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H I G H L I G H T S

• A new way is developed to directly perform the forecast of PV power at demand side.

• Effects of temperature, humidity, historical value on PV power forecast are explored.

• Estimation results are qualitatively investigated via data mining approaches.

• Experimental studies show that the new method could achieve more accurate prediction.
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A B S T R A C T

Power forecasting, in a hybrid photovoltaic (PV) system, is an important issue regarding to the control and
optimization of energy systems. In this work, multi-clustered echo state network (MCESN) models are proposed
to directly perform the forecast of PV power generation. Furthermore, data characteristics of measured and
estimated PV power are qualitatively investigated via data mining approaches. These characteristics include
seasonality, stationarity (or non-stationarity) and complexity analysis. Simulation results indicate that the
proposed MCESN model is able to precisely forecast PV power one-hour-ahead. The performance on the 24-h-
ahead forecast is competitive with the correlation coefficient 99% for sunny days, and 91–98% for cloudy days.
Results of data analysis unveil that critical characteristics between the measured and estimated PV power data
are analogous. Comparison studies also show that MCESN could achieve more accurate prediction, compared
with auto-regressive moving average (ARMA), back propagation (BP) neural networks.

1. Introduction

In recent years, due to globally increasing energy demand, renew-
able energy sources(e.g., wind and solar energy) have gained great
attention, as they are freely available, omnipresent, and environmental
friendly. Thanks to easy accessibility, government’s support, and tech-
nical development, large-scale photovoltaic (PV) systems have been
installed around the world. However, the power generation of PV
system is a nonlinear and complex process, depending on time-varying
factors, such as, temperature, humidity, wind speed and direction, and
historical data of PV system. In order to ensure reliable and efficient
operation of PV energy systems, it is essential and urgent to forecast PV
power precisely [1,2].

There have been a large number of studies on PV power prediction,
in which high accuracy and low computational complexity are two
main concerns.

A common approach is to transform PV power prediction into solar

irradiance prediction, which consists of two steps. The first step is to
forecast solar irradiance, and the second step is to calculate the PV
power according to solar irradiation and system parameters. Different
models of prediction have been developed by traditional techniques
and linear methods, e.g., various clear-day models [3], auto-regressive
moving average (ARMA) [4] and other econometric technologies.
However, as many statistical assumptions and empirical parameters are
involved in these models, it is rather difficult to precisely forecast the
dynamic behavior of solar irradiance. Some improved models have
been proposed based on advanced technologies in [5–7].

Artificial intelligence (AI) and neural network (NN) provide pow-
erful tools of approximating nonlinear systems. Various AI and NN
models have been successfully applied to forecasting solar irradiance in
literature. A wavelet-coupled support vector machine (W-SVM) model
was adopted to forecast global incident solar radiation [8]. A NN model
is proposed to achieve a 24-h-ahead solar irradiance prediction for a PV
system [9]. Based on recurrent neural networks (RNNs) and wavelet
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neural networks (WNNs), a new diagonal recurrent wavelet neural
network (DRWNN) was established to perform the forecast of hourly
and daily global solar irradiance [10]. Advanced approximation tech-
niques based on wavelet analysis [11,12], fuzzy technique [13], and
empirical analysis [14] can also be employed to enhance NN models. In
addition, some other forecasting approaches have also been proposed,
such as, peer-to-peer (P2P) solar forecasting [15], machine learning
[16,17], probabilistic approach, and so forth. The predicted values of
solar irradiance are used to obtain PV power output. On the one hand,
canonical PV formula could be utilized to compute the power output of
PV system. On the other hand, some commercial PV simulation soft-
wares, such as HOMER and PVFORM, could be used to forecast PV
power based on the forecasted solar irradiance and system parameters.

Echo state networks (ESNs) is an improved and simplified form of
RNNS [18]. Unlike classical RNNs, ESNs adopt non-trainable sparse
connections in the hidden layer (called dynamic reservoir), and only
connections in the output layer need to be trained through linear re-
gression. As a result, the high computational complexity is conquered,
and ESNs is much faster than traditional RNNs. ESNs also show obvious
advantages in dealing with nonlinear time series and dynamic predic-
tion system due to its high prediction accuracy and efficiency. ESNs
have been widely applied to various practical fields, including dynamic
pattern classification and recognition [19,20], image processing [21],
optimal energy management [22], and especially nonlinear time series
prediction [23,24]. To our best knowledge, there exist few results in
ESN-based prediction of solar irradiance and PV power.

