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a b s t r a c t

Two formulations exist for the problem of the optimal power dispatch of generators with ramp rate
constraints: the optimal control dynamic dispatch (OCDD) formulation based on control system
models, and the dynamic economic dispatch (DED) formulation based on optimization. Both are useful
for the dispatch problem over a fixed time horizon, and they were treated as equivalent formulations in
literature. This paper first shows that the two formulations are in fact different and both formulations
suffer from the same technical deficiency of ramp rate violation during the periodic implementation of
the optimal solutions. Then a model predictive control (MPC) approach is proposed to overcome such a
technical deficiency. Furthermore, it is shown that the MPC solutions, which are based on the OCDD
framework, converge to the optimal solution of an extended version of the DED problem and they are
robust under certain disturbances and uncertainties. Two standard examples are studied: the first one
of a ten-unit system shows the difference between the OCDD and DED, and possible ramp rate
violations, and the second one of a six-unit system shows the convergence and robustness of the MPC
solutions, and the comparison with OCDD as well.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamic dispatch problem of power generation was first
considered in the early 1970s in a control system framework in
Bechert and Kwatny (1972), motivated by an optimal control
formulation and solution done in Kwatny and Bechert (1973). It
was argued that a dynamic dispatch solution was more accurate
than the static economic dispatching (SED) (Wood & Wollenberg,
1996), in the sense of its look-ahead capability by solving the
optimization problem with the predicted load demand over a
time horizon consisting of several time intervals and considering
the ramp rate constraints. Ramp rate constraint is a dynamic
constraint used to maintain the life of the generators (Han & Gooi,
2007; Wang & Shahidehpour, 1995; Wood, 1982).

The optimal control dynamic dispatch (OCDD) formulation is
to model the power generation by means of state equations
where the state variables are the electrical outputs of the
generators and the control inputs are the ramp rates of the
generators. The OCDD problem was originally described in
Bechert and Kwatny (1972) and Kwatny and Bechert (1973). In
these papers, the optimal feedback controller was synthesized
only for the special case of two generators sharing load owing to

computational problems. Bechert and Chen (1977) proposed a
multi-pass dynamic programming approach to solve the OCDD
problem and obtained the optimal generator output trajectories
for up to five generators. The proposed algorithm finds only a
local optimal schedule, and the required computer memory and
calculation time increase exponentially with the number of
generators. The main drawback of the approaches proposed in
Bechert and Kwatny (1972), Kwatny and Bechert (1973) and
Bechert and Chen (1977) has been the limitation on the problem
dimensions.

Ross and Kim (1980) proposed a successive approximation
approach with dynamic programming for solving the OCDD
problem without limitation of the number of units. The valve-
point effects is considered. The large problem with ramping
constraints is broken down into smaller subproblems. Each
subproblem pairs one unit with an artificial unit and is solved
via dynamic programming by discretizing the generation outputs.
The feasibility of the problem has been demonstrated on a
problem involving 15 units and 16 intervals. However, execution
time and problem size increase almost exponentially with the
number of units.

It seems that the OCDD approach has been gradually abandoned
for almost 20 years until in 1998 the OCDD problem was revisited
again by Travers and Kaye (1998). They applied constructive
dynamic programming to solve the OCDD problem. Both the
generation cost and the ramping up and down cost (Tanaka, 2006),
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or the ramping cost for short, are included in the objective function
as piecewise linear functions. The proposedmethod provides optimal
trajectories for all system states without the need to discretize
generator output. However, the dynamic programming method
suffers from the ‘‘curse of dimensionality’’.

Since the 1980s, the dynamic dispatch problem has been
formulated as a minimization problem of the total cost over the
dispatch horizon, and has been known as the DED problem (see,
e.g., Attaviriyanupap, Kita, Tanaka, & Hasegawa, 2002; Barcelo &
Rastgoufard, 1997; Han & Gooi, 2007; Han, Gooi, & Kirschen,
2001; Irisarri, Kimball, Clements, Bagchi, & Davis, 1998; Jabr,
Coonick, & Cory, 2000; Li, Morgan, & Williams, 1997; Somuah &
Khunaizi, 1990; van den Bosch, 1985; Wood, 1982) and the
reviews in (Chowdhury & Rahman, 1990; Xia & Elaiw, 2010),
and has gained more popularity in the power system community.
The DED problem has recently been extended to achieve the
objective of optimizing the profit under competitive market
conditions (Attaviriyanupap, Kita, Tanaka, & Hasegawa, 2004).
Since the formulation of the DED problem, the thrust of research
has been focused on various optimization techniques and proce-
dures incorporating extended and complex objective functions or
constraints. The early research activities were either mathema-
tical programming based or heuristically based, such as the
lambda iterative method (Wood, 1982), gradient projection
method (Granelli, Marannino, Montagna, & Silvestri, 1989),
Lagrange relaxation (Hindi & Ghani, 1991), linear programming
(Somuah & Khunaizi, 1990) and interior point method (Han &
Gooi, 2007; Irisarri et al., 1998; Jabr et al., 2000). More recent
works have centered around artificial intelligence (AI) methods,
on par with the development of AI optimization theories, such as
simulated annealing (Panigrahi, Chattopadhyay, Chakrabarti, &
Basu, 2006), hybrid genetic algorithms (GA) (Li & Aggarwal, 2000;
Li et al., 1997), differential evolution (DE) (Balamurugan
& Subramanian, 2007), particle swarm optimization (PSO)
(Gaing, 2004; Panigrahi, Chattopadhyay, & Chakrabarti, 2007),
evolutionary programming with sequential quadratic program-
ming (EP-SQR) (Attaviriyanupap et al., 2002), particle swarm
optimization with sequential quadratic programming (PSO-SQR)
(Victoire & Jeyakumar, 2005a, 2005b) and differential evolution
with Shor’s r-algorithm (Yuan, Wang, Zhang, & Yuan, 2009). Many
of these techniques have proven their effectiveness in solving the
DED problems without any or fewer restrictions on the shape of
the cost function curves. There is also an interesting research
work to consider the applications of economic dispatch in hydro-
thermal systems (see, for example, Salam, 2008; Zeng, Wu, Liu, &
Yuan, 2005 and the references therein), and sometimes the unit
commitment problem (Padhy, 2004) is combined together in the
generation dispatch (Samudi, Das, Ojha, Sreeni, & Cherian, 2008).

In literature the difference between the two formulations OCDD
and DED has never been questioned. Arising from the same problem
of meeting electricity demand, both formulations have great simila-
rities. Firstly, they are subject to similar sets of constraints. Secondly,
they are offered with a view to be implemented repeatedly and
periodically over a receding time horizon of, say, one day or one
week. This periodicity assumption comes from the fact that the
demand is periodic due to cyclic consumption behavior and seasonal
changes. In the above existing studies on the DED and OCDD
formulations, the main attention focuses on finding the optimal
dispatch over a fixed time horizon and the periodic implementation
of such an optimal dispatch solution has been though regarded as
straightforward, and thus left to the practitioners.

This paper starts by showing that the two formulations are
different, and both formulations suffer from the same technical
deficiencies for periodic implementations as illustrated in Example
1. Then a new approach based on model predictive control (MPC)
ideas to periodically implement OCDD solutions is presented. It is also

shown that the solutions in the iteration steps of this MPC approach
are converging to the global optimal solution of an extended version
of the DED problem.

