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a b s t r a c t

This paper presents an optimal control model for the load shifting problem in energy management and its
application in a South African colliery. It is illustrated in the colliery scenario that how the optimal control
model can be applied to optimize load shifting and improve energy efficiency through the control of con-
veyor belts. The time-of-use electricity tariff is used as an input to the objective function in order to
obtain a solution that minimizes electricity costs and thus maximizes load shifting. The case study yields
promising results that show the potential of applying this optimal control model to other industrial
Demand Side Management initiatives.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Load shifting is a basic problem in Demand Side Management
(DSM), which is a topic of increasing importance in South Africa,
where the main electricity supplier Eskom is trying hard to supply
the growing peak time electricity demand.

There are plenty of references solving energy management
problems by various techniques. For example, fuzzy logic is intro-
duced in [10] and [4] to solve the load shifting problem of electric
water heaters and the energy management of a domestic photovol-
taic panel respectively; an artificial neural network regression
model is used in [12] for a petrochemical plant; integer program-
ming is applied in [6,1] for mid-term management of a thermal
and electricity supply system of an industrial consumer and the
peak-load management of a steel plant respectively. Based on
some new progress in switched optimal control in [2], an optimal
control model is introduced in [13] for the energy management
of hot water cylinders. The aim of this paper is to apply the
switched optimal control idea suggested in [13] to give an optimal
control model for load shifting problems; and to apply this model
in the conveyor belt systems of a South African colliery.

The kind of load shifting problems in which the optimal control
model works well are those common in industrial systems and

processes which can be controlled by on–off switching functions.
The optimal control model suggested here can also be applied to
problems such as unit commitment, economic dispatch, etc. These
are easily formulated into switched optimal control problems, and
the solutions obtained by optimal control algorithms are globally
optimal. In this instance, the optimal control idea is adopted for
the load shifting problem.

In the application of the optimal control model in the South
African colliery scenario, Eskom’s time-of-use (TOU) active energy
tariff structure is used to obtain a suitable objective function for
the control problem. This ensures a means of reducing the total
operational electricity costs as well as a means for maximizing
the load that is shifted from peak TOU periods to the less expensive
standard and off-peak periods.

This case study illustrates formulation of an optimal control
model for a complex industrial energy management problem.
The challenge in the system modeling of the colliery is that the
whole conveyor belt system is complex. It is quite difficult to iden-
tify which conveyor belts should be considered and which con-
veyor belts can be neglected. To resolve this difficulty, the
conveyor belt system was divided into several groups; only one
group was found to make a large percentage contribution to the to-
tal energy consumption of the colliery. Therefore this group was
selected for further study of the optimal control model.

Note that solution algorithms of an optimal control problem are
often based on Pontryagin Principle, and many practical energy
problems can not meet the smooth requirements therein.
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Therefore we discretize the optimal control model for the colliery
into a binary integer programming problem. This is very useful
and convenient since there are several software tools available
for solving such problems iteratively. For example, the built-in bin-
ary integer programming function, called ‘‘bintprog”, provided by
the Mathworks in the Matlab Optimization toolbox can be used.
This Matlab binary integer programming function also allows the
user to select between several different branch-and-bound tech-
niques which helps to minimize the objective function in the short-
est possible time.

The numerical results given in Section 3.9 show that the opti-
mal discrete time scheduling of the conveyor belt system, obtained
through the binary integer programming technique, reduces the
cumulative active energy costs by up to 49% for 5 weekdays in a
high-demand season, which is quite satisfactory.

The rest of this paper is organized as follows. In Section 2 the
general optimal control model is presented and the solution algo-
rithm is discussed in Section 2.1. Section 3 gives an application of
the optimal control model in the conveyor belt system at the col-
liery. Concluding remarks are given in Section 4.

