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A B S T R A C T

An autonomous hierarchical distributed control (AHDC) strategy is proposed for a building multi-evaporator air
conditioning (ME A/C) system in this paper. The objectives are to minimize peak demand and energy costs, and
to reduce communication resources, computational complexity and conservativeness while maintaining both
thermal comfort and indoor air quality (IAQ) in acceptable ranges. The building consists of multiple connected
rooms and zones. The proposed control strategy consists of two layers. The upper layer is an open loop
optimizer, which only collects local measurement information and solves a distributed steady state resource
allocation problem to autonomously and adaptively generate reference points, for low layer controllers. This
is achieved by optimizing the demand and energy costs of a multi-zone building ME A/C system under a
time-of-use (TOU) rate structure, while meeting the requirements of each zone’s thermal comfort and IAQ
within comfortable ranges. The lower layer also uses local information to track the trajectory references, which
are calculated by the upper layer, via a distributed model predictive control (DMPC) algorithm. The control
strategy is distributed at both layers because they use only local information from the working zone and its
neighbors. Simulation results are provided to illustrate the advantages of the designed control schemes.

1. Introduction

It is well known that many environmental problems are linked
to energy consumption. The energy consumed by the building sector
accounts for 40% of the total energy consumption in the world (UNEP
Sustainable Buildings & Climate Initiative, 2009). Among all building
energy consumers, air conditioning (A/C) systems are responsible for
the largest share, which represents close to 50% of the total electricity
use in the building sector.

In recent years, many researchers have focused on reducing en-
ergy consumption of building heating, ventilation and air conditioning
(HVAC) systems (Lee & Braun, 2008; Tang, Wang, Shan, & Cheung,
2018). Meanwhile, indoor comfort is also important for buildings, since
it directly affects the occupants’ working efficiency. The effective con-
trol of HVAC systems has the potential of reducing energy consumption
or cost and improving indoor thermal comfort and air quality (IAQ).
In Atthajariyakul and Leephakpreeda (2004), the authors proposed a
method of real-time determination of an optimal indoor-air condition
for the HVAC system to consider indoor thermal comfort and IAQ for
occupants simultaneously with efficient energy consumption. However,
this method is only tested around the desired points; we do not know
if this method can be used without the desired points.

Model predictive control (MPC) has been verified as one of the most
successful advanced control strategies, which is capable of improving
energy efficiency and thermal comfort in buildings (Castilla, Álvarez,
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Normey-Rico, & Rodríguez, 2014; Cigler, Prívara, Váňa, Žáčeková, &
Ferkl, 2012; Ma, Qin, & Salsbury, 2014; Maasoumy & Sangiovanni-
Vincentelli, 2012; Mei & Xia, 2017b; Wallace et al., 2012). An energy-
optimized open loop optimization and the MPC schemes were pro-
posed (Mei & Xia, 2017a; Mei, Xia, & Song, 2018) for a direct expansion
(DX) A/C system to improve energy efficiency while maintaining indoor
thermal comfort and IAQ within comfort levels. Other advantages of
MPC for building HVAC systems include robustness, tunability and
flexibility (Oldewurtel et al., 2012). Despite MPC having superior per-
formance to other control strategies, the size of the optimization prob-
lem increases rapidly when the dimension of the building A/C systems
is large. Centralized MPC techniques were proposed (Hu & Karava,
2014; Maasoumy, Razmara, Shahbakhti, & Sangiovanni-Vincentelli,
2014; Mei & Xia, 2018; Razmara, Maasoumy, Shahbakhti, & Robinett
III, 2015) for multi-zone HVAC systems to improve energy efficiency
and thermal comfort. In the centralized control structure case, all
the subsystems are controlled by one MPC law. The model used for
prediction includes the coupling elements. When a centralized MPC
algorithm is used for controlling HVAC systems in a large number of
rooms, its algorithm is impractical since the optimization problems may
not be solved in a reasonable time and the control systems are not
easy to maintain. To reduce computational time, one of the effective
predictive control strategies is a decentralized MPC approach (Elliott &
Rasmussen, 2013). Large-scale control problems are decomposed into

https://doi.org/10.1016/j.conengprac.2019.06.017
Received 3 January 2019; Received in revised form 8 May 2019; Accepted 22 June 2019
Available online 28 June 2019
0967-0661/© 2019 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.conengprac.2019.06.017
http://www.elsevier.com/locate/conengprac
http://www.elsevier.com/locate/conengprac
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conengprac.2019.06.017&domain=pdf
mailto:junmei027@gmail.com
https://doi.org/10.1016/j.conengprac.2019.06.017


J. Mei and X. Xia Control Engineering Practice 90 (2019) 85–100

Nomenclature

𝐴1 heat transfer area in the dry-cooling region
of the DX evaporator, m2

𝐴2 heat transfer area in the wet-cooling region
of the DX evaporator, m2

𝐴𝑤𝑖𝑛 represents the total window area, m2

𝐶𝑎 specific heat of air, kJ kg−1 ◦C−1

𝐶𝑐 CO2 concentration in the conditioning
space, ppm

𝐶𝑙𝑜𝑎𝑑 pollutant load, m3/s
𝐶𝑠 CO2 concentration of air supply, ppm
𝑑 cross-sectional area of zone, m2

𝐺 amount of CO2 emission by a person, L/h
ℎ𝑓𝑔 latent heat of vaporization of water, kJ∕kg
ℎ𝑟1 enthalpy of refrigerant at evaporator inlet,

kJ∕kg
ℎ𝑟2 enthalpy of refrigerant at evaporator outlet,

kJ∕kg
ℎ𝑠 enthalpy leaving the DX evaporator, kJ∕kg
𝑘𝑃 , 𝑘𝐼 proportional and integral coefficients
𝑚𝑟 mass flow rate of refrigerant, kg∕s
𝑀𝑙𝑜𝑎𝑑 moisture load in the conditioned space, kg/s
𝑂𝑐𝑐𝑝 number of occupants
𝑄𝑙𝑜𝑎𝑑 sensible heat load in the conditioned space,

kW
𝑄𝑟𝑎𝑑 solar radiative heat flux density, W∕m2

𝑅 thermal resistance, ◦C/kW
𝑇𝑑 air temperature leaving the dry-cooling re-

gion on air side of the DX evaporator,
◦C

𝑇𝑚𝑖𝑥 mixing temperature between the outside air
and return air, ◦C

𝑇𝑠 air temperature leaving the DX evaporator,
◦C

𝑇𝑤 temperature of the DX evaporator wall, ◦C
𝑇𝑧 air temperature in the conditioned space, ◦C
𝑇0 temperature of the outdoor air, ◦C
𝑉 volume of the conditioned space, m3

𝑣𝑎 indoor air velocity, m∕s
𝑉ℎ1 air side volume in the dry-cooling region on

air side of the DX evaporator, m3

𝑉ℎ2 air side volume in the wet-cooling region on
air side of the DX evaporator, m3

𝑣𝑓 air volumetric flow rate, m3∕s
𝑊𝑚𝑖𝑥 mixing moisture content of outside air and

return air, kg∕kg
𝑊𝑠 moisture content of air leaving the DX

evaporator, kg∕kg
𝑊𝑧 moisture content of air-conditioned space,

kg∕kg
𝑊0 moisture content of the outdoor air, kg∕kg

Greek letters

𝛼𝑑𝑐 heat transfer coefficient between air and
the DX evaporator wall in the dry-cooling
region, kW m−2 ◦C−1

several independent control problems, which can take care of the local
control parameters (Atam, 2016). However, the results demonstrated
that the control performance loss was 28.58%. A distributed control

𝛼𝑤𝑐 heat transfer coefficient between air and
the DX evaporator wall in the wet-cooling
region, kW m−2 ◦C−1

𝜀𝑤𝑖𝑛 transmissivity of glass of window
𝜌 density of moist air, kg∕m3

Subscripts

𝑖 room number

Abbreviations

AHDC autonomous hierarchical distributed control
DMPC distributed model predictive control
EEV electronic expansion valve
HVAC heating, ventilation and air conditioning

IAQ indoor air quality
ME A/C multi-evaporator air conditioning
MPC Model predictive control
NLP nonlinear programming
PMV predicted mean vote
PSA pressure swing absorption
TABS thermally activated building systems
TOU time-of-use

approach is capable of balancing these issues. The structure of the
distributed control is similar to a decentralized law, but is essentially
a different approach (Zhang, Shi, Yan, Malkawi, & Li, 2017). The dis-
tributed control decomposes the centralized control to a group of local
agents communicating with its neighbors, which makes it possible to
be used for large-scale dynamically coupled systems. A communication
network that allows collaboration among local control laws, which
allows the improvement of global system performance compared to
a decentralized structure. Moreover, computational demand should be
significantly reduced compared to the centralized structure (Zheng, Li,
& Qiu, 2013).

Owing to the advantages of distributed model predictive control
(DMPC), this strategy was proposed to reduce the computational de-
mand and handle the coupling among subsystems (Ma, Anderson, &
Borrelli, 2011; Morosan, Bourdai, Dumur, & Buisson, 2011; Morosan,
Bourdais, Dumur, & Buisson, 2010; Scherer et al., 2014). A DMPC
was proposed in Ma et al. (2011) to improve the energy efficiency of
the HVAC system while keeping zone temperature within the comfort
range. In the study, the nonlinear optimal control problem is for-
mulated and solved through sequential quadratic programming. Then
the subproblem is decomposed further by adopting a subgradient ap-
proach. A local controller reaches the optimal solution by repeatedly
negotiating with its neighbors in every sampling period, which in-
evitably increases the demand for calculation. In Morosan et al. (2010),
the DMPC algorithm, only required the predicted output exchanged
with its neighbors for every sampling period. However, this algorithm
can only obtain Nash equilibrium, which may not be the optimal
solution. In Morosan et al. (2011), the authors proposed a DMPC
algorithm to control multi-source multi-zone temperatures. In order
to attenuate the online computational burden, the DMPC algorithm
was implemented based on Benders’ decomposition. The results show
that the computational and convergence times of this algorithm are
superior to the centralized MPC. However, the energy efficiency of the
DMPC method is not particularly good compared to the centralized
MPC strategy. Furthermore, this type of distributed structure does not
converge to the optimal solution, as in Scherer et al. (2014) which was
an agent-based suboptimal controller; the drawback is transmitted to
the decomposition algorithm.

In addition to improving energy efficiency while maintaining build-
ing multi-zones’ thermal comfort within comfort range, DMPC strategies
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based on energy scheduling were proposed in Long, Liu, Xie, and Jo-
hansson (2016) and Radhakrishnan, Srinivasan, Su, and Poolla (2018).
In Long et al. (2016), the authors proposed a method that combined the
closed-loop centralized and distributed structures together to design a
hierarchical control scheme to balance the computational complexity
and conservativeness. In the study, the upper layer controller collects
temperature and predictive information of all rooms and zones, which
implies that the centralized scheduling (CS) needs to communicate with
all rooms. The upper layer optimization problem is nonlinear, and
solving it for a large building using centralized approaches is com-
putationally cumbersome, leading to scalability issues. Furthermore,
implementing centralized approaches requires transmission of zone-
levels models and sensor information to the CS, leading to engineering
difficulties and increasing information exchange. In the lower layer,
the distributed controller only uses one room’s information and its
neighbor off-line reference signals. This may cause loss of control
accuracy in receding horizon. Moreover, the trajectory references in
the optimization objectives are given and fixed over a 24-h period,
as in Ma et al. (2011), Morosan et al. (2010) and Scherer et al.
(2014). Centralized and distributed MPC controllers following fixed
trajectory references were also reported in other field (Zafra-Cabeza,
Maestre, Ridao, Camacho, & Sánchez, 2011). In our previous work (Mei
et al., 2018), the results demonstrated that the MPC strategy following
preprogrammed time-varying reference points can save more in energy
consumption and cost when compared with a fixed trajectory reference.
More recently, in Radhakrishnan et al. (2018), the authors proposed
adaptive learning and distributed control together to improve the
energy efficiency and thermal comfort for multi-zone HVAC systems.
The optimal references are preprogrammed and time-varying, while
the presented zone thermal dynamics of a multizone building did not
consider the interaction between rooms. Moreover, this distributed
optimization algorithm is solved by using the subgradient method.

