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a b s t r a c t

In this paper, a newdemand-sidemanagement problemof networked smart grid is formulated and solved
based on evolutionary game theory. The objective is to minimize the overall cost of the smart grid, where
individual communities can switch between grid power and local power according to strategies of their
neighbors. The distinctive feature of the proposed formulation is that, a small portion of the communities
are cooperative, while others pursue their own benefits. This formulation can be categorized as control
networked evolutionary game, which can be solved systematically by using semi-tensor product. A
new binary optimal control algorithm is applied to optimize transient performances of the networked
evolutionary game.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Demand-sidemanagement of energy systems becomes increas-
ingly popular, because of its great potential in improving en-
ergy efficiency in industries. Smart grid is a typical platform
where demand-side management strategies can be applied. A
core issue in smart grid is that, dynamic user behaviors should
be addressed in designing demand-side management strategies.
Widely-used techniques for demand-side management of smart
grid include game theoretic approach (Mohsenian-Rad, Wong,
Jatskevich, Schober, & Leon-Garcia, 2014), multi-objective opti-
mization (Malatji, Zhang, & Xia, 2013; Nwulu & Xia, 2015), dis-
tributed energy consumption control (Ma,Hu, & Spanos, 2014), and
model predictive control (Zhang & Xia, 2011), etc.

Smart grids can be analyzed in the perspective of network
systems, since there usually exist multiple interactive users
consuming powers from grids. In networked smart grid systems,
stability and optimization are two main issues. Stability of the
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networked smart grid system indicates that interactive users
reach an equilibrium. Some methodologies, i.e. game theory
(Mohsenian-Rad et al., 2014), can be applied to prove the existence
of equilibria in networked smart grid system. Optimization of the
network smart grid system implies that, in the transient process
to reach the equilibrium, some indexes can be optimized. The grid
provider is capable of influencing decisions of users in the network
by presenting dynamic pricing strategies (Jiang, Cao, Yu, & Wang,
2014; Li, Lu, Lin, & Shen, 2013). It is possible that the smart grid
provider and some of the users cooperate to affect decisions of
other users, such that the common benefit can be improved.

Game theory has been widely applied to energy systems
(Du, Grijalva, & Harley, 2015; Hong, Su, & Chou, 2014). In
previous researches on game theoretic policy for energy systems,
fundamental games are usually played between two individual
users (Xiao, Mandayam, & Poor, 2015), or between the power
company and users (Fadlullah, Quan, Keto, & Stojmenovic, 2014).
Pay-off functions and strategies are usually defined such that
existence of Nash Equilibrium (NE) can be proved. Optimization
(ormodel predictive control Stephens, Smith, &Mahanti, 2015) can
be employed to search for NE. Sometimes the fundamental game
is played repeatedly, and strategies of users are updated in real-
time. In this situation, it is named evolutionary game (Cheng, He,
Qi, & Xu, 2015). Networked evolutionary game indicates that, the
repeated game is played among networked users, and updating
laws relate to topological structure of the network (Cheng, 2009).
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In some networked evolutionary games, actions of some users can
be actively assigned, such that other users are induced to improve
common benefit. The users with actively assigned actions can be
defined as controllers; and the networked evolutionary gamewith
controllers can be defined as control networked evolutionary game
(Zhao, Li, & Cheng, 2011).

During recent years, a new semi-tensor product (Cheng, Qi, &
Xue, 2007) is developed to solve the problem of networked evolu-
tionary game. The semi-tensor product is an extension of ordinary
matrix product. By using semi-tensor product, dynamics of evo-
lutionary games can be formulated into an algebraic form (Cheng,
2009), and the existence of NE can be proved systematically (Cheng
et al., 2015). For the control networked evolutionary game, control
strategies can be designed to reach the NE by using semi-tensor
product. Moreover, classical control methods can be introduced
and extended in the framework of semi-tensor product to attain
the NE of the networked evolutionary game.