The MPC method has emerged since the early 1970s when the
OCDD problem was first formulated, and the MPC method has
been successfully applied particularly in the process control
industry. Theoretical properties such as stability and robustness
of the MPC have been studied by many authors since the early
work of Kleinman (1970). Here the readers are referred to the
excellent reviews (De Nicolao, Magni, & Scattolini, 2000;
Findeisen, Imsland, Allgöwer, & Foss, 2003; Mayne, Rawlings,
Rao, & Scokaert, 2000; Qin & Badgwell, 2003; Rawlings, 2000),
and to the references therein. MPC is a feedback control technique
that uses an explicit model of the plant to predict the future
response of the plant over a finite horizon. The feedback con-
troller is constructed by solving a finite horizon optimal control
problem at each sampling instant using the current state of the
plant as the initial state for the optimization and applying only
‘‘the first part’’ of the optimal control (Mayne et al., 2000). Up to
the present, MPC has become one of the most widely used
multivariable control algorithms in various industries, including
chemical engineering, food processing, automotive, aerospace
applications (Qin & Badgwell, 2003) and recently in power
systems (Otomega, Marinakis, Glavic, & Van Cutsem, 2007). This
is due to its facility of handling constraints, being able to use
simple models, and its closed-loop stability and inherent robust-
ness in many applications (see, e.g., Camacho & Bordons, 2004; De
Nicolao et al., 2000; Findeisen et al., 2003; Mayne et al., 2000; Qin
& Badgwell, 2003; Rawlings, 2000). Moreover, MPC solves optimal
control problems on-line for the current state of the plant which is
a mathematical programming problem and is often simpler than
determining the feedback solution by dynamic programming
(Mayne et al., 2000). Other potential benefits of MPC in power
system control problems have been demonstrated in Otomega
et al. (2007), Zima and Andersson (2006), Atic, Rerkpreedapong,
Hasanovic, and Feliachi (2003) and Hiskens and Gong (2006). To
the best knowledge of the authors, the research on the application
of MPC in the dynamic dispatch problem has never been done
before, even though the MPC idea may have already been applied
in practical implementations. For example, the generation sche-
duling of the main electricity utility in South Africa is exactly
using a primitive MPC idea: the generation is dispatched by
solving the DED problem over a 7-day horizon; the optimal
solution is implemented only for the first day; at the end of the
first day this DED problem is recalculated to find the optimal
solution for the next 7 days; and such a computation repeats
every day and the 7-day period recedes over and over. Since this
scheduling idea is only a primitive MPC idea, it is not surprising
that ramp rate constraints are sometimes violated, and they are
left to the automatic generation control (AGC) to manage at the
machine’s level. Therefore it is necessary to develop a systematic
MPC approach to avoid the ramp rate violations during the
periodic implementations of the optimal solution.

For this purpose, a critical review and comparison of OCDD and
DED is given first. Then a ten-unit system is studied to show possible
ramp rate violations during periodic implementations of OCDD and
DED solutions. After that, an extended version of the DED formulation
is given to overcome ramp rate violations. Now an algorithm
originated from the moving optimization horizon idea in MPC
approaches is introduced to provide a robust optimal solution against
certain disturbances. This MPC approach, based upon the OCDD
framework, with a moving horizon, is by its nature a closed-loop
design from a control theoretical point of view. It is shown that the
MPC solutions asymptotically approach the optimal solution of the
extended version of the DED problem. The robustness of the MPC
algorithm is also shown. The MPC approach therefore provides
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a bridge between the OCDD and DED formulations, apart from the
additional advantages of reduced dimensionality. The MPC approach
is then illustrated on a six-unit system under load demand balance,
ramp rate constraints and generation capacity constraints. Simulation
results show the closed-loop nature and the robustness of the MPC.
This MPC approach should facilitate a revived interest from the
control system perspective, thus allowing a number of possible
extensions in line with the newest developments of the MPC
techniques. A draft version of the paper was presented in Xia,
Zhang, and Elaiw (2009).

The layout of the paper is as follows. Section 2 introduces the
OCDD and DED formulations and illustrate possible ramp rate
violations in periodic implementations of their optimal solutions.
In Section 3 an extended DED model is presented to avoid ramp
rate violations during periodic implementations and to be a
starting point of the MPC approach. Section 4 proposes the MPC
algorithms to the dynamic dispatch problem. Section 5 illustrates
how the MPC approach is applied on a six-unit system, as well as
the advantages of MPC and comparisons with other methods. The
last section is the conclusions and remarks.

2. Periodic implementations of OCDD and DED solutions

This section introduces the OCDD and DED formulations and
identifies their possible violation of ramp rates during periodic
implementations of the optimal solutions. Simple forms of OCDD
and DED problems are considered which involve three types of
constraints—equality, dynamic and inequality constraints. There are
roughly three main types of constraints in the dynamic dispatch
problem: the load demand balance in terms of equality constraints,
ramp rates in terms of dynamic constraints and generation capacity
in terms of inequality constraints. So the consideration of simple
forms of the OCDD and the DED problems is without loss of
generality, because it contains all three types of constraints. It is
worthy to point out that the load demand balance, in a vertically
integrated utility environment, is an obligation, thus a hard con-
straint; while in other cases, such as competitive markets, it is a soft
constraint since the demand may not be necessarily met. The ramp
rate and generation capacity limitations are equipment constraints,
thus hard ones. Some other constraints such as spinning reserve,
security constraints, etc., can be taken into consideration in exactly
the same fashion in both formulations of the dynamic dispatch
problem but they all boil down mathematically to the aforemen-
tioned three types of constraints. General constraints and objectives
including non-smooth and/or non-convex functions will be left to
future research.

To this end, some notations are introduced first.
Let N be a fixed positive integer, T a sampling period and NT

the dispatch period. The dynamic dispatch problem can be
considered over time intervals, or dispatch interval, ½iT,ðiþNÞTÞ
for any iZ0. Here the time from 0 to þ1 is divided into small
intervals ½0,TÞ,½T ,2TÞ, ½2T ,3TÞ, . . . , and ½iT ,jTÞ denotes the union of
½iT ,ðiþ1ÞTÞ, ½ðiþ1ÞT,ðiþ2ÞTÞ, . . . ,½ðj%1ÞT ,jTÞ. An example is a sam-
pling period of a hour and a dispatch interval of 24 h as in
Example 1 in this section.

For the sake of simplicity, it is assumed throughout the paper
that ½i,jÞ denotes the time interval ½iT ,jTÞ. When T equals 1 h, then
the interval ½i,jÞ actually denotes the i-th hour, (iþ1)-th hour, . . .,
and the (j%1)-th hour.