2. Optimal control model

Consider a system with n modules and let the power of the ith
module be PiðtÞWatt when it is working in its usual way before any
DSM strategy. The switching on/off status of the ith module in a
proposed DSM strategy can be represented by the following
switching function

uiðtÞ ¼
1; when switched on;
0; when switched off:

�
ð1Þ

That is, uiðtÞ ¼ 1 denotes that the ith module is working with
the power PiðtÞ at time t as usual, while uiðtÞ ¼ 0 means the ith
module has been switched off. Note that uiðtÞ is a binary integer
and can not be any value in the interval ð0;1Þ. The actual power
of the ith module at time t is now PiðtÞuðtÞ. Let pðtÞ be the time-
of-use (TOU) electricity tariff function. Assuming that the load
shifting problem is considered over the time period ½t0; tf �, and take
a partition of this interval such that t0 < t1 < t2 < � � � < tN�1 < tN ¼
tf . Then the total electricity cost on the interval ½t0; tf � is the sum-
mation of the electricity cost over each small interval ½tj; tjþ1�; j ¼
0;1; � � � ;N � 1. Now the electricity cost of the ith module over the
interval ½tj; tjþ1� can be approximated as PiðtÞuðtÞpðtÞðtjþ1 � tjÞ, thus
the total electricity cost J for all the n modules over ½t0; tf � is
J ¼

Pn
i¼1

PN
j¼1PiðtÞuðtÞpðtÞðtjþ1 � tjÞ. In other words, one has

J ¼
Z tf

t0

Xn

i¼1

PiðtÞuiðtÞpðtÞdt: ð2Þ

There are some constraints for the minimization of J. For conve-
nience, we consider the following general form of constraints to in-
clude as many as possible cases

gðuðtÞ; tÞ 6 0; ð3Þ

where u ¼ ðu1;u2; � � � ;unÞT, and g can be a vector valued function of
time and many other process variables, such as flow rates, energy,
power, mass transferred, losses, etc. Now an optimal control prob-
lem is obtained: Find an optimal solution u of the following
problem

min J ¼
Z tf

t0

Xn

i¼1

PiðtÞuiðtÞpðtÞdt;

subject to gðuðtÞ; tÞ 6 0:

The optimal solution u is also called an optimal controller.

2.1. Discretization of the optimal control problem

For a theoretical background on optimal control theory, partic-
ularly focussing on the formulation of the optimal control problem
and Pontryagin’s maximum principle, the reader is referred to the
likes of [8,3,7,11]. The general methods for solving the optimal
solutions, which are time-varying functions, in optimal control
problems are usually based on Pontryagin’s Maximum Principle
or its variations. These methods often depend on some smooth
conditions and the solutions of some differential equations which
restrict their applications in practical problems.

Therefore it is reasonable to discretize the optimal control prob-
lem to obtain an ordinary optimization problem, where the opti-
mal solution is not a time-varying function but a fixed point.
Before applying the discretization process, two things are worthy
to note. The first thing is that the time interval of the optimal con-
trol problem should be divided as many as possible so that the re-
sulted ordinary optimization problem is a good approximation of
the optimal control problem, the second thing is that when the
number of divided sub-intervals increases, the number of variables
in the optimization problem increases, and the computational
complexity increases accordingly. Therefore this kind of discretiza-
tion idea is applicable only if the total number of obtained vari-
ables are not too big so that computer algorithms can solve it
quickly.

In our case study for the South African colliery, the discretiza-
tion process leads to a binary integer programming problem whose
solution is quite standard and can even be solved directly by a Mat-
lab function. This helps much to solve the optimal control problem.
The case study also shows that although the discretization would
result in a coarser or less accurate solution in general, choosing dis-
cretization instead of Pontrayagin Maximum Principle can be
acceptable in many practical problems.

