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ABSTRACT

In practice, design parameters of a belt conveyor likely drift away from their design values by maintenance, readjustment,
retrofit, abrasion, and circumstance change. For the purpose of energy optimization, these parameters should be estimated through
experiments. In this paper, a new energy model of a DC motor driven belt conveyor is presented. Then, based on an adaptive
observer, a parameter estimation algorithm is derived. In addition, under a persistent excitation condition, the convergence of the
parameters to the desired values can also be concluded. Compared with the existing methods, our methods can be implemented
by measuring only the feed rate of the belt conveyor and the angular velocity of the rotor of the DC motor.
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I. INTRODUCTION

Belt conveyors have a high transfer capacity and a long
transfer distance. They are widely used to transfer bulk mate-
rial in the mining, metallurgical, and coal industries. Accord-
ing to the report in [1], about 10% of the total maximum
power demand in South Africa is to handle materials, where
up to 40% of the energy cost is borne by the operational cost
of the belt conveyor systems [2]. Therefore, improving energy
efficiency of belt conveyors by reducing the energy consump-
tion of material handling is of great significance.

There are four levels where energy efficiency of a belt
conveyor can be improved: performance, operation, equip-
ment, and technology [3]. It is easy to achieve higher energy
efficiency by introducing highly efficient equipment [4–8].
Nevertheless, extra investment is needed to retrofit or replace
the equipment. At the operation level, many methods have
been proposed to improve energy efficiency for the belt con-
veyors [9–18]. For example, the authors in [17] proposed an
optimal switching control and a variable speed drive based
optimal control to reduce the energy consumption of belt
conveyors. In [18], an analytical energy model was proposed.
This model had four coefficients that could be estimated
through algorithms, such as least square (LSQ) [19] and

recursive least square (RLSQ) [20]. After obtaining the
energy model, an optimization was also done at the opera-
tional level with two performance indicators, energy cost and
energy consumption. In order to estimate these four coeffi-
cients, however the power of the motor PM, feed rate T, and
belt speed V should be measured. Recently, in order to esti-
mate unknown states and unknown constant parameters,
adaptive observers have made great progress [21–30].

In this paper, a new energy model of belt conveyor with
a DC motor is introduced. Then, an adaptive observer is
designed for the model. In order to identify the four coeffi-
cients of the energy model , the feed rate T of the belt conveyor
and the angular velocity wm of the rotor of the DC motor should
be measured on-line. Then, based on the adaptive observer, a
parameter estimation algorithm is derived. In addition, under a
persistent excitation condition, the convergence of the param-
eters to the desired values can also be concluded. Simulation
results show the validity of our methods.

This paper is organized as follows. The analytical
energy model of belt conveyors in [18], the model of a DC
motor, and the adaptive observers design are reviewed in
Section II. In Section III, we present a new energy model of
belt conveyors with DC motors, an adaptive observer for this
model, and a parameter estimation algorithm. In Section IV,
an example is given to show the validity of our new methods.
Section V presents the conclusion.

II. PRELIMINARIES

2.1 An analytical energy model of belt conveyors

A typical belt conveyor is shown in Fig. 1. As in [18],
an analytical energy model of the belt conveyor is given
as follows:
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where PT is the mechanical power; V denotes the the belt
speed (m/s); T is the feed rate (t/h); θ1, θ2 , θ3, and θ4 are four
parameters. In practice, the four parameters often drift away
through maintenance, readjustment, retrofit, abrasion, and
circumstance change. For the purpose of energy optimization,
these four parameters are estimated by both off-line and
on-line parameter estimation schemes, based on PT, V, and T
measured on-line and off-line, respectively, in [18].

2.2 A DC motor

The dynamics of a DC motor are given by [31]:
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where Jm denotes the mass moment of inertia of the motor, ωm

is its angular velocity, kp is the torque constant, bm is the
damping coefficient, TL is the presence of some external load,
La and Lf are its inductances, Ra and Rf are its resistances, ia

and if are its currents, kc is a proportional constant to the flux
and the angular velocity of the motor, and ea and ef are two
separate potentials are used to power the armature and field,
respectively. The corresponding circuit is shown in Fig. 2.