Assume that n is the number of committed units, Pi
k is the

average power generated by unit i during the k-th time interval
½k%1,kÞ; Ci(Pi

k) and Ri(Pi
k) are the generation and ramping costs

respectively for unit i to produce Pi
k; Dk is the demand at time k

(i.e., the k-th time interval); the variable ui
k is the ramp rate of the

unit i at time k and is also called control variable in this paper; URi

and DRi are the maximum ramp up/down rates for unit i; Pi
min and

Pi
max are the minimum and maximum capacity of unit i respec-

tively; the notation ðPk
i : 1r irn,lrkr lþ jÞ denotes the vector

ðPl
1,P

l
2, . . . ,P

l
n,P

lþ1
1 ,Plþ1

2 , . . . ,Plþ1
n , . . . ,Plþ j

1 ,Plþ j
2 , . . . ,Plþ j

n Þ, and CðPk
i :

1r irn,lrkr lþ jÞ denotes the cost (objective) function C with
variables fPk

i : 1r irn,lrkr lþ jg. Define D¼ ðD1,D2, . . . ,DNÞT ,
Pk ¼ ðPk

1,P
k
2, . . . ,P

k
nÞ

T , uk ¼ ðuk
1, . . . ,u

k
nÞ

T , kZ0. The function ½CiðPk
i Þþ

RiðPk
i Þ' is assumed to be a quadratic function aiðPk

i Þ
2þbiP

k
i þci with

known positive constants ai, bi and ci.
The demand Dk is assumed to be periodic with period N. This

periodic assumption is made to reflect the cyclic consumption
behavior and seasonal changes over the dispatch interval.

The following convention is also made:

Xk

i ¼ j

xi ¼
0 if j4k,

xjþxjþ1þ ( ( ( þxk if jrk:

(

2.1. OCDD formulation

The dynamics of the power system can be considered as a
discrete-time control system (Ross & Kim, 1980; Travers & Kaye,
1998):

Pkþ1
i ¼ Pk

i þTuk
i , kZ0, i¼ 1,2, . . . ,n: ð1Þ

The OCDD problem over the dispatch interval ½0,NÞ is formu-
lated as follows: given a set of generators, load demand Dk and
initial generation Pi

0, find a set of control actions ui
k to minimize

the total generation cost and to meet the load demand of a power
system over this dispatch period:

Problem OCDD. Given n, N, DRi, URi, Pi
min, Pi

max, 1r irn, P0, and
D, solve the following minimization problem:

min Cðuj
i : 1r irn,0r jrN%1Þ

¼
XN

k ¼ 1

Xn

i ¼ 1

Ci P0
i þ

Xk%1

j ¼ 0

Tuj
i

0

@

1

AþRi P0
i þ

Xk%1

j ¼ 0

Tuj
i

0

@

1

A

2

4

3

5

subject to
Xn

i ¼ 1

P0
i þ

Xk%1

j ¼ 0

Tuj
i

0

@

1

A¼Dk,

%DRiruj
irURi, Pmin

i rP0
i þ

Xk%1

j ¼ 0

Tuj
irPmax

i ,

ð1r irn, 0r jrN%1, 1rkrNÞ: ð2Þ

In the constraints above, the first constraint
Pn

i ¼ 1

ðP0
i þ

Pk%1
j ¼ 0 Tu

j
iÞ ¼Dk is the demand constraint which can be a

hard or soft constraint depending on the electricity market, while
the second and third constraints are the ramp rate and generation
capacity constraints respectively, and they are the hard con-
straints that the system must satisfy.

2.2. DED formulation

Normally the DED problem for the dispatch interval ½0,NÞ can
be formulated as follows:

Problem DED. Given n, N, DRi, URi, Pi
min, Pi

max, 1r irn, and D,
solve the following minimization problem:

min CðPk
i : 1r irn,1rkrNÞ

¼
XN

k ¼ 1

Xn

i ¼ 1

½CiðPk
i ÞþRiðPk

i Þ'
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subject to
Xn

i ¼ 1

Pk
i ¼Dk,

%DRi ( TrPjþ1
i %Pj

irURi ( T ,

Pmin
i rPk

i rPmax
i ,

ð1r irn,1r jrN%1,1rkrNÞ: ð3Þ

Note that the variables in the above DED problem are
fPk

i : 1r irn,1rkrNg.

2.3. Differences between OCDD and DED, and the periodic
implementations of their optimal solutions

By noting the transformation (1), the OCDD and DED formula-
tions are quite similar since both problems are actually to find the
optimal ðP1,P2, . . . ,PNÞ. However, there are fundamental differ-
ences between the two formulations:

(1) The OCDD formulation produces an optimal solution for a
given initial value P0, and the optimal solution also depends
on P0, while the DED problem does not consider the initial
generation P0, and is totally independent of P0.

(2) The OCDD formulation has the ramp limit for u0, that is, the
differences between Pi

1 and Pi
0 must satisfy the ramp con-

straints; however, the DED formulation considers the ramp
rate constraints only for Pi

2%Pi
1, P3

i %P2
i , . . . ,P

N
i %PN%1

i and has
ignored the ramp limit for Pi

1% Pi
0, where i¼ 1, . . . ,n.

The differences between the optimal solutions of OCDD and
DED will be illustrated in Fig. 1 of Example 1.

Note that both the OCDD and DED problems are formulated
over the dispatch interval ½0,NÞ and do not consider the periodic
implementations of the optimal solutions over the period
½N,2NÞ,½2N,3NÞ, . . .. There is a simple way to periodically imple-
ment the optimal solutions: simply repeat the optimal solutions
over other periods. However, the following Example 1 shows this
simple repetition will possibly cause the ramp rate violations.

Example 1. This example illustrates the difference between the
DED and OCDD approaches as well as the ramp rate violations of
periodic implementations of DED and OCDD solutions on a ten-unit
power system. This ten-unit system is a standard example in
Attaviriyanupap et al. (2002), and all the data are taken from
Attaviriyanupap et al. (2002) and are relisted in Tables 1 and 2.
The dispatch period is chosen to be a 24-h period with a 1 h sample
period which is exactly the same as Attaviriyanupap et al. (2002).
The sum of the generation and ramping costs is given by a quadratic

function CiðPiÞþRiðPiÞ ¼ aiþbiPiþciP
2
i . The initial Pi

0 is chosen such

that
P10

i ¼ 1 P
0
i ¼D0 and is given in Table 1. Here, Pi

0 and D0 are the
initial generation and load demand respectively during the interval
½%1,0Þ. Fig. 1 shows the optimal outputs of units 1 and 5 of the ten-
unit system for both OCDD and DED problems. It can be observed
that the solutions from the OCDD problem for the given initial Pi

0

and that of the DED problem are different in the beginning of
the dispatch period, but they do coincide from the 7-th time
instant. Now the technical deficiencies that DED and OCDD suffer
from during periodic implementations can be shown. Denote by

ðP
k
i : 1r ir10,1rkr24Þ the optimal solution computed by both

the OCDD and DED models. Fig. 2 shows the optimal solution of unit
2 for the DED problem. The results show that the difference between

P
1
2 and P2

0 does not satisfy the ramp rate constraint, since

P
1
2%P0

2 ¼%90o%DR2. Therefore, this optimal solution cannot be
implemented at time instant t¼1 for the second generation unit.
One may start at an initial condition Pi

0 so that the ramp rate limits

between P
1
i and Pi

0 can be satisfied. However, the optimal solution
can only be implemented over the interval [0,24]; it cannot be
implemented for the following 24 h by a simple repetition since

P
24jþ1
2 %P

24j
2 ¼%85o%DR2,jZ1. Similarly, Fig. 3 shows that the

optimal solution of the OCDD for unit 3 cannot be implemented

repeatedly every 24 h because P
24jþ1
3 %P

24j
3 ¼%162o%DR3, jZ1.
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Fig. 1. The optimal trajectories of unit-1 and unit-5 of the ten-unit system for
OCDD and DED.

