, where customers used to rely on stand-
alone hybrid systems for generating power, are being connected
to the grid as part of network upgrade. Now a new problem is
how to use such installed small-scale system efficiently. Based on
our previous work [16], we consider DSM, scheduling and uncer-
tainty handling of the grid-connected hybrid system in this paper.
The diesel generator is now excluded, as the power its power
generation is less green and more costly than the grid. DSM of the
hybrid system is expected to help customers earn some payback
and reduce electricity cost. Another by-product advantage of DSM
is the reduction of emissions by utilization of clean PV technologies.

The main contributions of this paper are listed below. Firstly, as
an example of DSM, the hybrid system under TOU with power selling
is modeled to minimize the electricity cost while matching the cus-
tomer demand and the PV output. Secondly, optimal control is devel-
oped as an open loop method to dispatch power flows of the hybrid
system stably and economically. A comprehensive study has been
conducted to evaluate different situations over weekend and week-
day of winter and summer. Thirdly, in case of uncertainties in the PV
output and the customer demand, model predictive control (MPC) is
applied as the closed-loop control to ensure economic, robust and
safe operation of the hybrid system. MPC is a feedback control strat-
egy that uses an explicit model of plant to predict the future response
of the plant over a finite horizon. Only ‘‘the first part’’ of the sequence
is applied to control at the next state [25,26]. MPC has been widely
used in the closed-loop control for adaptively changing control vari-
ables according to external disturbances [26–28]. MPC is applied in
this work because of its capability to explicitly handle constraints
and to adjust the power flows when disturbances occur.

In this paper, an optimal power flow management algorithm of
a grid-connected PV-battery hybrid system is developed. The
objective is to minimize the electricity cost within the DSM frame-
work by optimal power flow control. Literature review is con-
ducted on energy management of stand-alone and grid-
connected systems in Section 2. The structure of the grid-con-
nected PV-battery system and its sub-models are described in
Section 3. The mathematic DSM model of the hybrid system is
given in Section 4. Some results of the optimal control are dis-
cussed in Section 5. In Section 6 based on the steady state model
an MPC approach is proposed as the closed-loop control, while
the last section is the conclusion.
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2. Literature review

Hybrid renewable energy systems (HRES) have been studied in
recent years on both bottom and up levels, such as system design,
installation, operation and maintenance. The related studies
mainly include issues of modeling, control and optimization at
each level. In [29], various sectors in designing and imple-
mentation of HRES were comprehensively reviewed, including
configurations, criteria selection, sizing methodologies and control
and energy management. For stand-alone and grid-connected
applications, many control systems have been designed into three
main categories, i.e., centralized [16,30], distributed [31], and
hybrid control paradigms [32]. Due to scope of this paper, energy
management methods (planning, scheduling and control) are
introduced in this section. Energy management for smart grids
have received considerable attention to achieve several targets,
such as balancing of generation and load, minimizing the genera-
tion cost, minimizing transmission and distribution losses, pre-
venting grid congestion, provision of ancillary services.

For the stand-alone application, a rule-based power manage-
ment strategy was designed to manage power flows among differ-
ent energy sources and storage units [33]. A renewable micro-grid
including a wind turbine, a solar panel, a fuel cell and a storage bat-
tery was studied on the issue of optimal scheduling [34], in which
mixed-integer linear programming is used to solve their proposed
minimization model of generation costs subject to all operation
technical constraints. A priority local control algorithm was devel-
oped to gain optimal energy management of system loads and bat-
tery storage, and therefore provided better energy efficiency and
guarantee energy supply for critical loads [35]. In [16], daily energy
consumption variations between winter and summer was consid-
ered into scheduling stand-alone HRES. The authors had evaluated
operational efficiency of the hybrid system over a 24 h period and
optimal solutions can be found to reduce the corresponding fuel
costs. Finally 73–77% fuel savings in winter and 80.5–82% fuel sav-
ings in summer can be achieved by the optimal control method. In
[30], a switched MPC method was designed for energy dispatching
of the same HRES.

For the grid-connected application at the utility side, storage
management, economic load dispatch and operation optimization
of distributed generations was simplified into a single-objective
optimization problem to design a smart energy management sys-
tem of micro-grid [36], which was solved by a matrix real-coded
genetic algorithm. A methodology capable of evaluating the impact
of wind generation and load uncertainties, as well as unexpected
generation outages was developed [23], in which an EMS integra-
tion framework was proposed for power system operation, dis-
patch, and unit commitment. A hybrid power generation system
consisting of PV arrays and fuel cells was studied by a model-based
optimal approach [24], in which the power generation cost is mini-
mized. A dynamic supervisory control was proposed to regulate a
grid-connected hybrid generation system with versatile power
transfer for flexible operation and improvement of power quality
[37].