Advanced building structures are extremely complicated, with
widely equipped multi-evaporator (ME) A/C systems. An ME A/C,
which is DX based, consists of an outdoor compressor and condensing,
and multiple indoor units including electronic expansion valves (EEVs)
and evaporators (Xu, Yan, Deng, Xia, & Chan, 2013). Experimental
results have illustrated that the control performance of the novel
capacity control algorithm is further improved in comparison with
its previous work. However, controlling indoor air temperature by
using the novel capacity control algorithm could still be subject to
significant fluctuations under certain operating conditions because of
using a temperature dead-band, time-delay for compressor start-up.
The interaction with other indoor units may be an important impact
factor but was rarely considered. To improve the energy efficiency of
a multi-zone building ME A/C system, thermal comfort and IAQ levels,
a suitable optimization method is required for making each room’s
temperature, humidity and CO2 concentration consistent with their
desired references. To realize it, we consider a case that each DX unit
can exchange information with its neighbors.

To overcome the above issues, in this paper we present an au-
tonomous hierarchical distributed control (AHDC) method for a multi-
zone building ME A/C system which not only considers how to main-
tain multiple zones’ thermal comfort and IAQ within comfortable
ranges but also considers reduction of communication resources, com-
putational complexity and conservativeness reduction, and energy con-
sumption and costs. Meanwhile, the peak-average-ratio (PAR) can also
be considered in this paper. Moreover, the proposed comfort control
considers thermal comfort and IAQ and the coupling effects of them.
This control strategy consists of two layers. The upper layer is open
loop scheduling that collects only a room’s measurement information
containing room cooling and pollutant loads, weather conditions, end-
user services including demand and energy rates, thermal comfort and
IAQ levels and operation profiles. Then the upper layer formulates and
solves a steady-state optimization problem for minimizing the demand
and energy costs of the multi-zone building ME A/C system under a

time-of-use (TOU) rate structure of electricity over a 24-h period using
nonlinear programming (NLP) algorithm. We make an assumption that
the multi-zones are similar in the occupancies, functions and purposes;
in this situation, one can distributively design an optimal scheduler.
This scheduling generates time-varying trajectory references and com-
municates with the whole connected network through neighbors. All
rooms then transmit their references to the lower layer controllers.
The lower layer designed as DMPC controllers also uses local infor-
mation to formulate and solve local optimization problems to track the
autonomously and adaptively time-varying trajectory reference signals
calculated by the upper layer. For simplicity, we make an assumption
that all state variables are measured, thus full state feedbacks are
considered. Our future work will consider designing observers in case
some variables are not measured. The way we handle the upper layer
is different from that of Long et al. (2016) and Zafra-Cabeza et al.
(2011), which needs to collect all rooms’ measurement information.
It is also different from the distributed controllers in Ma et al. (2011),
Morosan et al. (2011, 2010), Scherer et al. (2014) and Zheng et al.
(2013), which collect information from a zone and its neighbors. The
proposed control scheme can be realized with reduced, cheaper and
short-range communication modules, and depending on the commu-
nication topology, a receiver only. While in the conventional control
schemes (Long et al., 2016; Ma et al., 2011; Morosan et al., 2011, 2010;
Scherer et al., 2014; Zafra-Cabeza et al., 2011; Zheng et al., 2013),
it may require full-swing communication modules, i.e., with both a
transmitter and receiver, which require external service providers in
long-range data communication modules. The lower layer designs a
new distributed controller for a zone such that this subsystem depends
entirely on the zone by introducing a new input variable over a short-
term horizon. This distributed control scheme is desirable in practice
and can be easily implemented by our previous control algorithm (Mei
et al., 2018). The results show that the proposed control scheme is
superior to the previous control strategy on energy efficiency.

Our principal contributions can be summarized as follows:
(1) We first propose two-layer distributed control strategies that

not only reduce more energy demand and costs in comparison with
previous works but also maintain both thermal comfort and IAQ of
multi-zone within comfortable ranges. These levels of performance are
demonstrated in the case study.

(2) The proposed steady state distributed control and closed-loop
distributed control schemes have the potential of reducing the com-
plexity of computation and the hardware of communication modules in
comparison with the centralized, non-distributed control schemes and
hierarchical distributed control schemes.

(3) A novel approach for the lower layer closed-loop distributed
control is designed to obtain a new feedback controller. This is achieved
by introducing new input variables such that the closed-loop distributed
control subsystems can be converted to a subsystem that depends
entirely on one zone and our previous MPC algorithm developed for
a single zone can be used.

(4) This study considers the predicted mean vote (PMV) index as an
indicator of both thermal comfort and IAQ.

This paper is organized as follows: In Section 2, the nonlinear
dynamical models and energy models for the multi-zone building ME
A/C system, the PMV index and the system constraints are presented.
The proposed AHDC method for the multi-zone building ME A/C system
is proposed in Section 3. Simulation results are provided in Section 4.
Section 5 concludes this paper.

2. System model

2.1. An ME A/C system in buildings

The schematic of an ME A/C system is illustrated in Fig. 1. The
ME A/C system includes dampers, DX evaporators, an air-cooled tube-
plate-finned condenser, a variable speed compressor, EEVs, variable
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Fig. 1. Schematic diagram of an ME A/C system.

speed centrifugal supply fans with pressure swing absorption (PSA)
boxes, and a damper for mixing return air from the ME A/C system
with outside air. The variable speed supply fan adjusts its own speed
based on the air flow rate/opening controlled by EEV to control cooled
air to each room. Each indoor unit placed in the room has an EEV
and an evaporator. The PSA box regulates the conditioned air flow
rate and absorbs CO2 contaminant concentration for improving the
fresh air ratio. Each indoor unit is connected to the variable speed
compressor and the outlet of the air-cooled condenser. The indoor air
unit recirculates return air from building spaces and mixes it with
outside air. The proportion of return air to outside air is controlled by
damper positions in the ME A/C system. The mixed air is cooled by the
cooling coils.

Because of the complex nature of air flow and the heat transfer
process, ME A/C systems are usually modeled as time-varying nonlinear
partial differential equations (Vakiloroaya, Ha, & Skibniewski, 2013),
which are not suitable for control and optimization. Therefore, the
following assumptions are made to simplify the modeling.

(1) The air in each room and outdoor environment is well mixed
immediately so that the temperature, humidity and CO2 concentration
distributions are uniform.

(2) The heat capacity of air is constant.

2.2. Dynamic model of the ME A/C system

According to the above configuration, we use an undirected con-
nected graph structure to represent the rooms and their dynamic cou-
plings as described below. We associate the 𝑖th room with the 𝑖th node
of the system. The mathematical dynamic models for the multi-zone
building ME A/C system via the relationship between air enthalpy,
temperature and the moisture content leaving the evaporator 𝑖 of unit
𝑖 as ℎ𝑠,𝑖 = 𝐶𝑎𝑇𝑠,𝑖 + ℎ𝑓𝑔𝑊𝑠,𝑖 are described as follows. In this paper, we
only consider the interaction between rooms by sensible heat gain.

𝐶𝑎𝜌𝑉𝑖
d𝑇𝑧,𝑖
d𝑡 =

𝑚
∑

𝑗=1

𝑇𝑧,𝑗 − 𝑇𝑧,𝑖
𝑅𝑖𝑗

+
𝑇0 − 𝑇𝑧,𝑖

𝑅𝑖
+ 𝐶𝑎𝜌𝑣𝑓,𝑖(𝑇𝑠,𝑖 − 𝑇𝑧,𝑖) +𝑄𝑙𝑜𝑎𝑑,𝑖,

(1a)

𝜌𝑉𝑖
d𝑊𝑧,𝑖

d𝑡 = 𝜌𝑣𝑓,𝑖(
ℎ𝑠,𝑖 − 𝐶𝑎𝑇𝑠,𝑖

ℎ𝑓𝑔
−𝑊𝑧,𝑖) +𝑀𝑙𝑜𝑎𝑑,𝑖, (1b)

𝐶𝑎𝜌𝑉ℎ1,𝑖
d𝑇𝑑,𝑖
d𝑡 = 𝐶𝑎𝜌𝑣𝑓,𝑖(𝑇𝑚𝑖𝑥 − 𝑇𝑑,𝑖) + 𝛼𝑑𝑐,𝑖𝐴1,𝑖(𝑇𝑤,𝑖 −

𝑇𝑚𝑖𝑥 + 𝑇𝑑,𝑖
2

), (1c)

𝜌𝑉ℎ2,𝑖
dℎ𝑠,𝑖
d𝑡 = 𝛼𝑤𝑐,𝑖𝐴2,𝑖(𝑇𝑤,𝑖 −

𝑇𝑑,𝑖 + 𝑇𝑠,𝑖
2

) + ℎ𝑓𝑔𝜌𝑣𝑓,𝑖(𝑊𝑚𝑖𝑥 −
ℎ𝑠,𝑖 − 𝐶𝑎𝑇𝑠,𝑖

ℎ𝑓𝑔
)

+ 𝐶𝑎𝜌𝑣𝑓,𝑖(𝑇𝑑,𝑖 − 𝑇𝑠,𝑖),

(1d)

𝐶𝑤,𝑖𝜌𝑤,𝑖𝑉𝑤,𝑖
d𝑇𝑤,𝑖

d𝑡 = 𝛼𝑑𝑐,𝑖𝐴1,𝑖(
𝑇𝑚𝑖𝑥 + 𝑇𝑑,𝑖

2
− 𝑇𝑤,𝑖)

+ 𝛼𝑤𝑐,𝑖𝐴2,𝑖(
𝑇𝑑,𝑖 + 𝑇𝑠,𝑖

2
− 𝑇𝑤,𝑖)−

(ℎ𝑟2,𝑖 − ℎ𝑟1,𝑖)𝑚𝑟,𝑖,

(1e)

𝑉𝑖
d𝐶𝑐,𝑖

d𝑡 = (𝑘𝑃 𝑣𝑓,𝑖 + 𝑘𝐼 ∫

𝑇𝐼

0
𝑣𝑓,𝑖d𝑠)(𝐶𝑠,𝑖 − 𝐶𝑐,𝑖) + 𝐺𝑖 ⋅ 𝑂𝑐𝑐𝑝𝑖, (1f)

where zone 𝑖 ∈ {1, 2,… , 𝑚}, 𝑇𝑧,𝑖 and 𝑊𝑧,𝑖 are the air temperature and
moisture content of zone 𝑖, respectively; 𝑇𝑧,𝑗 means the air temperature
of neighboring zone 𝑖. 𝐶𝑐,𝑖 denotes the CO2 concentration of zone 𝑖,
𝐶𝑠,𝑖 represents the CO2 concentration of supply air to zone 𝑖. 𝑇𝑠,𝑖 and
𝑊𝑠,𝑖 are the air temperature and moisture content leaving the indoor
unit 𝑖, respectively; 𝑇0 and 𝑊0 are the outside air temperature and
moisture content, respectively. 𝑇𝑑,𝑖 is the air temperature leaving the
dry-cooling region on the air side of the DX evaporator of indoor unit
𝑖, 𝑇𝑤,𝑖 is the temperature of the DX evaporator wall in indoor unit 𝑖,
ℎ𝑠,𝑖 is the enthalpy leaving the DX evaporator of indoor unit 𝑖. 𝑣𝑓,𝑖 is
the air volumetric flow rate of the supply fan 𝑖, 𝑚𝑟,𝑖 is the mass flow
rate of refrigerant to the indoor unit 𝑖. ℎ𝑟1,𝑖 and ℎ𝑟2,𝑖 are the enthalpies
of refrigerant at the DX evaporator inlet and outlet of indoor unit 𝑖,
respectively. 𝑉𝑖 is the volume of zone 𝑖; 𝑉ℎ1,𝑖 and 𝑉ℎ2,𝑖 are the air side
volumes in the dry-cooling region and wet-cooling region on the air
side of the DX evaporator of indoor unit 𝑖, respectively. 𝐶𝑤,𝑖, 𝜌𝑤,𝑖 and
𝑉𝑤,𝑖 are the specific heat of air, density of moist air and volume of the
DX evaporator wall of indoor unit 𝑖, respectively. 𝛼𝑑𝑐,𝑖 and 𝛼𝑤𝑐,𝑖 are the
heat transfer coefficients between air and the evaporator wall in the
dry-cooling region and wet-cooling region of indoor unit 𝑖, respectively.
𝐴1,𝑖 and 𝐴2,𝑖 are the heat transfer areas in the dry-cooling region and
wet-cooling region on the DX evaporator of indoor unit 𝑖, respectively,
which are time-varying uncertainty and bounded parameters. 𝑂𝑐𝑐𝑝𝑖 is
the number of occupants of zone 𝑖, 𝐺𝑖 is amount of CO2 emission rate
of people at zone 𝑖. 𝑘𝑃 and 𝑘𝐼 are the parameter of the PI controller.

