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a b s t r a c t

In this paper, continuous observer is designed for a class of multi-output nonlinear systems with multi-
rate sampled and delayed output measurements. The time delay may be larger or less than the sampling
intervals. The sampled and delayed measurements are used to update the observer whenever they are
available. Sufficient conditions are presented to ensure global exponential stability of the observation
errors by constructing a Lyapunov–Krasovskii function. A numerical example is given to illustrate the
effectiveness of the proposed methods.
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1. Introduction

Recently, the problem of design global convergent observers for
nonlinear systems has made great progress. For the observation
of nonlinear systems, one can use extended Luenberger observers
(Zeitz, 1987), normal form observers (Bestle & Zeitz, 1983;
Krener & Isidori, 1983; Xia & Gao, 1988, 1989), Lyapunov based
observers (Raghavan & Hedrick, 1994; Thau, 1973), high-gain
observers (Gauthier, Hammouri, & Othman, 1992; Gauthier &
Kupka, 1994), sliding mode observers (Haskara, Özgüner, &
Utkin, 1998) and moving horizon/optimization based observers
(Michalska & Mayne, 1995). Among these methods, high-gain
observers play an important role and can be used to a large class
of nonlinear systems with a triangular structure after a coordinate
change. New developments of high gain observers have been
carried out in various directions (Andrieu, Praly, & Astolfi, 2009;
Deza, 1991; Deza, Bossanne, Busvelle, Gauthier, & Rakotopara,
1993; Gauthier et al., 1992; Praly, 2003). For example, the result
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of Gauthier et al. (1992) is extended to a class of nonlinear
systems where the nonlinear terms admit an incremental rate
depending on the measured output (Praly, 2003). In Deza (1991),
the authors considered observer design for multi-input and multi-
output (MIMO) nonlinear systems. The result has been extended
to a class of MIMO nonlinear systems, in which interconnection
between the blocks are not allowed (Deza et al., 1993). Based on
the observer normal form, another extension for the multi-output
systems has been studied in Rudolph and Zeitz (1994). However,
the nonlinearity of each block does not allow the unmeasurable
states of its own block. Under the conditions of observability and
triangular structure, a nonlinear system can be transformed into
the block low triangular form considered in Shim, Son, and Seo
(2001) by a coordinate transformation. Then, semi-global observer
has been designed for nonlinear systems with interconnections
between the subsystems (Shim et al., 2001). The nonlinear system
with block lower triangular form is rather general when nonlinear
changes of coordinates are allowed. It includes the control-affine
multi-input and single-output (MISO) nonlinear systems which
are strongly observable for any input (Gauthier et al., 1992) and
the control-affine MIMO nonlinear systems which are strongly
observable for any input for each output taken separately (Deza,
1991). Moreover, it can be used to express some physical systems.
For example, the dynamical equations of a permanent magnet
stepper motor can be transformed into the block lower triangular
form Mahmoud and Khalil (2002). The estimation errors can
converge to the origin in finite-time by using high gain observers
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in conjunction with applications of geometric homogeneity and
Lyapunov theories (Li, Xia, & Shen, 2013; Shen&Huang, 2009; Shen
& Xia, 2008).

It should be noted that the above results on observer design are
based on continuous-time analysis. However, for a networked con-
trol system, the output is only available at discrete-time instants
since it is usually transmitted through a shared band-limited digi-
tal communication network. Therefore, observer design for contin-
uous systemswith sampled and delayed outputmeasurements has
attracted the control community wide attention. There exist three
main approaches to design observer for continuous systems with
sampled and delayed measurements, for example, discrete time
analysis based on a discretizedmodel (Arcak &Nešić, 2004; Barbot,
Monaco, & Normand-Cyrot, 1999; Nešić, Teel, & Kokotović, 1999),
continuous time analysis followed by discretization (Khalil, 2004;
Nešić & Teel, 2004; Postoyan & Nešić, 2012; Wang, Nešić, & Pos-
toyan, 2015), and a mixed continuous and discrete time analysis
without discretization (Ahmed-Ali & Lamnabhi-Lagarrigue, 2012;
Ahmed-Ali, Van Assche, Massieu, & Dorléans, 2013; Deza, Busvelle,
Gauthier, & Rakotopora, 1992; Karafyllis & Kravaris, 2009; Nadri,
Hammouri, & Grajales, 2013; Raff et al. Raff, Kögel, & Allgöwer,
2008; Van Assche, Ahmed-Ali, Ham, & Lamnabhi-Lagarrigue, 2011;
Zhang, Shen, & Xia, 2014). More specifically, two classes of global
exponential observers have been presented for a class of con-
tinuous systems with sampled and delayed measurements in
Ahmed-Ali, Van Assche et al. (2013). By using the same methods,
exponential convergent observers were proposed for nonlinear
systems with sampled and delayed measurements in Ahmed-
Ali, Karafyllis, and Lamnabhi-Lagarrigue (2013). The observers de-
signed in Ahmed-Ali, Karafyllis et al. (2013) and Ahmed-Ali, Van
Assche et al. (2013) are in essence discontinuous. The authors in
Zhang et al. (2014) proposed a continuous observer for a class of
nonlinear systemswith sampled and delayedmeasurements based
on an auxiliary integral technique. But there is a constraint condi-
tion on time delay, that is the maximum delay must be less than
the minimum sampling interval as in Ahmed-Ali, Karafyllis et al.
(2013) and Ahmed-Ali, Van Assche et al. (2013).