2.3 Adaptive observers

Adaptive observers can be used to estimate unknown
parameters. Now, let us review the adaptive observers’

design. Consider the following system in adaptive observer
form [26]:

�z A z y u b y u t

y C z

T= + +
=

⎧
⎨
⎩

0

0

γ β θ( , ) ( , , ) ,

,
(3)

where z n∈R , y ∈R, u m∈R , θ ∈R p, and γ (y, u)
are smooth function mapping R R R× →m n;
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with parameter convergence is designed in [26] as follows:
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where Γ is any symmetric positive definite matrix, e z z= − ˆ,
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1
0( )λ with λ being an arbitrary positive real.

Since ( , , )A b C0 0 satisfies the strictly positive real condition,
then, for any symmetric definite matrix Q, there exist a
symmetric positive definite matrix P , a positive real d such
that [26]:

( ) ( ) , .A KC P P A KC dQ Pb CT T
0 0 0 0+ + + < − =

III. A NEW ENERGY MODEL

In this section, we make the following assumption: the
belt is non-slip. T and ωm are measured on-line. We shall also
assume a constant potential ef and assume that the circuit is
operating at steady state so that ef = ifRf, yielding a constant
field current if. Therefore, we have:

Fig. 1. Typical profile of belt conveyors.

Fig. 2. Circuit diagram of separately excited DC motor.
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where kT = kpif, kb = kcif.
When the DC motor is employed to drive the conveyor

belt, then,

T F r V rwL U m= =, ,2π (5)

where r is the radius of the rotor and Fu is the peripheral
driving force of the belt conveyor and can be calculated by the
following equation [18]:
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where f is the artificial friction factor; L is the center-to-center
distance (m); Q = QRO + QRU + 2QB; QRO is the unit mass of
the rotating parts of carrying idler rollers (kg/m), and QB is
the unit mass of the belt of rotating parts of the return idler
rollers (kg/m), QB is the unit mass of the belt (kg/m); δ is the
inclination angle (ο); ρ is the bulk density of material (kg/m3);
b1 is the width between the skirt boards (m); k1, k2, and k3 are
constant coefficients that relate to the structural parameters of
the belt conveyor; and CFt is a constant. From (5) and (6), we
have:
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Then, a new energy model of the belt conveyor with a DC
motor is given as follows:
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For the conveyors with permanent instruments for T
and wm, the real-time data can be accessed through the
supervisory control and data acquisition system (SCADA).
Therefore, let wm be the output of the system (8), i.e.,
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where C = [1 0]. We obtain that
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which means that (Ã, C) is observable. Then, the coordinate
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s b+ 2

is a Hurwitz polynomial. Consider the following filter
transformation [26]:
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where ηi(t0) = 0, ψi(T, ωm) is the ith component of ψ(T, ωm)
(i = 1, . . . , 4). This transforms (11) into to the following
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where η = [η1, η2, η3, η4]T. For the system (14) in adaptive
observer form, an adaptive observer can be designed as
follows [26]:
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Let us now state and prove the main results of this

paper.

Theorem 1. For the energy model of belt conveyor with a
DC motor (8), there exists a filter transformation (12), (13) to
transform (8) into (14). Moreover, for the system (15), (16), if
k1 and k2 are selected such that (A, b, C) satisfies the strictly
positive real condition, where A = A0 + KC, K = [k1, k2]T, then
ˆ( )θ θt − is uniformly bounded.

Proof. Using the same method as in [26], we can obtain
the result.

In order to ensure that ˆ( )θ t converges to the desired
value, the following result is needed.

