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Energy meters need to be calibrated for use in Measurement and Verification (M&V) projects. However,
calibration can be prohibitively expensive and affect project feasibility negatively. This study presents a
novel low-cost in-situ meter data calibration technique using a relatively low accuracy commercial
energy meter as a calibrator. Calibration is achieved by combining two machine learning tools: the
SIMulation EXtrapolation (SIMEX) Measurement Error Model and Bayesian regression. The model is
trained or calibrated on half-hourly building energy data for 24 h. Measurements are then compared
to the true values over the following months to verify the method. Results show that the hybrid method
significantly improves parameter estimates and goodness of fit when compared to Ordinary Least Squares
regression or standard SIMEX. This study also addresses the effect of mismeasurement in energy moni-
toring, and implements a powerful technique for mitigating the bias that arises because of it. Meters cal-
ibrated by the technique presented have adequate accuracy for most M&V applications, at a significantly
lower cost.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Measurement and Verification (M&V) is the process by which
the savings from energy projects are independently quantified in
a complete, conservative, consistent, transparent, and relevant
manner [1]. M&V is usually mandatory if projects are to be eligible
for incentives such as credits or rebates. In many cases, limits are
placed on the uncertainty with which savings can be reported
[2–4]. Following the International Standards Organization’s Guide
to the Expression of Uncertainty in Measurement (GUM) [5,6] this
uncertainty is usually expressed as a relative precision at a given
statistical confidence level.
The challenging aspect of M&V is that savings cannot be mea-
sured directly. Rather, a mathematical model of the energy sys-
tems’ behaviour is created from measurements done prior to the
intervention. This model may use covariates such as outside air
temperature, occupancy, or production to characterise a facility’s
energy use. The model then predicts what the energy use would
have been in the post-intervention period, had no intervention
taken place. The difference between this predicted value and the
actual measured energy use is the savings.
1.1. Definitions

Various technical and closely related terms are used in this
paper. Before proceeding, their definitions are clarified. Error is
the difference between the actual and the measured value. Random
errors are distributed symmetrically around the mean, and usually

http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2016.12.028&domain=pdf
http://dx.doi.org/10.1016/j.apenergy.2016.12.028
mailto:hermancarstens@gmail.com
http://dx.doi.org/10.1016/j.apenergy.2016.12.028
http://www.sciencedirect.com/science/journal/03062619
http://www.elsevier.com/locate/apenergy


564 H. Carstens et al. / Applied Energy 188 (2017) 563–575
follow a normal distribution. Systemic or non-random errors intro-
duce bias. Bias ‘‘deprives a statistical result of representativeness
by systematically distorting it” [7]. For example, biased data will
consistently have a different mean to the true mean. Random
errors usually do not have this effect, except in the case of attenu-
ation bias, which will be discussed in Section 1.2.

Uncertainty is ‘‘the range or interval of doubt surrounding a
measured or calculated value within which the true value is
expected to fall with some degree of confidence” [3].

Precision relates to the ‘‘fineness of discrimination” [6] or ‘‘the
closeness of agreement among repeated measurements of the
same physical quantity” [3]. It is the uncertainty interval around
a measured value, and should always be expressed with an associ-
ated statistical confidence. Confidence is a probability, whereas pre-
cision is a distance, or size of the error band. Confidence and
precision together usually define the broader term accuracy, which
is ‘‘the capability of an instrument to indicate the true value of a
measured quantity” [3]. Note that the above definition of confi-
dence, is popular although not technically correct [8,3,9,10] unless
Bayesian methods are used.

By calibration we mean the process of comparing an instrument
to a standard or reference (instrument) to characterise its errors
and improve its accuracy. The range and kinds of values that
should be compared are often codified in standards. Disciplining
an instrument is a less complete calibration process where one
only considers ranges and values expected to be encountered in
a specific environment, and not the full range at which the instru-
ment may be able to measure. Calibration is different from qualifi-
cation, which ensures the quality of an instrument model range,
because of its design and manufacturing process. For example,
tests are done to ensure the stability of meter readings under dif-
ferent environmental conditions, specified by the IEC [11–14].
Although a specific meter may be qualified because it is part of a
model range and never lose this qualification, it may drift out of
calibration.

1.2. Uncertainty in M&V

During the M&V process, three forms of uncertainty arise: mea-
surement uncertainty, sampling uncertainty, and modelling uncer-
tainty [1,3]. These will be addressed in turn.

Measurement uncertainty refers to the difference between the
actual and the measured values for a variable such as occupancy,
outside air temperature, or energy. For projects where the inter-
ventions are spread over a large number of facilities, such as the
residential mass rollout of energy efficient luminaires, it is not fea-
sible to measure every home, and only a representative subset or
sample is considered. This sampling uncertainty needs to be quan-
tified [15–17]. Modelling uncertainty arises because mathematical
models to not reflect reality perfectly [18–20]. Although some lit-
erature on sampling and modelling uncertainty exists [16,17,21]
and a mathematical framework for M&V has been constructed
[22], measurement uncertainty is often neglected. For example,
the American Society of Heating, Refrigeration, and Air-
Conditioning Engineers’ (ASHRAE) Guideline 14 on Measurement
of Energy, Demand, and Water Savings [3] assumes that data col-
lected from US or Canadian National weather services are mea-
sured without error [3]. This may be true for the immediate
vicinity of the weather station, but not necessarily for the facility
at which M&V is done [23]. M&V measurement instruments
include surveys, questionnaires, inspection reports, and various
kinds of meters. In this study, we will focus on metering uncer-
tainty and calibration, and propose a method for keeping this
uncertainty within acceptable bounds, at low cost.

The ASHRAE Guideline [3] combines the three kinds of uncer-
tainties into a single figure, and does give uncertainty values for
common instruments. However, this guideline assumes
normally- or t-distributed parameter estimates and does not con-
sider the errors-in-variables effect, on which we will elaborate
below. Other leading guidelines mention measurement error, but
do not discuss its more detrimental effects [24–26]. A notable
exception is the Uniform Methods Project [27,28], chapters 13
and 23. The Clean Development Mechanism (CDM) guidelines also
use knock-down factors to account for measurement uncertainty
[29].

It has been shown that assuming that measurement error is
negligible is valid for cases where metering is done on a sample
of a population with normal to high variance [30]. However, in
cases where sampling uncertainty does not dominate measure-
ment uncertainty, for example for single-facility studies or where
all facilities are metered, the uncertainty in the meter data
becomes significant in the overall uncertainty calculation. In such
cases, measurement uncertainty may make a material difference
to overall reporting uncertainty. Yet in all cases the reduction of
measurement uncertainty through meter calibration is costly, not
only because of laboratory fees, but also because of meter installa-
tion and removal costs.