𝑅𝑖𝑗 = 𝑅𝑗𝑖 is the thermal resistance of the wall between zone 𝑖
and 𝑗, 𝑅𝑖 is the thermal resistance of the wall between zone 𝑖 and
the outside. If 𝑅𝑖𝑗 and 𝑅𝑖 are not known from design specifications,
they can be obtained via model identification (Bacher & Madsen, 2011;
Jiménez, Madsen, & Andersen, 2008). 𝑇𝑚𝑖𝑥 and 𝑊𝑚𝑖𝑥 are the mixed air
temperature and mixed moisture content before each DX evaporator

88



J. Mei and X. Xia Control Engineering Practice 90 (2019) 85–100

cooling coil, respectively. The mixed air temperature and moisture
content are calculated as follows:

𝑇𝑚𝑖𝑥 = (1 − 𝛿)𝑇0 + 𝛿
∑𝑚

𝑖=1 𝑣𝑓,𝑖𝑇𝑧,𝑖
∑𝑚

𝑖=1 𝑣𝑓,𝑖
, 𝑊𝑚𝑖𝑥 = (1 − 𝛿)𝑊0 + 𝛿

∑𝑚
𝑖=1 𝑣𝑓,𝑖𝑊𝑧,𝑖
∑𝑚

𝑖=1 𝑣𝑓,𝑖
,

(2)

where 𝛿 is the mixing ratio between the outside air and return air. It
is assumed that the return air temperature and moisture content are
the weighted sums of the zone temperatures and moisture contents
with weights, being the air flow rate of supply air to the corresponding
zones. The return air is not recirculated when 𝛿 = 0, and no outside
fresh air is used when 𝛿 = 1. 𝛿 can be employed to save energy through
recirculation but it has to be less than one to guarantee minimal out-
door fresh air delivered to the rooms. Note that the first equation of (2)
is taken from Ma, Matuško, and Borrelli (2015). It is assumed that the
mixed moisture content has a similar description in the second equation
of (2). The airside convective heat transfer coefficients for the louvre-
finned evaporator under both dry-cooling and wet-cooling regions on
the air side of the evaporator 𝑖 are calculated as follows (Chen & Deng,
2006):

𝛼𝑑𝑐,𝑖 = 𝑗𝑑𝑐𝜌𝑣𝑎,𝑖
𝐶𝑎

𝑃𝑟
2
3

, 𝛼𝑤𝑐,𝑖 = 𝑗𝑤𝑐𝜌𝑣𝑎,𝑖
𝐶𝑎

𝑃𝑟
2
3

, 𝑖 = 1, 2,… , 𝑚, (3)

where 𝑃𝑟 is the Prandtl number, 𝑗𝑑𝑐 and 𝑗𝑤𝑐 are the Colburn factors in
the cooling mode. The air velocity 𝑣𝑎,𝑖 is described as follows:

𝑣𝑎,𝑖 =
𝑣𝑓,𝑖 − 𝜀𝑖

𝑑𝑖
, 𝑖 = 1, 2,… , 𝑚,

where 𝑑𝑖 (m2) is the cross-sectional area of zone 𝑖, 𝜀𝑖 is the non-desired
air velocity through the door or window to pass in and out of the air
to zone 𝑖, 𝑣𝑎,𝑖 is the indoor air velocity of room 𝑖.

The above models (1a)–(1e) without considering outside air temper-
ature and humidity entering into system for a single room were first
built in Qi and Deng (2008). The above models (1a)–(1f), absorbing
CO2 by an independent PSA box for a single room, were built in Mei and
Xia (2017a). The above models (1a)–(1f) for a single room, absorbing
CO2 by using a PI controller based on a supply fan, were built in Mei
et al. (2018). On the right-hand side of (1a), the first term denotes the
heat transfer between zone 𝑖 and all neighbors of zone 𝑖; the second
term means the heat transfer between zone 𝑖 and the outside wall.
The PI controller in Eq. (1f) is designed based on the air volumetric
flow rate of the supply fan. It can be used for controlling the indoor
CO2 concentration. In addition, the PI controller has the potential of
reducing the complexity of computation and the cost of hardware.

Remark 1. Higher-order resistance–capacitance (RC) models were de-
veloped in Maasoumy et al. (2014) and Razmara et al. (2015). For
simplicity, we only consider the first-order RC model in this paper.
Though the higher-order RC models maybe more accurate than the
first-order model, it is more difficult to use the current methods to
solve the distributed control problem. Most existing works to solve
the distributed control problem assume that interaction terms are ei-
ther disturbances or negligible. We will study the distributed control
problem of the higher-order RC models in the future.

Remark 2. The building DX A/C system’s cooling and pollutant loads
can be expressed in Mei et al. (2018) and used as measurement in-
formation for an open loop controller in the upper optimization. The
building loads are affected by some parameters (such as 𝑇0, 𝑊0, 𝑄𝑟𝑎𝑑,𝑖,
𝑂𝑐𝑐𝑝𝑖, internal heat gain 𝑄𝑖𝑛𝑡,𝑖 and moisture ventilation load 𝑀𝑖𝑛𝑡,𝑖).
The prediction of these parameters can be obtained through a weather
forecast station, historical data and schedules. Though the multi-zone
buildings’ cooling and pollutant loads cannot be accurately predicted,
the designed AHDC strategy in the next section includes the DMPC
controllers that are capable of handling the prediction errors.

To make the ME A/C system cooperatively control multi-zones’
thermal comfort and air quality, we suppose that the ME A/C system
is equipped with a communication network based on wireless commu-
nication. In this network, they can share information (e.g., 𝑇𝑧,𝑖, 𝑊𝑧,𝑖
and 𝐶𝑐,𝑖) with one another, which is shown in Fig. 1. The information
flow between them is modeled as a network graph  = ( , 𝜗,), where
 = {1, 2,… , 𝑚} is the index set of different rooms and zones of the
ME A/C system, 𝜗 ⊂  ×  is the edge set of ordered pairs of the ME
A/C system, and  = [𝑎𝑖𝑗 ] ∈ R𝑚×𝑚 is the adjacency matrix with entries
𝑎𝑖𝑗 = 1 or 𝑎𝑖𝑗 = 0. If the ME A/C subsystem 𝑖 can receive information
from the ME A/C subsystem 𝑗, then (𝑗, 𝑖) ∈ 𝜗, 𝑎𝑖𝑗 = 1 and the ME A/C
subsystem 𝑗 is called the network neighbor of the ME A/C subsystem 𝑖,
denoted by 𝑗 ∈ 𝑖, where 𝑖 = {𝑗 ∈ |𝑎𝑖𝑗 = 1}. If the ME A/C subsystem
𝑖 cannot have access to the information of the ME A/C subsystem 𝑗, then
(𝑗, 𝑖) ∉ 𝜗, 𝑎𝑖𝑗 = 0 and 𝑗 ∉ 𝑖. Self-connection is not considered for ,
i.e., 𝑎𝑖𝑖 = 0, ∀𝑖 ∈  . A graph  is undirected if 𝑎𝑖𝑗 = 𝑎𝑗𝑖 for any 𝑖, 𝑗 ∈  .
In this paper, the network graph  = ( , 𝜗,) of the ME A/C system is
assumed to be undirected and connected (Yu & Xia, 2017).

All the DX units of the ME A/C system adjust their comfort levels
adaptively by acquiring the adjacent information. The neighbors of
each DX unit can be defined in many different ways. In this paper, the
following way is based on the effect of thermal resistance and is defined
as follows:

𝑖 = {𝑗 ∶ |𝑅𝑖𝑗 | < 𝜀0, 𝑖 ≠ 𝑗}, (4)

where the parameter 𝜀0 is a predefined threshold, 𝑖 is the set of
neighbors of room 𝑖.

The system dynamic equations (1) can be written as equations of
the following:

�̇�𝑖 = 𝑓𝑖(𝑥𝑖, 𝑥−𝑖, 𝑢𝑖, 𝜔𝑖), 𝑖 = 1, 2,… , 𝑚, (5)

where the vector denoted as 𝑥𝑖 ≜ [ℎ𝑠,𝑖, 𝑇𝑧,𝑖, 𝑇𝑑,𝑖, 𝑇𝑤,𝑖,𝑊𝑧,𝑖, 𝐶𝑐,𝑖]𝑇 is the
state of the subsystem 𝑆𝑖; 𝑢𝑖 = [𝑣𝑓,𝑖, 𝑚𝑟,𝑖]𝑇 are the constrained control
signals; 𝜔𝑖 ≜ [𝑄𝑙𝑜𝑎𝑑,𝑖,𝑀𝑙𝑜𝑎𝑑,𝑖, 𝐶𝑙𝑜𝑎𝑑,𝑖]𝑇 represent the load variables of
room 𝑖; and 𝑥−𝑖 concatenate the states of all subsystems 𝑆𝑗 (𝑗 ∈ )
of the subsystem 𝑆𝑖, i.e., 𝑥−𝑖 = (𝑥1,… , 𝑥𝑖−1, 𝑥𝑖+1,… , 𝑥𝑚). The functions
𝑓𝑖(𝑥𝑖, 𝑥−𝑖, 𝑢𝑖, 𝜔𝑖) (𝑖 = 1, 2,… , 𝑚) are defined as follows:

𝑓𝑖(𝑥𝑖, 𝑥−𝑖, 𝑢𝑖, 𝜔𝑖)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛼𝑤𝑐,𝑖𝐴2,𝑖(𝑇𝑤,𝑖−
𝑇𝑑,𝑖+𝑇𝑠,𝑖

2 )+ℎ𝑓𝑔𝜌𝑣𝑓,𝑖(𝑊𝑚𝑖𝑥−
ℎ𝑠,𝑖−𝐶𝑎𝑇𝑠,𝑖

ℎ𝑓𝑔
)+𝐶𝑎𝜌𝑣𝑓,𝑖(𝑇𝑑,𝑖−𝑇𝑠,𝑖)