For the grid-connected application considering DSM, energy
management strategies from both the demand side and utility side
were developed to meet the electricity demand while minimizing
the overall operating and environmental costs [38]. By integrating
DSM and active management schemes, an EMS was developed for
optimizing the smart grid’s operation to better explore renewable
energy sources and reduce the customer’s electricity cost [39].
DSM of distributed generation and storage system was studied as
a day-ahead optimization problem by a game theory approach in
which each active user at the demand side selfishly pursues
minimal monetary expense for buying/producing electricity [40].
Different demand response programs were studied in DSM of hybrid
systems [41,42]. Optimal power management was studied on grid-
connected PV-battery system for joining peak shaving service base
on the dynamic programming method [41]. A heuristic-based
Evolutionary Algorithm was developed in smart grid for finding a
generalized DSM strategy based on load shifting [42]. Many other
computational methods were studied in relative applications. A
multi-objective method was applied on a hybrid renewable system
for maximizing its contribution to the peak load and minimizing its
overall intermittence cost, in which large-scale DSM and DR tech-
nologies are also considered [20]. Neural networks were applied
to schedule and coordinate distributed generations for active DSM
[43].

Especially, an interesting application of HRES and DSM is smart
building. The impact of DSM strategies in the penetration of HRES
is analyzed at some regional buildings [44]. HRES was studied for
DSM and an energy production management strategy was
designed for building automation [45]. HERS was considered in
an optimal residential load management strategy for real time
pricing demand response programs [46]. A smart home controller
strategy was designed to enable consumer economic saving and
automated demand side management in domestic environment
[47]. The event driven controller was designed for optimally
scheduling household appliances by binary linear programming.
An autonomous appliance scheduling strategy was designed for
household energy management based on HRES and DSM [22]. An
optimization framework was proposed for integrated analysis of
demand response programs with high penetration of plug-in
hybrid electric vehicles (PHEVs) and PV from residential cus-
tomer’s perspective as well as utility company’s perspective [48].

3. Description of PV-battery system

The hybrid system evaluated in this paper consists of PV arrays
and battery bank that are both connected to the grid. The output
power of the PV array feeds customers’ demand directly. If the
demand is less than the PV’s output, the surplus PV power will
be charged into the battery bank. If the demand is larger than
the PV’s output, the deficient power will be covered by the battery
or the grid. The grid plays an important role in the hybrid system
for charging the battery and directly supplying customers with
electricity. The battery can be charged by the grid in the off-peak
period, and then discharged in the peak period to save electricity
cost. The grid provides electricity directly when the customer
demand cannot be satisfied by the PV and the battery. The sche-
matic of this hybrid system is shown in Fig. 1, in which arrows
represent directions of power flows in the system. P1 is the solar
generation for charging the battery; P2 is the discharging power
of battery for load demand; P3 is the grid power for charging the
battery; P4 is the grid power for load demand; P5 is the solar
generation for load demand; P6 is the battery discharge for selling
power to the grid. In the hybrid system, several converters such as
direct current/alternating current (DC/AC) and DC/DC are required
for voltage and current matching.

3.1. PV array

Each solar array consists of several solar cells to convert
sunlight into DC power. The hourly power output of a given area
can be simply formulated as:

Ppv ¼ gpv IpvAc; ð1Þ

where Ppv is the hourly power output from the PV array; Ac is the
size of PV array; gpv is the efficiency of power generation; Ipv is
the hourly solar irradiation incident on the PV array (kW h/m2).
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Fig. 1. Schematic of the hybrid system.
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The hourly solar irradiation incident on the PV array is closely
related to time of a day, season of the year, tilt, location, global
irradiation, diffuse fraction, etc. In this study, the simplified isotro-
pic diffuse formula [16,49] is used as

Ipv ¼ ðIB þ IDÞRB þ ID; ð2Þ

where IB is the beam component of the hourly global irradiation and
ID is the hourly diffuse irradiation respectively. RB is a geometric
ratio of the actual irradiation on the tilted plane to the standard
irradiation on the horizontal plane.

The efficiency of power generation can be modeled in a compli-
cated formula, which can be expressed as a function of the hourly
irradiation Ipv and the ambient temperature TA as

gpv ¼ gR 1� 0:9bIpvðTC0 � TA0Þ
Ipv0

� bðTA � TRÞ
� �

; ð3Þ

where gR is the PV generator efficiency that is measured at the
referenced cell temperature TR (25 �C); b is the temperature coeffi-
cient for cell efficiency (typically 0.004–0.005/�C); TC0 (typically
45 �C) and TA0 (typically 20 �C) are the cell and ambient tempera-
tures at nominal operating cell temperature (NOCT) test conditions;
Ipv0 is the average solar irradiation on the array at the NOCT
conditions.