Now consider the discretization of (2). Since the time interval is
½t0; tf �, divide this interval equally into N sub-intervals so that each
subinterval has the length Ts :¼ tf�t0

N . Then the optimal control
problem (2) and (3) can be approximated by

min J ¼
Xn

i¼1

XN

j¼1

Pj
iu

j
ip

jTs;

s:t: gðuj; ðj� 1ÞTsÞ 6 0;

ð4Þ

where Pj
i ¼ Piððj� 1ÞTsÞ, uj

i ¼ uiððj� 1ÞTsÞ, pj ¼ pððj� 1ÞTsÞ, and uj ¼
ðuj

1; � � � ;u
j
nÞT: This is an ordinary optimization problem with nN

number of variables fuj
i : 1 6 i 6 n;1 6 j 6 Ng. Therefore various

solution algorithms from linear and nonlinear programming can
be tried to solve this simplified problem.

3. A South African Colliery case study

3.1. Colliery overview

The South African colliery studied in this paper has two identi-
cal Dense Media Separation (DMS) plant modules, E12 and G12
which are responsible for processing the ore material from an open
cast mine, whose name has been omitted and is denoted by X mine
here. The ore material from X mine is delivered to the colliery by
train and is dumped in rail bins before being transported to either
the run of mine (ROM) stockpile or directly to the DMS feed bin by
the upstream D-group conveyor belt system. Fig. 1 gives an over-
view of the flow of coal, conveyor belts and coal storage silos and
stockpiles at the colliery, as well as the variable names and abbre-
viations used in this paper. Note that the symbol r� denotes the
transmission rate (ton/h) of some conveyor belt, for example rN10

denotes the transmission rate (ton/h) of the conveyor belt N10.
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After passing through the DMS plant modules, the processed
material follows one of four paths according to the size and quality
of the material:

� Discarded material is transported to the Discard Silo, mDS, via the
N10 and N11 conveyor belts.

� Export quality coal is transported to the Product Stockpile, mPRS,
via the P10 conveyor belt.

� Coal classified as inland product is transported to the inland
stockpile, mINS, via the P15 and P16 conveyor belts.

� Product material that falls within the PEAS category sizes is
transported to the PEAS silo, mPEAS, via the P14 conveyor belt.

From the product silo, the export quality coal is either stacked on
the product stockpile or transported, via the Q10 overland conveyor
belt, to the Rapid Loading Terminal (RLT) silo. The RLT silo is used as
a central base for loading the trains that transport export quality
coal to the Y terminal. The trains are named RBCT trains, and the
mass of the coal in an RBCT train at time t is denoted by mRBCTðtÞ.

As shown in Fig. 2, the downstream Q-group makes the largest
percentage (26%) contribution to the overall power consumption

of all the conveyor belts at the colliery. The Q-group conveyor belts
are also most suitable for load shifting energy management be-
cause this system can be isolated to be controlled independently
from the rest of the colliery as shown in Fig. 3. For these reasons
the Q-group conveyor belt system will form the main focus of the
rest of this paper and will be used as an example for illustrating
the optimal control model in the previous section.

3.2. Modeling of control problem

The isolation of the Q-group conveyor belts, discussed above, is
possible because of the relatively large capacity of the Product
Stockpile (PSP), mPSP, which makes it possible to model the product
silo and stockpile as one lumped system with the larger capacity of
the product stockpile, mPSP MAX ¼ 30 000 (tons).

It should be noted that the colliery is a key-customer under the
Eskom Megaflex time-of-use (TOU) tariff plan. The electricity tariff
is the Eskom Megaflex Active Energy Charge. That is,

pðtÞ ¼
po if t 2 ½0;6Þ [ ½22;24Þ
ps if t 2 ½6;7Þ [ ½10;18Þ [ ½20;22Þ
pp if t 2 ½7;10Þ [ ½18;20Þ

8><
>: ; ð5Þ

where t is the time of any weekday in hours (from 0 to 24); po, ps

and pp are the off-peak, standard and peak TOU active energy tariffs
in R/kW h; and R and c are the South African currency Rand and cent
respectively. Note that one Rand, denoted by R1, equals 100 cents.
The values for po, ps and pp vary according to the time of day, the

Fig. 1. Process flow diagram showing conveyor belts, coal silos and stockpiles and the flow of coal throughout the plant.