In this paper, demand-side management of a class of smart grid
is studiedwithin the framework of control networked evolutionary
game. The smart grid is built among interactive communities using
either grid power or local generated power. It is assumed that a
small portion of the communities are subsidized, thus cooperative
with the grid provider. However, other communities are un-
subsidized and pursuing individual benefits. We aim to design
actions for the cooperative communities (controllers), such that
the common benefits can be improved even if other communities
are noncooperative. The main contributions of this paper include
that: (1) the demand-side management of a smart grid is modeled
into a control networked evolutionary game; (2) the networked
evolutionary game is composed by fundamental games played
simultaneously among several players instead of 2-player games;
(3) semi-tensor product is applied to solve the demand-side
management problem; and (4) a new binary optimal control is
introduced to optimize the transient performance of the control
networked evolutionary game.

The layout of this paper is arranged as follows. In Section 2,
mathematical preliminaries are introduced. In Section 3, the
demand-side management of a simple smart grid is formulated
within the framework of control networked evolutionary game.
In Section 4, the proposed control evolutionary game is analyzed
and solved by using semi-tensor product, and a new optimal
control approach is proposed to improve transient performance.
In Section 5, a simulation example is presented to illustrate
the proposed demand-side management approach. This paper is
concluded in the final section.

2. Mathematical preliminaries

2.1. Control networked evolutionary game

Information interchange within networked system can be
described by a directed graph G = {V , E }, where V =

{π1, π2, . . . , πn} is a set of nodes, and E ⊆ V × V is a set of edges
that depict information flow between nodes. An edge (πi, πj) in
G denotes that the information of node πi is available to πj, and
πi is defined as a neighbor of πj. The index set of all neighbors of
node πj is denoted by Nj = {i : (πi, πj) ∈ E }. In an undirected
graph, (πi, πj) ∈ E ⇔ (πj, πi) ∈ E . The adjacent matrix A ,
[aij] ∈ Rn×n, where aij = 1 if (πj, πi) ∈ E , and aij = 0 otherwise.
It is assumed that aii = 0. More details on network system can be
found in Ren (2010).

Definition 1. Anormal finite gameH can be formulated by (1) the
set of players: V = {π1, π2, . . . , πn}; (2) the strategy set for each
player:Xi = {xi1, xi2, . . . , xik}, where i = 1, . . . , n; and (3) the cost
function: ci(xi, x−i), where xi ∈ Xi denotes the strategy selected
by player i, and x−i denotes strategies of other players excluding
player i.
Definition 2. Nash equilibrium (NE), denoted by (x∗

1, x
∗

2, . . . , x
∗
n),

is a local optimal response for a normal finite game, where no
individual would gain by unilaterally changing its own strategy:
ci(x∗

i , x
∗

−i) ≤ ci(xi, x∗

−i).

If a game can be played repeatedly with an updating law:
Π : xi(t + 1) = f (xi(t), x−i(t), ci(t)), where t ≥ 0 denotes the
discrete sampling time, then it is named evolutionary game.

In an evolutionary game played by multiple players, a typical
updating law can be given by Unconditional Imitation with fixed
priority (Cheng et al., 2015):

xi(t + 1) = xj∗(t), j∗ = argmin
j∈Ni

cj(xj(t), x−j(t)). (1)

If j∗ is non-unique, then select the minimal j∗ as priority.

Definition 3. The networked evolutionary game is composed by
(1) a networked graph G ; (2) a normal finite game H that can be
played repeatedly; and (3) an updating law Π .

Remark 1. The above definition of the networked evolutionary
game is slightly different from that of Cheng et al. (2015), where
fundamental networked game (FNG) is required. In this paper, the
normal finite game is used in Definition 3.

Definition 4. The control networked evolutionary game is com-
posed by (1) a normal finite game H that is played repeatedly;
(2) a networked graph Gc = (X ∪ U , E ), where {X , U } is a parti-
tion of V (X ∪ U = V and X ∩ U = Ø), and strategies of U can
be actively assigned; and (3) an updating law Π .

