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The management of energy-water nexus in buildings is increasingly gaining attention among domestic
end-users. In developing countries, potable water supply is unreliable due to increasing demand, forcing
end-users to seek alternative strategies such as pumping and storage in rooftop tanks to reliably meet
their water demand. However, this is at an increased cost of energy cost. In this paper, the open loop opti-
mal control model and the closed-loop model predictive control (MPC) model, both with disturbances,
are compared while minimizing the maintenance cost of the pump. The open loop optimal model is suit-
able in instances where only random disturbances due to measurement errors are present. However, in
case the demand pattern changes for reasons such as occupancy change in the house, the closed-loop
MPC model is suitable as it robustly minimizes the pumping cost while meeting the customer demand.
Further, MPC proves its robustness as it is able to overcome the turnpike phenomenon. Each of these two
models has their own strengths. The open loop model is cost effective and easy to implement for cus-
tomers that have a steady demand pattern while the closed-loop MPC model is more robust against
demand pattern changes and external disturbances. It is recommended that these two models are
adopted according to the specific application.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The rising global population is increasingly putting pressure on
the limited source of potable water [1], with 60% of the global
demand estimated to be met by 2030 [2]. Actually, the world bank
estimates that global water demand will increase at a projected
rate ranging from 43% in North America to 283% in Sub-Saharan
Africa from 2005 to 2030 [3]. The impact of water insecurity is
higher in the developing nations, like South Africa, due to high rate
of economic development and subsequent rise in living standards
[4]. Management of water demand in buildings through efficient
technology and behavioral changes has strong entailment in reduc-
ing the demand for energy as well as conserving potable water
supplies. Demand side management in buildings has mainly
focused on energy, such as demand response [5], energy efficient
building retrofitting [6,7], renewable energy utilization [8] and
control of efficient hot water systems [9]. Research has started to
focus on the importance of demand management of energy-
water nexus such as system-based framework for assessing the
nexus in cities [10], nexus at a micro-component level using rain
water tank [11], conservation in a building [12] and even in indus-
tries [13]. Although water supply in developed nations is reliable
[14], the supply in developing nations is quite unreliable, and in
some instances haphazard, where the end-users are forced to rely
on other forms of supply like trucks [15]. This is the case in some
cities in Nigeria, Ghana, Mexico and Indonesia [16].

South Africa, a semi-arid nation, is not only included in the
worldwide trend of inefficient management of both energy and
water but also has her demand far higher than the supply
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Nomenclature

Atank cross-sectional area of the tank (m2)
Dtot total water demand (m3)
hðjÞ height of water in the tank during jth sampling interval

(m)
hmin minimum allowable height of water in the tank (m)
hmax maximum allowable height of water in the tank (m)
J objective function (currency)
k iteration index
N total number of samples during the 24-h horizon
Np total number of samples during the predicting horizon
pe price of electricity using TOU tariff (currency/kW h)
pm pump’s motor rating (kW)
poff off-peak electricity price in the TOU tariff (currency/

kW h)
ppeak peak electricity price in the TOU tariff (currency/kW h)

Q the volumetric flow rate of water in one sampling inter-
val (m3/h)

TOU time-of-use tariff
to; tf time in the first and final samples respectively
ts and j sampling period (h) and jth sampling interval
u state of the pump switch
VðjÞ volume of water in the tank in the jth sampling interval

(m3)
Vmin minimum allowable water volume in the tank (m3)
Vmax maximum allowable water volume in the tank (m3)
x weighting factor
Rand(R) South African currency ((1 Rand = 0.065 USD), as at 23

March 2016)
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[17,18]. The population growth rates and trends in socio-economic
development indicate that South Africa’s freshwater resources can-
not sustain the current patterns of water consumption and dis-
charge. At present, multiple regions in the country are
experiencing water deficit [19], like KwaZulu-Natal province,
whose severe water shortage has forced it to implement water
rationing.1 Similarly, the energy deficit has forced the power utility,
ESKOM, to implement national load shedding program.2 Despite this
dire situation, there is little information on household water con-
sumption according to the department of water and sanitation
[20]. A study by Jacobs et al. [21,22] found out that for the urban
families with lawns and gardens, the most significant water end uses
were garden irrigation (37%), toilet (21%), shower/bath (12%) and
clothes washing machine (9%) of the total water consumption. This
research compares well with other studies conducted in United
States [23], Branz, New Zealand [24], Perth [25] and Melbourne in
Australia [26].

The continual urbanization is increasing the adoption of decen-
tralized water systems although there is still technological chal-
lenges in their operation [27]. Previous studies show that the
problem with water supply in developing nations is forcing end-
users to pump and store their water. Malik [28] looked at various
coping strategies adopted by end-users in dealing with the uncer-
tainties, unreliability and shortages of water supply in India. End
users are forced to have various water storage means such as over-
head tanks and having containers in the house. They are also forced
to change their water use pattern highly inconveniencing them.
Vieira and Ghisi [29] conducted a study on energy-water nexus
for low income houses in Brazil and found out that the dis-
economies of scale associated with pumping and storage increased
the energy intensity for water services. Another study on residen-
tial rain water tanks showed that pumps increase the energy inten-
sity and the consequent bills to the end-users [11]. Research on
pump scheduling has mostly focused on industrial [30], agricul-
tural [31] and large scale municipal pumping [32]. However, for
domestic users, pumping takes place with no consideration to
the peak power consumption negatively affecting the grid and
increasing electricity bills incurred by the end-users.