Table 1
Data of the ten-unit system.

Gen. Pi
min (MW) Pi

max (MW) ai ($/h) bi ($/MWh) ci ($/MW2h) URi (MW/h) DRi (MW/h) Pi
0 (MW)

1 150 470 958.20 21.60 0.00043 80 80 322
2 135 460 1313.6 21.05 0.00063 80 80 225
3 73 340 604.97 20.81 0.00039 80 80 80
4 60 300 471.60 23.90 0.0007 50 50 75
5 73 243 480.29 21.62 0.00079 50 50 205
6 57 160 601.75 17.87 0.00056 50 50 75
7 20 130 502.70 16.51 0.00211 30 30 50
8 47 120 639.40 23.23 0.0048 30 30 47
9 20 80 455.60 19.58 0.10908 30 30 50
10 55 55 692.40 22.54 0.00951 30 30 55

Table 2
Load demand of the ten-unit system for 24 h.

Time (h) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Demand
(MW)

1036 1110 1258 1406 1480 1628 1702 1776 1924 2072 2146 2220 2072 1924 1776 1554 1480 1628 1776 2072 1924 1628 1332 1184
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Although this same Example 1 is computed in Attaviriyanupap
et al. (2002), periodic implementation of the optimal solution is not
considered in Attaviriyanupap et al. (2002) and this results in the
ramp rate violations mentioned above. In fact, the main purpose of
Attaviriyanupap et al. (2002) is to introduce a hybrid method using a
combination of evolutionary programming and sequential quadratic
programming so that a global optimal solution of a very general
energy problem, in which the functions may be noncontinuous,
nondifferentiable or non-smooth, can be found.

3. From OCDD and DED to the extended DED

Example 1 illustrates the possibility of ramp rate violations
during the periodic implementations of OCDD and DED solutions.
In order to avoid such a problem, the following extended DED
(EDED) problem over the dispatch interval ½0,NÞ is introduced and
will be a starting point of the proposed MPC approach in this paper.

Problem: Extended DED. Given n, N, DRi, URi, Pi
min, Pi

max, 1r irn,
and D, solve the following minimization problem:

min CðPk
i : 1r irn,1rkrNÞ

¼
XN

k ¼ 1

Xn

i ¼ 1

½CiðPk
i ÞþRiðPk

i Þ'

subject to ðPk
i : 1r irn,1rkrNÞAOEDED, ð4Þ

where the feasible domain OEDED is defined to be the set of
ðPk

i : 1r irn,1rkrNÞ satisfying

Xn

i ¼ 1

Pk
i ¼Dk,

%DRi ( TrPjþ1
i %Pj

irURi ( T ,

%DRi ( TrP1
i %PN

i rURi ( T,

Pmin
i rPk

i rPmax
i ,

ð1r irn,1r jrN%1,1rkrNÞ:

The only difference between the EDED problem (4) and the
classical DED problem (3) is that the constraints

%DRi ( TrP1
i %PN

i rURi ( T ð1r irnÞ ð5Þ

do not appear in the classical problem (3). These constraints will
mean that the difference between PNþ1 and PN, due to the
difference between P1 and PN, is bounded by some given con-
stants, therefore the anticipated periodic and repeated imple-
mentation is practically feasible. The optimal solution of the EDED
problem can be executed on each whole dispatch interval. Note
that the EDED problem has the same cost (objective) function
with the classical DED problem but more constraints, therefore,
the cost determined by the optimal solution of the EDED is
expectedly greater than or equal to that of the classical DED.

From a control theoretical point of view, both the OCDD and
the DED formulations provide only open-loop optimal solutions
to the generation dispatch problem, that is, the optimal solutions
are predetermined before actual execution, and there is no
measurement on the system states which is fed back to the
optimization model. Therefore, a closed-loop control by the MPC
method is introduced in the next section so that the measurement
of states can be fed back to the optimization model, and the
optimal solution is updated according to the feedback informa-
tion at each time step.

4. MPC approach to DED

This section proposes an MPC approach based on the OCDD
framework. The algorithms are presented first, followed by the
results on convergence and robustness.

4.1. MPC algorithms

To introduce the MPC algorithms, a few steps of mathematical
transformations are needed. Dummy variables are also introduced
to avoid handling more mathematical notations.

The EDED problem (4) is defined over the time interval ½0,NÞ
with optimization variables P1

i ,P
2
i , . . . ,P

N
i , i¼ 1, . . . ,n. It is obvious

that when the same dynamic economic dispatch problem is
considered over the time interval ½m,mþNÞ, then the optimization
variables are changed into Pmþ1

i ,Pmþ2
i , . . . ,PmþN

i , i¼ 1, . . . ,n. By
the transformation defined in (1), the set of variables fPmþ1

i ,
Pmþ2
i , . . . ,PmþN

i ,1r irng is transformed into fPmþ1
i ,umþ1

i , . . . ,
umþN%1
i ,1r irng. This kind of transformation is convenient for

the MPC formulation and the variables ui
j, with mþ1r jrmþ

N%1, 1r irn are called control variables or system inputs in
control theory.

In an MPC approach, a finite-horizon optimal control problem
is repeatedly solved and the input is applied to the system based
on the obtained optimal open-loop control. Consider a horizon
with length N. Instead of solving the EDED problem with nN
number of variables fPmþ1

i ,umþ1
i , . . . ,umþN%1

i ,1r irng, the MPC
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Fig. 2. The optimal trajectory of unit-2 of the ten-unit system for DED.
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algorithm solves the following problem which has only n(N%1)
number of variables fumþ1

i , . . . ,umþN%1
i ,1r irng:

Problem MPCEDEDPmþ 1 ðu,½m,mþNÞÞ. Given n, N, DRi, URi, Pi
min,

Pi
max, 1r irn, D, Pmþ1, let

P1
i :¼ Pmþ1

i , uj
i :¼ umþ j

i , Dk :¼ Dmþk,

1r irn, 1r jrN%1, 1rkrN, ð6Þ

and solve the following minimization problem:

min Cðuj
i : 1r irn, j¼ 1,2, . . . ,N%1Þ

¼
XN

k ¼ 1

Xn

i ¼ 1

Ci P1
i þ

Xk%1

j ¼ 1

Tuj
i

0

@

1

AþRi P1
i þ

Xk%1

j ¼ 1

Tuj
i

0

@

1

A

2

4

3

5

subject to ðP1
i ,u

j
i : 1r irn, j¼ 1,2, . . . ,N%1Þ

AODðP1,uÞ, ð7Þ

where the notation MPCEDEDPmþ 1 ðu,½m,mþNÞÞ denotes the opti-
mization problem is solved over the interval ½m,mþNÞ with
variables ui

j and for known inputs Pi
mþ1, 1r irn,j¼mþ

1, . . . ,mþN%1.

In order to make the above MPCEDED problem solvable, the
following hypothesis is needed as in Han et al. (2001), Han and
Gooi (2007) to make ODðP1,uÞ nonempty. This hypothesis is
easily fulfilled if the supplier has enough capacity to meet the
demand and the demand does not change too much over adjacent
sampling periods.

Feasibility Hypothesis 1 (Han and Gooi, 2007; Han et al.,
2001). After the change of variables in (6) over any dispatch
interval ½m,mþNÞ with mZ0, the set ODðP1,uÞ is not empty.