𝜌𝑉ℎ2,𝑖
∑𝑚

𝑗=1
𝑇𝑧,𝑗−𝑇𝑧,𝑖

𝑅𝑖𝑗
+

𝑇0−𝑇𝑧,𝑖
𝑅𝑖

+𝐶𝑎𝜌𝑣𝑓,𝑖(𝑇𝑠,𝑖−𝑇𝑧,𝑖)+𝑄𝑙𝑜𝑎𝑑,𝑖

𝐶𝑎𝜌𝑉𝑖

𝐶𝑎𝜌𝑣𝑓,𝑖(𝑇𝑚𝑖𝑥−𝑇𝑑,𝑖)+𝛼𝑑𝑐,𝑖𝐴1,𝑖(𝑇𝑤,𝑖−
𝑇𝑚𝑖𝑥+𝑇𝑑,𝑖

2 )
𝐶𝑎𝜌𝑉ℎ1,𝑖

𝛼𝑑𝑐,𝑖𝐴1,𝑖(
𝑇𝑚𝑖𝑥+𝑇𝑑,𝑖

2 −𝑇𝑤,𝑖)+𝛼𝑤𝑐,𝑖𝐴2,𝑖(
𝑇𝑑,𝑖+𝑇𝑠,𝑖

2 −𝑇𝑤,𝑖)−(ℎ𝑟2,𝑖−ℎ𝑟1,𝑖)𝑚𝑟,𝑖
𝐶𝑤,𝑖𝜌𝑤,𝑖𝑉𝑤,𝑖

𝜌𝑣𝑓,𝑖(
ℎ𝑠,𝑖−𝐶𝑎𝑇𝑠,𝑖

ℎ𝑓𝑔
−𝑊𝑧,𝑖)+𝑀𝑙𝑜𝑎𝑑,𝑖

𝜌𝑉𝑖

(𝑘𝑃 𝑣𝑓,𝑖+𝑘𝐼 ∫
𝑇𝐼
0 𝑣𝑓,𝑖d𝑠)(𝐶𝑠,𝑖−𝐶𝑐,𝑖)+𝐺𝑖⋅𝑂𝑐𝑐𝑝𝑖

𝑉𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.
(6)

2.3. Simplified energy models of the ME A/C system

The power consumers of the multi-zone building ME A/C system
include the dampers, condenser fan, compressor and DX cooling coils.
The power to drive the dampers is assumed to be negligible. The
condenser fan power 𝑃𝑐𝑜𝑛 is approximated as a second-order polynomial
function of the total mass flow rate of refrigerant (𝑚𝑟 =

∑𝑚
𝑖=1 𝑚𝑟,𝑖) driven

by the fan

𝑃𝑐𝑜𝑛 = 𝑐0 + 𝑐1𝑚𝑟 + 𝑐2𝑚
2
𝑟 , (7)

where 𝑐0, 𝑐1 and 𝑐2 are the parameters to be identified by curve-fitting
of experimental data in Vakiloroaya, Samali, and Pishghadam (2014).
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The power consumption of the evaporator fans 𝑃𝑒𝑣𝑎 based on the
energy conservation law is expressed as follows:

𝑃𝑒𝑣𝑎 =
𝑚
∑

𝑖=1
(𝑎0 + 𝑎1𝑣𝑓,𝑖,+𝑎2𝑣2𝑓,𝑖 + 𝑎3𝑇𝑠,𝑖 + 𝑎4𝑇

2
𝑠,𝑖 + 𝑎5𝑄𝑐,𝑖

+ 𝑎6𝑄
2
𝑐,𝑖 + 𝑎7𝑣𝑓,𝑖𝑇𝑠,𝑖+

𝑎8𝑣𝑓,𝑖𝑄𝑐,𝑖 + 𝑎9𝑇𝑠,𝑖𝑄𝑐,𝑖),

(8)

where the coefficients 𝑎𝑖 (𝑖 = 0, 1,… , 9) are constant and can be
determined by curve-fitting of experimental data in Vakiloroaya et al.
(2014). 𝑄𝑐,𝑖 is the summation of the sensible and latent heat loads in
room 𝑖.

The power consumption of the compressor 𝑃𝑐𝑜𝑚𝑝 is determined
by Wallace et al. (2012):

𝑃𝑐𝑜𝑚𝑝 =
𝑚
∑

𝑖=1

𝑚𝑟,𝑖(ℎ𝑟2,𝑖 − ℎ𝑟1,𝑖)
𝜂

, (9)

where 𝜂 is the combined total efficiency of the compressor (known
parameters).

The total electric power consumption 𝑃𝑡𝑜𝑡 of the multi-zone building
ME A/C system at time 𝑡 then is calculated as

𝑃𝑡𝑜𝑡 = 𝑃𝑐𝑜𝑛 + 𝑃𝑒𝑣𝑎 + 𝑃𝑐𝑜𝑚𝑝. (10)

2.4. PMV index

The PMV index was proposed by Fanger (1972) and is used as
a thermal comfort indicator. Fanger’s index quantifies thermal sensa-
tion experienced by numerous people. The sensation is represented
by a scale ranging from −3 (cold) to +3 (hot). The PMV index can
be determined by personal and environmental factors. The personal
factors consist of metabolic rate 𝑀𝑟 (W∕m2) and clothing insulating 𝐼𝑐𝑙
(m2◦C∕W). The environmental factors comprise air temperature 𝑇𝑧, air
humidity (or moisture content) 𝑊𝑧, air velocity 𝑣𝑎 and mean radiant
temperature 𝑇𝑟. The function of the conventional PMV index for a single
zone is depicted by

𝑃𝑀𝑉 = 𝑔(𝑇𝑧,𝑊𝑧, 𝑣𝑎,𝑀𝑟, 𝐼𝑐𝑙 , 𝑇𝑟), (11)

where the specific expression can be described in Fanger (1972).
Conventionally, the PMV index is an indicator of indoor air tempera-

ture and humidity (Castilla et al., 2011, 2014; Cigler et al., 2012; Freire,
Oliveira, & Mendes, 2008). The CO2 concentration, air temperature and
humidity have become three major indicators of thermal comfort and
IAQ. The separate control of the PMV index and CO2 concentration
was studied in Atthajariyakul and Leephakpreeda (2004) and Wang and
Jin (2000). However, three coupling effects of indoor air temperature,
humidity and CO2 concentration cannot be ignored in many cases. In
fact, indoor humidity was correlated with CO2 concentration according
to measurement results reported in Gladyszewska-Fiedoruk (2013).
Furthermore, the experimental investigation (Lin, Chiu, & Chen, 2015)
suggested that the value of the PMV index was affected by control of
the indoor CO2 concentration. To our best knowledge, very little work
exists in the literature that proposes mathematical equations among the
indoor air temperature, relative humidity and CO2 concentration. We
propose simplified mathematical equations such that the PMV index
includes indoor thermal comfort and CO2 concentration in this study.

𝑀𝑟 is the rate of metabolism, which denotes the amount of energy
used by a person per unit of time. From the study of Weir (1949), the
metabolic rate is directly related to a person’s energy output, which can
be expressed by calorie output per hour and a body’s surface area

𝑀𝑟 = 𝐾𝑝∕𝑆𝑝, (12)

where 𝐾𝑝 denoting a person’s heat output per hour is the calorie of 1L
of oxygen consumed, 𝑆𝑝 is the body surface area and can be expressed
as (Weir, 1949)

𝑆𝑝 = 0.007184𝐻0.725𝑊 0.425, (13)

where 𝐻 and 𝑊 are the height (cm) and weight (kg) of a person,
respectively. For 1L oxygen consumed, we have (Weir, 1949)

⎧

⎪

⎨

⎪

⎩

1𝐿 O2 consumed = 𝑎 + 𝑏 + 𝑐 = 1,
1𝐿 CO2 produced = 𝑅 = 𝑎 + 0.802𝑏 + 0.718𝑐,
𝐾𝑝 = 5.047𝑎 + 4.463𝑏 + 4.735𝑐,

(14)

where 𝑎 is the carbohydrate, 𝑏 denotes the protein and 𝑐 represents the
fat which is obtained by 1L of oxygen metabolizing. The third equation
of (14) can be reduced to the following one

𝐾𝑝 = 3.9 × L O2 used + 1.1 × L CO2 produced = 3.9 ∗ 𝑉𝑜 + 1.1 ∗ 𝐺, (15)

where 𝑉𝑜 is the amount of oxygen consumed per unit of hour (l/h). This
equation was widely cited and can be used for estimating the energy
expenditure, oxygen consumed and CO2 produced (Christensen, Frey,
Foenstelien, Aadland, & Refsum, 1983; Kinney, Morgan, Domingues, &
Gildner, 1964; Treuth, Adolph, & Butte, 1998).

Under normal conditions, when a body is at rest and in nutritional
equilibrium, the global respiratory ratio is 𝑚CO2

∕𝑚O2
= 0.83 as re-

ported in Djongyang, Tchinda, and Njomo (2010). Since this study
investigates thermal comfort and IAQ of offices, we assume 𝐺∕𝑉𝑜 =
0.83. One can then obtain

𝐾𝑝 =
481.3
83

∗ 𝐺, (16)

According to (12), one can obtain that the metabolic rate in human
metabolism of room 𝑖 denoted by 𝑀𝑟𝑖 has the following equation

𝑀𝑟𝑖 =
481.3
83𝑆𝑝𝑖

∗ 𝐺𝑖, 𝑖 = 1, 2,… , 𝑚. (17)

where 𝑆𝑝𝑖 is the body surface area of room 𝑖.
Based on the Eqs. (17) and (1f), 𝑀𝑟𝑖 under a steady state of the CO2

concentration in room 𝑖 can be expressed by

𝑀𝑟𝑖 =
481.3

83𝑆𝑝𝑖 ⋅ 𝑂𝑐𝑐𝑝𝑖
(𝑘𝑃 𝑣𝑓,𝑖 + 𝑘𝐼 ∫

𝑇𝐼

0
𝑣𝑓,𝑖d𝑠)(𝐶𝑐,𝑖 − 𝐶𝑠,𝑖), 𝑖 = 1, 2,… , 𝑚.

(18)

This equation implies that the metabolic rate can reflect indoor CO2
concentration produced.

Then the PMV𝑖 index is the function of the following variables:

𝑃𝑀𝑉𝑖 = 𝑔𝑖(𝑇𝑧,𝑖,𝑊𝑧,𝑖, 𝐶𝑐,𝑖, 𝑣𝑓,𝑖, 𝐼𝑐𝑙 , 𝑇𝑟), 𝑖 = 1, 2,… , 𝑚. (19)

It can be noted from this equation that the PMV index can be used as
an indicator of thermal comfort and IAQ of room 𝑖.

The Eq. (18) represents a condition under which the steady states
of the system are reached, i.e., there is a relationship between the
metabolic rate, CO2 concentration and air volumetric flow rate at
steady states. In fact, for the same activity of a person, his respiratory
change is determined by the indoor air temperature or/and humidity.
A person’s metabolic rate is directly reflected by a respiratory change.
The high or low temperature or/and humidity can cause the occupant
to breathe out either more or less CO2, thus the indoor air temperature
or/and humidity can influence the metabolic rate. On the other hand,
the air volumetric flow rate determines the indoor air temperature and
humidity and their eventual steady states. Therefore, the air volumetric
flow rate is indirectly related to the metabolic rate.

Remark 3. Most previous works used the PMV index as a thermal
comfort indicator. From function (19), it can be seen that the modified
PMV index has been extended and used as an indicator of both thermal
comfort and IAQ in the normal office buildings.

2.5. Constraints

The multi-zone building ME A/C system is subject to thermal com-
fort and IAQ constraints, and cooling operational constraints are de-
fined as below.
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(C1) PMV𝑖 ∈ [PMV𝑖,PMV𝑖], 𝑖 = 1, 2,… , 𝑚. Each room’s thermal
comfort and IAQ are within the comfort ranges.

(C2) 𝛿 ∈ [𝛿, 𝛿). The upper and lower bounds limit the ratio of the
outside air entering the system.

(C3) 𝑇𝑧,𝑖 ∈ [𝑇 𝑧,𝑖, 𝑇 𝑧,𝑖], 𝑊𝑧,𝑖 ∈ [𝑊 𝑧,𝑖,𝑊 𝑧,𝑖], 𝐶𝑐,𝑖 ∈ [𝐶𝑐,𝑖, 𝐶𝑐,𝑖], 𝑖 =
1, 2,… , 𝑚. Each room’s air temperature, moisture content and CO2
concentration are within the required ranges for occupants in the
cooling mode.