3.2. Battery bank

Being constrained in battery capacity, the state of charge (SOC)
changes dynamically owing to possible charge by the PV and grid
or possible discharge for customer usage. For a given profile of
power generation, customers’ demand will mostly affect the SOC
of battery. Let t denote time of day (hourly), and PbðtÞ denote the
SOC of battery at the tth hour. Based on the SOC at the previous
hour, the dynamic change of SOC can be formulated as

Sðt þ 1Þ ¼ SðtÞ þ gC P1ðtÞ þ P3ðtÞ½ � � 1
gD
½P2ðtÞ þ P6ðtÞ�; ð4Þ

where SðtÞ is the SOC at the tth hour; Sðt þ 1Þ is the SOC at the next
hour. gC 6 1 and gD 6 1 are the coefficients of charging and
discharging efficiency. According to Eq. (4), the current SOC SðtÞ
can be expressed by the initial SOC Sð0Þ of a day as

SðtÞ ¼ Sð0Þ þ gC

Xt�1

s¼0

½P1ðsÞ þ P3ðsÞ� �
1
gD

Xt�1

s¼0

½P2ðsÞ þ P6ðsÞ�: ð5Þ

The SOC of a battery has several constraints, such as the maxi-
mal allowable capacity and the depth of discharge (DOD). The

lower bound of SOC Smin can be expressed by the DOD as
Smin ¼ ð1� DODÞSmax; ð6Þ

where DOD is the depth of discharge; Smax is the maximum capacity

of the battery; Smin is the minimum allowable SOC of the battery.

The SOC must be bounded within the scale ½Smin; Smax�.
4. DSM model of PV-battery system

Optimal schedule of the evaluated hybrid system aims to mini-
mize electricity cost within the framework of DSM. In this paper,
the TOU program is a typical program of DSM for consideration,
in which the electricity price changes over different periods
according to the electricity supply cost, for example a high price
for peak load periods, medium price for standard periods and
low price for off-peak periods. In our study, the daily electricity
price at the target region can be given as

qðtÞ ¼
qk; t 2 Tk; Tk ¼ ½7;10Þ

S
½18;20Þ

qo; t 2 To; To ¼ ½0;6Þ
S
½22;24Þ

qs; t 2 Ts; Ts ¼ ½6;7Þ
S
½10;18Þ

S
½20;22Þ

8><
>: ; ð7Þ

where qk ¼ 0:20538 $=kW h is the price for the peak load period;
qo ¼ 0:03558 $=kW h is the price for the off-peak period;
qs ¼ 0:05948 $=kW h is the price for the standard period.

The proposed DSM model includes three parts. The first part is
the cost of buying electricity from the grid, which is used to afford
the load demand and charge the battery. The second part is the
income of selling electricity to the grid. The third part is the wear-
ing cost of hybrid system. The total cost can be formulated as,

J ¼
X23

t¼0

qðtÞ P3ðtÞ þ P4ðtÞ½ � �
X
t2Tk

rkqkP6ðtÞ þ Ch; ð8Þ

where rk ¼ 0:65 is the contracted ratio of the peak price qk for sell-
ing power during the peak load period. Ch is he wearing cost of sys-
tem during the control period, which is formulated as

Ch ¼
X23

t¼0

a P2ðtÞ þ P6ðtÞ½ � þ 24b; ð9Þ

where a is the coefficient of battery wearing cost and b is the hourly
wearing cost of other components (a ¼ 0:001; b ¼ 0:002 in this
paper). In the objective function, control variables PiðtÞ
(i ¼ 1;2; . . . ;6;0 6 t < 24) have to satisfy several constraints:



Table 1
Parameters of the PV-battery system.

Nominal battery capacity 28.8 kW h
Battery charge efficiency 85%
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(1) PV’s output constraint: The PV’s power for charging the bat-
tery and for customers’ instantaneous usage must be less
than the PV’s output power generated, which is mainly
related to irradiation and ambient temperature.
Battery discharge efficiency 100%
Battery’s depth of discharge 50%
P1ðtÞ þ P5ðtÞ 6 PpvðtÞ: ð10Þ

Initial state of charge 16 kW h
PV array’s capacity 7 kW
(2) Power balance constraint: The load demand of customers

must be exactly satisfied by the total power of PV array,
the grid and the battery as
Table 2
P2ðtÞ þ P4ðtÞ þ P5ðtÞ ¼ PLðtÞ; ð11Þ

Demand profiles of four cases.