This introductory paper reports the first attempt to design nov-
el, practical and economically attractive open loop optimal control
and closed-loop model predictive control (MPC) strategies for
pumping and storing water in a tank to meet the hourly water
1 Department of Water and Sanitation http://www.dwa.gov.za/default.aspx.
2 http://loadshedding.eskom.co.za/.
demand in a house subject to the time-of-use (TOU) electricity tar-
iff. These control models ensure energy efficiency in cases where
either there is water rationing or the water supply is always there
but it has low pressure and cannot therefore be used directly in the
house. We consider the latter case in this paper. The controls are
superior to the classical control methods such as proportional-inte
gral-derivative (PID) controls. PID controllers have low accuracy in
processes which are either non-linear or have a large time delay
[33]. Further, PID controllers only handle effectively single input-
single output (SISO) systems. However, MPC can handle multiple
input-multiple output (MIMO) systems, deal with constraints
[34], has higher accuracy, robustness against disturbances and
has the ability to predict the future behavior of the plant [35]. It
nonetheless comes at a higher computational cost [36]. The appli-
cation of MPC and PID to water pumping and level control systems
have been studied by many researches, such as [37,38], who con-
cluded that MPC is better than PID in terms of Rise time, Settling
time and maximum overshoot. It also intrinsically and quickly
compensates for disturbances in the system [39]. The aim of the
controls presented in this study is to optimally operate the pump
in the pump-storage scheme such that the customer’s water
demand can be satisfied with minimum electricity cost and main-
tenance cost of the pump. Two models, namely open loop control
and closed-loop MPC control, are introduced to cater for different
application requirements. The open loop control is easy to imple-
ment and more cost effective and is more suitable for applications
where the water demand pattern is known to be relatively stable.
However, in cases where the demand pattern is known to be fluc-
tuating in a way that is difficult to predict and/or the external dis-
turbances to the implementation of the control system is of
significant impact, the closed-loop control must be adopted.
Although it has the ability to robustly control the system under
the aforementioned fluctuating demand and disturbances, it
requires installation of additional monitoring devices to the system
such as water level measurement of the tank, which increases the
cost and complexity of the control system.
2. Model layout and formulation

2.1. Schematic model layout

The increasing water demand due to increasing population and
urbanization is causing inadequate supply to the end-users. The
situation is worsened by the fact that the existing supply infras-
tructure is not expanding proportionately to the demand forcing

http://www.dwa.gov.za/default.aspx
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Fig. 1. Schematic of domestic water supply system with pumping and storage.
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end-users to resolve to alternative measures like pumping and
storing the water [40]. Fig. 1 shows the schematic diagram of the
water supplying system in a house where water has to be pumped
and stored for later use. A fixed speed pump with a switch (u)
pumps the water to a rooftop storage tank whose size is restricted
to the space available. From the tank, water flows by gravity with
the required pressure to various end uses. Two pump control mod-
els are considered in this paper. First, an open loop control model is
developed by using the predicted diurnal water demand. Secondly,
a closed-loop MPC model is developed whereby, the level of water
in the tank is measured using level sensors. This is used as the
feedback signal to the controller, which then optimizes the sched-
ule for pumping to meet the demand.
2.2. Open loop optimal control model

This model seeks to minimize the cost of energy used in pump-
ing water to the tank while simultaneously minimizing the main-
tenance cost of the pump and effectively maximizing its life cycle.
It is assumed that water is always flowing in the municipal pipe
albeit at low pressure and there is no water rationing. In case of
water rationing, the same formulation is applicable, but the con-
troller would have the information on when the water will be pre-
sent in order to start pumping. In this paper, we consider an
evaluation period of one day, or a full operation cycle of 24 h, from
0 to hour 24 with a sampling period, ts, of 10 min. This leads to a
total number of samples N ¼ 24

ts
¼ 144. Therefore, to minimize cost

of energy used in pumping the water, the objective function is,
J ¼
XN
j¼1

pmtspeðjÞuðjÞ: ð1Þ
where pm is the pump rating, peðjÞ is the cost of electricity in the jth
sampling interval using the time-of-use tariff and uðjÞ is the on/off
status of the pump during the jth sampling interval. This objective
is subject to the constraints discussed below.
2.2.1. Capacity of the water tank
The dynamics of the volume of water in the tank can be

expressed in discrete-time domain by a first order differential
equation as follows:

Vðjþ 1Þ ¼ VðjÞ þ QtsuðjÞ � DtotðjÞ; ð2Þ
where Q is the flow rate of the water through the pump in m3/h and
DtotðjÞ is the total water demand in the jth sampling interval in m3.
Expressing this volume in terms of the initial volume Vð0Þ in the
tank using recurrence manipulation gives,

VðjÞ ¼ Vð0Þ þ
Xj

i¼1

ðQtsuðiÞ � DtotðiÞÞ; ð1 6 j 6 NÞ: ð3Þ

The water pumped into the tank must not spill from the tank as it
would lead to wastage of water and damage the house’s ceiling.
Similarly, the tank should not be completely empty in order to pre-
vent air from getting into the pipes [41], as well as to avoid incon-
veniencing the end-users [42]. Therefore, the amount of water in
the tank is restricted by the tank’s dimensions as follows

Vmin 6 Vð0Þ þ
Xj

i¼1

ðQtsuðiÞ � DtotðiÞÞ 6 Vmax; ð1 6 j 6 NÞ: ð4Þ

where Vmin and Vmax are the minimum and maximum allowable vol-
umes of the water in the tank respectively.