A study of the present state of the art regarding measurement
uncertainty in energy monitoring has been conducted [31],
although it has not yet been published at the time of writing.
One of the key findings relevant to this research is that the little-
known errors-in-variables effect may be significant in some M&V
cases. Briefly, conventional thinking is that bias in the measure-
ments will bias the model, while zero-mean noise in the measure-
ments will not bias the model. However, when unbiased noise in
the measurement of the independent variables is present, it leads
to biased (‘‘attenuated”) parameter estimates when these data
are used for modelling [32,27,28,33]. This is the errors-in-
variables effect. There are various methods of reducing this bias
[34–36], and some of them will be implemented below.

1.3. Calibration in M&V

One way to circumvent or mitigate measurement uncertainty is
to use accurate, calibrated meters. One then assumes that the mea-
surement uncertainty is negligible. This is the approach taken by
South Africa’s 12L tax incentive programme [37], where meters
are required to be calibrated by an accredited laboratory at fixed
intervals. Other international programmes adopt similar
approaches [38]. This is a sound principle from a regulatory point
of view. It minimises the consumer’s risk, that is, the risk of using
an inaccurate meter. However, a significant opportunity cost is
incurred because many projects are never implemented due to
monitoring, laboratory, and plant shut-down costs. An example
of this has been recorded for the CDM lighting retrofit project spec-
ifications [39,40]. Striking a balance between calibration costs and
monitoring accuracy is, therefore, an important but non-trivial
consideration for policy makers.

Our method also addresses a second calibration difficulty. The
European Measurement Instrument Directive (MID) [41] requires
that meters be calibrated in-situ, that is, in the environment in
which they will be installed [42]. Besides regulatory compliance
in European countries, a method capable of doing this is also con-
venient and practical. Various solutions have been proposed, from
travelling laboratory-grade instruments with metrologists [42] to
add-on calibrators [43]. However, these solutions entail high costs
and specialised equipment. Because in-situ ‘‘calibration” does not
test at all meter levels, but only at those experienced during the
measurement period, we will sometimes refer to our method as
‘‘disciplining” or ‘‘verifying” the Unit Under Test (UUT) [44]. How-
ever, in mismeasurement statistics, the term ‘‘calibration” is often
used to describe the procedure of correcting mismeasured data. For
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example, one method similar to the one proposed in this paper is
called ‘‘Regression Calibration” [34].

Commercial calibration techniques usually rely on having cali-
brators that are at least four times as precise as the UUT. This is
called the Test Uncertainty Ratio (TUR) [44]. Others focus on
accept/reject decisions [45]. The other low-cost calibration option
is to use a PC and Data Acquisition (DAQ) board-based system. It
has been demonstrated that such systems can achieve impressive
accuracies at a fraction of the cost of commercial standards
[46,47], in a research environment. DAQ-based calibrators are set
to become popular in future, although the technology probably
needs more time to become commercialised.

One of the reasons imprecise reference instruments are avoided
is because it will lead to an error-in-variables effect, requiring
Measurement Error Models (MEMs). To the best of our knowledge,
MEMs have not been applied to electrical meter calibration before.
We will also use the Bayesian approach below. Although Bayesian
approaches can be applied to certain mismeasurement problems
[35] and are becoming popular in M&V [48–50] and metrology
generally [51–54], the way in which we apply it may also be novel.
A second reason that imprecise reference instruments may be used
for the problem under investigation is that measurement uncer-
tainty for M&V is often dominated by other forms of uncertainty
such as sampling, as mentioned before. The goal of disciplining
the meter for such cases is different from that of a calibration lab-
oratory calibrating a meter; it is simply to keep measurement
uncertainty as a negligible component of overall uncertainty.

The method proposed in this paper is therefore novel for a num-
ber of reasons. Calibration is usually done in a laboratory, using
highly accurate and expensive laboratory equipment, whereas this
method will use a commercial-grade meter as a calibrator. Calibra-
tion usually does not account for errors in the calibrator, whereas
this method will do so. To our knowledge, Simulation Extrapola-
tion has not been used for meter calibration, and has also not been
combined with Bayesian regression as is done in this paper. Finally,
the proposed approach provides a more practical solution to in-situ
calibration than those proposed in literature.

This paper is structured as follows. Section 2 investigates a low-
cost calibration (disciplining) technique. Error classification is dis-
cussed and applied to the kinds of errors found in energy meters.
An MEM is then selected. Section 3 applies this MEM to actual data
and evaluates its effectiveness in parameter estimation. Section 4
broadens the scope of the calibration context and makes refine-
ments using the Bayesian approach. Finally, the results are dis-
cussed and we draw conclusions.
2. Developing a low-cost meter calibration algorithm

Given that meters need to be verified but that this can be pro-
hibitively expensive, the possibility of disciplining an installed
meter with another commercial (rather than laboratory) accuracy
meter should be investigated.

The cost saving from using the method proposed in this paper
will vary with the number of meters disciplined instead of being
sent to a calibration laboratory. The cost saving for the client will
also vary with the cost of facility down-time needed to install
and remove meters. The meters needed when using the proposed
method are not more or less accurate than standard energy meters,
and their accuracy will normally be determined by other factors
than the method proposed.

The commercial meter-as-calibrator will measure with a non-
negligible error. A range of scenario-specific MEMs has been devel-
oped to account for the ways in which the measurement errors
may arise. The nature of the errors needs to be classified accurately
to apply the correct MEM to a problem. In some cases, certain
simplifying assumptions may restrict the model’s applicability. In
others, incorrect assumptions may lead to erroneous results. Mis-
measurement in M&V is treated more fully in previous work
[31], and Carroll et al. [34] and Gustafson [35] have written excel-
lent textbooks on the problem.

We will use x to denote the true values of the independent vari-
able (reference instrument or calibrator) and y the true values of
the dependent variable (UUT). To differentiate between the true
values and the observed values which are measured with error,
we use an asterisk (⁄) for measured values. Since p is often used
to denote precision, and P to denote power, we use p to denote
probability.

Before looking at the errors themselves, two related concepts
need to be mentioned. An exposure model is often needed when
specifying an MEM. Although we often have a model of how errors
arise in the form f ðx�jxÞ, we cannot work backwards to infer x from
the observed x�. An exposure model describes this function:
f ðxjx�Þ. This is often done through a third variable z. The exposure
model then takes the form f ðxjz), where z is some covariate mea-
sured without error.