2.2. Semi-tensor product

Definition 5. The semi-tensor product of two matrix A ∈ Rm×n

and B ∈ Rp×q can be defined by

A n B , (A ⊗ Io/n)(B ⊗ Io/p) ∈ R(mo/n)×(qo/p), (2)

where o = lcm(n, p) denotes the least common multiple of n and
p; and ⊗ denotes the Kronecker product.

Definition 6. The fundamental vector δi
n ∈ Dn is defined as the ith

column of the identity matrix In×n. It can be further defined that
δn[i, j, . . . , k] , [δi

n, δ
j
n, . . . , δ

k
n].

Theorem 1 (Cheng et al., 2015). With equivalence i ∼ δi
n, i =

1, 2, . . . , n, a logic function f : Dk
n → Dn can be rewritten by

f (x1, x2, . . . , xk) = Mf nk
i=1 xi, where Mf is the structure matrix of

logic function f .

Theorem 2 (Cheng et al., 2015). For a logic dynamic system xi(t +

1) = fi (xi(t), x−i(t)) = Mfi nn
i=1 xi, i = 1, . . . , n, it can be rewritten

in the form of

x(t + 1) = Mf x(t), (3)

where x(t) , nn
i=1 xi, andMf , Mf 1 ∗Mf 2 ∗ · · ·∗Mfn. Here, ∗ denotes

the Khatri–Rao product: M ∗N , [col1(M)ncol1(N), . . . , cols(M)n
cols(N)], where M ∈ Rp×s and N ∈ Rq×s; and coli(M) denotes the
ith column of matrix M.

Theorem 3 (Cheng et al., 2015). For a logic dynamic system given
by (3), δi

n is its fixed point, if and only if the diagonal element mii of
Mf equals 1.
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Fig. 1. Topological structure of the graph given in Cases 1 and 2.

3. Problem formulation

In this paper, the evolutionary game is played among some
remote rural communities, where a networked power grid is
newly constructed. Before the construction of the power grid,
the communities were using power generated by local facilities,
e.g., diesel generators. To cover the cost, the price of grid power
is high when there are less users. As the number of users grows,
the price of grid power would decrease. However, if the number of
users grows excessively large, the price would increase again due
to supply shortage.

Themain problem of this price policy is that, no individual com-
munity would like to become the first user of the grid, since its
price would be high at the initial stage. Another problem is that,
even if an optimal common benefit is reached, itmight be unstable.

Case 1. Consider a grid connecting 4 communities. Each commu-
nity has the choices of either local diesel power or grid power. The
diesel power price pd is constant, and the grid power price pg(t)
varies with the numbers of users, as is displayed in Table 1. Denote
the strategy space of community i by Xi = {1, 2}, where 1 indi-
cates using grid power, and 2 indicates using of local diesel power.
The topological structure of the network is given by Fig. 1, where
edges are all undirected. It follows that the adjacentmatrix is given
by

A =

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 .

Communities have no direct knowledge of real-time prices, but
they fully know costs of their neighbors. Define pi as the price paid
by community i. The cost function is defined by

ci(xi(t), x−i(t)) = pi(t) + α


pi(t) − min

j∈Ni
pj(t)


, (4)

where α > 0 is a constant weight coefficient. The cost function (4)
indicates that each community, while pursuing the lowest price,
feels uncomfortable if paying higher price than its neighbors. The
updating law Π is given by (1), implying one community would
change its strategy to that of the neighbor with the lowest cost.
The common benefit at time t is defined as C(t) =

4
i=1 pi(t).

It should be noted that, in this case, the optimal common benefit
happens when three communities use grid power, and one uses
diesel power.

Consider the scenario that the states are already in one of the
cases of the optimal common benefit:

{x1(t), x2(t), x3(t), x4(t)} = {2, 1, 1, 1}. (5)

It follows that, according to the updating law (1), {x1(t +1), x2(t +
1), x3(t + 1), x4(t + 1)} = {1, 1, 1, 1}, deviating from the optimal
common benefit.