2.2.2. Tank’s terminal constraint
It is desired that at the end of the horizon, a certain volume, Vf ,

of water is left in the tank. From the state Eq. (2), then the volume
of water in the tank during the last sampling interval is;

Vf ¼ VðNÞ ¼ Vð0Þ þ
XN
j¼1

ðQtsuðjÞ � DtotðjÞÞ: ð5Þ
2.2.3. Pump maintenance cost
Minimum energy cost may be achieved by frequently switching

the pump on and off during the control period. Unfortunately, this
frequent switching of the pump increases the pump maintenance
cost due to high wear [43]. The number of pump switching can
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be used as an alternative variable for measuring the pump mainte-
nance cost [32].

Even though maintenance cost has not been considered in some
studies [44], common methods used to minimize it are; switching
the pump for a pre-set minimum duration [45], and restricting the
maximum number of times a pump can switch during the control
period [46]. These methods, nonetheless, do not optimally control
the pump while minimizing the maintenance cost. Actually, if the
water demand rises, the optimal solution would easily become
infeasible as the controller is restricted on the number of times it
can switch instead of adapting accordingly. To overcome this, the
Pretoria method by Mathaba et al. [47] introduces an auxiliary
variable sðjÞ represented by a value 1 whenever the pump’s state
is changed from off to on. This auxiliary variable is optimally deter-
mined by the following optimization problem.

min
XN
j¼1

sðjÞ; ð6Þ

constrained by

uð1Þ � sð1Þ 6 0; ð7aÞ

uðjÞ � uðj� 1Þ � sðjÞ 6 0; ð7bÞ
with sðjÞ 2 f0;1g. The inequality (7a) initialises the auxiliary vari-
able as the initial status of u while the inequality (7b) favors the
control that involves less switching. Using this method, the overall
objective that simultaneously minimizes the cost of energy and
maintenance is

J ¼
XN
j¼1

ðð1�xÞpmtspeðjÞuðjÞ þxsðjÞÞ; ð8Þ

where x is a weighting factor.

2.2.4. Pump’s switch
This paper focuses on fixed speed pumps which are commonly

used in water pumping in urban houses. This type of pump is ideal
for the current task, unlike the more expensive variable speed
drives, because the water just needs to be pumped and stored.
Therefore, under optimal operation, the pump should not require
additional investments on flow rate adjustment devices such as
valves and variable speed drives [30]. The pump controller only
switches the pump on/off such that it can be modeled as a switch
control problem, where

uðjÞ 2 f0;1g; ð1 6 j 6 NÞ: ð9Þ
2.3. Algorithm for solving the open loop optimization problem

The objective function (8) is solved using the following canoni-
cal form [48].

min f TX ð10Þ
subject to

AX 6 b ðlinear inequality constraintÞ;
AeqX ¼ beq ðlinear equality constraintÞ;
LB 6 X 6 UB ðlower and upper boundsÞ:

8><
>: ð11Þ

Here, vector X contains the control variables, which are the pump
switch uðjÞ and the auxiliary variable sðjÞ used to minimize the fre-
quency of pump switching. Thus,

X ¼ uð1Þ; . . . ; uðNÞ; sð1Þ; . . . ; sðNÞ½ �T2N�1: ð12Þ
The vector f T in the canonical form (10) can be obtained from the
objective function (8) as

f T ¼ ð1�xÞpmtspeð1Þ . . . ð1�xÞpmtspeðNÞ x . . . x½ �1�2N:

ð13Þ
The linear inequality constraint (4) can be transformed into

A1X 6 b1;

� A1X 6 b2;
ð14Þ

where,

A1 ¼

�tsQ 0 . . . 0 0 . . . 0
�tsQ �tsQ . . . 0 0 . . . 0

..

. ..
. . .

. ..
. ..

. . .
. ..

.

�tsQ �tsQ . . . �tsQ 0 . . . 0

2
66664

3
77775

N�2N

; ð15Þ

b1 ¼

�Dtotð1Þ � ðVmin � Vð0ÞÞ
�ðDtotð1Þ þ Dtotð2ÞÞ � ðVmin � Vð0ÞÞ

..

.

�ðDtotð1Þ þ Dtotð2Þ þ . . .þ DtotðNÞÞ � ðVmin � Vð0ÞÞ

2
66664

3
77775

N�1

ð16Þ
and

b2 ¼

Dtotð1Þ þ ðVmin � Vð0ÞÞ
ðDtotð1Þ þ Dtotð2ÞÞ þ ðVmin � Vð0ÞÞ

..