Fig. 2. Percentages of power consumptions of different belt groups. Fig. 3. Isolated Q-group conveyor belt system.
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day of the week as well as the season. The seasonal TOU active en-
ergy charges are given in Table 1.

3.3. Control horizon

The time interval for which the load shifting problem is consid-
ered is referred to here as the control horizon and consists of the
time period ½tt0; tt2Þ, as illustrated in Fig. 4.

This control horizon is formulated to coincide with the arrival
times of the trains because the main objective of the Q-group con-
veyor belts is to supply the trains with the correct amount of coal
as soon as they arrive. Since the trains do not arrive at fixed time
intervals, each control horizon has to be adapted according to the
train schedule of the specific time period concerned. The control
horizons are also independent of the time of day which is useful,
since the trains can arrive at any time of day and the number of
trains per day is not constant.

The control horizon extends over a time period of two train
arrivals i.e. from the time of arrival of the current train (train 0)
at time tt0, to the time of arrival of the second train after train 0,
namely train 2 at time tt2.

The idea is that once train 1 of the kth control horizon arrives at
RLT at time tt1, this time becomes the initial time tt0 of the next
control horizon, i.e, the ðkþ 1Þth control horizon. The control hori-
zon thus shifts forward each time a train arrives at RLT. This ap-
proach prevents short-sightedness of the control algorithm in the
sense that it always optimizes for at least one extra train interval
after the current one.

3.4. Basic system assumptions

The following assumptions are made in order to model Q-group
conveyor belt system as a simplified optimal control problem:

(1) The product stockpile always has enough coal (mPRSðtÞ) at
any time t to supply the Q10 conveyor belt with coal, via
the product silo, at its nominal rate of rQ10ðtÞ.

(2) The power PiðtÞ is a function of the feed rate of the ith con-
veyor belt, riðtÞ, (ton/h). However, since conveyor belts are
most power efficient when operated at their maximum, or
nominal design feed rate [9], it will be assumed that all con-
veyor belts always operate at their maximum design feed
rates and in turn they also operate at their maximum power
consumption when switched on and at a feed rate of 0 [ton/
h] and power of 0 Watt when switched off. Thus the power
consumption, PiðtÞ, is a constant, Pi MAX , for the ith conveyor
belt when it is switched on. This assumption must be vali-
dated by constructing the constraints of the objective func-
tion in such a way that the conveyor belts can always
operate at their maximum feed rates.

(3) The time delay associated with coal being transported from
the beginning to the end of a conveyor link is ignored.

(4) The trains are loaded at a fixed rate from the instant that
they arrive until they are full.

(5) The train schedule already takes into account the minimum
time between trains that the colliery can deal with.

(6) All train arrival times coincide with the discrete time inter-
vals mTs for some integer m, that is, the difference between
the arriving times of any two trains is an integer multiple of
Ts.

(7) The discrete time period Ts (h) is never greater than 1 h,
which corresponds with the shortest time period of the
change in the price function pðtÞ.

(8) The discrete time period is chosen such that Ts is an integer
fraction of 1 h, i.e. nTs ¼ 1 h where n is an integer.

(9) The start-up energy consumption of the conveyor belts is
not taken into account. Although start-up power could be
a significant factor, the energy consumption of long term
operations of the conveyor belt is more significant.

3.5. More hypotheses for optimal control modeling

The hypotheses for the control problem can be laid out as
follows:

(1) Assume:
� Train 0 arrives at t ¼ tt0, and leaves at t ¼ tt0 þ TL (h),
� Train 1 arrives at t ¼ tt1, and leaves at t ¼ tt1 þ TL (h),
� Train 2 arrives at t ¼ tt2, and leaves at t ¼ tt2 þ TL (h).

with

tt0 þ TL 6 tt1; ð6Þ
tt1 þ TL 6 tt2; ð7Þ

while tt0, tt1 and tt2 are known, the control horizon is defined as
the interval ½tt0; tt2Þ, and TL (h) is the train loading period and
can be calculated as:

TL ¼
mRBCT MAX

rQ13 MAX
¼ 8400

2100
¼ 4: ð8Þ

(2) Q10 and Q13 conveyor feed rates (ton/h):

rQ10ðtt1Þ ¼ rQ10 MAX � uQ10ðtÞ; ð9Þ
rQ13ðtt1Þ ¼ rQ13 MAX � uQ13ðtÞ; ð10Þ

where

rQ10 MAX ¼ 995 ðton=hÞ; ð11Þ
rQ13 MAX ¼ 2100 ðton=hÞ; ð12Þ

uQ10 and uQ13 are the switching functions of Q10 and Q13,
respectively.

(3) Train arrival times, tt0, tt1 and tt2 coincide with discrete time
intervals (see Assumption 6 of Subsection 3.4).

Table 1
Eskom’s active energy charges for the Megaflex key-customer tariff structure, 2007–
2008 [5]

Eskom’s active energy charge

TOU
period

High-demand season (June–
August) Incl. VAT [c/kW h]

Low-demand season (September–
May) Incl. VAT [c/kW h]

Peak
(pp)

63.04 17.89

Standard
(ps)

16.67 11.10

Off-peak
(po)

9.06 7.87

Fig. 4. Graphical illustration of the control horizon.
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(4) Q13 conveyor switching function is always defined as

uQ13ðtÞ ¼
1; t 2 ½tt0; tt0 þ TL� [ ½tt1; tt1 þ TL�
0; t 2 ðtt0 þ TL; tt1Þ [ ðtt1 þ TL; tt2Þ

�
ð13Þ

(5) The mass, in tons, contained by the RLT silo can be modeled as

mRLTðtÞ ¼ mRLTðt0Þ þ
Z t

t0

½rQ10ðsÞuQ10ðtÞ � rQ13ðsÞuQ13ðtÞ�ds;

where t0 is the initial time and can be assumed to be t0 ¼ 0.

3.6. Objective function

Since uQ13 is already known, there is no need for it to be in-
cluded in the objective function for the Q-group conveyor control
problem. In fact, by omitting any unnecessary variables from the
objective function the computing time for the obtained optimiza-
tion problem should be greatly reduced. By simplifying (2) the
objective function for the Q-group conveyors can be formulated
as the cost of operating the Q10 conveyor belt as follows:

J ¼
Z tt2

tt0

PQ10 MAXpðtÞuQ10ðtÞdt ð14Þ

When represented in terms of the discrete sampling time, Ts,
the objective function to be minimized can be represented as:

min J ¼ Ts

XN�1

i¼1

PQ10 MAXpðtiÞuQ10ðtiÞ; ð15Þ

where N ¼ tt2�tt0
Ts

.
In this case, (15) can be further simplified by removing the con-

stant elements Ts and PQ10 MAX, which do not affect the minimum
objective function, to obtain the objective function J in its simplest
form:

min J ¼
XN�1

i¼1

pðtiÞuQ10ðtiÞ ð16Þ

3.7. Constraints

The following constraints are considered for the RLT silo:

(1) Minimum constraint on mRLT:

mRLT P 0 8t 2 ½tt0; t2� ð17Þ

(2) Maximum constraint on mRLT:

mRLT 6 6400 8t 2 ½tt0; t2� ð18Þ

(3) Threshold constraint on mRLTðtt1Þ at time tt1:

mRLTðtt1ÞP mRLT THR ð19Þ

(4) Threshold constraint on mRLTðtt2Þ at time tt2:

mRLTðtt2ÞP mRLT THR ð20Þ

The last two constraints in Eqs. (19) and (20) are required to en-
sure that the RLT silo never runs empty while a train is being
loaded, i.e. while conveyor Q13 is switched on. This will ensure
that the trains will always be loaded at the maximum feed rate
of conveyor Q13 which is greater than the maximum feed rate of
conveyor Q10. The derivation of the threshold value, mRLT THR, is
shown below.