In this paper, we address continuous observer design for a class
of multi-output nonlinear systems with multi-rate sampled and
delayed output measurements. The considered nonlinear systems
are in continuous time while the outputs are in discrete time. In
order to overcome the difficulties in analysis, we represent the
sampled-data system as a continuous time systemwith successive
delay components by some transformations. The time delays are
more general than those in Ahmed-Ali, Karafyllis et al. (2013),
Ahmed-Ali, Van Assche et al. (2013) and Zhang et al. (2014) since
they may be larger or smaller than the sampling periods. Our main
contributions include the following: (a) Continuous observer is
designed for a class of multi-output nonlinear systems whenever
the sampled and delayed measurements are available. (b) The
observer is transformed into a continuous nonlinear system with
time-varying delay by time delay method. Then, by constructing a
Lyapunov–Krasovskii function, sufficient conditions are presented
to ensure that the observation errors are globally exponentially
stable. (c) Different high gains are used to dominate the nonlinear
terms in each block. Then, upper bounds on each sampling period
and time delay are also achieved.

This paper is organized as follows. In Section 2, continuous
observers are presented for a class of multi-output nonlinear
systemswithmulti-rate sampled and time delayedmeasurements.
In Section 3, an example is used to illustrate the validity of the
proposed design methods. Finally, Section 4 concludes the paper.

Throughout this paper, let Rn denote n-dimension real space, I
denote an identitymatrix, diag{} denote a diagonalmatrix, and the
superscript ‘‘⊤’’ stand for matrix transposition. For any x ∈ Rn, let
∥x∥ = (x⊤x)1/2. For a continuous function f : R → R and t ∈ R,
let lims→t− f (s) = lims→t,s<t f (s). λmax(P) and λmin(P) denote the
largest and the smallest eigenvalues of P ∈ Rn×n, respectively.

2. Main results

In this section, we consider the following multi-output nonlin-
ear systems:
ẋ(t) = Ax(t) + B(x(t), u(t)),
y(t) = Cx(t) = [C1x1(t), . . . Cmxm(t)]⊤,

(1)

where the state x(t) ∈ Rn, the input u(t) ∈ Rp, the output
y(t) ∈ Rm, x(t) = [x1(t)⊤, . . . , xm(t)⊤]

⊤, xi(t) ∈ Rλi (1 ≤ i ≤ m)
is the ith partition of the state x(t); A = diag{A1, . . . , Am}, Ai is

λi × λi matrix of Brunovsky form, that is Ai =


0 1 · · · 0
.
.
.

.

.

.
. . .

.

.

.
0 0 · · · 1
0 0 · · · 0

,

C = diag{C1, . . . , Cm}, Ci = [1, 0, . . . , 0]1×λi , and B(x(t), u(t)) =

[b1(x(t), u(t))⊤, . . . , bm(x(t), u(t))⊤]
⊤ inwhich the jth element of

bi(·), bij(·) has the following structural dependence on the states:

bij(t) = bij(x
1(t), . . . , xi−1(t); xi1(t), . . . , x

i
j(t); u(t)),

for all 1 ≤ i ≤ m and 1 ≤ j ≤ λi. Thus, bij is independent of the
lower states (xij+1, . . . , x

i
λi
) of the ith block and the states of the

lower blocks (xi+1, . . . , xm). The ith block of the above system can
be expressed as follows:

ẋi1(t) = xi2(t) + bi1(x(t)
[1,i−1]

; xi1(t); u(t)),
...