.

ðDtotð1Þ þ Dtotð2Þ þ . . .þ DtotðNÞÞ þ ðVmin � Vð0ÞÞ

2
66664

3
77775

N�1

:

ð17Þ
Again, the linear inequalities (7a) and (7b) can be represented by

A3X 6 b3; ð18Þ
where

A3 ¼

1 0 0 . . . 0 0 �1 0 0 . . . 0
�1 1 0 . . . 0 0 0 �1 0 . . . 0
0 �1 1 . . . 0 0 0 0 �1 . . . 0
..
. ..

. ..
. . .

. . .
. ..

. ..
. ..

. ..
. . .

. ..
.

0 0 0 . . . �1 1 0 0 0 . . . �1

2
6666664

3
7777775

N�2N

;

b3 ¼ 0 0 0 . . . 0½ �T1�N :

ð19Þ
Then, the canonical linear inequality constraint in (11) becomes

A1

�A1

A3

2
64

3
75

3N�2N

X 6
b1

b2

b3

2
64

3
75

3N�1

ð20Þ

In similar veins, linear equality constraint (5) can be written as
follows;

AeqX ¼ beq; ð21Þ
where

Aeq ¼

0 . . . 0 0 . . . 0
..
. . .

. ..
. ..

. . .
. ..

.

0 . . . 0 0 . . . 0
tsQ . . . tsQ 0 . . . 0

2
66664

3
77775

N�2N

ð22Þ

and
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beq ¼

0
..
.

0
Vf � Vð0Þ þ ðDtotð1Þ þ . . .þ DtotðNÞÞ

2
66664

3
77775

N�1

: ð23Þ

Finally, the canonical lower and upper bounds in (11) are written as

LB ¼ 0; . . . ; 0; 0; . . . ; 0½ �T2N�1 UB ¼ 1; . . . ; 1; 1; . . . ; 1½ �T2N�1

ð24Þ

This binary linear optimization problem is solved using the SCIP sol-
ver, available in the Matlab interface OPTI toolbox. SCIP is currently
one of the fastest non-commercial solvers for mixed integer (linear
and non-linear) programming [49].

Theopen loopcontroller is able to provide the optimalpumpcon-
trol schedule in vectorX throughout thewhole control horizonusing
the predicted water demand. The results are discussed later in the
paper.

2.4. Closed-loop MPC model

Closed-loop MPC method uses the explicit model of the plant to
optimize the future plant behavior [50]. The current control action
is obtained by solving on-line a finite open loop optimal control
problem using the current state of the plant as the initial state.
The optimization produces an optimal control sequence, but only
the first control step is applied to the plant [51]. This ability to
compute the control law on-line is a huge benefit of MPC over
the conventional control in instances where off line computation
of the control law is difficult [35].

Taking measurements and feeding them back to the controller
provides stability and robustness against disturbances and inaccu-
rate system modeling [52]. In this model, volume of water in the
tank is measured using sensors, and then fed back to the controller.
The tank considered is assumed to be cylindrical, such that level
sensors, which are the most economical and easy to implement,
can be used to provide the height of the water in the tank. The tank
dynamic Eq. (2) can then be modified to give the height of the
water, h, in the tank as;

hðjþ 1Þ ¼ hðjÞ þ 1
Atank

ðQtsuðjÞ � DtotðjÞÞ: ð25Þ

Following the idea of MPC, the objective function (8), can now be
modified to,

Jmpc ¼
XkþNc�1

j¼k

ðð1�xÞpmtspeðjÞuðjjkÞ þxsðjjkÞÞ; ð26Þ

where Nc is the control horizon, uðjjkÞ and sðjjkÞ are the predicted
values at the jth sampling interval based on the information avail-
able at time k. Although common MPC optimization problems
include both the predicting (Np) and control (Nc) horizons, such that
Nc 6 Np, this MPC problem does not include Np because the above
objective function does not have the state variable, hðjÞ, included.

In the optimization algorithm, the control vector, Xmpc will still
contain the pump switchuðjÞ and the auxiliary variable sðjÞ such that

Xmpc ¼ uðkjkÞ;uðkþ1jkÞ; . . . ;uðkþNc �1Þ;sðkjkÞ;sðkþ1jkÞ; . . . ;
sðkþNc �1Þ

� �T
2Nc�1

:

ð27Þ
Therefore, the vector f T in the objective function’s canonical form
(10) can be derived form objective function (26) as,

f T ¼ ð1�xÞpmtspeðkÞ;ð1�xÞpmtspeðkþ1Þ; . . . ;

ð1�xÞpmtspeðkþNc �1Þ; x; . . . ; x

� �
1�2Nc

: ð28Þ
This objective function is minimized subject to the same constraints
modeled in Section 2.2 albeit with the following adjustments.