In this case, {2, 2, 2, 2} indicates a fixed point; however, it is not
anNE. If any community changes from2 to 1, its costwould become
Table 1
Prices of diesel power and grid power.

User number 0 1 2 3 4

Grid power price 8 7 7 6.5 7.5
Diesel power price 7.2 7.2 7.2 7.2 7.2

Note: values in this table are not absolute prices; they are assigned to reflect
differences of prices in various scenarios.

smaller; however, no communitywould like to change unilaterally,
because others might also make the same choice, and the states
come to {1, 1, 1, 1}.

Remark 2. The weight coefficient α > 0 is necessary in (4), be-
cause the direct subtraction would be inappropriate if the two
terms are with different physical implications. Another physical
meaning of α is users’ priorities between actual costs and psycho-
logical comforts. Without loss of generality, α = 1 is assumed in
this paper. Uncertain/time-varying α will be investigated in the fu-
ture research.

Case 2. Suppose that all conditions in Case 1 are satisfied, except
that the real-time price can be fully accessible, and the updating
law is given by

xi(t + 1) = g (xi(t), x−i(t)) =


2, if pg(t) > pd(t);
1, if pg(t) ≤ pd(t),

(6)

indicating that the less expensive choice is preferred.
Consider one of the cases of optimal common benefit given by

(5). It follows from (6) that {x1(t + 1), x2(t + 1), x3(t + 1), x4(t +

1)} = {1, 1, 1, 1}, and {x1(t +2), x2(t +2), x3(t +2), x4(t +2)} =

{2, 2, 2, 2}, and the situation will remain in the future.

Suppose that the game is a controlled network evolutionary
gamedefined byDefinition 3. The objective of this paper is to design
strategies forU , such that optimal commonbenefit is achieved and
maintained.

Case 3. Consider node 4 as the controller; and suppose the
updating law is given by (1). The objective is to designu = x4 ∈ X4,
such that the total cost

4
i=1 pi(xi, x−i) is minimized.

Case 4. Consider node 4 as the controller; and suppose the
updating law is given by (6). The objective is to designu = x4 ∈ X4,
such that the total cost

4
i=1 pi(xi, x−i) is minimized.

4. Control design

4.1. Algorithm for calculating the algebraic form

Suppose that there are n communities, and their communica-
tion topology can be given by adjacent matrix A = {aik}n×n. The
algorithm for calculating the algebraic form (3) can be designed as
follows.

i. Set j = 1.
ii. Set initial value x0 = δ

j
2n . Based on the initial value, calculate

the grid power price pg and the price pi.
iii. Use aik and pi to calculate the cost function ci.
iv. Based on aik, ck and the updating law, the updated strategy can

be obtained: xi(j) = f (x0, aik, ck).
v. Set j = j + 1, and go to ii until j = 2n.
vi. Calculate Mf = Mf 1 ∗ Mf 2 ∗ · · · ∗ Mfn, where Mfi =

[xi(1), xi(2), . . . , xi(2n)]. The algebraic form can be obtained by
x(k + 1) = Mf x(k).
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Table 2
True value diagram of Case 3 when u = 1.

Profile 111 112 121 122 211 212 221 222

c1 7.5 6.5 6.5 7 7.9 7.2 7.4 7.2
c2 7.5 6.5 7.9 7.4 6.5 7 7.4 7.4
c3 7.5 7.9 6.5 7.4 6.5 7.4 7 7.4
c4 7.5 6.5 6.5 7 6.5 7 7 7
x1(t + 1) 1 1 1 1 1 1 1 2
x2(t + 1) 1 1 1 1 1 1 1 1
x3(t + 1) 1 1 1 1 1 1 1 1

Table 3
True value diagram of Case 3 when u = 2.