For a PV hybrid system, one practical issue is the uncertainty of PV
power. While considering the external environment and different de-
mand-side features, the PV power cannot be directly calculated from a
linear form of solar irradiance. Therefore, recent studies have focused
on the direct prediction of PV power [25–28]. In this paper, the un-
certain PV power at the demand side will be specifically modeled in a
direct approach. In the application of PV hybrid system, few results are
reported to evaluate inner rules and hidden patterns of the demand-side
PV power. Influenced by many factors, such as seasons, geographic
locations, weather and surroundings, the PV power profile presents its
own data characteristics, which are closely related to the power gen-
eration process [29]. In order to unveil the inner dynamics, data fea-
tures of measured and estimated PV power are quantitatively analyzed.
In this paper, some main data characteristics between measured and
forecasted PV power will be studied to check statistical similarity.

The contributions are in three folds. First, the ESN models are es-
tablished to directly perform the one-hour-ahead and 24-h-ahead
forecast in the PV hybrid system. The direct effects of measured tem-
perature, humidity, historical 24-h-lag information are also explored in
detail. Comparison between ARMA model, BP neural networks and
MCESN have been conducted. Secondly, the estimation performance is
evaluated with comprehensive criteria, such as normalized root mean
square error (NRMSE), mean absolute error (MAE), root mean square
error (RMSE), and correlation coefficient (r). Thirdly, the data char-
acteristics are investigated with respect to descriptive statistics, sea-
sonality, non-stationarity and complexity.

The rest of this paper is organized as follows. In Section 2, back-
ground is introduced. Section 3 describes the basic theory of ESN in
terms of network structure, mathematical model, and training methods.
The experimental design and numerical results are shown in Section 4.
The data characteristics of measured and estimated PV power are
qualitatively analyzed in Section 5. Finally, the conclusion is presented
in Section 6.

2. Uncertainty in the PV hybrid system

The electricity consumption have been increasing in past decades,
which could result in over exploration of traditional fossil fuel re-
sources. Therefore, the exploration of renewable energy (RE) resources
is necessary to control fossil fuel consumption and pollutant emission.

Due to large potential and free availability, wind and solar energy are
the popular choices among available RE resources. However, the sto-
rage components are required for renewable energy hybrid system due
to the intermittent nature. A renewable energy hybrid system is com-
posed of multiple power resources and storage components for stable
power supply.

Hybrid renewable energy system (HRES), commonly used for re-
mote power supply, is playing an important role in demand side man-
agement with the grid connection, such as, green building and smart
community. The PV hybrid system is the most popular application due
to easy accessibility, low cost, and high safety. The PV hybrid system
consists of PV panel and battery bank that are both connected to the
grid, as shown in Fig. 1. As the first priority, the PV power is used to
feed the load demand. If the demand is less than the PV power, the
surplus PV power will be charged into the battery. If the demand is
larger than the PV power, the deficient amount will be then covered by
the battery. For saving electricity cost, the battery can be charged by
the grid when the electricity has a low price, and be discharged when
the electricity has a high price. The grid takes part into the power
supply when the load demand cannot be satisfied by the PV and the
battery. Note that the PV hybrid system could work in the stand-alone
mode and the grid-connected mode, depending on the on/off status of
switch v, as shown in Fig. 1.

In the PV hybrid system, a critical problem arisen is the power flow
control, which refers to scheduling the power flow between each
component for satisfying requirements of cost saving and safety. Let P1
denote the PV power generation, and P2 denote the charging/dischar-
ging power of battery. Let P3 denote the grid power flow, and P4 denote
the load demand. With respect to cost, the electricity cost can be ex-
pressed as

∫=
=

J ρ t P t( ) ( ),
t

T

0 3 (1)

where ρ t( ) is the real time price of electricity, and J is the electricity
cost. With respect to safety, the power balance should be first satisfied
as

+ + =P P P P ,1 2 3 4 (2)

Power flow control methods have significant effects on electricity
cost and operational safety at demand side. In literature, rule-based and
optimization-based methods are proposed to reduce the cost and en-
hance the safety. However, the uncertainty of PV power has presented
several challenges on the power flow control. First, the uncertainty
could violate the condition of power balance and risk the security of
grid and demand-side units. Secondly, the uncertainty could influence
actual energy consumption, so that the electricity cost might deviate
from the reference one.