(C4) 𝑇𝑠,𝑖 ∈ [𝑇 𝑠,𝑖, 𝑇 𝑠,𝑖], 𝑊𝑠,𝑖 ∈ [𝑊 𝑠,𝑖,𝑊 𝑠,𝑖], 𝑖 = 1, 2,… , 𝑚. The bounds
of the air temperature and moisture leaving the DX evaporator are
limited because of the physical characteristics of the coils and the air
cooling coils of the DX evaporators. Besides, the upper bounds 𝑇 𝑠,𝑖 and
𝑊 𝑠,𝑖 are less than 𝑇𝑧,𝑖 and 𝑊𝑧,𝑖 respectively since they are used for
cooling and dehumidifying of each room. The bound of the air enthalpy
ℎ𝑠,𝑖 satisfies: ℎ𝑠,𝑖 ∈ [𝐶𝑧𝑇 𝑠,𝑖 + ℎ𝑓𝑔𝑊 𝑠,𝑖, 𝐶𝑎𝑇 𝑠,𝑖 + ℎ𝑓𝑔𝑊 𝑠,𝑖].

(C5) ∑𝑚
𝑖=1 𝑣𝑓,𝑖𝑇𝑠,𝑖 ≤

∑𝑚
𝑖=1 𝑣𝑓,𝑖𝑇𝑚𝑖𝑥,

∑𝑚
𝑖=1 𝑣𝑓,𝑖𝑊𝑠,𝑖 ≤

∑𝑚
𝑖=1 𝑣𝑓,𝑖𝑊𝑚𝑖𝑥. The

mixed air temperature and moisture content after each DX evaporator
can only decrease.

(C6) 𝑇𝑑,𝑖 ≤ 𝑇𝑚𝑖𝑥, 𝑇𝑤,𝑖 ≤ 𝑇𝑑,𝑖, 𝑊𝑠,𝑖 ≤ 𝑊𝑚𝑖𝑥, 𝑖 = 1, 2,… , 𝑚.
Air temperature and moisture content after each DX dry-cooling and
wet-cooling regions can only decrease, respectively.

(C7) 𝑣𝑓,𝑖 ∈ [𝑣𝑓,𝑖, 𝑣𝑓,𝑖], 𝑚𝑟,𝑖 ∈ [𝑚𝑟,𝑖, 𝑚𝑟,𝑖], 𝑖 = 1, 2,… , 𝑚. The upper
bounds of the air volumetric flow rate 𝑣𝑓,𝑖 and the mass flow rate of
refrigerant 𝑚𝑟,𝑖 of each room are limited by the physical characteristics
of the multi-zone building ME A/C system. The lower bounds 𝑣𝑓,𝑖 > 0
and 𝑚𝑟,𝑖 > 0 are matched minimum operation and ventilation demands.

The constraints in (C1)–(C7) are compactly written as

𝑥𝑖 ∈ X, 𝑢𝑖 ∈ U, ℎ1,𝑖(𝑥𝑖, 𝑢𝑖) ≤ 0, ℎ2,𝑖(𝑥𝑖) ≤ 0 and 𝑃𝑀𝑉𝑖 ∈ F,

𝑖 = 1, 2,… , 𝑚.
(20)

where X, U, P and F are bounded sets, ℎ1,𝑖(𝑥𝑖, 𝑢𝑖) and ℎ2,𝑖(𝑥𝑖) can
be written as functions of the state and input variables, where they
correspond to constraints in (C5) and (C6).

3. Controller design

To facilitate the description of the proposed AHDC strategy for the
nonlinear systems (5), the notation 𝑢 will be used for the upper layer
control and 𝑙 will be used for the lower layer DMPC. We will abbreviate
the upper layer open loop controller to UOPC while the lower layer
DMPC as LDMPC for short. 𝑡𝑢𝑘 denotes the sampling time instant of
the UOPC and 𝑡𝑙𝑘 represents that of the lower level DMPC; assume
𝑐(𝑘, 𝑞) ≜ 𝑘𝑀+𝑞, where 𝑀 is a positive integer number corresponding to
the number of sampling instants of the LDMPC between two sampling
instants of the UOPC; 𝑡𝑢𝑘 ≜ 𝑡𝑙𝑐(𝑘,0); 𝛿𝑢 ≜ 𝑡𝑢𝑘+1 − 𝑡𝑢𝑘 and 𝛿𝑙 ≜ 𝑡𝑙𝑘+1 − 𝑡𝑙𝑘
denote the sampling period of the UOPC and LDMPC, respectively;
𝛿𝑢 = 𝑀𝛿𝑙. 𝑇 𝑙 denotes the prediction horizon of the LDMPC, which
satisfies 𝛿𝑢 ≥ 𝑇 𝑙.

Throughout the rest of this paper, we denote the long-term scale
horizon as [0, 𝐾𝑢], and 𝐾𝑢 = 𝑛𝛿𝑢 (𝑛 ∈ 𝑁+). Fig. 2 shows the time index
of the two layers and that the upper layer sends information to the
lower layer.

3.1. Upper level: steady state optimization problem

In reality, each zone has desired air temperature, humidity and CO2
concentration, the reference points of which are determined by users.
The objective of the upper layer considered in this paper is to minimize
the total electricity bills in the building, which reflect demand and
energy costs under the TOU rate structure, and to generate optimal
reference points of air temperature, humidity and CO2 concentration

Fig. 2. Simplified schematic of two-layer time index.

for each zone for the lower layer. More specifically, we consider the
following centralized steady-state optimization problem:

𝑋∗(𝑡𝑢𝑘) = arg min𝑥(𝑡𝑢𝑘),𝑢(𝑡
𝑢
𝑘)

(

𝑚
∑

𝑖=1

[

𝑤1

𝑛
∑

𝑘=1

(

𝐸𝑐 (𝑡𝑢𝑘)𝑃𝑡𝑜𝑡,𝑖(𝑡𝑢𝑘)𝛿
𝑢)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
energy cost

+𝑤2
(

𝐷𝑐 (𝑡𝑢𝑘)max1≤𝑘≤𝑛
{

𝑃𝑡𝑜𝑡,𝑖(𝑡𝑢𝑘)
})

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
demand cost

)

,

(21a)

subject to the following constraints:

𝑓𝑖(𝑥𝑖(𝑡𝑢𝑘), 𝑥−𝑖(𝑡
𝑢
𝑘), 𝑢𝑖(𝑡

𝑢
𝑘), 𝜔𝑖(𝑡𝑢𝑘)) = 0, 𝑖 = 1, 2,… , 𝑚, (21b)

|𝑃𝑀𝑉𝑖(𝑡𝑢𝑘)| ≤ 𝛼, 𝑖 = 1, 2,… , 𝑚, (21c)

𝑥𝑖(𝑡𝑢𝑘) ∈ X𝑖, 𝑢𝑖(𝑡𝑢𝑘) ∈ U𝑖, ℎ1,𝑖(𝑥𝑖(𝑡𝑢𝑘), 𝑢𝑖(𝑡
𝑢
𝑘)) ≤ 0, ℎ2,𝑖(𝑥𝑖(𝑡𝑢𝑘)) ≤ 0,

𝑖 = 1, 2,… , 𝑚,
(21d)

where 𝑡𝑢𝑘 ∈ [0, 𝐾𝑢], 𝑥(𝑡𝑢𝑘) = [𝑥1(𝑡𝑢𝑘),… , 𝑥𝑚(𝑡𝑢𝑘)]
𝑇 is the system state, 𝑢(𝑡𝑢𝑘) =

[𝑢1(𝑡𝑢𝑘),… , 𝑢𝑚(𝑡𝑢𝑘)]
𝑇 is the control input. The total energy consumption

𝑃𝑡𝑜𝑡 is expressed in (10) and the PMV function is described in (19).
Constant 𝛼 is the comfort bounded of the value of the PMV index. 𝐸𝑐 (𝑡𝑢𝑘)
is the TOU electricity rate at time step 𝑡𝑢𝑘, and 𝐷𝑐 (𝑡𝑢𝑘) is the demand
charge rate at time step 𝑡𝑢𝑘. 𝑤𝑖 (𝑖 = 1, 2) denote the positive weighting
factors and 𝑓𝑖(𝑥𝑖(𝑡𝑢𝑘), 𝑥−𝑖(𝑡

𝑢
𝑘), 𝑢𝑖(𝑡

𝑢
𝑘), 𝜔𝑖(𝑡𝑢𝑘)) are defined in (6). 𝑋∗(𝑡𝑢𝑘) is a

global optimal solution of the optimization problem (21).
Before investigating the distributed steady state optimization prob-

lem, we make an assumption on the system model.

Assumption 1. The optimal problem (21) admits a solution, of which
the steady state of temperature, humidity and CO2 concentration for
each zone are approximately the same.

This assumption is valid in many practical situations where the
different zones serve the same functions and purposes; for example
in an office environment, the comfort requirements are subject to the
same standards, ambient conditions and energy regulatory and pricing
structure and are therefore normally the same.

This assumption may not hold in cases where buildings have differ-
ent functional zones such as offices and ancillary equipment spaces.
The similar algorithms can be extended to the cases when different
functional zones can be grouped into homogeneous ones.

Secondly, under a steady state, the total heat gain from neighboring
zones is sometimes less dominant compared with that from the outside
plus the indoor heat gain in every zone. As reported in Mei et al. (2018),
the TOU rate structure is also the main factor to dominate the steady
state optimization solutions. Therefore, in the optimization problem

91



J. Mei and X. Xia Control Engineering Practice 90 (2019) 85–100

(21), we can ignore the interacting terms 𝛴𝑚
𝑗=1,𝑗≠𝑖

𝑇𝑧,𝑗−𝑇𝑧,𝑖
𝑅𝑖𝑗

in (1a) or

𝛴𝑚
𝑗=1,𝑗≠𝑖

𝑇𝑧,𝑗−𝑇𝑧,𝑖
𝑅𝑖𝑗

in (21b). Thereby, a simplified optimization problem

(22) is considered for one zone 𝑖 only as follows:

𝑋𝑟
𝑖 (𝑡

𝑢
𝑘) = arg min𝑥𝑖(𝑡𝑢𝑘),𝑢𝑖(𝑡

𝑢
𝑘)

(

𝑤1

𝑛
∑

𝑘=1

(

𝐸𝑐 (𝑡𝑢𝑘)𝑃𝑡𝑜𝑡,𝑖(𝑡𝑢𝑘)𝛿
𝑢)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
energy cost

+𝑤2(𝐷𝑐 (𝑡𝑢𝑘)max1≤𝑘≤𝑛
{

𝑃𝑡𝑜𝑡,𝑖(𝑡𝑢𝑘)
}

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

demand cost

)

,

(22a)

subject to the following constraints:

𝑓𝑖(𝑥𝑖(𝑡𝑢𝑘), 𝑢𝑖(𝑡
𝑢
𝑘), 𝜔𝑖(𝑡𝑢𝑘)) = 0, (22b)

|𝑃𝑀𝑉𝑖(𝑡𝑢𝑘)| ≤ 𝛼, (22c)

𝑥𝑖(𝑡𝑢𝑘) ∈ X𝑖, 𝑢𝑖(𝑡𝑢𝑘) ∈ U𝑖, ℎ1,𝑖(𝑥𝑖(𝑡𝑢𝑘), 𝑢𝑖(𝑡
𝑢
𝑘)) ≤ 0, ℎ2,𝑖(𝑥𝑖(𝑡𝑢𝑘)) ≤ 0, (22d)

where 𝑡𝑢𝑘 ∈ [0, 𝐾𝑢], 𝑋𝑟
𝑖 (𝑡

𝑢
𝑘) is a local optimal solution, and 𝑖 means that

the optimization problem (22) only needs the measurement information
of room 𝑖. Here, 𝑓𝑖(𝑥𝑖, 𝑢𝑖, 𝜔𝑖) is described by

𝑓𝑖(𝑥𝑖, 𝑢𝑖, 𝜔𝑖)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛼𝑤𝑐,𝑖𝐴2,𝑖(𝑇𝑤,𝑖−
𝑇𝑑,𝑖+𝑇𝑠,𝑖