Denote the optimal solution of (7) by ðeuj
i : 1r irn,1r jr

N%1Þ, then use the inverse of (6) to change the dummy variables
back by letting

ujþm
i jm :¼ eu j

i, 1r irn, 1r jrN%1:

Now the optimal solution of MPCEDED
P
mþ 1 ðu,½m,mþNÞÞ is denoted

by

ujm ¼ ðuj
ijm : i¼ 1,2, . . . ,n; j¼mþ1, . . . ,mþN%1Þ,

where the notation (jm denotes the value obtained at the dispatch

interval ½m,mþNÞ. Denote ujjm ¼ ðuj
1jm,u

j
2jm, . . . ,u

j
njmÞ. The optimal

solution ujm is applied only in the first sampling period ½m,mþ1Þ,

that is, umþ1
i jm is applied to the state P

mþ1
i to obtain P

mþ2
i ¼

P
mþ1
i þTumþ1

i jm, and this P
mþ2
i is actually executed over the time

period ½mþ1,mþ2Þ, where i¼ 1,2, . . . ,n. Note that the optimal
controller ujmþ1 of the dispatch interval ½mþ1,mþNþ1Þ is indeed

a function of the initial value P
mþ2

, thus a closed-loop feedback is
obtained. The above ideas can be strictly formulated into the
following MPC algorithm.

MPC Algorithm 1. Initialization: Input the initial status P
1
9P1 ¼

ðP1
1 ,P

1
2 , . . . ,P

1
nÞ and let m¼0.

(1) Compute the open-loop optimal solution uj
ijm of the

problem MPCEDED
P
mþ 1 ðu,½m,mþNÞÞ, where i¼ 1, . . . ,n, j¼mþ1,

. . . , mþN%1.

(2) The (closed-loop) MPC controller umþ1
i jm is applied to the

plant in the sampling interval ½m,mþ1Þ (the remaining fuj
ijm :

i¼ 1,2, . . . ,n; j¼mþ2,mþ3, . . . ,mþN%1g are discarded) to obtain

the closed-loop MPC solution

P
mþ2
i ¼ P

mþ1
i þTumþ1

i jm ð8Þ

over the period ½mþ1,mþ2Þ.
(3) Let m:¼mþ1 and go to step (1).

Generally, the above MPC algorithm never stops, and it
updates the controller at each time interval ½m,mþ1Þ to include
feedback information.

It is noticed that the MPC approach has the following advantages.
(1) Reduced dimension: The economic dispatch problem for a

practical control problem can be of a size of over 100 generating
units. For example, consider a system with 150 generating units, a
dispatch interval of 24 h, and a sampling period of 1 h. Then
T¼1 h, N¼24, and the corresponding OCDD or DED problem must
solve an optimization problem with 150)24¼3600 number of
variables. However, in each iteration step of the MPC Algorithm 1,
the algorithm starts with any Pmþ1 and solves an optimization
problem with 150) (24%1)¼3450 number of variables which
reduces 150 dimensions in the optimization problem and makes
the computation easier.

(2) Convergence and easy implementation: Theorem 1 will
show that one can start the MPC Algorithm 1 with any P1

satisfying
Pn

i ¼ 1 P
1
i ¼D1 and the optimal solution at each step

will converge to the optimal solution of the EDED problem. This
implies that the reduction of the number of variables in the MPC
approach is both reasonable and feasible. This also means that the
MPC approach can be initiated, or re-started after interruptions.

(3) Robustness and simplified model: In the beginning of each
iteration after initialization on the dispatch interval ½m,mþNÞ, the

MPC algorithm measures the initial generation P
mþ1

. Therefore, if

there is any disturbance in P
mþ1

, the MPC algorithm will detect

the disturbed P
mþ1

and the optimal MPC controller ðumþ1
i jm :

i¼ 1, . . . ,nÞ will make the compensation and correction automati-
cally. This closed-loop nature of the MPC controller comes with an
inherent property of robustness. Theorem 2 will show that the MPC

algorithm is robust against small disturbances in P
mþ1

.
The ramp rates of the dispatch problem are given by the relation

in (1) (Ross & Kim, 1980; Travers & Kaye, 1998). However, (1) is
actually a simplified model of the power changes of the generators.
Due to the dynamical complexity of the generators, the change of
the power from Pi

k to Pi
kþ1 can be a highly nonlinear process with

uncertainties. It has been shown that MPC algorithms approximate
many complex system behaviors by using simplified models to a
satisfactory extent (see, e.g., Camacho & Bordons, 2004; De Nicolao
et al., 2000; Findeisen et al., 2003; Mayne et al., 2000; Qin &
Badgwell, 2003; Rawlings, 2000). The underlying reason can be
understood as that the MPC Algorithm is robust against certain
disturbances while the inaccuracy in system modeling can often be
treated as disturbances to a simplified model. Then it follows from
the robustness result in Theorem 2 that the MPC Algorithm 1 is able
to use simplified model (1) to approximate the complex dynamics
of the generators if this model inaccuracy does not exceed a
predetermined bound.

Note that an input of an initial power P1 is needed in the MPC
Algorithm 1. For this P1, if there exist u1, . . . ,uN%1 such that
ðP1,u1, . . . ,uN%1ÞAODðP1,uÞ, then ODðP1,uÞ is nonempty, and the
Feasibility Hypothesis 1 ensures the execution of MPC Algorithm
1. However, if P1 cannot ensure the nonemptiness of ODðP1,uÞ,
then the MPC Algorithm 1 cannot be executed. In this case, how
could this algorithm be implemented? This question can be
answered by considering the existing generation P0 at time t¼0.

For the existing generation P0, there are three cases, that is, the
power output P0 may be less than, equal to, or greater than the
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demand D0. The third case can be dealt with exactly as the first
case, therefore only the first two cases are discussed in the
following. When the power output P0 equals the demand, that
is,
Pn

i ¼ 1 P
0
i ¼D0, then the constraints Pmin

i rP0
i rPmax

i ,1r irn,
must be met automatically since the Pi

0’s are existing generation.
Now let P1¼P0 and all the ui

j’s be zeros, then ðP1
i ,u

j
i :

1r irn,1r jrN%1Þ is an element of ODðP1,uÞ, ODðP1,uÞ is none-
mpty, and the MPC Algorithm 1 can be executed.

When the power output P0 is less than the demand, that is,Pn
i ¼ 1 P

0
i oD0, there are two subcases. The first subcase is that the

system does not have enough capacity to meet the demand, and
has to switch on more generators by working out a unit commit-
ment problem (Padhy, 2004). This applies if

Pn
i ¼ 1 P

0
i is much less

than the demand D0. In other words, the first subcase happens if
jD0%

Pn
i ¼ 1 P

0
i jZM for a given M. Since the unit commitment

problem is an independent problem out of the scope of this paper,
the first subcase is resorted to a new unit commitment problem,
and thus not considered in this paper. The second subcase is that
the supplier still has enough capacity to meet the demand, and
this happens if the difference between D0 and

Pn
i ¼ 1 P

0
i is small, or

equivalently jD0%
Pn

i ¼ 1 P
0
i joM for the given M. In the latter

subcase, the supplier must sacrifice part of its running cost to
meet the demand as soon as possible if the company is running in
a competitive market. Since the ramp constraints limit the
increase of the powers of the units, it may take some time to
reach the desired demand. The solution of the following pre-
liminary scheduling optimization problem shows how to sche-
dule the powers of these committed units to meet the demand.