In this paper, the prediction of uncertain PV power is specifically
studied at the demand side, as solar irradiation at a certain location (a
weather station or solar farm) cannot be directly used in the PV power

Fig. 1. Schematic of PV hybrid system.
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for other distant customers. A PV panel usually consists of several PV
cells to convert solar irradiation into direct current power. With a
number of PV panels, the hourly PV power output can be simply for-
mulated as:

=P t η t I t A( ) ( ) ( ) ,pv pv pv c (3)

where P t( )pv is the hourly power output from the PV panels; η t( )pv is the
efficiency of solar generation; I t( )pv is the hourly solar irradiation in-
cident on the PV panels (kW h/m2); Ac is the total size of PV panels.

Many researchers have studied the prediction of solar irradiation,
and several kinds of methods have been proposed. The PV power can be
linearly derived from the solar irradiation, if customers have the same
characteristics. Considering different demand-side characteristics, such
as, location, weather, external environment, the efficiency η t( )pv is
time-varying. For example, when partial shading occurs due to cloud
and other objects, the efficiency will decrease. Therefore, the uncertain
PV has to be modeled specifically at the demand side, while the solar
irradiation can only be regarded as a reference. In this study, dis-
tributed generation at a university of South Africa is investigated, and
the uncertain PV power is directly modeled with an approach of echo
state networks. Note that the proposed approach can also be extended
to the prediction of solar irradiation.

3. Echo state neural network

As a kind of neural networks, the ESN has a typical architecture that
is composed of an input layer, a hidden layer (referred to as a dyna-
mical reservoir), and an output layer, as shown in Fig. 2(a). In the ESN,
the input signal, the output signal, and reservoir states are denoted as

t t tu y x( ), ( ), ( ), respectively. For the task of PV power prediction, the
input signal could be current and historical values of PV power, tem-
perature, humidity, and other meteorological indicators. The output
signal is the future PV power that needs to be predicted, and the re-
servoir states are states of neurons in the dynamic reservoir, i.e., the
hidden layer. First, the ESN has adopted a dynamic reservoir to transfer
the input signal into a high-dimensional state vector, which is expected
to include all characteristics. Then, an optimal combination of states is
chosen for representing output dynamics that is task-related. In other
words, the output signal, extracted from the reservoir, is expected to
match the desired target signal. In the rest of the paper, vectors are
denoted by boldface lowercase letters, e.g., x, while matrices are de-
noted by boldface uppercase letters, e.g., X.

In the reservoir, there are a large number of neurons with sparse
connections. The weight of each connection is randomly initialized, and
remains unchanged in the process of training and testing. Inspired by
the nature of biological neural system, such as small-world and modular
characteristics, a multi-clustered structure of reservoir was designed in
the authors’ recent study [30]. Compared with the traditional ESN with
a random structure, the multi-clustered ESN (MCESN) achieved more
accurate prediction. As illustrated in Fig. 2(b), the MCESN has a similar
architecture with the traditional ESN, and their difference is the

structure of reservoir. In this paper, the MCESN is adopted for the
prediction of PV power. The multi-clustered structure is generated ac-
cording to Kaisers clustering algorithm [31]. All neurons in the re-
servoir are divided into two different kinds of neurons, i.e., pioneer
neurons and normal neurons. The pioneer neurons, with mutual con-
nections, are the critical neurons that determine the number of clusters.
The normal neurons have connections within a cluster according to
spatial distance between neurons and associated time windows prob-
ability model. Note that the spatial distance is defined as the Euclidean
distance in the graphic space, and the time window size determines the
value of the probability function and affects the connection probability
between neurons. The procedure for reservoir generation is given as the
following steps [30]:

Step 1: The reservoir is initialized by a small number (denoted as n) of
pioneer neurons, which are bi-directionally connected to each
other.

Step 2: A random neuron is added and categorized into the nearest
cluster, which is determined by the evaluation of the nearest
pioneer neuron. This neuron has a probability to connect each
node belonging to the same cluster. The probability is calcu-
lated based on the spatial distance and the time window size.
Any new neuron that fails to establish a connection will be
given up. Step (2) is repeated until the number of existing nodes
reaches the defined reservoir size (denoted as N).