ẋiλi−1(t) = xiλi(t) + biλi−1(x(t)
[1,i−1]

; x(t)i
[1,λi−1]; u(t)),

ẋiλi(t) = biλi(x(t)
[1,i−1]

; x(t)i
[1,λi]; u(t)),

(2)

where xij(t) is the jth element of the ith block xi(t). The abbre-
viation x(t)[1,k] := [x1(t)⊤, . . . , xk(t)⊤]

⊤ and x(t)i
[1,j] := [xi1(t),

. . . , xij(t)]
⊤ can be used to simplify the notation. We assume that

there are m sensors in m channels to sample the output y at
sampling instants t ik, and t ik < t ik+1 (i = 1, . . . ,m and k =

0, 1, 2, . . . ,∞), where {t ik} (i = 1, . . . ,m) are strictly increasing
sequences and satisfy that limk→∞ t ik = ∞. The sampled mea-
sures are available at instants t ik + τ i

k (i = 1, . . . ,m), where τ i
k > 0

(i = 1, . . . ,m) denote the transmission delay, which are unknown
but have an upper bound τ̄i. The nonlinear terms bij(·) are assumed
to satisfy the following global Lipschitz conditions with Lipschitz
constant l1 > 0,bij(x1, . . . , xi−1

; xi1, . . . , x
i
j; u) − bij(x̂

1, . . . , x̂i−1
; x̂i1,

. . . , x̂ij; u)
 ≤ l1


|x11 − x̂11| + |x12 − x̂12| + · · · |xij − x̂ij|


,

1 ≤ i ≤ m, 1 ≤ j ≤ λi. (3)

Now, the explicit form of the ith block of the observer is given as
follows:

˙̂x
i
1(t) = x̂i2(t) + Liai1e

i
1(t

i
k) + bi1(x̂(t)

[1,i−1]
; x̂i1(t); u(t)),

...

˙̂x
i
λi−1(t) = x̂iλi(t) + Lλi−1

i aiλi−1e
i
1(t

i
k)

+biλi−1(x̂(t)
[1,i−1]

; x̂(t)i
[1,λi−1]; u(t)),

˙̂x
i
λi
(t) = Lλi

i aiλie
i
1(t

i
k) + biλi(x̂(t)

[1,i−1]
; x̂(t)i

[1,λi]; u(t)),

x̂ij(t
i
k+1 + τ i

k+1) = lim
t→t ik+1+τ i

k+1
−
x̂ij(t),

j = 1, 2, . . . , λi, t ∈ [t ik + τ i
k, t

i
k+1 + τ i

k+1), k ≥ 0,

(4)
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where x̂ij(t) = x̂ij0 for t ∈ [t0, t0 + τ i
0] (t0 = t i0), i = 1, . . . ,m

and j = 1, . . . , λi, ei1(t
i
k) = xi1(t

i
k) − x̂i1(t

i
k), Li ≥ 1 and aij (1 ≤

i ≤ m, 1 ≤ j ≤ λi) are positive real numbers, and will be given
later. The definition of global exponential stable observer for the
system (2) is given as follows.

Definition 1. We say that the system (4) is a global exponential
stable observer for the system (2), if there exist a non-decreasing
function N : R+

× R+
→ R+ and a positive constant κ such that

∥x̂(t) − x(t)∥ ≤ exp(−κ(t − t0))N(∥x0∥, ∥x̂0∥) for any x0 ∈ Rn,
x̂0 ∈ Rn.

Remark 1. The outputs yi (i = 1, . . . ,m) are transmitted through
m channels, respectively. We can use m sensors to detect them.
Therefore, although τ i

k are unknown, we can obtain the instant
that the sampled data at instants t ik is available. In other word,
ei1(t

i
k) is updated automaticallywhenever the sampled and delayed

measurement yi(t ik) arrives.

From (2) and (4), the dynamics of the state error can be
obtained:

ėi1(t) = ei2(t) − Liai1e
i
1(t) + Liai1

 t

t ik

ėi1(s)ds + b̃i1,

...