Model identifiability is another concern. Sometimes a key piece
of information is missing, and the data are not enough to identify
all the model parameters uniquely. Carrol et al. [34] and Gustafson
[35] adopt complementary approaches. Briefly, Gustafson found
that non-identifiability is not always detrimental, and Carroll
et al. found that identifiability is not always good enough, espe-
cially for threshold cases. Gustafson also found that specifying
uncertainty (priors) on some parameters may even lead to better
results than fixing those parameters at slightly incorrect values
for the sake of identifiability.
2.1. Error taxonomy

Errors may vary in a number of ways. First, errors can be corre-
lated or uncorrelated. This is not in the same category as the clas-
sifications that follow but is an important distinction nonetheless.
Errors that are uncorrelated with other variables are the simplest
to model. Consecutive errors may also be autocorrelated in a time
series. This sequentiality is hidden in scatter plots and regression
analysis, although it still affects the estimates.

Errors can be classical or Berkson. Classical errors take the
form x� ¼ xþ �, and are more common. This is when the error is
in the instrument itself. Berkson errors take the form x ¼ x� þ �.
This occurs when the actual value of the measurand varies around
the assigned, or measured value because the source of the error is
external to the instrument.

Errors are classified as multiplicative or additive. Multiplica-
tive errors are of the form x� ¼ x�, whereas additive errors take
the form x� ¼ xþ �. The additive error assumption is a popular
one as it greatly simplifies MEM mathematics: additive errors are
usually associated with constant variance throughout the measur-
and range. This is called homoscedasticity and is a critical assump-
tion when performing Linear Regression (LR). The majority of
techniques have been developed to deal with this kind of model.
However, this assumption is not always valid. For example, it has
been demonstrated that energy meter measurement errors are
non-linear and multiplicative [55], and are thus heteroscedastic.
This has been acknowledged to produce problems in econometric
energy analyses [4], and frequentist methods to account for some
cases in regression analysis has been developed [56]. It may be
mitigated by assuming a lognormal distribution and working with
logx�, since logx� ¼ logxþ log�, transforming the error model to an
additive one. However, the assumption of a lognormal distribution
on � (so that log� � Normal), although mathematically convenient,
is not always valid or preferred [34]. Heteroscedasticity can be



Table 1
Accuracy specification for IEC Class 3 meter [13]. Pn denotes the rated power, In rated
current, and Imax the maximum current.

Value of current Power factor Error limit

0:02In 6 I 6 0:05In 1 �0:04Pn

0:05In 6 I 6 Imax 1 �0:03Pn

0:05In 6 I 6 0:1In 0.5 �0:04Pn

0:1In 6 I 6 Imax 0.5 �0:03Pn
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present even for additive errors when they have non-constant
bounds over the measurement range, such as energy meters and
Current Transformers (CTs) [11–14]. These bounds are shown in
Table 1.

Errors may be differential or non-differential. Non-differential
errors mean that x� contains no more information about y than x
does. The response does not change due to measurement. Differen-
tial errors may occur when the response y is measured before the
covariates x� and z, and these variables are liable to change. For
example, the diet (x) of women with breast cancer may be mea-
sured only after their diagnosis y. It is possible that the test sub-
jects change their diet as a result of the diagnosis [34]. Another
example is when x� is a proxy for x, not simply a mismeasurement.
For example, plug loads are sometimes used as a proxy for occu-
pancy [57]. Differential errors may also occur in ex-post energy
use surveys for residential retrofit programmes where the
response (purchasing of certain equipment, for example) is mea-
sured before other variables of interest are measured.

Last, the function yðxÞ may be linear or nonlinear. This is not
an assumption about the errors themselves but does affect the
kinds of errors that are permissible. The linear assumption is pop-
ular as it allows LR to be used if one assumes normally distributed
additive errors. For many models, this is a valid assumption. How-
ever, Carobbi et al. [55] have shown that the standard P ¼ VI elec-
trical power equation, where P is Power in Watts, V is potential
difference in Volts, and I is current in Amperes, can be modelled as

Pn ¼ ð1þ aÞVI cosð/þ /cÞ þ �; ð1Þ
when an energy meter measures with error. In this equation, a is
the gain error, /c is the phase error, and � is the bias error. The gain
error a changes the amplitude of measured power fluctuations, but
does not affect the mean. In other words, the larger the energy read-
ing, the larger the error. The size of this error is directly proportional
to the magnitude of the energy reading. The bias error � offsets the
measured power, changing the mean power read by the meter, but
does not change the amplitude of the fluctuations. This error may
bias the power and energy reading upwards or downwards. The
phase error /c has a similar net effect to the gain error, but changes
according to the power factor error of the meter. The power factor is
the ratio of real to apparent power. At a unity power factor, the real
power in Watts is equal to the apparent power in Volt-Amperes, so
that the P ¼ VI equation holds: power in Watts truly is equal to
Volts multiplied by Amperes. However, as the current and potential
difference move out of phase, the power factor changes, as this
changes the real-to-reactive power ratio. This phase difference is
expressed in radians. Non-unity power factors are very common,
and are caused by electrical motors and power electronic circuits,
which usually have inductive loads. Mismeasuring the power factor
will have the net effect of changing the gain of the meter. Carobbi
et al.’s contribution [55] was to show that (1) is a statistically ade-
quate model, capturing the real error behaviour of energy meters
without specifying too many parameters.

Although this error is multiplicative, the error bounds in the IEC
meter qualification standards [11–13] are additive. The meter may
still have a multiplicative error, but this error is always smaller
than the additive error bound. In cases where these are the only
data available, additive errors may have to be assumed. Further-
more, the error model is only non-linear if the phase error term
/c is of interest.

2.2. Meter calibration

The method below focusses on energy meters, but can be used
for instruments measuring other parameters as well. The most
analogous cases are flow measurement [58], and possibly exhaust
gas analysis [59]. Occupancy measurement may also benefit from
thoughtful application [57,60], but temperature measurements
are often biased due to spatial variations [61], and will require
more careful application.

The proposed approach is to discipline a meter (the UUT) using
another relatively low-specification commercial-grade metering
system. This could be done by installing the meters in parallel
in-situ at the facility for a short period, such as 24 h. The data from
the calibrator are then used to correct (discipline or calibrate) the
data from the UUT. Although the UUT is not calibrated, we assume
that it is of reasonable quality. For example, the model range to
which the UUT belongs should be qualified to an IEC specification.
This is necessary to ensure that readings will remain stable under
different operating conditions such as winter and summer
temperatures.