Time Winter load (kW) Summer load (kW)

Weekend Weekday Weekend Weekday

00:30 1.5 1.5 1.5 1.5
where PLðtÞ is the load demand over the period ½t; t þ 1Þ.
(3) SOC boundary constraint: The SOC of the battery must be

less than the battery’s capacity Smax and larger than the mini-

mal allowable value Smin as

01:30 1.5 1.5 1.5 1.5
02:30 1.5 1.5 1.85 1.85
Smin

6 SðtÞ 6 Smax: ð12Þ

03:30 1.5 1.5 1.95 1.95
04:30 1.5 1.5 1.85 1.85
05:30 1.95 1.65 1.5 1.5
06:30 1.95 1.65 1.65 1.15
07:30 1.65 1.35 1.65 1.25
(4) Power flow constraint: For safety and other physical reasons,
power flow from each source must be non-negative and less
than the maximum allowable value as
08:30 1.35 1.35 1.7 1.3
09:30 3.25 3.0 1.75 1.32
0 6 PiðtÞ 6 Pmax
i ; ði ¼ 1;2; . . . ;6Þ; ð13Þ
10:30 3.25 3.0 1.75 1.35
11:30 2.15 1.95 1.75 1.32
12:30 2.15 1.95 1.25 1.25
13:30 2.15 1.95 1.32 1.32
14:30 2.15 1.95 1.35 1.35
15:30 2.15 1.95 1.35 1.35
16:30 2.15 1.65 1.45 1.45
17:30 1.8 1.65 2.1 2.15
where Pmax
i is the defined maximum power delivered per hour.

(5) SOC terminate state constraint: For the convenience of dis-
patching power over continuous days, the battery should
not be used till the initial SOC value is reached. In this model,
the termination SOC of the battery must be no less than the
initial as SOC
18:30 2.31 3.25 2.4 2.31
Sð0Þ 6 Sð24Þ: ð14Þ

19:30 3.81 3.25 3.8 3.25
20:30 2.31 2.31 3.8 3.25
21:30 2.31 2.15 2.0 2.0
22:30 2.31 2.15 1.95 1.95
23:30 1.35 1.35 1.65 1.65
It can be noticed that the installation cost is not considered in
the model, as the scope is restricted to a discussion of how to con-
trol the installed hybrid system in the operational step. Therefore,
some important issues related to installation, such as economic
analysis and optimal sizing of the hybrid system [50,51], are
neglected in our model. The operational costs of the PV and battery
are taken as negligible values for the evaluating period, so they are
not incorporated in the model.

5. Optimal control method

An open-loop optimal control method is used to dispatch the
hourly power Pi ði ¼ 1; . . . ;6Þ over a day to minimize the daily elec-
tricity cost, Eq. (8), subject to constraints, Eq. (10)–(14). Because
the objective function and constraints are linear, this power flow
control problem can be expressed as a linear programming prob-
lem as

min f ðxÞ; s:t:
Ax 6 b

Aeqx ¼ beq

lb 6 x 6 ub

8><
>: ; ð15Þ

where f ðxÞ represents the objective function; Aeq and beq are the
coefficients related with equality constraints; A and b are the
coefficients related with inequality constraints; lb and ub are
the lower and upper bounds of variables. These coefficients can
be easily deduced according to the proposed model, so the explicit
details are omitted here.

5.1. Control system settings

The system evaluated is originally installed as the PV-diesel
-battery hybrid system for off-grid consumers [16]. Because of
enlarged coverage of the grid, the target region is now connected
to the grid. The diesel generator has been excluded from the current
system, because buying electricity from the grid is cheaper and
greener than using the diesel generator for power generation. The
sizing of PV and battery bank is based on a sizing model in [2].
The parameters of this system are listed in Table 1. The maximum
power delivered on each flow is defined as 5 kW.

As customers’ daily demand changes between summer and
winter as well as between weekdays and weekends, four cases
are evaluated, i.e., weekdays of summer and winter and weekends
of summer and winter, to find the optimal dispatch solution for
each case. The load profiles of customers in the summer and winter
are calculated based on survey data, as given in Table 2 [16].