Problem: k-th Preliminary Scheduling.

min
Xn

i ¼ 1

Pk
i %Dk

 !2

þlk
Xn

i ¼ 1

½CðPk
i ÞþRðPk

i Þ'

subject to %DRi ( TrPk
i %Pk%1

i rURi ( T ,

Pmin
i rPk

i rPmax
i ,

ð1r irnÞ, ð9Þ

where Pk-1 is given, Pk is the variable in the problem, and
lkA ½0,þ1Þ is a weighting factor that represents the trade off
between the increase of the powers of committed units and the
corresponding running cost.

The following algorithm will be applied for the MPC approach
to EDED problem.

MPC Algorithm 2. Initialization: Input a number M, and a P0

which is the existing power output of the units at the dispatch
interval ½%1,0Þ.
(1) If

Pn
i ¼ 1 P

0
i ¼D0, then let P1¼P0 and execute MPC Algorithm

1 with this P1.

(2) If jD0%
Pn

i ¼ 1 P
0
i joM, let k¼1 and do the following steps.

(2.1) Solve the k-th Preliminary Scheduling Problem with the

initial value Pk%1 and a weighting factor lk, and denote the

obtained optimal solution by P
k
:¼ ðP

k
1,P

k
2, . . . ,P

k
nÞ.

(2.2) Execute P
k
as the actual power outputs of the n units, that

is, let the power output of the i-th unit be P
k
i at the sampling time

period ½k%1,kÞ, where i¼ 1,2, . . . ,n. If
Pn

i ¼ 1 P
k
i oDk, let k :¼ kþ1

and go to step (2.1); otherwise let P1 :¼ P
k
and perform a change

of time coordinate so that the time interval ½i,jÞ is changed into

½i%kþ1,j%kþ1Þ, now execute MPC Algorithm 1.

(3) If jD0%
Pn

i ¼ 1 P
0
i jZM, do a unit commitment problem by

other algorithms to obtain a new P0 and go back to step (1).

4.2. Convergence and robustness

After having the above MPC algorithms, some basic questions
arise: Do these algorithms converge? What are the physical
meanings of the optimal solution of an MPC algorithm? Are the
MPC algorithms robust when disturbances exist? These questions
are answered in the following theorems.

Theorem 1. Suppose Feasibility Hypothesis 1 holds, Pn is the globally
optimal solution of the EDED problem (4), eP

*
is the globally optimal

solution of the DED problem (3), then

(i) MPC Algorithm 1 converges to Pn if the initial power output P1 at
time t¼1 satisfies

Pn
i ¼ 1 P

1
i ¼D1.

(ii) MPC Algorithm 2 converges to Pn.
(iii) the value of the objective function CðPk

i : 1r irn,1rkrNÞ ¼PN
k ¼ 1

Pn
i ¼ 1½CðP

k
i ÞþRðPk

i Þ' at the point Pn is greater than or
equal to that at the point eP

*
.

This theorem tells that the solutions of the MPC Algorithms
1 and 2 converge to the optimal solution of the EDED problem (4),
and this solution may be worse than the solution of the classical
DED problem (3) due to the fact that classical DED has neglected
some ramp limits. The proof of the theorem is quite lengthy and
omitted here.

Now consider the robustness of the MPC algorithms. Note that
MPC Algorithm 1 is the main algorithm in this MPC approach.
Therefore, in order to discuss the robustness of the MPC approach,
it suffices to discuss the robustness of MPC Algorithm 1. The
uncertainties in energy demand, price, and reserve demand for
the DED problem in a deregulated market are discussed by fuzzy
optimization in Attaviriyanupap et al. (2004). However, no theo-
retical result is given. For the sake of simplicity, suppose that
disturbance happens only in the execution of the controller. That
is, the disturbance happens only in step (2) of MPC Algorithm 1 so
that when the control umþ1

i jm is applied to the plant in the
sampling interval ½m,mþ1Þ, the system actually executes P

mþ2
i ¼

FðP
mþ1
i ,umþ1

i jm,wmþ1
i Þ over the period ½mþ1,mþ2Þ, where F is a

function,wi
mþ1 is a disturbance vector satisfying Jwmþ1

i Joe and e
is a positive constant. Although F is written in a general form to
include general disturbances in nonlinear MPC (Findeisen &
Allgöwer, 2002), it is often written in the addition form Garcia,
Prett, and Morari (1989) as FðP

mþ1
i ,umþ1

i jm,wmþ1
i Þ ¼ P

mþ1
i þ

Tumþ1
i jmþTwmþ1

i , therefore

P
mþ2
i ¼ P

mþ1
i þTumþ1

i jmþTwmþ1
i : ð10Þ

Whenever the robust version of MPC Algorithm 1 is mentioned, it
always means that (8) is replaced by (10) during its execution.

Theorem 2. Suppose Feasibility Hypothesis1 holds, Pn is the globally
optimal solution of the EDED problem (4), eP

*
is the globally optimal

solution of the DED problem (3), OEDED is the feasible domain of
problem (4), the norm of the gradient of the cost function of problem (4)
has the upper bound L onOEDED, e is a small enough positive constant, c
is a positive constant which is less than e, (10) is executed in step (2) of
MPC Algorithm1 instead of (8), the constant disturbance wi

k satisfies
Jwk

i Joe, and e is small enough so that eominfc=L,ðe%cÞ=Lg, then
there exists an integer N0 such that for any k4N0, the optimal MPC
solution P

kþ1
of the k-th loop in MPC Algorithm1 belongs to the domain

O :¼ fP : JP%P*Jocg.

The lengthy proof of this theorem is omitted.

Remark 1. Theorem 2 shows that the MPC algorithm is robust
against certain disturbances in the execution of the optimal
controller. It may happen that there is disturbance or uncertainty
in the forecasted demand, that is, the demand Dk is disturbed so
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that the actual demand is fDk . Denote the resulting feasible

domain by OeD ðP
1,uÞ which is often different from ODðP1,uÞ in (7)

of Problem MPCEDEDPmþ 1 ðu,½m,mþNÞÞ. Let g
umþ1
i jm be the dis-

turbed optimal solution of (7) over OeD ðP
1,uÞ. Then by steps

(1) and (2) of the MPC Algorithm 1, the obtained g
umþ1
i jm may

be different from the optimal solution umþ1
i jm which is obtained

without demand disturbance. However, by the continuous depen-
dence of the solution on the feasible domain, the difference

J g
umþ1
i jm%umþ1

i jmJ is sufficiently small when JfDk%DkJ is small
enough. Therefore, (8) in step (2) of the MPC Algorithm 1 can be
written as

P
mþ2
i ¼ P

mþ1
i þT

g
umþ1
i jm ¼ P

mþ1
i þT

g
umþ1
i jm þTwmþ1

i , ð11Þ

where wmþ1
i :¼ umþ1

i jm%
g

umþ1
i jm .

Hence the demand disturbance or uncertainties can also be

written in the form of (10) and the result of Theorem 2 is

applicable when JDk%fDkJ is small enough.