For high-accuracy laboratory multimeters measuring to six or
eight decimal places, various additional factors should be consid-
ered during calibration. These include thermoelectric voltages,
cable impedance, and performance at different frequencies [62].
However, these fluctuations are small enough to be negligible for
commercial energy measurement applications.

When an imprecise reference is used to quantify an imprecise
UUT, a Measurement Error Model (MEM) or ‘errors-in-variables’
model has to be used. For example, suppose that the output of a
power supply is measured with a reference meter (x) and a Unit
Under Test (UUT) (y). If both the reference and the UUT are per-
fectly accurate, a regression line with a gradient of one should be
drawn on the xy plane. If only the UUT has an error (thus an error
in the response or dependent variable measurement), the depen-
dent variable y� ¼ y þ � will be measured by the UUT. This kind
of error will add noise (vertical scatter), but should not bias the
result.

However, when the errors are in the independent or input vari-
able from the reference (x), the effect is more insiduous. If x is mea-
sured with random, zero-mean error, the result is not increased
scatter, but bias. This can be visualised by seeing the x-axis ‘‘spread
out”, flattening the slope of the regression line and biasing the
y-intercept upwards. Consider the meter error Eq. (1). If there is
random error in x (or VI in this case), we expect the y-intercept
(P-intercept in this case), to move upwards. The bias error � will
therefore be overestimated. Also, since the slope flattens, the gain
error a is expected to be underestimated. However, there is a
complicating factor: this is not straight-line regression. There is a
non-linear and confounding term in cosð/þ /cÞ. This illustrates
that the effect of mismeasurement for more complex cases than
straight line regression is that the parameter estimation bias for
individual parameters is unpredictable. The gain error could be
overestimated and the phase error underestimated. It is not possi-
ble to predict this beforehand, which is partly why mismeasure-
ment is such a difficult problem to address. Two other effects
compound the problem. The first is that with errors in x, the stan-
dard errors on the parameter estimates become unreasonably
small. This means than not only is the parameter estimate biased,
but the apparent confidence interval around this biased value is
too narrow. The third effect of random errors in x is that non-
linear features become obscured [34]. For example, a certain
amount of vertical scatter in a sinusoidal graph will not hide its
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sinusoidal shape. However, the same amount of horizontal scatter
will make the function appear as a horizontal cloud. This effect
holds for all non-linear functions.

2.3. Errors in x

The calibrator data is selected for the x-axis, rather than the
UUT. This is because the calibrator should have smaller errors than
the UUT. In this way, attenuation bias is minimised as much as pos-
sible before adjustments are made.

To be conservative, we select the highest (least accurate) IEC
class meter and Current Transformer (CT) combination for our ref-
erence instrument. This would be a Class 3 meter [13] with a Class
5 CT [14]. The meter accuracy limits are shown in Table 1. For
power factors between �0:5 and 1, the accuracy limits were lin-
early interpolated. The CT has a flat accuracy limit of 5% of the
rated current. We note that these are additive error bounds relative
to the rated, or full scale, current. We assume that this meter is cal-
ibrated. The true errors may still be multiplicative, but will fall
within these additive bounds. Metrology guidelines often recom-
mend that a uniform error distribution between the error bounds
be assumed [6]. However, this is too conservative. Instead, errors
bounds are assumed to be the 95% confidence limits on a normal
distribution [6,63]. The readings are also assumed to be unbiased.
Errors are assumed to be classical, non-differential, and uncorre-
lated. Even though errors are additive, they are heteroscedastic
(having non-constant variances) due to the stepwise nature of
the error bounds as described by Table 1. The total error would
be the root sum of squares of the meter and CT error bounds at a
given point:

pcombined ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
meterðxÞ þ p2

CTðxÞ
q

: ð2Þ

Let pcombinedðxÞ be the combined error bound at x, and z be the stan-
dard score (or coverage factor). The standard deviation on the a
given reading can then be written as

ru ¼ pcombinedðxÞ
z

: ð3Þ

The rated power of the meter is assumed to be 200 kW, and the
rated current for the CT is assumed to correspond to this value.

The measured values on the calibrator x� can then be defined as

x� � Normalðx;ruÞ ð4Þ
2.4. Errors in y

For errors in our Unit Under Test (y) we may make more
detailed assumptions. Following Carobbi et al. [55], we assume
that the characteristic function for the UUT is

y� ¼ ð1þ aÞx cosð/þ /cÞ þ �; ð5Þ
where a is the gain error, / is the phase difference between voltage
and current, /c is the phase error, and � is the bias error. The errors
are classical, with multiplicative and additive components. They are
also homoscedastic, and the function is non-linear. Since these
errors will not cause attenuation bias, the MEM is not selected on
their basis. However, they are built into the overall measurement
model.

2.5. MEM selection

Since /c is one of the variables of interest, this is a non-linear
function, and that standard LR techniques such as Fuller’s method
of moments [36] are not valid unless the cosð/þ /cÞ term in (1) is
neglected.
Although f ðx�jxÞ is available by (4) in the form of a distribution
function, f ðxjx�Þ is not. To obtain this, we would need an exposure
model, which is not at our disposal. One approach would be to
specify a naïve Bayesian model on the data using (4). By specifying
a distribution on x�, the noisy independent variable is taken into
account, mitigating the attenuation effect to some degree. If errors
were Berkson rather than classical, this would be accurate. How-
ever, this is not the case for our measurements.

Since we do not assume the availability of an exposure model,
repeated measurements, or a sub-set of gold-standard measure-
ments, MEMs like Regression Calibration, Maximum Likelihood
techniques, and the Bayesian approach are not available to us.
Instead, we propose a hybrid SIMulation EXtrapolation (SIMEX)
solution.

2.6. SIMEX

SIMEX is a simple, powerful algorithm that compensates for
measurement error using only f ðx�jxÞ in the form of ru. It was first
proposed by Cook and Stefanski [64], and a useful summary can be
found in Carroll et al. [34]. Since this method is easily automated, it
can be classified as a machine learning algorithm. The premise is
that although the biased parameter estimates fa�;/�

c ; �
�g ¼ h�jx�

cannot be unbiased directly, they can be biased even more by add-
ing more noise to x�. By repeating this biasing for increasing noise
levels, the relationship between noise in x and bias in h is found. A
trend can be observed from these successive noise levels, and the
noise-free state hjx can then be inferred by backwards extrapola-
tion. Fig. 2 illustrates this graphically. The SIMEX procedure can
be defined more rigorously as follows:

1. Describe the variance ru due to mismeasurement.
2. Describe the UUT function y ¼ f ðxÞ.
3. Specify the vector of noise multiples to obtain a vector f of

length n at which simulation will be done. Values for f can start
at zero and could go up to five.