In this study, we have evaluated meteorological data, global
irradiation, diffuse irradiation and ambient temperature over the
past few years in the target region. For simplicity, the average out-
put profiles in summer and winter are predicted respectively, as
plotted in Fig. 2. It can be noticed that power output in summer
is larger than in winter over the daytime.
5.2. Results of optimal control

On a winter weekday, without the hybrid system the daily elec-
tricity cost would be $4.27. When optimally operating the hybrid
system the daily electricity cost is reduced to $1.68. The income
of selling electricity is $ 3.06. In other words, customers can earn
$1.38. In Fig. 3(a), the optimal power flows at the customer side
are plotted for the winter weekday. The customer side power flows
include power flows from battery P2, grid P4 and PV P5. During the
off-peak period [0,6) and [22,24), only the grid provides power
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Fig. 2. Profiles of hourly power output of the PV array.
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owing to low electricity price. When the PV’s output is sufficient,
the highest priority is given to the usage of the PV power as shown
in the period [8,16). During the peak load period, the power stored
in the battery is used to satisfy the load demand. In Fig. 3(b), the
power flows at the battery side are plotted. The battery side power
flows include charging flows from PV P1 and grid P3, and discharg-
ing flows to load P2 and grid P6. The battery is mainly charged from
grid during the off-peak periods. When the PV’s output is larger
than the load demand, the excessive power is stored in the battery.
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Fig. 3. Power flows during winter weekend and weekday: (a) customer side power flows
flows, i.e., charging flows from grid and PV and discharging flows to load and grid, for a w
power flows for a winter weekday.
Most battery storage is sold to the grid over the peak load period,
and the remaining is used to supply the demand over [18,20). It
can be noticed that the SOC increases during the off-peak period
and the high irradiation period, and decreases during the peak per-
iod. The SOC’s boundary constraint and terminate constraint are
satisfied.

On a winter weekend, without the hybrid system the daily elec-
tricity cost is $4.47. When optimally operating the hybrid system,
the daily cost of electricity is reduced to $1.88, and the income of
selling electricity is $3.11. The net value earned is $1.23. For the
winter weekend, the power flows at the customer side are shown
in Fig. 3(c). It can be noticed that the result is similar to that for
the winter weekday. During the off-peak period, customers use
the grid power owing to the low electricity price. During certain
standard period, although the PV generation can fully satisfy the
load demand, the grid power has been used. To store enough
power for sale, the battery is not discharged during the standard
and off-peak periods. In Fig. 3(d), the power flows at the battery
side are plotted. Similarly, the battery is charged sufficiently during
the off-peak period and this stored power is used during the peak
period. During the sufficient irradiation period, the battery is
mainly charged by the PV. In this case, constraints related to the
SOC are satisfied during the charging and discharging processes.

On a summer weekday, without the hybrid system the daily
electricity cost is $3.49. When optimally operating the hybrid sys-
tem, the electricity cost is reduced to $1.32, but the income of sell-
ing electricity is $3.18. This means customers can eventually earn
$1.83. For the summer weekday, the profiles of power flow at the
demand side and the battery side have been given in Fig. 4(a)
and (b). Because in this case the total demand is the lowest among
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, i.e., from battery, grid and PV to load, for a winter weekday; (b) battery side power
inter weekday; (c) customer side power flows for a winter weekend; (d) battery side
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Fig. 4. Power flows during summer weekend and weekday: (a) customer side power flows, i.e., from battery, grid and PV to load, for a summer weekday; (b) battery side
power flows, i.e., charging flows from grid and PV and discharging flows to load and grid, for a summer weekday; (c) customer side power flows for a summer weekend; (d)
battery side power flows for a summer weekday.
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the evaluated four cases, during the standard period more PV
power can be stored in the battery and no grid power is required
for charging the battery. Most grid power is used during the
off-peak period for satisfying the load demand and charging the
battery.

On a summer weekend, without the hybrid system the daily
electricity cost is $3.99. When optimally operating the hybrid sys-
tem, the electricity cost is reduced to $1.41. The income of selling
electricity is $3.10, which means customers can earn $1.69. As
shown in Fig. 4(c), the grid power is consumed during the off-peak
period on the summer weekend. The power flows at the battery
side are also shown in Fig. 4(d), in which the battery is discharged
in the off-peak and standard periods. The results for the summer
weekend are almost the same as those for a summer weekday,
and their demand profiles are close to each other.

In sum, it is observed that by optimal control the hybrid system
the monthly income in winter is $40.20, which saves $170.60 for
customers. The monthly income in summer is $51.82, which saves
$167.52 for the customers. Because load demand in winter is larger
than that in summer, the monthly earn in winter is less than that in
summer, but the total cost savings are almost the same after
optimally scheduling.