ėiλi−1(t) = eiλi(t) − Lλi−1
i aiλi−1e

i
1(t)

+Lλi−1
i aiλi−1

 t

t ik

ėi1(s)ds + b̃iλi−1,

ėiλi(t) = −Lλi
i aiλie

i
1(t) + Lλi

i aiλi

 t

t ik

ėi1(s)ds + b̃iλi ,

eij(t
i
k+1 + τ i

k+1) = lim
t→t ik+1+τ i

k+1
−
eij(t),

j = 1, . . . , λi, t ∈ [t ik + τ i
k, t

i
k+1 + τ i

k+1), k ≥ 0,

(5)

where e = [e1(t)⊤, . . . , em(t)⊤]
⊤, ei(t) = [ei1(t), . . . , e

i
λi
(t)]⊤,

eij(t) = xij(t) − x̂ij(t), b̃ij = bij(x(t)
[1,i−1]

; x(t)i
[1,j]; u(t)) −

bij(x̂(t)
[1,i−1]

; x̂(t)i
[1,j]; u(t)), (1 ≤ i ≤ m, 1 ≤ j ≤ λi).

Remark 2. Note that limt→t ik+1+τ i
k+1

eij(t) = eij(t
i
k+1 + τ i

k+1), then

ei(t) is continuous on [t ik + τ i
k, t

i
k+1 + τ i

k+1]. On the other hand, the
evolution process ei1(t

i
k) = xi1(t

i
k)−x̂i1(t

i
k) is updated at instants t ik+

τ i
k, whereas the sampled measurement yi(t) is sampled at instants
t ik. Therefore, the system (5) is continuous, delayed and hybrid in
nature. Similar systems have been investigated in Ahmed-Ali, Van
Assche et al. (2013), Karafyllis (2007a,b) and Karafyllis and Jiang
(2007).

Let ηi(t) = t − t ik. Then, t
i
k in (5) can been expressed by

t ik = t − ηi(t). (6)

Therefore, 0 < ηi(t) = t−t ik ≤ t ik+1+τ i
k+1−t ik < hi,where hi > 0.

Our aim is to find the bounds of hi such that the error system (5) is
globally exponentially stable.

Consider the following change of coordinates εi
j =

eij

L
λij−1

i

, 1 ≤

i ≤ m, 1 ≤ j ≤ λi,whereλi
j = Σ i−1

k=1λk+j, (1 ≤ i ≤ m, 1 ≤ j ≤ λi).
Then,

ε̇i
1(t) = Liεi

2(t) − Liai1ε
i
1(t)

+Liai1

 t

t−ηi(t)
ε̇i
1(s)ds +

b̃i1

L
λi1−1
i

,

...

ε̇i
λi−1(t) = Liεi

λi
(t) − Liaiλi−1ε

i
1(t)

+Liaiλi−1

 t

t−ηi(t)
ε̇i
1(s)ds +

b̃iλi−1

L
λi
λi−1−1

i

,

ε̇i
λi
(t) = −Liaiλiε

i
1(t) + Liaiλi

 t

t−ηi(t)
ε̇i
1(s)ds

+
b̃iλi

L
λiλi

−1

i

, i = 1, . . . ,m.

(7)

Remark 3. t ik denotes the sampling instant, and ηi(t) is a time-
varying delay with bound hi. The transformation (6) is used to
represent the error system (5) as a continuous time system (7)with
successive delay components. The problem of continuous observer
design can be solved based on this model.

Now, we give the following result for the system (2).

Theorem 1. Consider the system (2) with the condition (3). If Li
satisfy Li > max{1, l1, 8λi

λi
l1p̄i2, Li−1}, and aij > 0 (1 ≤ i ≤ m, 1 ≤

j ≤ λi) are given such that there exists a symmetric positive definite
matrix P such that

Ā⊤P + PĀ ≤ − I, (8)

and

hi < min


1

4Li(3 + λi
1)

2(1 + ai1
2
)
,

1
16Liλiλ̄

2
i āi

,

1

2Li


(3 + λi
1)a

i
1

 , i = 1, . . . ,m,

(9)

then, the system (4) is a global exponential stable observer for the
system (2), where L0 ≥ 1, Ā = diag{Ā1, . . . , Ām}, P = diag{P1,
. . . , Pm}, λi = λmin(Pi), λ̄i = λmax(Pi), λ̄ = max{1≤i≤m}{λ̄i}, āi =

max{1≤j≤λi}{(a
i
j)
2
}, p̄i2 = max{1≤j≤λi,1≤r≤λi}{|P

i
j,r |}, (1 ≤ i ≤ m),

P i
j,r is the element of Pi at the jth line and rth column, and Āi =

−ai1 1 · · · 0
.
.
.