4. Calculate x�
f;n ¼ x� þ ð1þ ffiffiffi

f
p Þru. The reason for the square root

on f is explained by Carroll et al. [34], but is beyond the scope
of this study.

5. Solve y�
f;n ¼ f ðx�

f;nÞ to find hðfÞ. If f ðxÞ is linear, this can be done
by LR. For non-linear problems, an appropriate function should
be specified, and an optimisation algorithm is needed to solve
for the function parameters.

6. For every element of h (that is, a;/c; �), a vector of n solutions in
f is now available. Consider the gain error a. If the function âðfÞ
were linear, one could now solve
âðfÞ ¼ aafþ ba: ð6Þ
Carroll et al. [34] divided f into discrete levels with many sam-
ples per level. They then used the mean of every level of f. How-
ever, since this is not an expensive step, one would rather
regress against the full data set than assume that the distribu-
tion is symmetric. Also, rather than using discrete levels, we pre-
fer a linear spacing of points between the maximum and
minimum values of f.

7. The unbiased parameter estimate ajx is found by solving (6) for
f ¼ �1. This is illustrated graphically in Fig. 2.

8. Repeat Step 7 for / and �.

3. Case study: SIMEX application

The SIMEX algorithm was modified slightly and applied to the
meter calibration problem at hand. Initially, we tested the algo-
rithm with an energy data set of linearly interpolated points
between 0 and In, at three different power factor levels. This



Fig. 1. Load (kW) and power factor (PF) profile for the period used for calibration.
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simulates a laboratory set-up. However, to simulate in-situ cali-
bration, real load profile data was needed. We used the actual
energy consumption of a university residence at the University
of Pretoria, on 2 February 2016. The data are plotted in Fig. 1.
The power factor was converted to a phase angle by
h ¼ cos�1ðPower FactorÞ.

One problem with such data is that power factor and energy
use are correlated. High power factors occur at high loads, and
low power factors occur at lower loads. This could be due to
heavy loads such as geysers having unity power factors and
forcing the overall power factor upwards during peak times.
Such a correlation has a confounding effect on parameter esti-
mation of / especially. Using larger calibration data sets such
as a one-week rather than a one-day period helps only margin-
ally since the system still has the same correlation
characteristics.

For our experiment, the (unknown) parameter values are set as
shown in Table 2, and altered the data using (4) and (5) to produce
the observed data x� and y�. The SIMEX algorithm was imple-
mented in the following manner, according to the steps described
in Section 2.6:

1. The variance ru is described by (2).
2. The UUT function y� ¼ f ðxÞ is described by (5).
3. The SIMEX graphs were found to be non-linear, especially for f

values above 2. Therefore, n ¼ 300 points between f ¼ 0:5 and
f ¼ 5 were selected. Points between 0 and 0.5 were not
included because in this region the data converge asymptoti-
cally to f ¼ 0, which is an artefact of the algorithm rather than
a real trend.
Table 2
Parameter values.

Parameter name Symbol Value

Gain error a 0.2
Phase error /c 0.2
Bias error � �Normal(5,2.5)
4. These n realisations were generated using Python’s numpy

library [65] and the numpy.random.normal pseudo-random
number generator for
x�
f;n � Normalðx�;ruÞ: ð7Þ

The variance ru was defined by (4).
5. In this case, we implemented Python’s scipy [66] module to

find the least-squares solution of (5) for hðfÞ. The library imple-
ments the Broyden et al. quasi-Newton method [67] by default.
Non-default optimisation algorithms were also tried but
showed poorer convergence and efficiency.

6. A non-linear model was assumed to solve for hðfÞ. The data
exhibit a sigmoid shape, and various sigmoid-shaped functions
such as piecewise linear, hyperbolic tangent, sinusoid, and
logistic functions were tested. The standard logistic function
below delivered the most reliable results. For a, for example,
one would solve
âðfÞ ¼ La
1þ ekaðf�f0;aÞ ð8Þ

for La; ka, and f0;a. L determines the curve’s maximum value, k
determines the slope, and f0 determines the x-value of the mid-
point. The data and resultant fit for one realisation can be seen in
Fig. 2. The same optimisation algorithm as the previous step was
used.

7. Once the unbiased parameter estimates ĥðf ¼ �1Þ were found
by substitution into equations such as (8), the errors relative
to Table 2 were calculated as
Error ¼ h� ĥðf ¼ �1Þ
h

� 100: ð9Þ
We recommend that calibration for M&V purposes only be done
using IEC-qualified meters. The calibration was simulated using
the worst meter-CT combination that still conforms to an IEC spec-
ification (Class 3 meter and Class 5 CT) in order to be conservative.
The overall accuracy of such a system, over the majority of the

measurement range, is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:032 þ 0:052

p
¼ 5:8%. One can see that
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the CT error dominates the overall uncertainty [6]. Replacing the
meter in this system with a more accurate one will have little
effect, reducing uncertainty to 5:4% for a Class 2 meter. However,
replacing the Class 5 CT with a Class 3 CT will reduce the overall
uncertainty to approximately 4:24%.

Initially, we used LR on a smaller, approximately linear subset
of the data, namely f 2 ½0;2�. This worked well for a and � esti-
mates, but consistently overestimated /c . The sigmoid shape was
also partially hidden while we were using the discrete f approach
described in Step 6 of Section 2.6. If this approach is followed, the
mean or mode of each f should be plotted rather than the full set,
in order to show the shape of the data more clearly for regression
model selection. However, we have found that a linearly spaced f

illustrates the shape of the function the best, as is seen in Fig. 2.
Selecting the right calibration period is important. If calibration

is done over a weekend, for example, the proper power and power
factor ranges will not be observed. Selecting a good calibration per-
iod is easy for a simulation study such as this one where all the
data are available. However, it is more difficult in real situations
when the data have not been observed yet. Therefore, the in-situ
meter calibration period should be selected with care and in con-
sultation with the facility manager. The IPMVP’s recommendation
for whole-building measurement, that ‘‘all operating conditions be
represented fairly” during the baseline measurement period,
should be followed. Furthermore, if Energy Conservation Measures
(ECM’s) are installed after the baseline period in an M&V project,
Fig. 2. Illustration of the SIMEX procedure of Section 2.6. The error added to the measured
which simulation is extrapolated. This figure illustrates one realisation of the simulation

Table 3
Summary of distributional characteristics of parameter estimate errors for 300 random er

Method a /c

2.5% Mean 97.5% 2.5%

Naïve �188 �91 �9.21 �245
SIMEX �23 39 73 �108
Bayes �62 �3 39 �111
meter recalibration may be necessary, depending on the changes.
The installation of Power Factor Correctors, which would decouple
the power and power factor profiles, are an example of a case
where baseline period parameter estimates may not hold during
the reporting period.