Over a year period study, load demand and PV output can be
forecast frequently on daily or weekly basis, as during a year they
are varying largely due to weather and human factors. Different
load demand and PV output have significant effects on operation
hours and cost saving. Although we have not given actual statistics
for a whole year, based on the summer and winter results the total
income of selling electricity is approximately $552.12 and the total
cost saving is approximately $2028.72. For a newly installed
PV-battery hybrid system, the capital cost of installation is
$12500, and its yearly operation and maintenance cost is $135.
The payback period is about 6.6 years. For an existing PV-battery
hybrid system, the capital cost of installation is omitted and the
payback period of modification must be less than 1 year.
6. Model predictive control method

In the optimal control, customer demand loads during week-
days and weekends are forecast as the average values for winter
or summer; the profile of PV output is also forecast as the average
values for winter and summer. In fact, the customer demand and
the PV output may be disturbed from the forecast values. In this
section, such divergence is evaluated as system disturbances on
the demand and the PV output. The linear state-space model will
be deduced from the hybrid system model. From Eq. (11), the
following equation can be obtained

P4ðtÞ ¼ PLðtÞ � P2ðtÞ � P5ðtÞ ð16Þ

Then denote the control input as uðtÞ , ½P1ðtÞ; P2ðtÞ; P3ðtÞ;
P5ðtÞ; P6ðtÞ�T , the system state as xðtÞ , SðtÞ and the output as
yðtÞ , P4ðtÞ. From Eq. (5), the linear state-space model with distur-
bances can be expressed as

xðt þ 1Þ ¼ AxðtÞ þ BuðtÞ þ BwðtÞ
yðtÞ ¼ CxðtÞ þ DuðtÞ þ DwðtÞ þ PLðtÞ þwLðtÞ

�
; ð17Þ

where A ¼ I; C ¼ 0; B ¼ ½gC ;�gD;gC ;0;�gD�; D ¼ ½0;�1; 0;0;�1; 0�;
wðtÞ and wLðtÞ are disturbances of input and output respectively.

Although wðtÞ is caused by differences of predicted and actual val-
ues in terms of the customer load and the PV output, it is uneasy to
determine wðtÞ according to these differences. If the customer
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demand experiences disturbance wLðtÞ and the PV output experi-
ences disturbance wpvðtÞ respectively, the adjusted disturbance
wðtÞ is determined using the following proposed rules, in which
PiðtÞ; i ¼ 1;2; . . . ;6 are pre-scheduled power flows without
consideration of disturbance.

(a) If wpvðtÞ is negative, reduce P1ðtÞ firstly to satisfy the PV’s
output constraint. If P1ðtÞ ¼ 0, then reduce P5ðtÞ till the
constraint is satisfied.

(b) For a positive wpv ðtÞ, increase P1ðtÞ as P1ðtÞ ¼ P1ðtÞ þwpvðtÞ if
wLðtÞ 6 0; else increase P5ðtÞ as P5ðtÞ ¼ P5ðtÞ þwpvðtÞ.

(c) If P2ðtÞ þ P5ðtÞ > PLðtÞ þwLðtÞ, reduce P2ðtÞ firstly to satisfy
the power balance constraint. If P2ðtÞ ¼ 0, then reduce
P5ðtÞ till the power balance constraint is satisfied.

(d) If P2ðtÞ þ P5ðtÞ < PLðtÞ þwLðtÞ, increase P2ðtÞ by a wLðtÞ�½
DP2ðtÞ � DP5ðtÞ�, where DP2ðtÞ and DP5ðtÞ denote increments
of P2ðtÞ and P5ðtÞ during steps (a–c).

(e) Bound PiðtÞ ði ¼ 1;2;5Þ within ½0; Pmax
i �. If Sðt � 1Þ þ gCP1ðtÞ�

P2ðtÞ=gD � P6ðtÞ=gD 6 Smax is not satisfied, reduce P1ðtÞ firstly
to satisfy this condition, then if P1ðtÞ ¼ 0 continue to
increase P2ðtÞ till the condition is satisfied. If Sðt � 1Þþ
gCP1ðtÞ þ gCPmax

3 � P2ðtÞ=gD � P6ðtÞ=gD P Smin is not satisfied,
reduce P2ðtÞ to satisfy this condition. If the SOC cannot
satisfy the boundary constraint, reduce P3ðtÞ if SðtÞ >
SmaxðtÞ; increase P3ðtÞ if SðtÞ < SminðtÞ.

(f) The actual output is calculated according to Eq. (16).

Note that in (a) and (b), P5ðtÞ has higher priority of usage than
P1ðtÞ because the charging or discharging processes cause loss of
energy. In (c), the battery is seldom employed if P5ðtÞ is sufficient
to provide power. In (d), when the power balance at the customer
side is broken, the battery takes some responsibility for covering
the disturbed load demand. The responsibility rate a is an ad hoc
parameter. In this paper, a ¼ 35% is used during the standard per-
iod, a ¼ 50% is used during the peak period, a ¼ 20% is used dur-
ing the off-peak period. In (e), P1ðtÞ; P2ðtÞ; P3ðtÞ are re-adjusted
when the SOC boundary constraint is violated. At the last step,
the output is determined by the actual load demand and the sys-
tem input. The rational behind the rule is that PV power for cus-
tomer usage has higher efficiency that PV power for storage, and
that load demand balance is mainly satisfied by the grid power
supply and then by the battery discharge. When the demand
increases, the battery will discharge more over the off-peak period
than the peak period for the price concern.