Step 3: Each node is connected with itself with a self-connecting
probability.

Step 4: The reservoir connection matrix Wres is calculated as follows:

=
⎛

⎝
⎜⎜

…
⋮ ⋱ ⋮

…

⎞

⎠
⎟⎟

W
W W

W W
res

i

i i i

1,1 1,

,1 , (4)

where Wi i, is the weight matrix of the ith cluster ( = …i n1, , ); Wi j,
are the weight matrix between the ith and jth cluster. Fig. 3
shows the topology of 200 nodes in the two-dimensional gra-
phic plane [0,1]. The clustered phenomenon is obvious, and it is
also clear that the intra-cluster connections are more intensive
than the inter-cluster connections.

Assume that the MCESN has K N, , and L neurons in the input,
hidden, and output layer, respectively. There exist connection weights
from the input units to reservoir (denoted as �∈ ×W W,in in

N K), re-
servoir connection weights collected in an ×N N weight matrix

�∈ ×Wres
N N , and connection weights from the reservoir to the readout

neurons given in a ×L N output weight matrix �∈ ×Wout
L N . For Win

and Wres, each component is a random number in the MCESN.
Furthermore, the connection weights projected back from the readout
neurons to the reservoir units are given in an ×N L feedback weight
matrix �∈ ×Wback

N L. The update of the reservoir states is expressed as
follows:

(a) (b)

Fig. 2. Network architecture: (a) regular echo state network model with random reservoir structure; (b) multi-clustered echo state network, where the triangles denote the pioneer
neurons.
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+ = + + + +t f t t t tx W u W x W y v( 1) ( ( 1) ( ) ( ) ( )),in res back (5)

where f is the activation function of each reservoir neuron (usually
defined as a sigmoid or Fermi function), and tv( ) is noise signals. The
Fermi function is adopted as the hidden neurons function in the paper.
The network output is calculated as

+ = +t f ty W x( 1) ( ( 1)),out out (6)

where f out is the activation function of the output units. Note that the
identity function is adopted in this paper. In the MCESN, the main task
is to determine the output weight matrix Wout by training the networks.

At the training stage, the teaching signal, i.e., the future PV power,
is given in prior, and the reservoir states can be updated according to
Eq. (5). Regression methods could be employed to calculate the output
weight matrix. Let ltr represent the length of training datasets, and X
represent the internal state matrix. The corresponding teacher signal
vector matrix Λ is denoted as

=
⎡

⎣

⎢
⎢
⎢

…
…

⋮ ⋮ ⋮ ⋮
…

⎤

⎦

⎥
⎥
⎥

×

d d d
d d d

d l d l d l

Λ

(1) (1) (1)
(2) (2) (2)

( ) ( ) ( )

L

L

tr tr L tr l L

1 2

1 2

1 2 tr (7)

and the internal states matrix X is collected as

=
⎡

⎣

⎢
⎢
⎢
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X

(1) (1) (1)
(2) (2) (2)
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N

N

tr tr N tr l N

1 2

1 2

1 2 tr (8)

where d t( ) is the teacher signal, i.e., the future PV power at the training
stage.

According to the classical pseudo-inverse method, the output weight
matrix Wout is computed as

= +W X( ) Λ,out T (9)

where +X is defined as generalized inverse matrix of X.
To overcome the over-fitting phenomenon, a ridge regression

training method [32] is applied as

= + −ρW X X I X( ) ( ) Λ,out T T T1 (10)

where I denotes the identity matrix, ρ is the regularization parameter
which should be determined through a large number of experiments for
the specific learning tasks.

4. Experimental design and estimation results

In this study, a MCESN model is established to forecast the hourly
PV power at the PV hybrid system, installed in University of Pretoria at
South Africa. The PV system comprises a large number of equal PV
modules with rated power 250W, providing the cooling, heating, and
electrical needs for the campus. The historical data, mainly including
temperature, humidity, and PV power, is collected for the year 2014.
The meteorological sensors are installed for measuring temperature and
humidity, the Danfoss Comlynx Monitor logger [33] is used for re-
cording these PV power, temperature, and humidity. As an example of
recorded data, Fig. 4 shows the profiles of hourly PV power P t( )pv ,
temperature (T), and humidity (H) from January 1st 2014 to December
31st 2014.