3.1. Discussion of results

Although SIMEX is viable for this case, it does not un-bias
parameter estimates perfectly: for certain realisations of random
noise, such as where most points happen to be biased in the same
direction, the starting data set for f ¼ 0 is misleading, and SIMEX
estimates will be imperfect. Therefore, to evaluate the reliability
of the different methods, the process above was repeated for vari-
ous realisations of x� and y� in (4) and (5). Altogether 300 realisa-
tions were simulated, and a summary of the results are shown in
Table 3 and in a violin plot in Fig. 3. This figure also shows the
SIMEX-Bayes result for comparison. The SIMEX-Bayes method will
be introduced and discussed in the next section.

A violin plot is similar to a box-plot in that it shows the proba-
bility distributions of the parameters. Where a box plot indicated
the quartiles with a box and whiskers, a violin plot shows the full
probability density function in mirrored form on a vertical axis.
The dashed line indicates the median, and the dotted lines the
quartiles. Long, slender shapes such as for the Naïve bias estimate
in Fig. 3 indicate a large variance and thus uncertainty in the
estimate. Short, wide shapes like the SIMEX gain estimate indicate
data is indicated by the factor f, with f ¼ �1 indicating the error-free state towards
s for a.

ror realisations. These data are presented graphically in Fig. 3.

�

Mean 97.5% 2.5% Mean 97.5%

�162 �58 �459 �286 �123
�16 57 �173 54 26
�24 59 �175 �56 25



Fig. 3. Violin plot showing probability distribution shapes for Naïve, SIMEX, and SIMEX-Bayes parameter estimates, with quartiles indicated. A discussion of this figure can be
found in Section 3.1.
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low variance and concentrated probability mass. Symmetric
shapes such as for the SIMEX phase estimate indicate a symmetric
probability distribution around the mean. Asymmetry such as for
the SIMEX bias estimate indicates that the parameter estimates
are skewed, in this case towards zero.

For Fig. 3, estimates with zero (error) means will, on average, be
error-free, although some variance is expected. This is the desir-
able result. The first notable observation is that the naïve estimates
are further away from the zero line than the SIMEX estimates. This
is to be expected: the naïve method is should be more biased, and
this feature confirms the errors-in-variables theory. We also
observe that the SIMEX estimate errors have smaller variances.
This means that the SIMEX method converges on its less biased
estimates more reliably. It is therefore more robust to the random
effects of sampling than the ordinary least squares regression. The
error in the � estimate is the largest. However, to put it in perspec-
tive, a 100% error in � means that �̂ ¼ 10 for � � Normalð5;2:5Þ,
given data in the range ð0;200Þ. A 100% error is therefore only a
2.5% error relative to the data range. A 100% error in the gain a
could be much more significant (representing a 100% error relative
to the data range), although a caveat to this assertion is discussed
in Section 4.

From these results we can see that the SIMEX procedure pro-
duces superior estimates to naïve regression, although they are
not perfect. However, even if SIMEX produces better estimates on
average, the quality of the prediction will depend on the specific
combination of estimates in a specific set, and not only on the
means across sets. A discussion of this result would be premature
in this section, and the reader is referred to Point 4 of Section 4. In
the next section, we will evaluate this interactive effect.

4. Application to meter calibration

We will now compare the three meters used above based on
how accurately they predict a longer measurement period than
the calibration period. We consider three cases. The first is a
laboratory-calibrated Class 3 meter with a Class 5 CT. This case is
simply the readings of the reference instrument (calibrator) used
for disciplining the other two meters. The second is a meter disci-
plined using the naïve procedure; assuming that the calibrator
readings contain no error. The third is a meter disciplined using
the SIMEX procedure, with Bayesian refinement. The parameter
estimates obtained by disciplining the meter using the data from
2 February 2016 are then used to predict the energy consumption
for the period 1 January 2016–3 August 2016.

Two goodness of fit metrics were selected to evaluate how well
the predictions correspond to the true values for each of these 300
data sets. The Coefficient of Variation on the Root Mean Square
Error (CV(RMSE)) and Normalised Mean Bias Error (NMBE) have
been found to be the most popular criteria against which Cali-
brated Simulation M&V model prediction goodness of fit is evalu-
ated [68]. The NMBE measures whether the model consistently
overpredicts or underpredicts energy use. The CV(RMSE) measures
how closely the model tracks the actual data up and down: similar
to its variance. An NMBE of 0% would indicate no difference
between the prediction and actual mean energy use, and a CV
(RMSE) of 0% would indicate no variance in the prediction relative
to the actual.

For the calibrator, the CV(RMSE) happens to correspond to its
combined precision of 5–6%. However, the two metrics express
uncertainty in slightly different ways and do not always corre-
spond. Since we assume that the meter is unbiased, and specify
it that way for the calibration, its NMBE is close to 0%.

This goodness of fit was evaluated in the following way:

1. Generate observed energy use for the UUT (y�), for the full data
set, by (5).

2. Generate observed energy use for the calibrator (x�), for the cal-
ibration period, using (4).

3. Using only the 24-h calibration data set, employ SIMEX and the
naïve regression to estimate parameters a; /, and �.

4. Refine SIMEX estimate through Bayesian regression. Although
the parameter estimates of the SIMEX method are clearly
superior to the naïve method, as shown in the previous section,
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Fig. 5 shows that the resultant CV(RMSE) and NMBE on the rest
of the data set are worse. The reason is plotted in Fig. 4.
Although the naïve estimates of the parameters are much worse
than the SIMEX estimates, the prediction quality (goodness of
fit) is dependent on their combination. Thus amay be overesti-
mated and /c underestimated, but they cancel each other out in
such a way that the final result is close to the true value, espe-
cially with noise in � adding some tolerance to the results.
Neglecting � for a moment, we can visualise this as in Fig. 4.
Gain error is the x-coordinate on the map, phase error is the
y-coordinate, and CV(RMSE) is the height, indicated by colour.
Low CV(RMSE) values form a low CV(RMSE) valley running
northwest to southeast. Altough there is only one coordinate
that is ‘‘correct” in the sense of corresponding to the true values,
this valley indicates the combinations of gain and phase error
values that will also yield a low CV(RMSE). Now, because the
sum-squared error is a major component of the CV(RMSE) cal-
culation, a low sum squared error will lead to a low CV(RMSE).
Least Squares regression finds a solution with the least sum of
squares error. In other words, the naïve method effectively opti-
mises for CV(RMSE), and we are therefore not surprised that it
produces results with low CV(RMSE)’s, even if the individual
parameter values themselves are not accurate. This lack of con-
vergence on the true values shows a parameter identifiability
problem between the gain and phase errors a and /c in (5).
Another confounding factor is that the power factor / is corre-
lated with energy use as referred to earlier. This correlation, as
well as the small range for /, do not help identifiability.
Because the SIMEX method improves the parameter estimates
independently, it does so without considering their combined
effect on the sum squared error of the fit. This results in more
accurate estimates but slightly higher CV(RMSE) values. We
therefore chose to refine SIMEX estimates using Bayesian
regression. This step changes the SIMEX estimates slightly to
serve the double purpose of improving the goodness of fit
metrics and providing probability distributions on the parame-
Fig. 4. CV(RMSE) (indicated by colour) for different combinations of parameters a and /c

assumes a bias error � ¼ 5. The positions of the SIMEX and Bayes estimates relative to th
found in Section 4.2. (For interpretation of the references to colour in this figure legend
ter estimates. These distributions can be used for risk and
uncertainty quantification calculations, both on the parameter
estimates and also on the prediction energy use. As shown in
Fig. 4, the Bayesian method does not necessarily interpolate lin-
early between the SIMEX estimates and true values. However, it
does converge on parameter estimates in the SIMEX region
while yielding improved CV(RMSE) and NMBE values. The
method is explained more fully in Section 4.1. Using the Baye-
sian method on the naïve estimates, or using the naïve optimi-
sation algorithm with the SIMEX estimates as its starting
position, did not improve on the original naïve estimates.

5. Generate predicted energy use for full data set by inverting (5)
using the parameter estimates, so that:
. The pa
e true v
, the rea
xpredicted ¼ y� � �̂
ð1þ âÞ cosð/þ /̂cÞ

ð10Þ
6. As with the calibration procedure in Section 3, repeat Steps 1–5
300 times to account for different random realisations of x� and
y�. The summary statistics of the goodness of fit metrics from
these simulations are given in Table 4, and plotted in Fig. 5.

Before the results are discussed, an explanation of the Bayesian
refinement is given.
4.1. Bayesian refinement

Bayesianism is a branch of statistics in which conditional prob-
abilities are derived from distribution theory by the laws of logic. A
full exploration of Bayesian theory is beyond the scope of this
paper, and the reader is referred to Gelman et al. [69] and Kruschke
[10] for more detailed information. Briefly, it is named after Bayes
theorem, which states that the posterior probability of the param-
eter values h given the data observed D, can be expressed in terms
of known probabilities. These are the likelihood of the data given
rameter combinations plotted are for single instances of solutions. This plot
alues varies from realisation to realisation. A discussion of this figure can be
der is referred to the web version of this article.)



Table 4
Summary of distributional characteristics of two goodness of fit metrics for the methods under investigation: the Coefficient of Variation on the Root Mean Square Error (CV
(RMSE)), and the Normalised Mean Bias Error (NMBE). These results are presented graphically in Fig. 5.

Method CV(RMSE) NMBE

2.5% Mean 97.5% 2.5% Mean 97.5%

Naïve 3.03 5.8 9.91 0.33 3.08 6.34
SIMEX 4.59 8.87 12.49 �10.344 �6.79 �2.33
Bayes 2.27 2.96 4.35 �2.05 �0.09 2.03
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some parameter function pðDjhÞ, and a ‘prior’ probability for the
parameter values pðhÞ. Mathematically, it is expressed as:

pðhjDÞ ¼ pðDjhÞpðhÞ
pðDÞ : ð11Þ

The increase in computing power and the derivation of useful
numerical techniques such as Markov Chain Monte Carlo (MCMC)
has solved two of the great difficulties in Bayesian analysis. These
are the intractability of analytical solutions to non-trivial prob-
lems, and the difficulty in specifying the pðDÞ term. Because of
MCMC, the application of Bayesian theory has developed into a
powerful, intuitive statistical and machine learning tool.

In a Bayesian framework, all model parameters are treated as
unknown random variables, and the data are regarded as realisa-
tions of these distributions.

The modes of the posterior distributions for a; /c , and � will
correspond to their maximum likelihood estimates given the data
observed. We observe

pðDjhÞ ¼ pðx�; y�ja;/c; �; IÞ ð12Þ

where I is the prior information at our disposal through the SIMEX
result, and a;/c , and � are unknown. By Bayes’ theorem in (11),
through a numerical algorithm, this can be inverted so that the pos-
terior conditional probability estimates of the parameters

pðhjDÞ ¼ pða;/c; �jx�; y�; IÞ ð13Þ

are found.
4.1.1. Prior selection
Before a Bayesian model can be solved, the priors have to be

specified. To let the model be as objective as possible, priors are
often specified to be vague or non-informative. The specification
of priors can be contentious regardless of what is selected. Over-
confident priors can bias the posterior distributions, especially
for cases where few data points are available. Non-informative pri-
ors do not bias the posterior distribution (or bias it towards the
data). However, this approach has also drawn criticism as
non-informative posteriors elicited in this way can be unhelpful
[70,71]. In energy studies, informative priors based on previous
studies have often been used and enjoy a strong precedent
[72–75]. In the empirical Bayesian approach, priors can be
informed by prudent use of the data itself, such as ĥSIMEX obtained
from the SIMEX algorithm. However, care must be taken when
selecting data-dependent priors, as these can lead to a case of ‘‘data
reinforcing data”. This results in misleadingly high confidence on
posterior estimates. Nevertheless, when such techniques are used
correctly, they do have precedent [70], and are mathematically
defensible in certain cases. This has been shown by Darnieder in
his PhD thesis on the topic [76]. In our case, specifying vaguely
informative priors is justified because the SIMEX parameter esti-
mates do not arise naturally from the data itself, the way it would
when using the mean as a prior in a model that estimates the
mean. We use the priors to ‘constrain’ the algorithm to the solution
space around the SIMEX solution. If overly vague priors are speci-
fied, the algorithm tends to converge on low CV(RMSE) solutions
far away from the SIMEX estimates, and thus far away true val-
ues.The priors on the parameters are specified as follows:

pðaÞ � Normalðl ¼ âSIMEX ; r ¼ 5Þ; ð14Þ

pð/cÞ � Normalðl ¼ /̂c;SIMEX ; r ¼ 1Þ; ð15Þ

pð�Þ � Normalðl ¼ �̂SIMEX ; r ¼ 5Þ: ð16Þ
We also specify a prior on x�. If the meter errors were Berkson,

this prior would be perfectly representative. However, since the
error is located in the meter itself, they are classical. Therefore
the prior below is not perfect but does allow for variation in x�

so that the model does not consider the observed values for x� as
fixed. The prior on x� is specified as

pðx�Þ � Normalðl ¼ x�; r ¼ ruÞ: ð17Þ
We define the likelihood function pðDjhÞ as a multivariate