MPC is developed for the closed-loop control, in which the
objective function of DSM model is optimized over the receded
prediction horizon. Combining Eq. (8) and (16), the objective func-
tion over the prediction horizon TN ¼ ½k; kþ NpÞ (k P 0 is an inte-
ger) is obtained as follows:

Jc ¼
XkþNp�1

t¼k

qðtÞ PLðtÞ þ P3ðtÞ � P2ðtÞ � P5ðtÞ½ � �
X

t2Tk\TN

rkqkP6ðtÞ þ Ch:

ð18Þ

where Np is hours over the prediction horizon, and the wearing cost

of battery over the prediction horizon is CB ¼
PkþNp�1

t¼k a½P2ðtÞþ
P6ðtÞ� þ Npb. As in Eq. (10)–(15), the constraints of MPC can be
expressed as

P1ðtÞ þ P5ðtÞ 6 PpvðtÞ
Smin
6 SðtÞ 6 Smax

0 6 PiðtÞ 6 Pmax
i ; i ¼ 1;2;3;5;6

0 6 PLðtÞ � P2ðtÞ � P5ðtÞ 6 Pmax
4

Sð0Þ 6 SðNÞ

8>>>>>><
>>>>>>:

; ð19Þ
where N is hours over the overall scheduling period. Note that
Sð0Þ 6 SðNÞ is only valid in the MPC approach when k P N � Np þ 1.

MPC is employed to solve this optimal control problem at each
sampling period. In the proposed MPC approach, an optimal con-
trol problem over the prediction horizon is repeatedly solved
(k ¼ 0; . . . ;N � Np). The optimal control problem, including the
objective function and the set of constraints, has been defined in
Eqs. (18) and (19). The optimization variable is the power flow
sequence at each sampling period. At the kth sample, an optimal

solution ½uðkÞ;uðkþ 1Þ; . . . ;uðkþ Np � 1Þ�T can be obtained after
solving the optimal problem. Only the first part of solution, i.e.,
uðkÞ, is used in the current period. According to our proposed rules,
the disturbance of the input wðkÞ applied to the system in the per-
iod ½k; kþ 1Þ can be determined. When the planning horizon gets
shorter than the prediction horizon Np, i.e. k > N � Np þ 1, the pre-
diction period will be decreased by 1 after each sample. The proce-
dure of the MPC approach can be illustrated as in Algorithm 1. The
schematic of MPC is illustrated in Fig. 5. At the kth sampling
instant, the feedback state is firstly measured, and the control
input uðkÞ is computed as Algorithm 1. Then control input is imple-
mented on the open loop plant for system operation. Note that the
main difference between the open loop control and MPC is that the
open loop control does not have the feedback and the control input
is pre-designed off-line, but MPC has the feedback and real time
control mechanisms.

Algorithm 1. Pseudo-code of the proposed MPC approach
To verify the performance of MPC, three experiments with vari-
ous disturbances are evaluated. The sampling period is one hour.
The scheduling period is five workdays in winter, and the predic-
tion period is 24 h. This closed-loop control is compared with the
open loop control (as illustrated in the previous section) regarding
cost saving. For simplification, a distribution fitting method [23] is
used as our uncertainty model of disturbance in this paper. The
distribution fitting method includes a hypothesis regarding a
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standard probability distribution of the forecast error (solar
generation or load) and a fitting procedure used to find its parame-
ters. Load and solar forecast errors are assumed to follow truncated
normal distribution (TND). Probability density function (PDF) of
TND is
PDFTNDðxÞ ¼
1
r PDFNðx�l