4.1. ESN setup

To generate the multi-clustered reservoir, the parameter settings are
given in Table 1 based on [30]. Weight matrices Win and Wback are
sampled from a uniform distribution over −[ 1,1], and the spectral radius
of Wres is set as 0.8 [34]. The ridge regression training method is
adopted to obtain the output weights in the current study. The pre-
diction accuracy is indicated by the normalized root mean square error
(NRMSE) [18], which can be expressed as

∑= −
=

NRMSE y t d t l σ( ( ) ( )) / ,
t

l
t1

2 2t

(11)

where y t( ) is the forecast of PV power; d t( ) is the actual PV power; lt is
the number of samples; and σ2 is the variance of the actual PV power. In
this application, 60% of data is used for training, and the remaining data
is used for testing.
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Fig. 3. Two-dimensional projection of multi-clustered network with cluster size =n 2.
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Fig. 4. Recorded data set used in this study: (a) hourly PV power data; (b) corresponding air temperature, humidity.
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4.2. One-hour-ahead prediction

In this section, the feasibility and prediction performance of MCESN
is evaluated in the one-hour-ahead prediction. As the PV power of each
month shows different characteristics, the hourly PV power is modeled
for each month in this paper. The PV power at a certain time, denoted
as −P t( 1)pv , is regarded as the input signal, and the PV power at the
subsequent hour is regarded as the teacher signal. Take sub-data in
summer (January) and winter (July) as two examples, respectively.
Results of MCESN are presented in terms of the actual and predicted
values at the training and testing stages, as shown in Fig. 5. It can be
observed that the prediction output could well match the actual output,
and that large fluctuations could be feasibly discovered.

For each month, the prediction accuracy is evaluated in the terms of
training and testing NRMSE, respectively. The average NRMSE over 20
independent runs is calculated and shown in Fig. 6. As a result, it can be
seen that the prediction accuracy is the lowest in summer.

In addition, in order to directly analyze the factors that may affect
PV power, a reasonable input layer of MCESN should be designed. In
this study, measured temperature (T) and humidity (H) are used as

examples to analyze the direct effect on PV power. The historical values
of temperature and humidity are also regarded as the input signals.
Besides the model previously derived, 3 other models are evaluated, as
illustrated in Table 2. In the first model, the input signal includes the PV
power. In the second model, the input signal includes the PV power and
temperature. In the third model, the input signal includes the PV power
and humidity. In the fourth model, the input signal includes the PV

Table 1
Model parameters for multi-clustered network.

Parameter meaning Values

Reservoir size 200
Cluster number 2
Time window size 0.3
Self-connecting probability 0.8
Connection probability coefficient1 6
Connection probability coefficient2 10

0 50 100 150 200
200

0

200

400

600

800

1000

1200
Training

Hour

P
V

 p
ow

er
 (k

W
)

Actual
Forecast

0 50 100 150 200
200

0

200

400

600

800

1000

1200
Testing

Hour

P
V

 p
ow

er
 (k

W
)

Actual
Forecast

(a)

0 50 100 150 200

0

200

400

600

800

Hour

P
V

 p
ow

er
 (k

W
)

Actual
Forecast

0 50 100 150 200
200

0

200

400

600

800

1000

Hour

P
V

 p
ow

er
 (k

W
)

Actual
Forecast

Training Testing

(b)

Fig. 5. One-hour-ahead prediction results by MCESN versus actual values for 200 training and testing points: (a) January; (b) July.
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Fig. 6. NRMSEs comparison of training and testing set for each month.

Table 2
Different input and output for MCESN model considering temperature (T) and humidity
(H).

Model MCESN MCESN+T MCESN+H MCESN+T+H

Input −P t( 1)pv − −P t T t( 1), ( 1)pv − −P t H t( 1), ( 1)pv − − −P t T t H t( 1), ( 1), ( 1)pv

Output P t( )pv P t( )pv P t( )pv P t( )pv
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power, temperature, and humidity. In these different situations, the
input and output signals are listed in Table 2. For each model, the
prediction accuracy is reported with respect to the NRMSE, as shown in
Fig. 7. It can be observed that the input effects of setting measured
temperature and humidity are minor, as each model has similar accu-
racy. In the same way, the direct effect of other measured factors (cloud
cover, geographic location) could also be analyzed.