(1) Tank’s capacity: The volume of the water in the tank within
the control horizon, Nc , is constrained by the tank’s capacity
between the maximum and minimum allowable water vol-
ume. Since the tank is assumed to be cylindrical, and the
level sensor will give the height of water in the tank, then,
hmin 6 hðkÞ þ
Xj

i¼k

1
Atank

ðQtsuðijkÞ � DtotðiÞÞ

6 hmax; k 6 j 6 kþ Nc � 1 ð29Þ

where hðkÞ is the measured height of the water in the tank at
time k having a cross-sectional area Atank while, hmin and hmax

are the minimum and maximum allowed water heights in
the tank respectively such that hmin ¼ Vmin

Atank
and hmax ¼ Vmax

Atank
. In

the algorithm, the linear inequality can be transformed into,

Ampc
1 Xmpc 6 bmpc

1 ;

� Ampc
1 Xmpc 6 bmpc

2 ;
ð30Þ

where,

Ampc
1 ¼

�tsQ 0 . . . 0 0 . . . 0
�tsQ �tsQ . . . 0 0 . . . 0

..

. ..
. . .

. ..
. ..

. . .
. ..

.

�tsQ �tsQ . . . �tsQ 0 . . . 0

2
66664

3
77775

Nc�2Nc

; ð31Þ

bmpc
1 ¼

�DtotðkÞ�Atankðhmin�hðkÞÞ
�ðDtotðkÞþDtotðkþ1ÞÞ�Atankðhmin�hðkÞÞ

..

.

�ðDtotðkÞþDtotðkþ1Þþ . . .þDtotðkþNc�1ÞÞ
�Atankðhmin�hðkÞÞ

2
66666664

3
77777775

Nc�1

;

ð32Þ
and

bmpc
2 ¼

DtotðkÞ þ Atankðhmax � hðkÞÞ
ðDtotðkÞ þ Dtotðkþ 1ÞÞ þ Atankðhmax � hðkÞÞ

..

.

ðDtotðkÞ þ Dtotðkþ 1Þ þ . . .þ Dtotðkþ Nc � 1ÞÞ
þAtankðhmax � hðkÞÞ

2
66666664

3
77777775

Nc�1

:

ð33Þ

(2) Pump switching constraints: The constraint minimizing the

switching frequency of the pump now becomes,
uð1jkÞ � sð1jkÞ 6 0; ð34aÞ

uðjjkÞ � uðj� 1jkÞ � sðjjkÞ 6 0; ð34bÞ
with sðjjkÞ 2 f0;1g. The inequality constraint (34a) initialises
the auxiliary variable as the initial status of u based on infor-
mation available at time k while the inequality (34b) favors
the control involving less switching between adjacent sam-
pling intervals based on information available at time k.
The constraints can be represented by,

Ampc
3 Xmpc 6 bmpc

3 ð35Þ
where
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Ampc
3 ¼

1 0 0 . . . 0 0 �1 0 0 . . . 0
�1 1 0 . . . 0 0 0 �1 0 . . . 0
0 �1 1 . . . 0 0 0 0 �1 . . . 0
..
. ..

. ..
. . .

. . .
. ..

. ..
. ..

. ..
. . .

. ..
.

0 0 0 . . . �1 1 0 0 0 . . . �1

2
6666664

3
7777775

Nc�2Nc

;

bmpc
3 ¼ 0 0 0 . . . 0½ �TNc�1:

ð36Þ
Therefore, the linear inequality constraint (11) now becomes

Ampc
1

�Ampc
1

Ampc
3

2
64

3
75

3Nc�2Nc

Xmpc 6
bmpc
1

bmpc
2

bmpc
3

2
64

3
75

3N�1

: ð37Þ
(3) Terminal constraint: At the end of the 24-h horizon, the
height of water in the tank should be hf such that,
hf ¼ hðkÞ þ
XN�kþ1

j¼k

1
Atank

ðQtsuðjjkÞ � DtotðjÞÞ: ð38Þ

In the algorithm, this constraint is written as the canonical
linear equality constraint in (11) as,

Ampc
eq Xmpc ¼ bmpc

eq ; ð39Þ

where

Ampc
eq ¼

0 . . . 0 0 . . . 0
..
. . .

. ..
. ..

. . .
. ..

.

0 . . . 0 0 . . . 0
tsQ . . . tsQ 0 . . . 0

2
66664

3
77775

Nc�2Nc

ð40Þ

and

bmpc
eq ¼

0
..
.

0
hf � hðkÞ þ ðDtotðkÞ þ . . .þ DtotðN � 1ÞÞ

2
66664

3
77775

Nc�1

:

ð41Þ
In this case, Nc is evolving all the time as Nc ¼ N � kþ 1.
(4) Upper and lower bounds: The on/off control of the pump is
still modeled as switch control problem such that,
3 Water tank http://www.jojotanks.co.za/.
4 http://www.davisandshirtliff.com/categories/product/104-ebs-800.
5 Eskom tariffs and charges booklet 2011/2012. http://www.eskom.co.za.
uðjjkÞ 2 f0;1g: ð42Þ
In the canonical lower and upper bounds in (11), they are
written as

Lmpc
B ¼ 0; . . . ; 0; 0; . . . ; 0½ �T2Nc�1

Umpc
B ¼ 1; . . . ; 1; 1; . . . ; 1½ �T2Nc�1:

ð43Þ

The open loop optimal control problem (26) is solved, using
SCIP solver in the Matlab interface OPTI toolbox, during each
iteration over the finite 24-h horizon. Although, in MPC, the
optimal vector, X contains the controls, using the principle of
the receding horizon control, only the first element in the
control vector Xmpc is implemented after each iteration,
ignoring the rest of the elements [53]. The state of the plant
(water level in the tank, hðjÞ) is also measured. At the next
iteration, kþ 1, the objective function and the constraints
are updated while hðkÞ is taken as the initial state and the
process of optimization is carried out in real time over the
new control horizon (Nc ¼ N � kþ 1) to give the receding
horizon control law.
3. General data

3.1. Case study

A maisonette house in a gated community in Tshwane, South
Africa was chosen for this study. The house, with five occupants,
has the following end-uses; two showers, a bath tub, two toilets,
two hand taps, a kitchen tap, a clothes washing machine, a dish
washer, a grass lawn and an electric water heater for all the hot
water demand. The water from the municipal supply requires
pumping and storage due to its low pressure. The pump is cur-
rently controlled by two sensors in the tank such that when the
water level is low, the pump is switched on until the tank is full
regardless of the cost of electricity using the TOU tariff. This is used
as the baseline in this paper. The water flows from the storage tank
to the various end-uses by gravity. Jojo’s3 1000 l cylindrical water
tank with a diameter and height of 1.1 and 1.3 m respectively is used
and the lower and upper levels of the water in the tank are set as
0.12 and 1 m, respectively to avoid spilling the water from the tank
as well as running it completely empty. In addition, Grundfos Leader
EBS 800 pump4 rated at 0.8 kW with a flow rate of 0.9 m3/h at a
maximum head of about 30 m is used. This pump is specifically
designed for pressurised water supply in domestic and other small
scale applications.

The water demand in the house was measured every hour by
placing a digital flow meter connected to a data logger, for a period
of one week. From the measurements carried out, the average
hourly water demand is shown in Fig. 2. The demand has the high-
est peak in the morning between 7 and 10 AM. There is also
another peak in the evening from 5 to around 9 PM. The morning
peak is attributed to people waking up and preparing to go to work
or school with the highest end-use demand being showering and
the clothes washer. Likewise, the evening demand is attributed
to people getting back home from work. The consumption during
the day is attributed to those at home during the day. Although this
hourly demand is similar to the one obtained by Willis et al. [54],
the extensive conservation awareness and measures carried out in
their study area made the daily water consumption to be less than
what was obtained in our study.
3.2. Time-of-use electricity tariff

The TOU tariff is commonly used globally [55] and it can vary by
time of day, day of week and season [56]. Eskom’s TOU Homeflex
structure5 for residential consumers given below is used for the
house.
peðtÞ ¼
poff ¼ 0:5510 R=Kwh if t 2 ½0;6� [ ½10;18� [ ½20;24�
ppeak ¼ 1:7487 R=Kwh if t 2 ½7;10� [ ½18;20�

(
;

ð44Þ
where peðtÞ is the hourly price of electricity, poff is the off peak price,
ppeak is the peak time price, R is the South African currency, Rand,
and t is the time of day in hours. The tariff has five charge compo-
nents as service charge, network charge, environmental levy, peak
charge and off-peak charges [57].

http://www.jojotanks.co.za/
http://www.davisandshirtliff.com/categories/product/104-ebs-800
http://www.eskom.co.za
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4. Simulation results and discussion

4.1. Control models without disturbance

This section compares both the open and closed-loop models
with the intention of showing that the closed-loop MPC model is
just as effective as the open loop optimal model when there are
no disturbances, system inaccuracies or plant failures. In addition,
the legend representing peak time and off-peak time for the TOU
tariff is the same throughout the paper.

It can be seen from Fig. 3 that all the pump schedules take place
during the off-peak period, effectively shifting the load from the
peak time. Fig. 3a and b show the results without considering
the pump’s maintenance cost. The frequent switching of the pump
is undesired, as it leads to high wear and tear of the pump’s motor
as it tries to overcome the dead weight caused by the stationary
load (water), hence increasing the maintenance cost. Although
not accounted for in this model, the frequent starting of the pump
could also lead to higher energy costs due to the high start-up cur-
rent required in overcoming the dead weight. Therefore, the strat-
egy employed to minimize the switching frequency and effectively
minimize the maintenance cost works both in open loop model
(Fig. 3c) as well as the MPC model (Fig. 3d). All the four models,
however, incur the same cost of energy proving that both the open
loop and MPC models are effective with no disturbances.

The variation of the state variable, that is, water level in the tank
(hðjÞ) due to the models in Fig. 3 is shown in Fig. 4. It can be seen
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Fig. 3. Comparison of both open loop and MPC with th
that none of the models violated the constraints for the tank. In the
optimal open loop model without consideration of the mainte-
nance cost (Fig. 3a), the pump switches at 00:50 the first time
for a duration of 10 min only, causing the water level in the tank
to increase in the tank. The pump switches on frequently between
04:30–06:00 h causing another rise of the water level in the tank to
a height of 0.75 m. The pump is then switched off through the peak
time where the water level in the tank declines to 0.135 m due to
the water demand in the house. The controller then senses that the
water level is declining and switches on the pump at 10:20, again
frequently with the longest duration being 20 min causing the
water level in the tank to vary. Similarly, the MPC schedule with
no maintenance cost (Fig. 3b) frequently switches the pump on
starting at 05:30. This is after the water level in the tank declined
to 0.13 m due to the early demand in the house. The pump is
switched on twice before the peak time where the tank is filled.
This water is used up during the peak time with the level declining
to 0.47 m before the pump is switched on at 10:00 h, just after
peak time, for a duration of 10 min. Thereafter, the pump is
switched on twice, for a duration of 10 min each, causing the rise
of water level in the tank at 17:20 and 20:10 h. Unfortunately,
these two schedules are undesirable for the operation of the pump.