Profile 111 112 121 122 211 212 221 222

c1 6.5 7 7 7 7.4 7.4 7.4 7.2
c2 6.5 7 7.4 7.4 7 7 7.4 7.2
c3 6.5 7.4 7 7.4 7 7.4 7 7.2
c4 7.9 7.4 7.4 7.4 7.4 7.4 7.4 7.2
x1(t + 1) 1 1 1 1 1 1 1 2
x2(t + 1) 1 1 1 1 1 1 2 2
x3(t + 1) 1 1 1 1 1 2 1 2

Table 4
True value diagram of Case 4 when u = 1.

Profile 111 112 121 122 211 212 221 222

pd 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2
pg 7.5 6.5 6.5 7 6.5 7 7 7
x1(t + 1) 2 1 1 1 1 1 1 1
x2(t + 1) 2 1 1 1 1 1 1 1
x3(t + 1) 2 1 1 1 1 1 1 1

Table 5
True value diagram of Case 4 when u = 2.

Profile 111 112 121 122 211 212 221 222

pd 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2
pg 6.5 7 7 7 7 7 7 8
x1(t + 1) 1 1 1 1 1 1 1 2
x2(t + 1) 1 1 1 1 1 1 1 2
x3(t + 1) 1 1 1 1 1 1 1 2

4.2. Analysis on Case 3

Based on the updating law given by (1), the true value diagram
can be calculated with the algorithm in Section 4.1, and listed by
Tables 2 and 3. Identify 1with δ1

2 , [1, 0]T , and 2with δ2
2 , [0, 1]T .

The cost function canbe calculated by (4). According to semi-tensor
product theory, the controlled network evolutionary game can be
described by

xi(t + 1) = f (xi(t), x−i(t), ci(t)) = Mfix(t), (7)

where x(t) = n3
i=1 xi(t), and

Mf 1 =


δ2[1, 1, 1, 1, 1, 1, 1, 2], for u = 1,
δ2[1, 1, 1, 1, 1, 1, 1, 2], for u = 2,

Mf 2 =


δ2[1, 1, 1, 1, 1, 1, 1, 1], for u = 1,
δ2[1, 1, 1, 1, 1, 1, 2, 2], for u = 2,

Mf 3 =


δ2[1, 1, 1, 1, 1, 1, 1, 1], for u = 1,
δ2[1, 1, 1, 1, 1, 2, 1, 2], for u = 2.

It follows from Theorem 2 that the overall controlled logic
dynamics can be expressed by x(t + 1) = Mf (u(t))x(t), where

Mf (δ
1
2) = Mf 1(δ

1
2) ∗ Mf 2(δ

1
2) ∗ Mf 3(δ

1
2)

= δ8[1, 1, 1, 1, 1, 1, 1, 5],
Mf (δ

2
2) = Mf 1(δ

2
2) ∗ Mf 2(δ

2
2) ∗ Mf 3(δ

2
2)

= δ8[1, 1, 1, 1, 1, 2, 3, 8].

(8)
By using Theorem 3, it can be claimed that

(1) When the controller is u = δ1
2 (grid power), there is only one

fixed point δ1
8 . Here, (x1, x2, x3, u) ∼ (1, 1, 1, 1) is an NE, but

not the optimal NE.
(2) When the controller is u = δ2

2 (diesel power), there are two
fixed points, namely (1, 1, 1) and (2, 2, 2). Here, (x1, x2, x3, u)
∼ (1, 1, 1, 2) is an optimal NE, while (x1, x2, x3, u) ∼

(2, 2, 2, 2) is not an NE.

The following strategies of u(t) is capable of reaching and
maintaining the optimal NE point:

(1) For x(0) ∈ {δ1
8, δ

2
8, δ

3
8, δ

4
8, δ

5
8}, select either u(0) = δ1

2 or
u(0) = δ2

2 , and it follows from Tables 2 and 3 and (8) that
x(1) = δ1

8 . Then, set u(t) = δ2
2 for t ≥ 1, such that the optimal

NE (1, 1, 1, 2) will be maintained.
(2) For x(0) ∈ {δ6

8, δ
7
8} ∼ {212, 221}, select u(0) = δ1

2 and it
follows that x(1) = δ1

8 . Then, set u(t) = δ2
2 for t ≥ 1, such

that the optimal NE (1, 1, 1, 2) will be maintained.
(3) For x(0) ∈ {δ8

8} ∼ {222}, it can be calculated that Mf (δ
1
2) n

Mf (δ
1
2) = δ8[1, 1, 1, 1, 1, 1, 1, 1]. Consequently, select u(0) =

δ1
2 and u(1) = δ1

2 ; it follows that x(2) = δ1
8 . Then, set u(t) =

δ2
2 for t ≥ 2, such that the optimal NE (1, 1, 1, 2) will be
maintained.

4.3. Analysis on Case 4

Based on the updating law given by (6), the true value diagram
can be calculated through the algorithm proposed in Section 4.1,
and listed by Tables 4 and 5. It follows that, according to semi-
tensor product, the controlled network evolutionary game can be
described by xi(t + 1) = g(xi(t), x−i(t)) = Mgix(t), where x(t) =

n3
i=1 xi(t), and

Mg1 =


δ2[2, 1, 1, 1, 1, 1, 1, 1], for u = 1,
δ2[1, 1, 1, 1, 1, 1, 1, 2], for u = 2,

Mg2 =


δ2[2, 1, 1, 1, 1, 1, 1, 1], for u = 1,
δ2[1, 1, 1, 1, 1, 1, 1, 2], for u = 2,

Mg3 =


δ2[2, 1, 1, 1, 1, 1, 1, 1], for u = 1,
δ2[1, 1, 1, 1, 1, 1, 1, 2], for u = 2.

It follows from Theorem 2 that the overall dynamics can be
expressed by x(t + 1) = Mg(u(t))x(t), where the structure matrix
can be calculated by
Mg(δ

1
2) = Mg1(δ

1
2) ∗ Mg2(δ

1
2) ∗ Mg3(δ

1
2)

= δ8[8, 1, 1, 1, 1, 1, 1, 1],
Mg(δ

2
2) = Mg1(δ

2
2) ∗ Mg2(δ

2
2) ∗ Mg3(δ

2
2)

= δ8[1, 1, 1, 1, 1, 1, 1, 8].

It can be seen from structure matrix that, when u = δ1
2 , there is no

fixed point; when u = δ2
2 , there are two fixed points x = δ1

8 and
x = δ8

8 . The fixed point x = δ1
8 is an optimal NE, while x = δ8

8 is not
an optimal NE.

The optimal NE can be reached and maintained by using the
following strategies.

(1) For x(0) = δ1
8 , select u(t) = δ2

8 , such that the optimal NE can
be maintained.

(2) For x(0) ∈

δ2
8, δ

3
8, δ

4
8, δ

5
8, δ

6
8, δ

7
8,

, select either u(0) = δ1

2 or
u(0) = δ2

2 , such that x(1) = δ1
8 . Then, select u(t) = δ2

8 for
t ≥ 2, such that the optimal NE can be maintained.

(3) For x(0) = δ8
8 , select u(t) = δ1

8 , such that x(1) = δ1
8 . Then,

select u(t) = δ2
8 for t ≥ 2, such that the optimal NE can be

maintained.
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Remark 3. Cases 3 and 4 are controllable cases. It should be noted
that controllability of networked evolutionary games depends on
topological structure, strategy set, updating law, and selection of
control variables. Detailed information of controllability can be
found in Cheng et al. (2015).