mRLTðtÞP 0

mRLTðtt1 þ TLÞ ¼ mRLTðtt1Þ þ
Z tt1þTL

tt1

½rQ10 MAX � rQ13 MAX�dt P 0

mRLTðtt1Þ þ rQ10 MAX � rQ13 MAX½ �
Z tt1þTL

tt1

1dt P 0

mRLTðtt1ÞP �½rQ10 MAX � rQ13 MAX�ðtt1 þ TL � tt1Þ ¼ mRLT THR

3.8. Solving binary integer programming problem in Matlab

The Matlab optimization toolbox bintprog function requires the
objective function to be in the form of

min fT � x; ð21Þ

subject to equality constraints in the form of

Aeq � x ¼ beq; ð22Þ

and inequality constraints in the form of

A � x 6 b; ð23Þ

where f, b beq are vectors and A and Aeq are matrices. The solution
is x, which is a binary integer vector, i.e. its entries can only take on
the values of 0 or 1.

For the Q-group conveyor problem at the colliery, the binary
vector x is made up of the discrete time switching function vector
of the Q10 conveyor belt as represented by

x ¼ ½uQ10ðt0Þ;uQ10ðt1Þ; . . . ;uQ10ðtN�1Þ�T;

and the objective function coefficients vector f is defined as:

f ¼ ½pðt0Þ; pðt1Þ; . . . ;pðtN�1Þ�T:

The formulation of the constraint matrices will now be dis-
cussed. The threshold constraint on mRLT at time tt1 is dealt with
first, and is formulated as follows:

mRLTðtÞ ¼ mRLTðtt0Þ þ Ts

XN�1

i¼0

rQ10 MAX � uQ10ðtiÞ

� Ts

XN�1

i¼0

rQ13 MAX � uQ13ðtiÞ:

So for the threshold constraint to hold, the following must be
true:

mRLTðtt0Þ þ Ts

Xðtt1�TsÞ

ti¼tt0

rQ10 MAX � uQ10ðtiÞ � Ts

Xðtt1�TsÞ

ti¼tt0

rQ13 MAX � uQ13ðtiÞ

P mRLT THR;

which results in:

�
Xðtt1�TsÞ

ti¼tt0

uQ10ðtiÞ 6 �
mRLT THR �mRLTðtt0Þ

Ts � rQ10 MAX

� �

�
Ts
Pðtt1�TsÞ

ti¼tt0
rQ13 MAX � uQ13ðtiÞ

Ts � rQ10 MAX

 !
: ð24Þ

Similarly, for the threshold constraint at time tt2 the following
must hold:

�
Xðtt2�TsÞ

ti¼tt0

uQ10ðtiÞ 6 �
mRLT THR �mRLTðtt0Þ

Ts � rQ10 MAX

� �

�
Ts
Pðtt2�TsÞ

ti¼tt0
rQ13 MAX � uQ13ðtiÞ

Ts � rQ10 MAX

 !
: ð25Þ

The right hand side of the inequality in (24) represents the con-
stant that is placed in the first element of the b vector in (23). The
left hand side of the inequality represents the values of the row
vector that would fill the first row of the A matrix in (23). The val-
ues in the A matrix will thus be either 0 or �1, depending on the
switching function and the b vector will contain rational constants.
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In a similar manner the inequalities in (26) and (27) can be used
to populate the remainder of the A matrix and b vector according
to the minimum and maximum inequality constraints on mRLT in
(17) and (18), respectively.