2 )+ℎ𝑓𝑔𝜌𝑣𝑓,𝑖(𝑊𝑚𝑖𝑥−
ℎ𝑠,𝑖−𝐶𝑎𝑇𝑠,𝑖

ℎ𝑓𝑔
)+𝐶𝑎𝜌𝑣𝑓,𝑖(𝑇𝑑,𝑖−𝑇𝑠,𝑖)

𝜌𝑉ℎ2,𝑖
𝑇0−𝑇𝑧,𝑖

𝑅𝑖
+𝐶𝑎𝜌𝑣𝑓,𝑖(𝑇𝑠,𝑖−𝑇𝑧,𝑖)+𝑄𝑙𝑜𝑎𝑑,𝑖

𝐶𝑎𝜌𝑉𝑖
𝐶𝑎𝜌𝑣𝑓,𝑖(𝑇𝑚𝑖𝑥−𝑇𝑑,𝑖)+𝛼𝑑𝑐,𝑖𝐴1,𝑖(𝑇𝑤,𝑖−

𝑇𝑚𝑖𝑥+𝑇𝑑,𝑖
2 )

𝐶𝑎𝜌𝑉ℎ1,𝑖
𝛼𝑑𝑐,𝑖𝐴1,𝑖(

𝑇𝑚𝑖𝑥+𝑇𝑑,𝑖
2 −𝑇𝑤,𝑖)+𝛼𝑤𝑐,𝑖𝐴2,𝑖(

𝑇𝑑,𝑖+𝑇𝑠,𝑖
2 −𝑇𝑤,𝑖)−(ℎ𝑟2,𝑖−ℎ𝑟1,𝑖)𝑚𝑟,𝑖

𝐶𝑤,𝑖𝜌𝑤,𝑖𝑉𝑤,𝑖

𝜌𝑣𝑓,𝑖(
ℎ𝑠,𝑖−𝐶𝑎𝑇𝑠,𝑖

ℎ𝑓𝑔
−𝑊𝑧,𝑖)+𝑀𝑙𝑜𝑎𝑑,𝑖

𝜌𝑉𝑖
(𝑘𝑃 𝑣𝑓,𝑖+𝑘𝐼 ∫

𝑇𝐼
0 𝑣𝑓,𝑖d𝑠)(𝐶𝑠,𝑖−𝐶𝑐,𝑖)+𝐺𝑖⋅𝑂𝑐𝑐𝑝𝑖

𝑉𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(23)

We have five important remarks for the optimization problem (22).

• In (22a), the term regarding the end-user services contains two
parts, i.e., the energy cost of the multi-zone building ME A/C
system given by ∑𝑛

𝑘=1
[

𝐸𝑐 (𝑡𝑢𝑘)𝑃𝑡𝑜𝑡,𝑖(𝑡𝑢𝑘)𝛿
𝑢] (weighted by 𝑤1) aims to

minimize energy cost, the peak demand 𝐷𝑐 (𝑡𝑢𝑘)max1≤𝑘≤𝑛
{

𝑃𝑡𝑜𝑡,𝑖(𝑡𝑢𝑘)
}

(weighted by 𝑤2) aims to reduce demand cost.
• The weighting factors 𝑤1 and 𝑤2, which are determined by users,

are to balance the two objectives. Specifically, if preferring more
demand reduction, they can increase 𝑤2 and decrease 𝑤1 and vice
versa.

• It can be seen in (22a) that the energy and demand rates 𝐸𝑐 (𝑡𝑢𝑘)
and 𝐷𝑐 (𝑡𝑢𝑘) depend on the TOU. The rate structures are determined
by utilities for various types of customers. For some rate plans,
customers have the flexibility to choose peak periods so that
they can save cost by optimizing energy use during specific time
periods.

• This steady state optimization problem is different from our pre-
vious work (Mei & Xia, 2017a; Mei et al., 2018). In Mei and Xia
(2017a), an open loop optimal control algorithm was proposed to
minimize energy consumption by setting temperature, humidity
and CO2 concentration. In Mei et al. (2018), an open loop steady
state optimal control algorithm is autonomously and adaptively
setting optimal temperature, humidity and CO2 concentration
references, which could be time-varying to minimize energy cost
and the PMV index. This study proposes an open loop optimal
controller that minimizes the energy and demand charge costs
under the PMV index within acceptable ranges. It reaches the
same conclusions as Mei et al. (2018) in scheduling the reference

setpoints. On the other hand, this study considers a DR action,
which can further improve energy efficiency and reduce energy
cost, it is different from our previous work (Mei & Xia, 2017a;
Mei et al., 2018) without consideration of that action.

• The optimal solution applies to one zone, and the resulting ref-
erence setpoints are then communicated to the whole network
through connecting neighbors. Therefore, the scheduling is im-
plementable in a distributed manner.

The ADSMS is a hierarchical distributed way that aims at achieving
energy and cost savings in ME A/C operations without compromising
occupancy comfort levels. The information communication for the
simplified ADSMS is illustrated in Fig. 3. The idea here is to consider
comfort as a service for occupants. The zones (using zone modules
(ZMs)) are customers seeking this service (called token), and a distri-
bution system operator (DSO) is the service provider (called provider).
There are four steps in the ADSMS that are explained in the following:

(1) Master: The DSO collects one zone’s measurement information
(cooling and pollutant loads, weather and occupancy), then computes
and transmits optimal reference signals to this zone by a communica-
tion network.

(2) Slave: The neighboring zones receive communication informa-
tion using numerous ZMs from the driving system. Then neighboring
zones then communicate to whole zones through connecting neighbors.

(3) Token requests: The main aim of the ZM is to run an MPC using
forecast information (weather condition, occupancy and cooling and
pollutant loads) plus sensor readings (temperature and humidity, ther-
mostat and CO2 sensors) to compute the minimal energy consumption
and cost required without breaching comfort ranges.

(4) Coordination: After each room receives communication informa-
tion, each DX unit employs a DMPC algorithm to optimize the transient
process of reaching thermal comfort and satisfying IAQ demands while
minimize energy consumption and costs.

Remark 4. For ease of implementation, the min–max problem in (22a)
is converted into the standard nonlinear programming described below
so that it can be conveniently solved by the Matlab built-in functions.
A new variable 𝑧𝑃 is introduced to represent the peak demand of the
day for zone 𝑖 only as follows:

𝑧𝑃 ,𝑖 = max1≤𝑘≤𝑛
{

𝑃𝑡𝑜𝑡,𝑖(𝑡𝑢𝑘)
}

. (24)

By simplifying the objective to the form in (25), the optimization
problem in (22a) can be rewritten as

min
(

𝑤1

𝑛
∑

𝑘=1
𝐸𝑐 (𝑡𝑢𝑘)𝑃𝑡𝑜𝑡,𝑖(𝑡𝑢𝑘)𝛿

𝑢 +𝑤2𝐷𝑐 (𝑡𝑢𝑘)𝑧𝑃 ,𝑖
)

. (25)

3.2. Lower level: DMPC

To conclude, the goal of the lower layer is to design the tracking
rule 𝑢(𝑡𝑢𝑘) in a distributed way so that each subsystem of (5) can reach
its steady states according to the changing environment during the day.

The UOPC transmits the reference signals, 𝑥𝑟(𝑠; 𝑡𝑢𝑘) = [𝑥𝑟1(𝑠; 𝑡
𝑢
𝑘),… ,

𝑥𝑟𝑚(𝑠; 𝑡
𝑢
𝑘)]

𝑇 , 𝑢𝑟(𝑠; 𝑡𝑢𝑘) = [𝑢𝑟1(𝑠; 𝑡
𝑢
𝑘),… , 𝑢𝑟𝑚(𝑠; 𝑡

𝑢
𝑘)]

𝑇 , 𝑇 𝑟
𝑠,𝑖(𝑠; 𝑡

𝑢
𝑘), 𝛿(𝑠; 𝑡

𝑢
𝑘), to the

LDMPC for 𝑠 ∈ [𝑡𝑢𝑘, 𝑡
𝑢
(𝑘+1)), 𝑖 = 1, 2,… , 𝑚. Here, 𝑥𝑟(𝑡𝑢𝑘) ≜ 𝑥𝑟(𝑡𝑢𝑘; 𝑡

𝑢
𝑘). In

the lower layer, the DMPC controllers are designed to steer for the
multi-zone building ME A/C system to track the trajectory references
calculated by the upper layer. The linearized dynamic subsystem 𝑆𝑖 for
the nonlinear systems (5) around the trajectory references at sampling
time instant 𝑡𝑙𝑐(𝑘,𝑞) can be written as given below. In (26), the interacting
terms in non-neighboring zone are ignored because of our definition of
neighbors in (4).
{

𝛿�̇�𝑖(𝑠) = 𝐴𝑖𝑖(𝑡𝑙𝑐(𝑘,𝑞))𝛿𝑥𝑖(𝑠) +
∑

𝑗∈𝑖
𝐴𝑖𝑗 (𝑡𝑙𝑐(𝑘,𝑞))𝛿𝑥𝑗 (𝑠) + 𝐵𝑖(𝑡𝑙𝑐(𝑘,𝑞))𝛿𝑢𝑖(𝑠),

𝑦𝑖(𝑠) = 𝐶𝑖𝑖𝛿𝑥𝑖(𝑠) + 𝑦𝑟𝑖 (𝑠), 𝑠 ∈ [𝑡𝑙𝑐(𝑘,𝑞), 𝑡
𝑙
𝑐(𝑘,𝑞) + 𝑇 𝑙), 𝑖 = 1, 2,… , 𝑚,

(26)

where 𝐴𝑖𝑖(𝑡𝑙𝑐(𝑘,𝑞)) = 𝜕𝑓𝑖
𝜕𝑥𝑖

(𝑥𝑟𝑖 (𝑡
𝑙
𝑐(𝑘,𝑞)), 𝑢

𝑟
𝑖 (𝑡

𝑙
𝑐(𝑘,𝑞))), 𝐴𝑖𝑗 (𝑡𝑙𝑐(𝑘,𝑞)) = 𝜕𝑓𝑖

𝜕𝑥𝑗
(𝑥𝑟𝑗 (𝑡

𝑙
𝑐(𝑘,𝑞)),

𝑢𝑟𝑗 (𝑡
𝑙
𝑐(𝑘,𝑞))), 𝐵𝑖(𝑡𝑙𝑐(𝑘,𝑞)) = 𝜕𝑓𝑖

𝜕𝑢𝑖
(𝑥𝑟𝑖 (𝑡

𝑙
𝑐(𝑘,𝑞)), 𝑢

𝑟
𝑖 (𝑡

𝑙
𝑐(𝑘,𝑞))) for 𝑗 ∈ 𝑖. 𝛿𝑥𝑖(𝑠) and
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Fig. 3. Autonomous demand-side management scheduling architecture.

Fig. 4. Schematic of six-rooms building with the thermal network for all zones and its
surrounding walls.

𝛿𝑢𝑖(𝑠) are the deviations of state and input from their trajectory ref-
erences, respectively; 𝑦𝑖 = [𝑇𝑧,𝑖,𝑊𝑧,𝑖, 𝐶𝑐,𝑖]𝑇 are the original output
variables; 𝑦𝑟𝑖 = [𝑇 𝑟

𝑧,𝑖,𝑊
𝑟
𝑧,𝑖, 𝐶

𝑟
𝑐,𝑖]

𝑇 are the trajectory references in the lower
layer, which are calculated in the upper layer.