4.4. Optimal control design

As can be seen fromSection 4.2, to achieve the optimal NE, there
may exist different strategies. For example, if the initial states are
given by x(0) = δ4

8 ∼ (1, 2, 2), either u(0) = δ1
2 or u(0) = δ2

2
enables the state to become x(1) = δ1

8 . If u(0) = δ1
2 , the overall

cost at t = 0 is C(x(0), u(0)) = 28.4; if u(0) = δ2
2 , the overall cost

at t = 0 is C(x(0), u(0)) = 28.6. Comparatively, for initial states
x(0) = δ4

8 , u(0) = δ1
2 is superior. In this section, we propose an

optimal control to minimize the overall cost in transient process.
Suppose that the system is required to reach the optimal

NE within T steps, and define U = [u(0), u(1), . . . , u(T )]T .
The cost function for optimization can be designed by J ,T

t=0 C(x(t), u(t)). Dynamics of the system can be given in
algebraic form (3). The terminal states should reach the optimal
NE: x(T ) = xNE∗ . Suppose that the initial states are denoted by
x(0) = x0. The optimization can be formulated by

U∗
= argmin

U
J, (9)

s.t. x(t + 1) = Mf (u(t))x(t), (10)

u(t) = nui(t), ui(t) ∈ [δ1
2, δ

2
2], (11)

x(0) = x0, (12)
x(T ) = xNE∗ , (13)

where the optimal solution U∗
= [u∗(0), u∗(1), . . . , u∗(T )]T can

be regarded as the optimal control sequence.
As can be seen from the control constraint (11), the problem (9)

is a binary optimization. The system constraint (10) seems linear;
however, since the product is semi-tensor product, it is actually
nonlinear. The nonlinear binary optimization can be solved by
using a newly developed algorithmnamedBoundedNeighborhood
Field Optimization (BNFO) (Wu & Chow, 2013a,b). The algorithm
of BNFO is incapable of addressing the terminal constraint (13).
Consequently, the optimization can be reformulated by (9)–(12),
where no terminal constraint is included.

Remark 4. BNFO can be categorized as switching optimization.
Typical results in switching optimization can be seen in Li, Teo,
Wong, and Duan (2006) and literatures therein. General optimal
control of Boolean networks can be found in Zhao et al. (2011).

Theorem 4. Suppose that the following conditions are satisfied:
(1) the optimal NE xNE∗ is a global optimal point; and (2)with certain
control series [û(0), û(1), . . . , û(N)], the optimal NE xNE∗ can be
reached within finite time t = N < T from initial states x(0) = x0.
Then,with large enough control horizon T , the closed-loop systemwith
the optimal control (9)–(12) is capable of reaching the optimal NE.

Proof. The result can be proved by contradiction. Assume that,
with control horizon T and the optimal control (9)–(12), the closed-
loop system fails to reach xNE∗ . It follows that

J∗ =

T
t=0

C(x∗(t), u∗(t))

=

N−1
t=0

C(x∗(t), u∗(t)) +

T
t=N

C(x∗(t), u∗(t)),
Fig. 2. Topological structure of the circular network with 10 nodes.

where x∗t is the corresponding optimal states under optimal
control u∗(t); and x∗(t) ≠ xNE∗ .

In another aspect, according to conditions of the theorem, there
exists at least another control series [û(0), û(1), . . . , û(N), . . . ,
û(T )], such that xNE∗ is reached and maintained. It follows that

Ĵ =

T
t=0

C(x̂(t), û(t)) =

N−1
t=0

C(x̂(t), û(t)) +

T
t=N

C(x̂(t), û(t))

=

N−1
t=0

C(x̂(t), û(t)) + (T − N)C(xNE∗ , uNE∗),

where uNE∗ is the corresponding control to maintain the optimal
NE. It then follows that

Ĵ − J∗ =


N−1
t=0

C(x̂(t), û(t)) −

N−1
t=0

C(x∗(t), u∗(t))



+

T
t=N


C(xNE∗ , uNE∗) − C(x∗(t), u∗(t))


,

where
N−1

t=0 C(x̂(t), û(t)) −
N−1

t=0 C(x∗(t), u∗(t)) is finite; andT
t=N (C(xNE∗ , uNE∗) − C(x∗(t), u∗(t))) is negative and decreases

strictly as T increases. Consequently, it can be claimed that Ĵ −

J∗ < 0 for large enough T , indicating that û(t) is superior over
u∗(t); hence u∗(t) is not an optimal solution, which contradicts
the assumption given at the beginning of this proof. Based on the
contradiction, it can be proved that the optimal control (9)–(12)
guarantees the convergence to the optimal NE xNE∗ . �

For Case 3, suppose the initial state is given by x(0) = δ4
8 . Set

T = 3, and x(T ) = δ1
8 . Solving the optimization formulated by

(9)–(12) yields U∗
= [δ1

2, δ
2
2, δ

2
2].