�
XðtnÞ

ti¼tt0

uQ10ðtiÞ 6 �
0�mRLTðtt0Þ þ ðTs � rQ13 MAXÞ

PðtnÞ
ti¼tt0
½uQ13ðtiÞ�

Ts � rQ10 MAX

 !
;

ð26Þ
XðtnÞ

ti¼tt0

uQ10ðtiÞ 6
6400�mRLTðtt0Þ þ ðTs � rQ13 MAXÞ

PðtnÞ
ti¼tt0
½uQ13ðtiÞ�

Ts � rQ10 MAX

 !
:

ð27Þ

3.9. Results

Since the operation of the Q13 conveyor belt depends entirely
on the schedule of the trains arriving at RLT, the controller cannot

shift any of the Q13 conveyor belt’s load to other time periods. The
only way to improve load shifting for this conveyor is to schedule
the trains to arrive shortly after peak times. However the arrival
times of the trains are actually irregular: they can arrive in any
time of a day and the number of arrived trains are not constant
each day. Due to this difficulty and the lack of new data on the
arrival times, the following arrival times of the trains from 00h00
of 04 November 2006 to 23h00 of 08 November 8 2006 in Table
2 are taken as the arrival times of the trains in five consecutive
weekdays of a week in a high-demand season (June to August) in
the years 2007 and 2008. This kind of assumption is reasonable be-
cause the aim of the case study is simply to illustrate the potential
savings in a high-demand season.

Therefore the minimization time interval is chosen to be from
04:00 of 4 November 2006 to 23:00 of 8 November 2006, which
is 115 h and approximately 5 days. There are seven trains arrived
and to be loaded during this period. Now the corresponding
high-demand season electricity tariff in Table 1 is applied to com-
pute the optimal control problem. This computed result is com-
pared to the actual electricity consumption of the same period.
When the two energy costs are compared, the same 2007 and
2008 TOU tariff is applied to both the cases with and without opti-
mal control.

The load shifting results for the Q10 conveyor belt are analyzed
below.

Table 3 is the comparison of the simulated load shifting results
before and after the controller algorithm had been implemented to
the base-line load shifting values. It shows that the controller de-
creases the total amount of energy used during peak times from
25% (without the controller) to 8% (with the controller).

The energy consumed by the Q10 conveyor during peak periods
is reduced from 12 375 kW h to 3300 kW h. This means that a total
of 9075 kW h of energy is shifted form the peak periods to the
standard and off-peak periods during the simulation interval of
approximately 115 h.

The controller also causes the total cumulative active energy
cost of operating the Q10 conveyor during the simulation interval
to be reduced from R12526 to R6424, which is a 49% reduction in
cost for the simulation period. This is also evident in Fig. 7.

The percentage of the total operational cost incurred during
peak periods is reduced from 62% to 32% when the controller is
implemented.

Fig. 5 shows the load shifting effect of the Q-group controller.
The bottom figure shows that the number of instances where the
Q10 conveyor had to be operated during the TOU peak time peri-

Table 2
Train arrival times at RLT

Train Date Time

1 4 November 2006 04:00
2 4 November 2006 22:00
3 5 November 2006 07:00
4 6 November 2006 04:00
5 6 November 2006 15:00
6 7 November 2006 01:00
7 8 November 2006 03:00
8 8 November 2006 23:00

Table 3
Comparison of load shifting before and after control

Q10 conveyor

Intervals switched on Energy [kW h] Cost [R]

Before controller implementation
Peak/total ratio 25% 25% 62%
Sum during peak hours 38 12375 7801
Sum total of all hours 151 49830 12526

After controller implementation
Peak/total ratio 8% 8% 32%
Sum during peak hours 10 3300 2080
Sum total of all hours 120 39600 6424

Fig. 5. Energy costs of Q10 in the controlled and uncontrolled states.
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ods was reduced from 10 to only 3 for the duration of the test,
which extended over approximately 5 full days.