Lemma 1. Consider the following system:

�η η ψ ω

η ψ ω

= +

= +

⎧

⎨
⎪⎪

⎩
⎪
⎪

A B
T

J

y C D
T

J

m

m

m

m

1 1

1 1

( , )
,

( , )
,

(19)

where A1 = diag{−b2, −b2, −b2, −b2}, B diag b
R

L
a

a
1 2= − +⎧

⎨
⎩

,

b
R

L
b

R

L
b

R

L
b

R

L
a

a

a

a

a

a

a

a
2 2 2 2− + − + − + − + ⎫

⎬
⎭

, , , , C1 = I, D1 = I. If

there exist T0 > 0, kp > 0 such that ψ(T, ωm) satisfies the
following persistence excitation condition

ψ τ ω τ ψ τ ω τ τ( ( ), ( )) ( ( ), ( )) ,T T d k Im
T

m
t

t T

p

+

∫ >
0 (20)

then, there exists ′ >kp 0 such that

y y d k IT

t

t T

p( ) ( ) .τ τ τ
+

∫ > ′
0 (21)

Proof. It follows from (19) that

C SI A B D
s

R

L
s b

I

a

a
1 1 1 1

2

( ) ,− + =
+

+

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

which implies that the system (19) is stable and minimal
phase. By lemma 2.6.7 in [33], we obtain the result.
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Theorem 2. For the energy model of the belt conveyor with
a DC motor (8), there exists a filter transformation (12), (13)
to transform (8) into (14). Moreover, for the system (15),
(16), if k1 and k2 are selected such that (A, b, C) satisfies the
strictly positive real condition, and there exist T0 > 0 and
kp > 0 such that the condition (20) holds, then, we have
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which contradicts the boundedness of ϕ θ( ( ), )� t t . Therefore,
lim ( )
t

t
→∞

=�θ 0. The proof is completed.

IV. SIMULATION RESULTS

We test the proposed adaptive parameter estimation
(13), (15), (16) by simulation with parameters b2 = 4.0, λ = 3,
and Γ = diag{180, 180, 180, 180} and with four coefficients
θ1 = 1, θ2 = 0.3, θ3 = 3.5, and θ4 = 2.1, for a DC motor, whose
parameters are: kT = 0.1, kb = 0.1, bm = 0.4, Jm = 0.05 Kgm2,
Ra = 15 Ohm, La = 1.0 H, r = 0.01 m, and ea = 380 V. The
initial conditions of (14), (15), and (16) are given by (0.01,
0.7), (0.8, 0.2), and (0.1, 0.1, 0.1, 0.1), respectively. It should
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be noted that it is difficult to check that inequality (20) holds.
In practice, if the feed rate T does not change much, a com-
plete determination of all of the parameters is impossible. In
order to estimate all of the parameters, one should sufficiently
disturb the feed rate T during the period of estimation. In this
example, we choose the feed rate T = 0.09(8 + 5sin(10t + 1) +

2cos(−5t + 2) + sin(20t)) + 0.3(8.6 + 2cos(−5t + 2) + sin(15t
+ 0.4) + sin(20t) + 4sin(t)) | (sin(4t + 0.5)) | kg/s (0 ≤ t ≤ 60s).
The simulation results are shown in Fig. 3–Fig. 6.

To test the algorithm against measurement noise, a band
limited white noise is added to y1. The results are demon-
strated in Fig. 7–Fig. 10.
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Fig. 3. Trajectory of �θ1.
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Fig. 5. Trajectory of �θ3.
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Practically, the parameters may drift away during the
conveyor belt operation. For example, θ1 = 1.2, θ2 = 0.3,
θ3 = 3.5, θ4 = 2.3, using the same initial conditions and the
feed rate T, we implement the adaptive identifer for 30s.
Figs 11–14 show the simulation results.

V. CONCLUSION

In this paper, a new energy model of a conveyor
belt driven by a DC motor was presented, which lumped
all the parameters into four coefficients. Then, an

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

Fig. 6. Trajectory of �θ4.
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adaptive observer was designed to estimate the unknown
parameters. In addition, under a persistent excitation
condition, the convergence of the parameters to the
desired values could also be concluded. Compared with

the existing methods, our methods could be imple-
mented by measuring only the feed rate of the conveyor
belt and the angular velocity of the rotor of the DC
motor.
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Fig. 9. Trajectory of �θ3 with band limited white noise.
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Fig. 10. Trajectory of �θ4 with band limited white noise.
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