5. A simulation example

In this section, an illustrative example is presented by
considering a smart grid with more communities. Its topological
structure is given by an undirected circular networkwith 10 nodes,
as can be seen from Fig. 2. Based on concepts in Section 2.1, its
adjacent matrix can be calculated accordingly. The diesel power
price is given by pd = 7, and the grid power price is given by
pg(n) =

(n−5)2

25 +6.5, where n is the number of communities using
the grid power. In this simulation example, x7 and x10 are selected
as controls u1 and u2; their values can be assigned arbitrarily to δ1

2
or δ2

2 . We suppose that the updating law is given by (1), and the
cost function is given by (4) with the coefficient α = 0.8.

By using the algorithm proposed in Section 4.1, the alge-
braic form of the game can be obtained by x(t + 1) =

Mf (u1(t), u2(t))x(t), where x(t) = n10
i=1,i≠7,i≠10 xi. All NEs can be

calculated by using Theorem 3: xNE(u1 = δ1
2, u2 = δ1

2) = δ256[1],
xNE(u1 = δ1

2, u2 = δ2
2) = δ256[256], xNE(u1 = δ2

2, u2 = δ1
2) =

δ256[256], xNE(u1 = δ2
2, u2 = δ2

2) = δ256[1, 4, 253, 256], where
xNE∗ = δ4

256 is the optimal NE.
Suppose that the initial states are given by x(1) = δ200

256 .
Applying the optimal control (9)–(12) with control horizon
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Fig. 3. Number of communities using grid power, in case of x(0) = δ200
256 .

Fig. 4. Price of grid power, in case of x(0) = δ200
256 .

Fig. 5. Total cost paid by communities, in case of x(0) = δ200
256 .

T = 8 to the control networked evolutionary game yields
u(t) = u1(t) n u2(t) = δ4[4, 4, 4, 4, 4, 4, 4, 4], and x(t) =

δ256[200, 132, 4, 4, 4, 4, 4, 4], where t = 1, 2, . . . , 8; and the
closed-loop system reaches xNE∗ = δ4

256. Simulation results are
illustrated by Figs. 3–5, where the number of communities using
grid power, the real-time price of the grid power, and the overall
cost paid by all communities are displayed. As can be seen from
simulation results, with the proposed optimal control based on
evolutionary game theory and semi-tensor products, the overall
cost converges to the optimal NE.

Suppose that the initial states are given by x(1) = δ78
256, and the

control horizon is set to T = 6. The result can be obtained by using
the optimal control (9)–(12):

u(t) = u1(t) n u2(t) = δ4[3, 4, 4, 4, 4, 4], (14)
x(t) = δ256[78, 5, 1, 1, 1, 1], (15)

where t = 1, 2, 3, 4, 5, 6. As can be seen from (15), the closed-loop
system fails to reach xNE∗ = δ4

256; the reasons include that (1) xNE∗

may be un-reachable from the initial point x(0) = δ78
256, and (2) the

control horizon is not large enough.

6. Conclusion

In this paper, control networked evolutionary game and semi-
tensor product are applied to solve the demand-side management
problem of a simple smart grid. By using the semi-tensor product
to solve the control networked evolutionary game, NEs can be
proved systematically, and control series can be designed to reach
and maintain the optimal NE. The BNFO algorithm is introduced
to optimize the transient performance of the control networked
evolutionary game.

Some future works of this research include: (1) optimal control
with dynamic price policies (instead of static ones in this paper),
and (2) adaptive control in case of uncertain/time-varying weight
coefficient in the cost function.
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