When the open loop optimal model with maintenance (Fig. 3c)
is considered, the two switching regimes at 00:10 and 12:40 h,
each lasting 50 min lead to the increase in the water level in the
tank to 0.95 m and 0.87 m respectively. This water is sufficient to
meet the demand in the house without violating the constraints.
Identically, the closed-loop MPC model (Fig. 3d) has two switching
regimes at 00:00 and 10:30 h, 40 min and 1 h long respectively.
They lead to a water rise in the tank to 0.80 and 1 m respectively.
Thereafter, when the pump is off, this water level declines due to
the demand in the house. It is also important to note that all the
schedules were terminally constrained to also ease in comparison
as seen in the graph.
4.2. Control models with disturbance

The models are tested for robustness using two likely distur-
bances to be experienced in dealing with water demand. First, a
random disturbance throughout the horizon is applied and then
a sudden spike in water demand is used.
4.2.1. Random disturbance
Random disturbance can be caused by errors in accurately pre-

dicting the water demand, measuring the water level in the tank or
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inaccuracies of the pump’s flow rate. By applying the random error
signal, eðjÞ, affecting the demand such that the new demand is,

Dd
totðjÞ ¼ DtotðjÞ þ eðjÞ: ð45Þ

This demand in turn, affects the state Eq. (25). In this paper, the
error signal is randomly generated as �50% of the demand, signify-
ing a very inaccurate system. Fig. 5 shows the comparison of the
water level in the tank with such a disturbance. Since the distur-
bance signal is randomly generated, the figure shows the average
variation of the water level while using the two models. The open
loop model does not violate the boundary constraints in most cases.
Even in the cases where the open loop model violated the con-
straints, the violation was not very severe. Further, the MPC model
switches on the pump at 10:00 h for 10 min in order to deal with
the disturbances. This extra switching also causes more water to
be left in the tank. In order to ensure the MPC model remained fea-
sible, the terminal constraint is implemented as a soft constraint
taking note of the increase of the height of water in the tank when
the pump is switched on during one sampling interval. The open
loop and the MPC models incur pumping cost of 0.84 and 0.92
Rands respectively. This means that, in dealing with random distur-
bances arising from system inaccuracies, the open loop optimal
control model is better than the MPC, as it is cheaper to implement
and also incurs less running costs.
4.2.2. Sudden spike in water demand
A sudden increase in water demand could be caused either by

more people in the house during some period, or some unforeseen
demand for water. In this paper, we assumed that the water
demand suddenly increased by 70% between 18:00–20:00 h.
Fig. 6 shows the comparison of the robust MPC and the open loop
optimal control in the presence of disturbances. The open loop con-
trol model does not react to the unforeseen increase in demand.
This leads to the emptying of the tank towards the end of the
day effectively meaning the end-users would not have water to
use. On the contrary, the MPC model reacts to the increased
demand by switching on the pump at 20:10 h for just 10 min.
The extra water pumped in this duration means that the tank
has enough water to meet the rest of the demand. The MPC model,
however, incurs a pumping cost of 0.92 Rands against 0.84 Rands
incurred by the open loop optimal model. Although the cost of
using the MPC is slightly higher, it is more robust in dealing with
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sudden disturbances and it is more reliable in ensuring that the
end-users always have water.

4.2.3. Turnpike phenomenon
During implementation, the open loop optimal controller does

not guarantee proper operation in subsequent days as the water
level in the tank at the end of the control horizon, which will be
the initial state for the following day, is not always the same as
hð0Þ as seen in Fig. 4. This problem is called the turnpike phe-
nomenon [58]. Turnpike property has been described by Faulwas-
ser et al. [59] as the phenomenon where the optimal solution in
many finite-horizon optimal control problems for different initial
conditions approach the purlieus of the best steady state but might
leave it towards the end of the control horizon. This phenomenon
has been observed in optimization problems with and without ter-
minal constraints. The closed-loop MPC automatically corrects this
problem over several days as it uses the previous state in the tank
instead of the initial state. Since the sampling in this paper is done
every 10 min, one day has 144 samples. Therefore, from Fig. 7, the
water level in the tank at the end of each day is the same, at a
height of 0.15 m. The advantages of the MPC to handle constraints
and disturbances while possessing closed-loop stability and
robustness makes it suitable for use in practical problems [60].
6 http://www.eskom.co.za.
4.3. Discussion

The open loop and MPC models considering the maintenance
cost of the pump are suitable for optimally controlling the pump
to meet the household water demand. Both can save up to 48.5%
of the pumping energy cost with respect to the baseline assuming
there are no disturbances. However, this is never the case in reality.
The open loop optimal model is suitable in cases where the only
disturbances are due to the measurements errors, such that
demand pattern doesn’t change significantly. This is because while
it still efficiently controls the pump, it incurs 8:7% less cost than
the MPC model and it is cheaper to implement.