Student-T distribution. The thicker tails of this distribution allows
for more robust inference, since outliers have a smaller effect on
the posterior mean [77]. In this case, our data are the values
observed from the reference and the UUT meters, and our priors
are the SIMEX parameter estimates. Therefore:

pðy�jxÞ � StudentTðy�jl ¼ lp;r ¼ pðrpÞ; m ¼ pðmpÞÞ ð18Þ
where

lp ¼ ð1þ pðaÞÞpðx�Þcosð/þ pð/cÞÞ þ pð�Þ; ð19Þ
as in (5) and the hyperpriors are defined as

pðmpÞ � Exponentialð48�1Þ ð20Þ
and

pðrpÞ � HalfCauchyð1Þ: ð21Þ
The choice of ‘48’ as the inverse scale parameter for the expo-

nential distribution relates the number of data points in the cali-
bration period [10]. For the scale parameter r, we follow
Gelman’s recommendation of a half-Cauchy distribution [78].

4.1.2. Solving the model
Although a full Bayes-MCMC is standard, Automatic Differenti-

ation Variational Inference (ADVI) [79] is a new and much faster
alternative to standard MCMC algorithms. It has comparable accu-
racy and is useful for batch runs where the different approaches
are compared for different error realisations on the same data
set. The model is solved using 50,000 runs of the ADVI algorithm.
The starting points are specified as the SIMEX estimates. The anal-
ysis is performed in Python via the PyMC3 [80] library. Because
only point estimates of the parameters are of interest for the cur-
rent problem, we did not utilise the full Bayesian capability of elic-
iting full posterior probability distributions for each of the runs.

4.2. Discussion

The resultant CV(RMSE) and NMBE for the Naïve and SIMEX cal-
ibrated meters are shown in Table 4 and Fig. 5. In these, it can be
seen that the Bayesian refinement improves the CV(RMSE) SIMEX



Fig. 5. Violin plot showing probability distribution shapes of goodness of fit metrics using parameter estimates of Naïve and SIMEX methods. Quartiles and median indicated
by dashed lines. Two outliers were removed from the SIMEX plots to improve the vertical scale. A discussion of this figure can be found in Section 4.2.
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estimates substantially, from 8.87 to 2.96. The average NMBE
improves from�6.79% to�0.09%. A CV(RMSE) of 2.96% seems lower
than the original 5.8% noise in the data. However, one should bear in
mind that although CVRMSE is the appropriatemetric to use, it can-
not be compared to the way in which the noise is expressed origi-
nally. From Eq. 4 of ASHRAE Guideline 14 2014 [3] for a,

CVðRMSEÞa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðai�âÞ2

n�par

r

�a
ð22Þ

where yi is the true value, ŷi is the model estimate, �y is the mean, n
is the number of data points, and par is the number of parameters.
As the name suggests, it is therefore the mean of the sum squared
error, normalised with respect to the mean of the data. This is a dif-
ferent value to the relative precision of the meter.

Fig. 5 shows that the Bayes-SIMEX procedure produces predic-
tions with superior goodness of fit, both in terms of bias and in
terms of CV(RMSE). Besides the violin plot, it is also graphically
illustrated in Fig. 4, where the SIMEX-Bayes coordinate approaches
the true coordinate. The distributions are also tighter than for the
other procedures, indicating improved consistency compared to
SIMEX and naïve regression. Fig. 3 indicates that Bayes-SIMEX does
not do this at the cost of individual parameter estimates. On the
contrary, superior and more consistent parameter estimates are
also obtained.

To put these values in perspective, the ASHRAE Guideline 14-
2014 requires an NMBE below 5% for monthly data and 10% for
hourly data [3]. CV(RMSE) requirements are 15% and 30% respec-
tively. As this is half-hourly data, the requirements are in effect
even more generous. However, it should be kept in mind that the
ASHRAE metrics do not refer to the calibration of measured energy
data, but to building energy modelling requirements relative to
measured energy data. The calibration figures in this paper are
therefore baselines to which traditional M&V modelling uncer-
tainty is added, before being compared to ASHRAE requirements.
Nevertheless, the calibration procedure is so effective, even with
low accuracy meters and only 24 h of calibration, that building
models on energy use data obtained from this calibration method
should still be acceptable. With longer calibration times or more
accurate calibrators, these figures could also improve.

We should note that valid calibration requires more than sim-
ply having a reference instrument available. An adequate quality
system needs to be followed to ensure that results are traceable
and repeatable. However, we may conclude that from a technical
point of view, the calibration itself does not require exceptionally
accurate instruments for practical M&V purposes, and can reduce
monitoring costs significantly through in-situ calibration.

5. Conclusion

The calibration of energy meters for monitoring projects can be
expensive, and may not be cost-effective in terms of the gains in
accuracy. We propose disciplining or verifying an uncalibrated
meter in-situ by using another calibrated commercial-grade
metering system, in this case, a Class 3 meter and a Class 5 Current
Transformer (CT). By using the Simulation Extrapolation Measure-
ment Error Model and refining parameter estimates using a Baye-
sian approach, the verified meter is shown to report energy use
accurately and with low error variance compared to naïve Ordinary
Least Squares methods. For the data set under investigation, the
Coefficient of Variation on the Root Mean Squared Error was
reduced from 8.87% to 2.96%, and the Normalised Mean Bias Error
from �6.79% to �0.09%. To be conservative, the most inaccurate
meter-CT combination for IEC-qualified instruments was selected,
and has been demonstrated to have acceptable accuracy. For any
other combination of IEC-qualified meters and CTs, more accurate
results should be obtained if calibration period data is representa-
tive. The general method proposed in this paper may also be
applied to instruments other than energy meters.
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