Furthermore, in order to evaluate the periodic phenomenon, the
hourly data of PV power is represented as a 24∗365 matrix, in which
the component at the mth column and the sth row represents the PV
power at the mth hour of the sth day ( = …m 1, ,24, and = …s 1, ,365). The
2-D matrix is plotted as a surface mesh shown in Fig. 8. The daily profile
of PV power has a periodic pattern, so the effects of 24-h-lag in-
formation on the prediction accuracy are further explored. The multiple
inputs are selected as −P t( 1)pv and −P t( 24)pv , and the single output is
selected as P t( )pv . The testing NRMSE without/with the lag information
is presented in Fig. 9, where the blue bar represents the results without
the lag information and the red bar represents the results with the lag
information. It can be obtained that the 24-h-lag information has po-
sitive effects on the prediction accuracy in winter and negative effects
in summer. The reason behind this phenomenon is that there exist in-
tensive fluctuations that cause greater prediction error, as shown in
Fig. 10.

4.3. 24-h-ahead prediction

The MCESN approaches are utilized to predict the hourly PV power
with a good accuracy. However, the hourly PV power is insufficient for
certain cases of daily schedule and optimization. Therefore, 24-h-ahead
forecast of PV power is further investigated. According to [9], MCESN
permits to estimate 24-h-ahead of PV power based on the actual mean
value of daily current PV power, daily air temperature, and the day of
each month.

Experimental results are presented in Fig. 11 to compare the fore-
casted profiles and the measured profiles for 4 sunny days (July

19th–22nd). As can be seen, the forecast profiles of PV power can ap-
proximate the measured profiles with well accuracy. The scatter plots of
prediction results are given in Fig. 12. Most points are close to the di-
agonal line with the coefficient of determination =R 0.992 .

To quantify the prediction performance, several different statistical
criteria, i.e., root mean square error (RMSE), correlation coefficient r,
and the mean absolute error (MAE), are calculated for different case
studies. These statistical results are listed in Table 3. It can be observed
that the RMSE for the sunny day is smaller than the cloudy day, and
that the correlation coefficient for the sunny day is larger than the
cloudy day. The results indicate that the MCESN model delivers less
accuracy on the cloudy days. One possible reason is that the weather
information, such as, rain and cloud, which is missing in this study, is
required for the prediction task of cloudy days.

4.4. Comparisons of MCESN and other typical models

In order to validate the effectiveness of proposed method, two
popular models, i.e., auto-regressive moving average (ARMA) and BP
neural networks, are selected in the comparison study.

In Fig. 13 and Table 4, the MAE, RMSE, r values between measured
and forecasted profiles are compared with respects of ARMA, BP and
MCESN. Obviously, MCESN has the highest precision, while ARMA
performs the worst. This demonstrates that MCESN has obviously better
performance to deal with nonlinear PV power prediction task.

For the PV hybrid system, future PV power is essential information
for most problems of design and operation, e.g., sizing and power flow
dispatching. For power flow dispatching, day-ahead optimal control is
usually applicable to minimize the electricity cost of customers, who
already install the hybrid PV system at demand side. Under a certain
pricing policy, the PV power prediction affects the optimal dispatching
strategy and its associative cost. For example, the PV hybrid system
with the proposed MCESN could be used in a time-of-use (TOU) pro-
gram, which is a typical demand response program to alleviate peak
burden. In TOU, the electricity prices are fixed in advance for the
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customer reference. Note that future PV power and load demand could
be forecasted using MCESN.

5. Analysis of data characteristics

The prediction performance has been evaluated by quantifying the
difference between the predicted results and the measured results.
However, internal dynamic of the measured results are not essentially
the same with the predicted results. Therefore, some data character-
istics, including descriptive statistics, seasonality, stationarity (or non-
stationarity), and complexity, are qualitatively investigated in this
section. The one-hour-ahead forecast is taken as an example to analyze
these characteristics.
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Table 3
Statistical test between measured and forecasted PV power values 24-h-ahead for 4 sunny
days: July 19th–22nd 2014 and 4 cloudy days: November 19th, December 23rd, January
20th, February 20th.