However, in reality, disturbances due to measurements uncer-
tainties are not the only disturbances. There are instances when
the house will either have more or less occupants, or need more
water to perform some chores that are not performed daily, hence
it is not possible to predict. The open loop model is unable to
respond to such kind of a disturbance, leading to emptying of the
tank even before the horizon is over. This model also runs at the
danger of spilling the water if the demand unexpectedly goes down
when it was already pumping the water. To mitigate against such
disturbances, the MPC model has proved its robustness by adapt-
ing accordingly while ensuring that none of the constraints are vio-
lated. This robustness is at the expense of 9.5% more cost of energy
than the open loop model, though it can still save 43.6% with
respect to the baseline. Therefore, the robustness of the MPCmodel
makes it more suitable in pumping the water to meet household
water demand. In South Africa, the TOU period for different sea-
sons was reviewed in 2015 where winter peak periods start one
hour earlier.6 The MPC model, when tested in both summer and
winter periods, yields the same results indeed showing its robust-
ness. If a different tariff is used, the MPC would automatically adopt
to it to ensure the pump is efficiently operated.

Table 1 shows the comparison of the energy costs incurred by
the two models as compared to the baseline model. The cost
incurred in the baseline model is constant throughout because
for the day chosen, the baseline model doesn’t need to pump extra
water whether there are disturbances or not, since enough water is
left in the tank at the end of the day. Similarly, since the open loop
model is unable to predict and adapt to the disturbances, it also
incurs the same energy cost in the three cases. However, the robust
MPC model’s cost of pumping energy increases by 9.5% due to the
disturbances that necessitate the model to switch on the pump for
an extra sampling interval in response to the disturbances. It is also
noted that the extra switching pumps enough water to counter
both types of disturbances, hence the same cost in the presence
of disturbances.

Both the open loop model and the robust MPCmodel can poten-
tially lead to a cost saving of 48.5% and 43.6% respectively. The
open loop model therefore leads to higher cost saving, and is suit-
able in situations where only random disturbances are present.
However, in practical situations, the demand for water in the house
is bound to change, either rise or drop, without prediction. The
ability of the robust MPC model to adapt to such a disturbance,
unlike the open loop model, makes it superior although at a
slightly higher cost.

The two control models are applicable in situations with unre-
liable municipal water supply that forces end-users to pump and
store water such as cities in developing nations. This would
enhance energy efficiency through load shifting translating to

http://www.eskom.co.za
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Table 1
Comparison of the cost of pumping energy incurred.

Pumping energy cost (Rands/day)

Baseline Open loop Robust MPC

No disturbance 1.63 0.84 0.84
Random disturbance 1.63 0.84 0.92
Spike disturbance 1.63 0.84 0.92
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lower electricity cost to the end-users while ensuring reliability
and convenience. The models are also useful for end-users using
boreholes as their source of water. In the case where water ration-
ing exists, the models would be fed with the time water is available
so as to optimally control the pump. In scenarios where end-users
have more than one source of water, for example, stored rain water
or bore hole and municipal sources. In such cases, the models can
be modified to accommodate the extra sources of water in ensur-
ing energy efficiency and reliability by means of properly modeling
the new system with extra components.
5. Conclusion

The increasing population and urbanization in developing
nations is increasing pressure on existing energy and water infras-
tructure causing insufficient and unreliable supply to end users.
Some of these end-users are forced to install water tanks in their
houses to pump and store the water for use. The pumping
increases the load on the power utilities in the same economies
where the energy security is very low. In South Africa, for instance,
the energy demand management has steadily been developing,
while leaving out the energy-water demand management among
domestic end users. This paper, therefore, presents the introduc-
tory research for energy-water nexus demand management in
urban houses through optimal operation.

Open loop optimal and closed-loop MPC models are developed
to meet the water demand in the house while minimizing the
energy cost for pumping the water in the house. The models are
developed using the TOU tariff in South Africa. Both models can
potentially lower the energy cost by up to 48.5% when the demand
is correctly predicted with no disturbances. This is never the case
in reality and therefore the robust MPC control model proves suit-
able in dealing with all the disturbances, while still saving up to
43.6% of the energy cost. The open loop model can still be used
in cases where the only disturbances present are due to random
errors arising from measurements and the demand profile doesn’t
change that much. If widely adopted, the models would lead to
lower energy costs to the consumers through lower electricity bills.
Further, shifting the peak load would improve the stability of the
grid by shaving the peak. This in turn would mean that some black
outs experienced during peak time would cease as the demand
from the grid would not be more than its capacity.

Further research will involve optimal controls for water conser-
vation strategies within households. The research can also be fur-
thered to commercial buildings in developing nations where the
water needs to be pumped and stored. Energy efficiency can fur-
ther be enhanced through the incorporation of renewable energy
to power the pump. This will lead to more economic benefits to
the end-users.
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