.

.

.
. . .

.

.

.

−aiλi−1 0 · · · 1

−aiλi 0 · · · 0

.

Proof. Consider the positive definite function

V1(t) = ε(t)⊤Pε(t) =

m
i=1

εi(t)⊤Piεi(t),

where ε(t) = [ε1(t)⊤, . . . , εm(t)⊤]
⊤, εi(t) = [εi

1(t), . . . , ε
i
λi
(t)]⊤,

(1 ≤ i ≤ m). Then, the derivative of V1(t) along the system (7) is
given by

d
dt

V1(t)|(7) =

m
i=1

Liεi(t)⊤(Ā⊤

i Pi + PiĀi)ε
i(t)

+ 2
m
i=1

Li(ai1, a
i
2, . . . , a

i
λi
)

 t

t−ηi(t)
ε̇i
1(s)ds


Piεi(t)
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+ 2
m
i=1

λi
r=1

λi
j=1

b̃ij

L
λij−1
i

εi
j(t)P

i
j,r

≤ −

m
i=1

Liεi(t)⊤εi(t) +
1
4

m
i=1

Liεi(t)⊤εi(t)

+ 4
m
i=1

Li(ai1, a
i
2, . . . , a

i
λi
)

×

 t

t−ηi(t)
ε̇i
1(s)dsPiPi(a

i
1, a

i
2, . . . , a

i
λi
)⊤
 t

t−ηi(t)
ε̇i
1(s)ds

+ 2l1
m
i=1

λi
r=1

λi
j=1

|εi
j(t)P

i
j,r | ×


j

k=1

λb
a=1

i−1
b=1

|εb
a | + |εi

k|



≤ −

m
i=1


3
4
Li − 2λi

λi
l1p̄i2


εi(t)

⊤
εi(t)

+ 4
m
i=1

Liλiλ̄
2
i āi

 t

t−ηi(t)
ε̇i
1(s)ds

2

.

Note that Li > {8λi
λi
l1p̄i2}. Then, we have

d
dt

V1(t)|(7) ≤ −
1
2

m
i=1

Liεi(t)⊤εi(t) + 4
m
i=1

Liλiλ̄
2
i āi

×

 t

t−ηi(t)
ε̇i
1(s)ds

2

. (10)

By Lemma 1 in Gu (2000), we have t

t−ηi(t)
ε̇i
1(s)ds

2 ≤ hi

 t

t−hi
ε̇i
1(s)

2ds. (11)

It follows from (10) and (11) that

d
dt

V1(t)|(7) ≤ −
1
2

m
i=1

Liεi(t)⊤εi(t) + 4
m
i=1

Liλiλ̄
2
i āihi

×

 t

t−hi
ε̇i
1(s)

2ds. (12)

Consider the following auxiliary integral function:

V2(t) =

m
i=1

 t

t−hi

 t

ρ

ε̇i
1(s)

2dsdρ, t ≥ t0 + h̄,

where h̄ = max1≤i≤m{hi}. We have,

dV2(t)
dt

≤

m
i=1

L2i (3 + λi
1)

2(1 + ai1
2
)hiε

i(t)Tεi(t)

+

m
i=1

L2i (3 + λi
1)a

i
1
2
h2
i

 t

t−hi
ε̇i
1(s)

2ds

−

m
i=1

 t

t−hi
ε̇i
1(s)

2ds, t ≥ t0 + h̄,

and

V2(t) ≤

m
i=1

hi

 t

t−hi
ε̇i
1(s)

2ds. (13)

Construct the following Lyapunov–Krasovskii function:

V (t) = V1(t) + V2(t), t ≥ t0 + h̄. (14)
From (12), (13) and (9), we have

dV (t)
dt

|(7) ≤ −

m
i=1


1
2

− (3 + λi
1)

2(1 + ai1
2
)hiLi


× Liεi(t)⊤εi(t) +

m
i=1

(4Liλiλ̄
2
i āihi

+ (3 + λi
1)a

i
1
2
h2
i L

2
i − 1)

 t

t−hi
ε̇i
1(s)