5. Simulation results

This section presents an example to show the convergence and
robustness properties of the proposed MPC algorithm. The opti-
mization problem in the example is solved by sequential quad-
ratic programming under load balance constraints, ramp rate
constraints and generation capacity constraints. All computations
are carried out by MATLAB program. In particular, the optimal
control sequence is computed by the fmincon code of the
MATLAB Optimization Toolbox.

Example 2. This example presents an application of MPC to the
DED problem consisting of six units. This is a standard example in
Gaing (2004), and all the system technical data are exactly the
same as Gaing (2004) and are listed in Tables 3 and 4. The
dispatch interval and the sampling period in Gaing (2004) are one
day and 1 h respectively, and these will also be kept here in this
example. The generation cost and ramping cost curves are given
as quadratic functions CiðPiÞþRiðPiÞ ¼ aiþbiPiþciP

2
i . The initial

generations Pi
0 have been chosen such that

P10
i ¼ 1 P

0
i oD0. MPC

Algorithm 2 is implemented over 48 h, where the k-th prelimin-
ary scheduling problem is run with l1 ¼ 0:1, l2 ¼ 0:01, l3 ¼ 0:001,
l4 ¼ 0. The advantages of the MPC algorithm and its comparison
with DED and OCDD are listed below.

(a) Reduced dimensions: Since there are 6 units, the dispatch
period is a 24-h period, and the sampling period is 1 h; the

number of variables in the DED or OCDD model is 6)24¼144,
while the number of variables in the MPC approach is
6)23¼138. Thus the optimization problem in the MPC approach
has 6 less variables over one dispatch period.

(b) Convergence and easy implementation: Fig. 4 shows that
the MPC closed-loop solutions asymptotically approach the opti-
mal solutions of the EDED problem. Because of this convergence,
restarting the MPC algorithm from any time will give rise to the
same convergence, which further implies that the MPC algorithm
can be executed at any sampling time point.

(c) Robustness and simplified model: To show the robustness
of the MPC algorithm, (10) is executed and the disturbance wi

m is
generated by

wm
i ¼%eiþ2eirðmÞ,

where the parameters r(m)’s are uniformly distributed random
numbers on [0,1] and ei’s are given error bounds. Note that the

Table 3
Data of the six-unit system.

Gen. pi
min

(MW)
pi
max

(MW)
ai
($/h)

bi
($/MWh)

ci
($/MW2h)

URi
(MW/h)

DRi
(MW/h)

Pi
0

(MW)

1 100 500 240 7.0 0.0070 80 120 240
2 50 200 200 10.0 0.0095 50 90 50
3 80 300 220 8.5 0.0090 65 100 130
4 50 150 200 11.0 0.0090 50 90 80
5 50 200 220 10.5 0.0080 50 90 50
6 50 120 190 12.0 0.0075 50 90 50

Table 4
Load demand of the six-unit system for 24 h.

Time (h) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Demand (MW) 955 942 935 930 935 963 989 1023 1126 1150 1201 1235 1190 1251 1263 1250 1221 1202 1159 1092 1023 984 975 960
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Fig. 4. Convergence of the closed-loop MPC solutions to those of EDED for the
six-unit system.
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Fig. 5. The generation output of unit-1 of the six-unit system under EDED,
open-loop controller and robust MPC.
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sampling period T is 1 h, thus, wi
m introduces an evenly distrib-

uted error from %ei to ei on P
mþ1
i . Denote e¼ ðe1,e2, . . . ,e6Þ. The

robustness of the MPC algorithm is illustrated in the following
different ranges of disturbances.

(c.1) Choose e¼ ð5,5,4,4,5,3Þ. To show the effectiveness of the
MPC, the following cases are shown in Figs. 5 and 6:

(i) the optimal solutions of the EDED problem ðP
k
i : 1r irn,1

rkr72Þ;
(ii) the (closed-loop) MPC solutions with disturbances; and
(iii) the solutions of the disturbed system

Pkþ1
i ¼ Pk

i þTuk
i þTwk

i

with the open-loop controller ðuk
i : 1r ir6,1rkr72Þ obtained

by OCDD problem.
In cases (ii) and (iii) the initial Pi

1 is chosen as the optimal
solution of the EDED problem at t¼1, i.e., P1

i ¼ P
1
i . From Figs. 5 and 6

it is obvious that the MPC algorithm can keep the disturbed system
around the optimal solution of EDED which illustrates the robust-
ness. The two figures illustrate also the feasibility to use a simplified
model such as (1) to represent the real complex system.

For the 72 h’ period, the impact of the random error wi
m to the

optimal solution in each of the MPC iteration loops can be
roughly estimated by the maximum value and minimum value
of the set fei=Pm*

i ) 100% : m¼ 1,2, . . . ,72g, where Pi
mn denotes

the optimal EDED solution and i¼ 1, . . . ,6. The maximum value
and minimum value correspond, respectively, to the maximum
and minimum error/uncertainty/disturbance introduced in the
actuator implementation. For simplicity, denote them by Emax

i and
Emin
i respectively. The performance of the optimal solution in each

MPC iteration loop is the best evaluated by the maximum relative
error of this solution to the EDED solution, that is, by eiRmax :¼
maxfjP

m
i %Pm*

i j=Pm*
i ) 100% : m¼ 1,2, . . . ,72g. Table 5 lists these

errors, and it can be best understood by consider an example. For
instance, the second column of the table states that for the error
bound e1 ¼ 5, it introduces a randomly distributed uncertainty or
error within [%5, 5] on the generation of the first generator at

each iteration loop, and this uncertainty occupies at least 1.12%
and at most 1.33% of the generation in the corresponding EDED
solution, while the maximum relative error of each MPC solution
within the 72 h is 1.39%. The last column indicates that e6 ¼ 3
introduces up to 6% of the implementation inaccuracy compared
to the EDED solution, while the MPC solution at each loop will
have at most an error of 10.30%.

(c.2). Choose e¼ ð25,6,12,5,6,4Þ. For simplicity and also to
avoid repetition, the figures for the comparison of the MPC
solution and the open loop solution are not provided. Instead, a
table indicating the relative error of the MPC solution to the EDED
solution is provided to illustrate the robustness. That is, the
relative errors of this disturbance and the MPC solution compared
to the EDED solution are given in Table 6. This table shows, for
instance, with a maximum uncertainty of 7.21% in the optimal
solution implementation for the 4-th generator, the MPC solution
has at most an error of 7.78%. The worse case is that when the
generation of the 6-th generator has the maximum uncertainty of
8%, the MPC solution has an error up to 13.60%. Note that this
13.60% error is under the worse case, and usually the error is less
than this, and sometimes there is even no error. These MPC
solution errors depend on the particular inaccuracies during the
solution implementations.

(c.3) Choose e¼ ð25,25,20,20,25,15Þ. Then the relative errors
of this disturbance and the MPC solution compared to the EDED
solution are given in Table 7. This table shows that even under a
very great implementation inaccuracy, the MPC solution does not
change too far compared with the implementation inaccuracy. For
example, when the 6-th generator has an implementation inac-
curacy of 30%, the MPC solution has at most an error of 36.81%.
Once again, this example illustrates the robustness of this MPC
algorithm.