Seasons Days MAE (kW) r RMSE (kW)

Winter July 19th 16.33 0.9993 26.72
July 20th 8.61 0.9988 15.49
July 21st 12.97 0.9957 24.54
July 22nd 13.32 0.9996 21.83

Summer November 19th 65.16 0.9567 113.61
December 23rd 97.58 0.9225 158.19
January 20th 74.04 0.9153 120.34
February 20th 37.14 0.9864 60.12
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5.1. Descriptive statistics

The histogram between the measured and predictive PV power va-
lues are firstly studied. The histogram for January (in the summer) and
July (in the winter) is given in Fig. 14(a) and (b), respectively. From
Fig. 14, it can be seen that the PV power distribution of the forecasted
results is similar with that of the measured results. The distribution of
January is also different with that of July, which indicates there exist
varying dynamics between seasons. The mean and standard deviation
of monthly PV power are computed in Table 5. It can be concluded that
the mean, standard deviation of the forecasted results are close to those
metrics of the measured results. In addition, statistical test between

measured and forecasted values is conducted, e.g., F-test and T-test, and
the results are reported in Table 5. Note that 0 means two data sets are
statistically similar, and 1 means they are significantly different. The F-
test results indicate that there is no significant difference between
measured values and forecasted values for most months except March.
The T-test results also show that there is no significant difference be-
tween measured and forecasted PV power values for all months.
Therefore, it can be concluded that the forecasted values is similar with
the measured valued.

5.2. Periodicity and stationarity

In order to explore the periodic or seasonal characteristics, a surface
mesh and a gray image are plotted in Fig. 15. When the region is
brighter, the PV power is more intensive, and vice versa. The profiles of
PV power show seasonally periodic, although some fluctuations occur
in summer (January, November, and December). There is a wider white
blob during the summer compared with the winter, as the period from
dawn to dusk is longer. Meanwhile, autocorrelation coefficients of
measured and forecasted data are plotted in Fig. 16, which can indicate
the cyclical pattern has a period of 24 h and non-stationarity. Both the
measured and forecasted autocorrelation coefficients values with lag of
24 h are far higher than those with other lags, further demonstrating the
24-h-lag information has strongly positive correlation. Note that non-
stationarity means that the statistical properties of PV power dynamics
remain diverse during the data generation process. It can be concluded
that internal dynamic characteristics, with respect to periodicity and
stationarity, keep similar between the measured and forecasted results.
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Table 4
Correlation coefficient (r) comparison between measured and forecasted PV power values
for 4 sunny days: July 19th–22nd 2014 and 4 cloudy days: November 19th, December
23rd, January 20th, February 20th.

Correlation coefficient r

Seasons Days ARMA BP MCESN

Winter July 19th 0.9866 0.9957 0.9993
July 20th 0.9836 0.9928 0.9988
July 21st 0.9824 0.9835 0.9957
July 22nd 0.9845 0.9690 0.9996

Summer November 19th 0.8686 0.9227 0.9567
December 23rd 0.8273 0.9143 0.9225
January 20th 0.8213 0.9048 0.9153
February 20th 0.9020 0.9440 0.9864
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5.3. Complexity

The complexity characteristic could reflect the complex state be-
tween regular and irregular relationships. Different techniques have
been applied to measure the data complexity, including the phase-space
reconstruction method [35], the G-P algorithm [36], and so on. A
simple and fast method, i.e., visibility graph method [37], is used to

analyze the complexity of forecasted and measured results in this study.
The basic idea of the algorithm is to map a time series signal into an
associated graph, and graph theory can be employed to characterize the
associated graph. The visibility graph method can reflect the structure
of the mapped time series according to [37].

For the visible graph method, scatter diagrams and corresponding
degree distributions are shown in Figs. 17 and 18. Besides forecasted

Table 5
Monthly mean and standard deviation comparison between the forecasted and actual PV power.