2ds,

≤ −
L
4λ̄

V (t), t ≥ t0 + h̄,

where L = min{1≤i≤m}{Li}. Then,V (t) ≤ exp(− L
4λ̄

(t−t0−h̄))V (t0+
h̄), t ≥ t0 + h̄. Since the nonlinear terms in the system (2) and
(4) satisfy the global Lipschitz conditions (3), then, the solutions
of (2) and (4) exist and are continuous on [t0, t0 + h̄]. Therefore,
there exists a non-decreasing function N : R+

× R+
→ R+ such

that ∥x̂(t) − x(t)∥ ≤ exp(− L
4λ̄

(t − t0 − h̄))N(∥x0∥, ∥x̂0∥) for any
x0 ∈ Rn, x̂0 ∈ Rn. Thus, the system (4) is a global exponential stable
observer for the system (2).

3. Numerical simulation

In this section, we use an example to show the effectiveness
of our high gain observer design for nonlinear systems with
sampled and time delay measurements. Consider the following
multi-output nonlinear system (Shim et al., 2001):

ẋ1(t) = x2(t) + 0.01u(t),
ẋ2(t) = −x1(t) + 0.1(1 − x21(t))x2(t) + 0.1x2(t)u(t),
ẋ3(t) = x4(t) + 0.01x2(t)x3(t) exp(u(t)),

ẋ4(t) = −x3(t) + 0.1(1 − x23(t))x4(t) +
1

1 + (x2(t)x4(t))2
u(t),

y1(t) = x1(t),
y2(t) = x3(t),

where x(t) = (x1(t), x2(t), x3(t), x4(t))T , which is in the form
of (1) with m = 2 and x1(t) = (x1(t), x2(t))T , and x2(t) =

(x3(t), x4(t))T . By (4), the observer is given by

˙̂x1(t) = x̂2(t) + 0.01u(t) + 3L1(y1(t1k ) − x̂1(t1k )),
˙̂x2(t) = −x̂1(t) + 0.1(1 − x̂21(t))x̂2(t) + 0.1x̂2(t)u(t)

t ∈ [t1k + τ 1
k , t1k+1 + τ 1

k+1), k ≥ 0,
˙̂x3(t) = x̂4(t) + 0.01x̂2(t)x̂3(t) exp(u(t))

+ 2L2(y2(t2k ) − x̂3(t2k )),
˙̂x4(t) = −x̂3(t) + 0.1(1 − x̂23(t))x̂4(t)

+
1

1 + (x̂2(t)x̂4(t))2
u(t) + L22(y2(t

2
k ) − x̂3(t2k )),

t ∈ [t2k + τ 2
k , t2k+1 + τ 2

k+1), k ≥ 0,

x̂i(t2k+1 + τ 2
k+1) = lim

t→t2k+1+τ2
k+1

−
x̂i(t), i = 3, 4,

where t1k = kT1 − (1.1 · rand)T1 and t2k = kT2 − (1.5 · rand)T2,
rand is a random number in the interval [0, 1], τ 1

k and τ 2
k denote

the transmission delays, T1 and T2 are two positive real constants
and will be given later. By simple computation, P = diag{P1, P2},
where P1 =


0.8917 −0.5695

−0.5695 1.1735


, P2 =


0.5062 −0.5052

−0.5052 1.5124


. Then

λmax(P) = 1.7223, λmin(P) = 0.2963. The other parameters are
given as l = 1.6, L1 = 40, L2 = 90. τ 1

k and τ 2
k are simulated by

random numbers in the interval [0, 1.5T1] and [0, 1.8T2]. From the
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Fig. 1. Trajectories of the error states ei(t)(1 ≤ i ≤ 4)with x̂(0), T1 = 1.0×10−5 s
and T2 = 0.5 × 10−5 s.

condition (9), we have h1 = 3.3 × 10−5 s and h2 = 1.5 × 10−5 s.
Let T1 = 1.0 × 10−5 s and T2 = 0.5 × 10−5 s. Fig. 1 shows the
simulation results with the initial condition of observer x̂(0) =

[−10, −10, −10, −10].

4. Conclusion

In this paper, continuous observers were designed for a class
of multi-output nonlinear systems with multi-rate sampled and
delayed output measurements. The time delay might be larger
or less than the sampling intervals. Sufficient conditions were
presented to ensure global exponential stability of the observation
errors by constructing a Lyapunov–Krasovskii function.
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