Fig. 6 shows the simulation results for the RLT silo, Q10 and Q13
conveyor belts after the controller had been implemented and sim-
ulated in Simulink. The first graph in Fig. 6 gives a reference of
prices for the rest three graphs. The second graph is on the mass
of the RLT silo. The third graph is on the switching status of the
Q13 conveyor belt, which is determined by the arrival times of
the trains. The fourth graph is the switching status of Q10 which

is obtained by the solution of the optimal control problem. The sec-
ond graph indicates that the mass of the RLT silo is between 0 ton
and 6400 tons, thus the capacity constraints (17) and (18) are sat-
isfied. By comparing the second and the third graph, it is obvious
that the RLT silo never runs empty when the train is being loaded.
The third graph shows that the Q13 conveyor belt is always oper-
ated at its nominal feed rate and its operating time is completely
determined by the train arrival times in Table 2. It shows also that
the arrival time of the train is uncontrolled and sometimes it

Fig. 6. RLT silo, Q10 and Q13 after optimal control.

Fig. 7. Cumulative energy cost and energy of Q10 over the test period.
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makes Q13 working at peak time high price period. By the compar-
ison of the fourth graph with the first graph, it is clear that the
operating time of Q10 has avoided most of the peak time high price
periods, and this explains the reason of cost savings.

Fig. 7 shows the cumulative cost of active energy (top graph)
and the cumulative energy consumption (bottom graph) for the
Q10 conveyor belt for the duration of the test period. In both these
graphs the controlled colliery is compared to the uncontrolled col-
liery represented by the base case test data. It is clearly shown that
the controller reduces the cumulative active energy costs by up to
49%, as shown in Table 3., by the end of the test period. The bottom
graph in Fig. 7 shows only a small deviation in the overall energy
consumed after the controller is implemented. This is expected,
since roughly the same amount of coal was transported to the
RLT silo by the Q10 conveyor belt in both cases. In the uncontrolled
case the data showed that the Q10 conveyor belt was not always
operating at its maximum feed rate, resulting in the conveyor belt
having to operate for slightly longer periods, which resulted in the
slightly higher energy consumption when compared to the simula-
tion results of the controlled conveyor.

It should be noted that the execution time of the Matlab binary
integer programming algorithm can increase exponentially with an
increase in the number of variables that have to be calculated.
However, should such a controller be implemented in practice, this
problem can be overcome by using adequately fast computer hard-
ware readily available today.

Remark 1. The computation results on the colliery indicate a
great potential in cost savings due to load shifting and energy
optimization. The reason for the feasibility of load shifting is that
the mine has storage silos which can be loaded during off-peak
time. Since storage silos are common in mine industry, load
shifting and the corresponding cost savings in terms of a TOU
tariff are always possible. The same idea is also applicable to
other industry such as water pumping systems. In fact, a water
pumping system often consists of pumps and reservoirs, and the
reservoirs have similar storage capacity, this makes the load
shifting possible. We have applied this idea to study the water
pumping system of a South African water supplier ([14]). The case
study gives the potential cost savings for the colliery based on the
high-demand season electricity tariff. In a low-demand season,
the difference between peak time price and off-peak time price is
significantly less than the case of high-demand seasons. Therefore
the corresponding cost savings for low-demand seasons will be
obviously less than that of high-demand seasons. Although the
cost savings for high-demand seasons is quite promising, this
colliery has stopped to implement the project because the
electricity supplier did not honor DSM programmes with special
incentives but load-shed unselectively all major industrial end
users at the beginning of 2008 to curtail the extreme energy
shortage situation. However the colliery is still considering the
load shifting plan as industrial customers are required to reduce
10% of their usual energy consumption in the nationwide Power
Conservation Programme in 2008.

4. Conclusion

This paper gives an optimal control model for load shifting
problems and discusses its applications in the scenario of a South
African colliery. The obtained optimal controller for this colliery re-
duces the cumulative active energy costs by up to 49% during 5
weekdays in a high-demand season. The percentage of total
amount of energy used during peak time is also reduced from
25% to 8%. This case study shows the potential of using optimal
control as a starting point for developing controllers to facilitate
both load shifting and process optimization. Furthermore, the ease
with which approximated optimal solutions can be obtained by
discretizing these problems as ordinary optimization problems is
very convenient for some other practical problems such as the load
shifting in pumping processes and irrigation on farms, etc.
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