(d) Comparison with DED and OCDD under disturbances: For
this example, the DED model optimizes the dispatch over the time
interval [0,24] and often ignores any problem which might
happen during the periodic implementation of the obtained
optimal solution. Therefore a simple repetition of the optimal
DED solution over other periods such as [24,48], [48,72], etc., may
lead to ramp rate violations as Example 1 shows. A fair compar-
ison of DED with MPC should be in the case that the DED method
has also a moving optimization horizon such as [0,24], [1,25],
[2,26], etc. Unfortunately, although reference (Gaing, 2004) stu-
dies the same Example 2 under extra spinning reserve constraints
by the particle swarm optimization method, it optimizes the
dispatch for a dispatch period of 24 h only and does not consider
the periodic implementation of the optimal solutions. Other
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Fig. 6. The generation output of unit-2 of the six-unit system under EDED,
open-loop controller and robust MPC.

Table 5
Relative error for e¼ ð5,5,4,4,5,3Þ.

i¼ 1 2 3 4 5 6

Emax
i (%) 1.33 4.23 1.92 5.77 4.58 6.00

Emin
i (%) 1.12 2.92 1.51 3.19 2.90 3.59

eiRmax (%) 1.39 4.88 2.00 6.80 4.93 10.30

Table 6
Relative error for e¼ ð25,6,12,5,6,4Þ.

i¼ 1 2 3 4 5 6

Emax
i (%) 6.67 5.07 5.76 7.21 5.49 8.00

Emin
i (%) 5.60 3.50 4.54 3.99 3.49 4.79

eiRmax (%) 6.92 5.63 6.12 7.78 6.45 13.60

Table 7
Relative error for e¼ ð25,25,20,20,25,15Þ.

i¼ 1 2 3 4 5 6

Emax
i (%) 6.67 21.13 9.60 28.85 22.88 30.00

Emin
i (%) 5.60 14.60 7.57 15.97 14.52 17.94

eiRmax (%) 8.21 29.73 11.92 38.85 34.26 36.81
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references on DED such as Wood (1982), Han and Gooi (2007),
Irisarri et al. (1998), Somuah and Khunaizi (1990), Li et al. (1997),
Attaviriyanupap et al. (2002), Jabr et al. (2000), Granelli et al.
(1989), Hindi and Ghani (1991), Panigrahi et al. (2006), Li and
Aggarwal (2000), Balamurugan and Subramanian (2007), Gaing
(2004), Panigrahi et al. (2007), Victoire and Jeyakumar (2005a,
2005b), Yuan et al. (2009) also focus on the solution of the DED
problem under various complex constraints or objectives over a
fixed time period, say, 24 h, and do not consider the periodic
implementation of the obtained optimal solutions. The same is
true for reference (Travers & Kaye, 1998). It proposes a construc-
tive dynamic programming approach to the OCDD model, how-
ever its attention is also on the optimization over a fixed time
period and ignores the periodic implementation problem.

As for the comparison of OCDD and MPC, again one cannot
simply repeat the OCDD solution over the time period [24,48],
[48,72], etc., as Example 1 has shown the possible ramp rate
violation of OCDD by this kind of simple repetition. Note that the
OCDD solution over the period [24,48] depends on its initial
generation at time 24, therefore it is reasonable to recalculate the
OCDD problem over the period [24,48] by using the initial
generation P

24
which is the generation output at the 24-th hour.

For the generation at [48,72], the generation P
48

is used as its
initial generation. Now the obtained optimal OCDD solution is the
one named ‘‘open-loop’’ solution in Figs. 5 and 6. From these two
figures it is clear that the OCDD solution does not vary too much
from the EDED solution for the first 24 h; however, the accumu-
lated deviations from the EDED solution becomes larger as
time elapses, and the generation capacity constraints of unit 1
have been violated. Therefore one can conclude that the MPC
solution is better than the OCDD solution under disturbances if
the OCDD problem is recalculated only for the time period
[24,48], [48,72], etc.

The MPC algorithm developed in this paper does not contradict
with any existing DED or OCDD methods. These existing DED and
OCDD methods provide various optimization solution methods to
find the optimal dispatch over a fixed time horizon; while the
MPC Algorithm 1 provides a periodic implementation framework
and does not specify any special optimization method to solve the
dispatch problem MPCEDED over a fixed time period. Further-
more, the MPC approach in MPC Algorithm 1 is in fact a very
general philosophy: calculating an optimization problem over a
fixed period, implementing the solution only at the beginning
part of this fixed period, recalculating the optimization problem
over a new time horizon, and repeating these steps. Following this
idea, it is possible to incorporate these existing solution methods
for DED and OCDD into this MPC framework. That is, by adding
constraints like (5) to avoid ramp rate violations in existing DED
and OCDD models, then it is possible to apply the above-
mentioned optimization methods at each loop of the MPC Algo-
rithm 1 and thus the obtained results will not violate any ramp
rate constraint and may also be robust against disturbances.
Possible difficulties could be the theoretical proofs of the con-
vergence and robustness of the MPC algorithm since the DED or
OCDD model under consideration will be more complex. This
challenging work is still under research.

6. Conclusions

The main purpose of this paper is to propose an MPC approach
to the periodic implementation of optimal solutions of dynamic
dispatch problem. The convergence of the MPC solutions to the
optimal solutions of the EDED and certain robustness of the MPC
algorithm are shown, and these results guarantee the existing
MPC practises in DED. The differences between the OCDD and

DED approaches are discussed and also illustrated on a ten-unit
system. The convergence and robustness of the MPC algorithms
are demonstrated through the application of MPC to a standard
dynamic dispatch problem with six units.

A number of generalizations can be drawn as the following
suggests:

(1) The constraints considered in this paper are linear. In future
applications of the MPC method the constraints can be non-
linear if they define a convex feasible domain. Future work
will also include various other constraints such as security
constraints, spinning reserve, etc.

(2) The objective functions considered in this paper are supposed
to be quadratic functions. Under deregulated markets, the
objective functions will not be quadratic. However, if they are
convex and differentiable, then the MPC approach developed
in this paper is still valid. For non-convex or non-smooth
objective functions, further research is needed.

(3) The optimization problems in the simulations are solved by a
simple MATLAB function fmincon. The MPC algorithms can
be solved by any other optimization routine, provided the
later is effective and efficient. Therefore, advanced algorithms
can also be applied in the MPC approach to energy optimiza-
tion problems.

(4) A simple model characterizing the increase of power output
between adjacent time intervals is adopted, and this is only a
simplified model for the complex system behavior (see equa-
tion (1)). The MPC method can approach the complex system
by using this simple model. Note that there are many complex
mathematical models in energy optimization; for example, the
optimal control of geysers (Zhang & Xia, 2007). The complexity
of these models often makes many numerical optimization
algorithms invalid. Now one can simplify these models and try
the MPC approach. Moreover, the MPC approach can handle
more sophisticated models and this allows for the consideration
of more in-depth modeling of the ramping mechanisms of the
generator’s power and reserve.

(5) This paper provides only initial applications of the MPC ideas
in energy optimization, with theoretical results of conver-
gence and robustness. Note that the robustness results reveal
inherent feedback properties of the MPC solutions. Robust
MPC is an on-going research topic on its own right (Bemporad
& Morari, 1999). However, this paper shows that advanced
results from robust MPC, continuous time MPC, and nonlinear
MPC (Findeisen et al., 2003) are expected to have effective
applications in more energy optimization problems.
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