r Þ
CDFNðb�l

r Þ � CDFNða�l
r Þ

; ð20Þ
where l is the mean value of non-truncated normal distribution; r
is standard deviation of non-truncated normal distribution; a and b
are upper and lower limits of TND, i.e., x 2 ða; bÞ; a < b; PDFN is the
PDF of standard normal distribution; and CDFN is cumulative
distribution function of standard normal distribution.
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Fig. 6. Power flows in Experiment 1 and 2: (a) P1 of Experiment 1; (b)
(1) Positive disturbance on PV output: In this experiment, the
solar irradiation is assumed to be larger than the predicted
irradiation. Then the PV output experiences positive distur-
bance. For an hour, the positive disturbance is assumed to fol-
low TND with parameters l ¼ 0; r ¼ 0:4; a ¼ 0; b ¼ 1:5,
which are obtained by analyzing historical data.
In the MPC approach, it is desired that the additional PV out-
put disturbance can be used to charge the battery, so that
the customer will use less power from the grid. The resulted
profiles of P2 and P4 are plotted in Fig. 6(a) and (b). It can be
noticed that more solar power is used to charge the battery
in the closed-loop than in the open loop control. It is also
observed that the customer needs less power from the grid
in the closed-loop. The net income for five days is $1.02 for
open-loop control and $1.14 for MPC. The earning has
increased about 27% after using MPC.
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P4 of Experiment 1; (c) P2 of Experiment 2; (d) P3 of Experiment 2.
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(2) Positive disturbance on customer demand:
In the second experiment, customers are assumed to
demand more power than the predicted value. Then the cus-
tomer demand experiences positive disturbance. For an
hour, the positive disturbance is assumed follow TND with
parameters l ¼ 0; r ¼ 0:6; a ¼ 0; b ¼ 1:5, which are
obtained by analyzing historical data. For the open-loop con-
trol, the amount of additional demand asks for the same
amount of additional power from the grid, i.e., increasing P4.
In the closed-loop control, the battery takes predefined
responsibility to provide power to satisfy the additional dis-
turbance on demand. To achieve this task, the battery must
be charged sufficiently by the grid power over the off-peak
period to reduce the electricity cost. The power loss during
the charging process must be considered in the cost at the
same time. Fig. 6(c) and (d) show the profiles of P2 and P3

for both MPC and open-loop control. An interesting observa-
tion is that the battery discharges more in the peak and stan-
dard periods (as shown in (c)) and more grid power is used
to charge the battery over the off-peak time (22,24] (as
shown in (d)). As a result, the net income for five days is
$7.89 for MPC compared with $6.01 for open-loop control.
It can be noticed that the earning increases around 31% after
using MPC.

(3) Random disturbances on PV output and demand: In the third
experiment, the disturbances are random numbers, which
can be positive or negative. The random disturbances follow
TND with parameters l1 ¼ 0; r1 ¼ 0:4; a1 ¼ �1:5; b1 ¼ 1:5
for solar forecast error and l2 ¼ 0; r2 ¼ 0:6; a2 ¼ �1:5;
b2 ¼ 1:5 for load forecast error.

It is obvious that open-loop control cannot handle such a com-
plicated case because the PV output and the load balance con-
straints are not satisfied. However, by using the MPC approach,
all constraints can be satisfied and the electricity cost is also opti-
mized. To compare effects of disturbances, the MPC approach is
also implemented on the hybrid system without consideration of
disturbance, in which the obtained results are called nominal val-
ues. The profiles of SOC obtained by MPC during five days are given
in Fig. 7, in which the profile under disturbances is compared with
the nominal profile under no disturbance. By using the MPC
approach, the battery SOC is maintained within a safe range, and
the SOC under random disturbances converges to the nominal
value. The robustness of MPC is achieved owing to its closed-loop
mechanism. The net income in this case is still promising as $4.83.
7. Conclusion

Demand side management has been considered in the optimal
scheduling of small-scale PV-battery hybrid system on the behalf
of customers. An example of DR program, i.e., TOU with power sell-
ing over peak period, has been studied for energy management in
this paper. A model for reducing electricity cost has been devel-
oped, which is much practical at the customer side. The results
have shown that the optimal solution to the operation of hybrid
system achieves the maximal use of solar energy and battery stor-
age. It can be observed that the battery plays a significant role in
storing grid power during off-peak periods and supplying power
to customers during peak periods. As a result, by scheduling the
hybrid system, customers consume minimal amount of power
from the grid and reduce their monthly cost. It has been shown
that optimal control is a useful open-loop control method for
power flow control in DSM.

As that open loop control cannot handle the control task when
the hybrid system experiences disturbances in PV output and load
demand, MPC has been developed for controlling such a hybrid
system when disturbances occur. For this closed-loop control
method, the linear state-space model has been formulated. The
proposed MPC approach has been employed to schedule the dis-
turbed hybrid system. Closed-loop control has been compared
with open loop control in the presented simulation study. Any dis-
turbance experienced in the system can be detected before the
next control period, and the control variable can be corrected
accordingly for the next period by employing the MPC approach.
For a highly disturbed system that cannot be handled by open loop
control, MPC can achieve great control performance in terms of
accuracy and robustness. Furthermore, more cost savings can be
obtained by using the closed-loop control.

In this work, only TOU is evaluated in the small-scale hybrid
system as an example of DSM. Future work include considering
other DSM programs and extending the model to incorporate more
renewable energy sources such as wind power, biomass power and
hydro power.
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