The predicted subsystem 𝑆𝑖 can be written as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝛿�̇�𝑝𝑖 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞)) = 𝐴𝑖𝑖(𝑠; 𝑡𝑙𝑐(𝑘,𝑞))𝛿𝑥

𝑝
𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞))

+
∑

𝑗∈𝑖 𝐴𝑖𝑗 (𝑡𝑙𝑐(𝑘,𝑞))𝛿𝑥𝑗 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞))+

𝐵𝑖(𝑠; 𝑡𝑙𝑐(𝑘,𝑞))𝛿𝑢
𝑝
𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)),

𝑦𝑝𝑖 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞)) = 𝐶𝑖𝑖𝛿𝑥

𝑝
𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)) + 𝑦𝑟𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)), 𝑠 ∈ [𝑡𝑙𝑐(𝑘,𝑞), 𝑡

𝑙
𝑐(𝑘,𝑞) + 𝑇 𝑙),

𝑖 = 1, 2,… , 𝑚,

(27)

where 𝛿𝑥𝑝𝑖 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞)), 𝛿𝑢

𝑝
𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)) and 𝑦𝑝𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)) are the predicted state,

input and output trajectories at time step 𝑡𝑙𝑐(𝑘,𝑞), 𝛿𝑥𝑗 (𝑠; 𝑡𝑙𝑐(𝑘,𝑞)) is the
assumed state sequence of 𝑆𝑖 at time step 𝑡𝑙𝑐(𝑘,𝑞).

The MPC algorithm is designed for the lower layer to minimize the
optimization objective after reaching trajectory references as well as to
handle building external disturbances and to compensate for the model
mismatch. Let

𝛿𝑢𝑝𝑖 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞)) = −

∑

𝑗∈𝑖

𝐾𝑗 (𝑠; 𝑡𝑙𝑐(𝑘,𝑞))𝛿𝑥𝑗 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞)) + 𝑣𝑝𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)),

𝑠 ∈ [𝑡𝑙𝑐(𝑘,𝑞), 𝑡
𝑙
𝑐(𝑘,𝑞) + 𝑇 𝑙),

(28)

where 𝑖 = 1, 2,… , 𝑚, 𝐾𝑗 (𝑠; 𝑡𝑙𝑐(𝑘,𝑞)) is the gain matrix from zone 𝑗,
𝑣𝑖(𝑠; 𝑡𝑙𝑐(𝑘,𝑞)) is a new input variable for zone 𝑖, then (27) is converted
to (29) as follows:

⎧

⎪

⎨

⎪

⎩

𝛿�̇�𝑝𝑖 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞)) = 𝐴𝑖𝑖(𝑠; 𝑡𝑙𝑐(𝑘,𝑞))𝛿𝑥

𝑝
𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)) + 𝐵𝑖(𝑡𝑙𝑐(𝑘,𝑞))𝑣

𝑝
𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)),

𝑦𝑝𝑖 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞)) = 𝐶𝑖𝑖𝛿𝑥

𝑝
𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)) + 𝑦𝑟𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)), 𝑠 ∈ [𝑡𝑙𝑐(𝑘,𝑞), 𝑡

𝑙
𝑐(𝑘,𝑞) + 𝑇 𝑙),

𝑖 = 1, 2,… , 𝑚.

(29)
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Many standard approaches exist in Ma et al. (2011) and Scherer
et al. (2014) for the system (29), which depends entirely on one zone 𝑖.
In this paper, we are using the MPC strategy proposed by our previous
work (Mei et al., 2018), then the proposed optimization objective is
given by

min𝑣𝑝𝑖 (𝑠;𝑡
𝑙
𝑐(𝑘,𝑞))

𝐽
𝑙
𝑖 = ∫

𝑡𝑙𝑐(𝑘,𝑞)+𝑇
𝑙

𝑡𝑙𝑐(𝑘,𝑞)

(

‖

‖

‖

𝑦𝑝𝑖 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞)) − 𝑦𝑟𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞))

‖

‖

‖

2

𝑄𝑖

+ ‖

‖

‖

𝑣𝑝𝑖 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞))

‖

‖

‖

2

𝑅𝑖

)

𝑑𝑠

+ ‖

‖

‖

𝑦𝑝𝑖 (𝑡
𝑙
𝑐(𝑘,𝑞) + 𝑇 𝑙; 𝑡𝑙𝑐(𝑘,𝑞)) − 𝑦𝑟𝑖 (𝑡

𝑙
𝑐(𝑘,𝑞) + 𝑇 𝑙)‖‖

‖

2

𝑃𝑖
,

𝑖 = 1, 2,… , 𝑚,

(30a)

subject to:

𝛿�̇�𝑝𝑖 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞)) = 𝐴𝑖𝑖(𝑠; 𝑡𝑙𝑐(𝑘,𝑞))𝛿𝑥

𝑝
𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)) + 𝐵𝑖(𝑠; 𝑡𝑙𝑐(𝑘,𝑞))𝑣

𝑝
𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)),

𝑖 = 1, 2,… , 𝑚,
(30b)

𝑦𝑝𝑖 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞)) = 𝐶𝑖𝑖𝛿𝑥

𝑝
𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)) + 𝑦𝑟𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)), 𝑖 = 1, 2,… , 𝑚, (30c)

𝑥𝑝𝑖 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞)) ∈ X, 𝑣𝑝𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)) ∈ V, 𝑖 = 1, 2,… , 𝑚, (30d)

where 𝑠 ∈ [𝑡𝑙𝑐(𝑘,𝑞), 𝑡
𝑙
𝑐(𝑘,𝑞) + 𝑇 𝑙), 𝐽

𝑙
𝑖 is the lower layer objective function 𝑖,

the controllers 𝛿𝑢𝑝𝑖 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞)) obtained are distributed. 𝑄𝑖, 𝑅𝑖, 𝑃𝑖 are the

weighting matrix, V is a bounded set of the new input variable 𝑣𝑖. The
convergence for the above finite horizon periodic MPC optimization
problem (30) can be proved by the results in Xia, Zhang, and Elaiw
(2011) and Zhang and Xia (2011).

The implementation strategy of the proposed AHDC algorithms for
a multi-zone building ME A/C system can be summarized as follows:

The algorithm 1 in our previous work (Mei et al., 2018) is adopted
to solve the upper layer distributed steady state optimization problem.

Algorithm: The lower layer DMPC algorithm can be given below.
(1) At sampling time instant 𝑡𝑢𝑘, 𝑘 = 0, 1,… , 𝑛, UOPC receives each

local neighbor’s measurement information.
(2) UOPC computes the state trajectory 𝑥𝑟(𝑠; 𝑡𝑢𝑘) = [𝑥𝑟1(𝑠; 𝑡

𝑢
𝑘),… ,

𝑥𝑟𝑚(𝑠; 𝑡
𝑢
𝑘)]

𝑇 , 𝑠 ∈ [𝑡𝑢𝑘, 𝑡
𝑢
𝑘+1) and its corresponding control input trajectory

𝑢𝑟(𝑠; 𝑡𝑢𝑘) = [𝑠; 𝑢𝑟1(𝑡
𝑢
𝑘),… , 𝑢𝑟𝑚(𝑠; 𝑡

𝑢
𝑘)], 𝑠 ∈ [𝑡𝑢𝑘, 𝑡

𝑢
𝑘+1), which are transmitted to

LDMPC, to obtain linearized systems (29).
(3) At sampling time instant 𝑡𝑙𝑐(𝑘,𝑞), LDMPC𝑖 receives the state mea-

surement 𝑥𝑖(𝑠; 𝑡𝑙𝑐(𝑘,𝑞)) and 𝑥−𝑖(𝑠, 𝑡𝑙𝑐(𝑘,𝑞)) from its neighbors, gives an ini-
tial point 𝑥𝑖(0) (𝑘 = 𝑞 = 0) and computes the optimal control in-
put 𝑣∗𝑖 (𝑠; 𝑡

𝑙
𝑐(𝑘,𝑞)) of the optimization problems (30) over the prediction

horizon [𝑡𝑙𝑐(𝑘,𝑞), 𝑡
𝑙
𝑐(𝑘,𝑞) + 𝑇 𝑙].

(4) The first solution 𝑣∗𝑖 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞)) is used through (28) to update

𝛿𝑢𝑝𝑖 (𝑠; 𝑡
𝑙
𝑐(𝑘,𝑞)) as the initial condition over the next prediction horizon

[𝑡𝑙𝑐(𝑘,𝑞+1), 𝑡
𝑙
𝑐(𝑘,𝑞) + 𝛿𝑙].

(5) If 0 ≤ 𝑞 < 𝑀, 𝑞 = 𝑞 + 1 and go to (3); else 𝑘 = 𝑘 + 1, 𝑞 = 0 and
go to (1).

4. Case study

In this section, a six-room model is considered to simulate the per-
formance of the proposed AHDC strategy in special climate conditions
in Cape Town, South Africa. The simulations are conducted during
normal operation of an office building with normal occupancy. The six
rooms are connected and the undirected graph is  = { ,} where
 = {1, 2, 3, 4, 5, 6} and 𝜀0 = 5. 𝑅12 = 𝑅21 = 𝑅23 = 𝑅32 = 𝑅34 = 𝑅43 =
𝑅45 = 𝑅54 = 𝑅56 = 𝑅65 = 𝑅61 = 𝑅16 = 4 < 𝜀0, 𝑅13 = 𝑅31 = 𝑅24 =
𝑅42 = 𝑅35 = 𝑅53 = 𝑅46 = 𝑅64 = 𝑅51 = 𝑅15 = 𝑅62 = 𝑅26 = 8 > 𝜀0,
𝑅14 = 𝑅41 = 𝑅25 = 𝑅52 = 𝑅36 = 𝑅63 = 12 > 𝜀0, then the neighbors of
zone 𝑖 are depicted in Table 1. As an illustrating example, Fig. 4 shows
the schematic of a six-room building with the thermal network. It can
be verified that the network is connected.

Table 1
The neighborhood definition of zones.

Room (𝑖) Neighbors (𝑖) Room (𝑖) Neighbors (𝑖)

1 2,6 2 1,3
3 2,4 4 3,5
5 4,6 6 5,1

Table 2
Model parameters of the ME A/C system.

Notations Values Notations Values

𝜌 1.2 kg∕m3 ℎ𝑓𝑔 2450 kJ∕kg
𝑉𝑖 77 m3 𝜀𝑤𝑖𝑛 0.45
𝑉ℎ1 0.04 m3 𝑉ℎ2 0.16 m3

𝑘𝑠𝑝𝑙 0.0251 kJ∕m3 𝐶𝑎 1.005 kJ kg−1 ◦C−1

𝐴0,𝑖 22.07 m3 𝑅𝑖 15 ◦C/kW

Table 3
Coefficients of energy models.

Notations Values Notations Values

𝑎0 = 900.5 𝑎1 = −8.1 𝑎2 = 6.18 𝑎3 = −0.15
𝑎4 = −4.61 𝑎5 = 0.02 𝑎6 = −0.2 𝑎7 = 0.01
𝑎8 = 0.12 𝑎9 = 0.09 𝑐0 = 138.1 𝑐1 = 0.52
𝑐2 = −2.3

Table 4
Values of system constraints.

Notations Values Notations Values

𝑇 𝑠,𝑖 22 ◦C 𝑇 𝑠,𝑖 8 ◦C
𝑇 𝑧,𝑖 26 ◦C 𝑇 𝑧,𝑖 22 ◦C
𝑇 𝑑,𝑖 22 ◦C 𝑇 𝑑,𝑖 10 ◦C
𝑇𝑤,𝑖 22 ◦C 𝑇𝑤,𝑖 10 ◦C
𝑊 𝑧,𝑖 12.3/1000 kg/kg 𝑊 𝑧,𝑖 9.85/1000 kg/kg
𝐶𝑐,𝑖 800 ppm 𝐶𝑐,𝑖 650 ppm
𝑊 𝑠,𝑖 9.85/1000 kg/kg 𝑊 𝑠,𝑖 7.85/1000 kg/kg
𝑣𝑓,𝑖 0.8 m3/s 𝑣𝑓,𝑖 0.05 m3/s
𝑚𝑟,𝑖 0.11 kg/s 𝑚𝑟,𝑖 0.005 kg/s
ℎ𝑠,𝑖 46.3 kJ/kg ℎ𝑠,𝑖 27.3 kJ/kg
𝛼 0.5

4.1. Parameter selection

The volume of each room space is 77 m3. The model parameters
of the multi-zone building ME A/C system are given in Table 2. The
coefficients of the power consumption models for the condenser (7)
and evaporators (8) are calibrated through the regression analysis of
the available measured data in Vakiloroaya et al. (2014), which are
shown in Table 3. It is assumed that the combined total efficiency of
the compressor 𝜂 is 0.85. Each room has a window with the area of
4 m2. For the proposed AHDC strategy considered below, the system
variable constraints are given by bounds in Table 4, and we constrain
the value of each room’s PMV index in the range of [−0.5, 0.5] to ensure
that the multi-zone building ME A/C system is able to control each
room’s thermal comfort and IAQ at the required levels for occupants.
The weighting factors are defined as 𝑤1 = 1, 𝑤2 = 1. In our previous
work (Mei et al., 2018), the simulation results demonstrated that the
open loop optimal controller and the MPC scheme are not sensitive
to the model parameters 𝐴1 and 𝐴2 of the single-zone DX A/C system
within any ranges of [𝑎𝐴0, 𝑏𝐴0] where 0 ≤ 𝑎, 𝑏 ≤ 1 and 𝑎 ≤ 𝑏. This result
can be extended to the multi-zone building ME A/C system. Hence,
𝐴1,𝑖 = 0.15𝐴0,𝑖 and 𝐴2,𝑖 = 0.85𝐴0,𝑖, 𝑖 ∈  are chosen in this paper.