The measured values The forecasted values Statistical test

Month Mean (kW) Std (kW) Month Mean (kW) Std (kW) Month F-test T-test

1 269.92 346.92 1 280.39 343.94 1 0 0
2 253.65 328.49 2 253.18 319.09 2 0 0
3 173.96 259.98 3 163.76 231.44 3 1 0
4 201.59 282.26 4 202.75 277.53 4 0 0
5 186.78 260.31 5 188.83 260.06 5 0 0
6 174.72 244.89 6 177.59 245.64 6 0 0
7 183.38 256.32 7 185.28 256.15 7 0 0
8 209.44 287.96 8 211.61 296.99 8 0 0
9 261.14 340.75 9 262.92 343.72 9 0 0
10 287.49 370.75 10 285.03 363.40 10 0 0
11 236.96 332.01 11 235.03 320.09 11 0 0
12 265.97 355.24 12 273.59 348.61 12 0 0
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Fig. 15. (a) 2-D surface plot comparison between the estimated and measured PV power. (b) Image visualization comparison between the estimated and measured PV power.
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and measured singles, several time series are modeled for comparison,
such as, a random sequence uniformly distributed in [0,1], and a chaotic
sequence generated from the Mackey-Glass system (MGS). From
Fig. 17, we can conclude that both forecasted and measured signals
present more intensive intra-cluster connections compared with
random series. In Fig. 18, the degree distribution of random sequence
fits an exponential distribution, while the degree distribution of fore-
casted and measured signals fits the Gauss-like distribution, which is
similar to the distribution of MGS chaotic series. The Gauss-like dis-
tribution shows certain chaotic property of PV power.

Note that the scatter diagrams and degree distributions differ from
each month. To further evaluate the seasonal complexity, the basic
graph metrics, including average path length (AP), clustering coeffi-
cient (CC), and average degree (AD), are calculated for each month. The
formulas of AP and CC are given in the following equations:
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− ≠

AP 1
O(O 1)
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ς ζ
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where ϑς ζ, denotes the shortest length between point ς and ζ of time
series, O is the length of sequence; ξ e,ε ε represent the degree of point ε

and the actual number of edges among the points connected to point ε.
In Table 6, AP, CC and AD are calculated for different time series. It

can also be seen that the AP and AD of measured and forecasted signals
are between those of MGS and random signals, which could indicate
certain small-world properties between random and chaos. In Table 7,
AP, CC and AD are calculated for each month. The measured results are
comparable with respect to these three metrics. The small values of AP,
CC, and AD in summer mean the high randomness, which can explain
the poor performance in summer.

In this section, several main data features, including descriptive
statistics, seasonality, non-stationarity and complexity of measured and
forecasted results are qualitatively analyzed. Experimental results show
that the measured and forecasted signals have similar dynamics and
complexity. Some linear models, such as, moving average (MA), auto-
regressive (AR), and auto-regressive moving average (ARMA) may not
be suitable for modeling the demand-side PV power precisely.
Therefore, the MCESN model is proposed to predict the demand-side PV
power due to its nonlinear mapping capacity.

6. Conclusions

For the PV power forecast in the demand-side hybrid system, this
paper presents a direct approach for one-hour-ahead prediction and 24-
h-ahead prediction based on multi-clustered echo state network
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(MCESN). The proposed approach can achieve competitive perfor-
mance of prediction. The effects of measured temperature, humidity,
and 24-h-lag information are also studied in the MCESN model. The
results show that consideration of temperature and humidity informa-
tion has negligible effects on the prediction accuracy, and that the
historical 24-h-lag information has positive effects on the prediction
accuracy in winter and negative effects in summer. The simulation re-
sults also indicate that the proposed model could perform accurate 24-
h-ahead prediction for sunny days with the correlation coefficient being

99%, and acceptable precision for cloudy days with the correlation
coefficient being in the range 91–98%. MCESN could achieve more
accurate prediction, compared with ARMA, BP neural networks.
Finally, several data characteristics of measured and estimated PV
power are qualitatively analyzed. Experimental results show that the
seasonality, non-stationarity, complexity, and descriptive statistics
characteristics are analogous between measured and estimated values.

There are some open issues for the PV hybrid system. One issue is
big data analysis in the PV power forecast. Additional factors, such as
cloud cover, sunshine duration, should be considered in the ESN model.
Some advanced neural networks, such as convolutional neural network
(CNN) and long short-term memory (LSTM) can also be studied for
large and complicated applications. Another issue is the load modeling,
which is closely related to customer behavior and demand response.
The ESN model will be investigated for the load forecast. Furthermore,
after day-ahead PV power output and load demand are forecasted,
power flow dispatching in the PV hybrid system will be studied under
different demand-side programs, e.g., the time-of-use program. Energy
efficiency and economic performance must be considered in some rule-
based or optimization-based strategies.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.apenergy.2018.02.160.
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