The simulation runs from 0:00 to 23:59. The environmental tem-
perature and relative humidity information are obtained from a me-
teorological station located in Cape Town, South Africa. The outside
air temperature and relative humidity profiles are plotted in Fig. 5(a).
The predicted solar radiative heat flux density profile is shown in
Fig. 5(b). The external sensible heat load of each room is depicted in
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Fig. 5. (a) Outside temperature and relative humidity. (b) Radiative heat flux. (c) External sensible heat load.

Fig. 6. Certainty internal sensible, certainty moisture and CO2 emission loads.

Fig. 7. The steady state errors in six-room building under the sampling periods 1 h and 0.5 h.

Table 5
Time-of-use electricity rates.

Summer Period Energy charge
($/kWh)

Demand charge
($/kWh)

Peak 12:00-18:00 0.20538 11.889
Standard 08:00-12:00, 18:00-21:00 0.05948 2.352
Off-Peak 21:00-08:00 0.03558 1.007

Fig. 5(c). The certainty internal sensible and latent heat loads and the
CO2 emission load of each room over a 24-h period are predicted in
Fig. 6. The certainty loads mean the sensible heat and moisture loads
from lighting, equipment and applications. The values of Figs. 5–6 at
every hour are commensurately quantized for the lower layer.

It is assumed that the building operates under the TOU rate plan
shown in Table 5. Since there is a big difference in the demand charges
between peak and off-peak hours, energy cost savings can be expected if
significant amounts of peak power consumption are shifted to non-peak
hours.

4.2. Comparison of optimal scheduling control strategies

To illustrate the performance of the proposed AHDC, comparisons
with other control strategies are considered for scheduling the opera-
tion of the multi-zone building ME A/C system. The first approach is the
DMPC algorithm based on given setpoints of air temperature, humidity
and CO2 concentration, aiming at minimizing energy consumption,

referred as S1 (Mei & Xia, 2017a). The second approach is the DMPC
algorithm based on energy cost and the value of the PMV index
minimization, referred as S2 (Mei et al., 2018). The proposed approach
is the DMPC algorithm based on demand and energy cost minimization,
referred as S3. To simplify the comparison, among the three strategies,
the multi-zone building ME A/C system operation profiles are generated
by employing an NLP algorithm under the same outside and inside
conditions. The control parameters are listed below: The sampling time
𝛥 = 2 min is adopted to discretize the nonlinear multi-zone building ME
A/C system. The prediction horizon of the lower layer DMPC scheme is
set as 𝑁 = 15; the sampling periods of UOPC and LDMPC are 1 h and
2 min, respectively. The total simulation time 𝐾𝑢 is 24 h. To illustrate
the sampling period without affecting the control accuracy, the steady
state solutions under the sampling periods 1 h and 0.5 h are plotted
in Fig. 7. It can be seen from Fig. 7 that the control accuracy is rarely
affected by the setting sampling period. Table 6 lists the combinations
of the optimization and control strategies in the three scenarios. The
test results for the three scenarios are shown in Section 4.3.

4.3. Simulation test results

The performances of the three scenarios are compared through
MATLAB simulations with historical weather data for a specific day.
Fig. 8 shows the steady state profiles of air temperature, relative
humidity and CO2 concentration of each room, which are obtained
by solving the distributed coordination optimization problem (22) and
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Fig. 8. The steady state in each room under the distributed and centralized optimal controller.

Fig. 9. Each zone’s temperature profile for a 24-h period.

Table 6
Comparison of different control strategies.

Scenarios Upper layer optimization Low layer
control

Setpoint DR
action

S1 Energy consumption DMPC Given
S2 Energy cost+PMV DMPC Autonomous
S3 Energy cost+demand cost DMPC Autonomous ✓

the centralized optimization (21). It can be seen from Fig. 8 that the
distributed steady state is close to the centralized steady states of
each room; the deviations are small and can be accepted by occupants
(Assumption 1 is valid). The scheduling is thus effective.

The tracking reference points of the air temperature of each room
with the three control strategies are depicted in Fig. 9 over a 24-
h period. The tracking reference points of relative humidity of each

room with the three control strategies are illustrated in Fig. 10 over
a 24-h period. The tracking reference points of CO2 concentration of
each room with the three control strategies are shown in Fig. 11.
Figs. 9–11 also show that the optimized reference points are adaptively
preprogrammed by employing scenarios S2 and S3. We observe that
each room’s air temperature, relative humidity and CO2 concentration,
by using the proposed control strategy, are tracking and maintaining
their reference points. It can be seen from Figs. 9–11 that the reference
points of air temperature, relative humidity and CO2 concentration of
each room with scenarios S2 and S3 are raised during standard hours.
The reason is that the controllers of scenarios S2 and S3 are automat-
ically adjusting their reference points upward during standard hours
according to the energy price policy and DR action respectively, such
that the energy cost and energy consumption are minimized while both
thermal comfort and IAQ are still maintained within comfort ranges.
The pre-cooling and pre-decreasing CO2 contaminant concentration
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Fig. 10. Each zone’s relative humidity profile for a 24-h period.

automatically starts in the morning simultaneously. This is because the
energy costs for operating a multi-zone building ME A/C system during
off-peak hours are lower than other periods. In the morning, the air
temperature, humidity and CO2 concentration reference points of all
rooms are kept at the lower bounds of the comfort regions to store
cooling and lower CO2 contaminant concentration until the peak hours.
As soon as the peak hours start, the reference points increase to the
upper bounds, hence minimizing the demand in the afternoon by taking
DR action. After more cooling and pollutant loads occur simultaneously
during peak hours, the reference points are automatically set higher to
turn off the cooling and increase the CO2 contaminant concentration.
We also observe that the time-varying reference points of air tempera-
ture, relative humidity and CO2 concentration of each room are always
maintained in the comfort regions over a 24-h period with the proposed
control strategy. We further observe that after reaching their reference
points, the proposed controllers are maintaining the reference points
with small variation ranges. Therefore, the proposed control strategy is
capable of handling the changing cooling and pollutant loads over a 24-
h period and maintaining thermal comfort and IAQ at comfort levels.
From Fig. 12, it can be observed that the values of the PMV index for
the six rooms lie within the expected range [−0.5, 0.5], which indicates
that the indoor air temperature, humidity and CO2 concentration are
controlled within their comfort ranges. It can be observed from Fig. 12,
with the control method in Freire et al. (2008), the PMV index is
controlled at the desired value, which indicates that the indoor air
temperature and humidity are at their desired references, but it may not

Table 7
Comparison of different control strategies.

Strategy Energy consumption (kWh) Energy cost ($)

S1 124.56 10.67
S2 80.34 6.98
S3 79.78 5.66

demonstrate that the indoor air CO2 concentration is within a comfort
range.

To show the advantage of the proposed AHDC strategy over the
other two control strategies in shifting demands from peak periods to
non-peak periods, the power consumption under the peak and non-peak
periods for the three control strategies are shown in Fig. 13. Table 7
summarizes the total energy consumption and cost for the multi-zone
building ME A/C system under the three control strategies. From
Table 7, it can be seen that with control strategies S2 and S3, more
energy consumption and costs are reduced in comparison with control
strategy S1. The reason is that each room’s air temperature, humidity
and CO2 concentration reference points are adaptively and optimally
preprogrammed under control strategies S2 and S3. We observe from
Table 7 that the energy consumptions with control strategies S2 and S3
are almost the same, while the energy costs are different. It implies that
the proposed control strategy S3 is capable of reducing more energy
costs but not of reducing energy consumption in comparison with
control strategy S2. It can be seen from Fig. 13 that under the proposed
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Fig. 11. Each zone’s CO2 concentration profile for a 24-h period.

Fig. 12. Profile of the value of the PMV index for the six rooms over a 24-h period.

control strategy S3 with DR action, more energy costs are reduced
during peak hours in comparison with control strategies S1 and S2. The
reason is that the proposed control strategy S3 is automatically shifting
peak demands to non-peak periods. Meanwhile, energy consumption
with the proposed control strategy S3 is more than that with control
strategy S2 during standard periods because the energy cost in standard
periods is lower than that in peak periods. Consequently, minimizing
total energy costs and shifting demand are achieved over a 24-h period
while maintaining both thermal comfort and IAQ at the required levels.
Therefore, according to the above comparisons, the proposed control
strategy S3 achieves a lower proportion of demand cost during peak
hours and shows successful demand shifting and energy cost reduction.

Fig. 13. Energy consumption in three time periods with the three control strategies.

Furthermore, to show the performance of the proposed distributed
control strategies over the previous distributed control scheme (Scherer
et al., 2014), we will compare the two control methods in view
of energy efficiency in this section. The distributed control strategy
in Scherer et al. (2014) is based on the given reference of indoor air
temperature and a linearization system of the HVAC system with a
solar plant by fixing the fancoil air speed. The distributed controller
is then steered for the HVAC system to follow the given reference with
minimizing energy consumption. In order to compare the two control
strategies, the control scheme (Scherer et al., 2014) should be employed
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Table 8
Compared with the previous control strategy.

Strategy Energy consumption
(kWh)

Energy cost ($)

Previous control (Scherer et al., 2014) 128.75 10.98
Proposed control 79.78 5.66
Saving 38% 48.5%

to steer the ME A/C system to follow the given reference and fixing
volume flow rate of supply air. The comparison results are depicted in
Table 8. It can be seen from the table that the proposed control strategy
can reduce more energy consumption and cost in comparison with the
previous control strategy (Scherer et al., 2014). The reason is that the
proposed control scheme shifts the peak demand from the peak hours
to off-peak hours by adaptively programming each room’s setpoints of
air temperature, humidity and CO2 concentration.

5. Conclusion

This paper presents an AHDC strategy to the problem of mini-
mizing demand and energy costs, as well as reducing communication
resources, computational complexity and conservativeness for a multi-
zone building ME A/C system while maintaining both thermal comfort
and IAQ within comfort ranges. The developed control strategy is
an improvement over the current control methods, in which the air
temperature, humidity and CO2 concentration references of each zone
are adaptively preprogrammed optimal operation profiles for the multi-
zone ME A/C system to minimize the energy and demand costs. The
lower layer DMPC controllers steer the multi-zone building ME A/C
system to follow and maintain the autonomously preprogrammed refer-
ences; meanwhile, the energy and demand costs are reduced and shifted
from the peak hours to non-peak hours. The simulation results show
that the designed DMPC controller optimize the transient processes
reaching the steady state and over the previous distributed control
method in view of energy efficiency. They also demonstrated that
the proposed AHDC strategy gives the controller the ability to handle
model parameters uncertainty and time-varying weather conditions.
The proposed control strategy is suitable for a cluster of similarly
purposed buildings, thus requiring less and cheaper communication
resources to implement.
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