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Abstract.! In this paper, a control policy called Unbalanced A-Modulated Feedback
(UDMF) is proposed. For one-dimensional discrete-time systems with a parameter 0 <|
a |< 1, we show that a system of Type II has only two fixed points and the set of fixed
points is globally attracting. Compared with systems of Type II, the evolutions of systems
of Type I are much more complicated. For 0 < a < 1, systems of Type I have no fixed
points. Moreover, using a constructive method, we prove that there is a denumerable set
of rate value v = 2—? Corresponding to each parameter v of the denumerable set, systems
of Type I have no periodic orbits and, in this case, every orbit is dense in the state interval
[=A1, Az). To each of the other rate values of 7, systems of Type I all have an unique
periodic orbit. In particular, the structural property of the periodic motion is robust; that
is, there exists an interval including this value « such that all parameters in this interval
are corresponding to those periodic orbits of the same structural property. For the case of
a =1, all points in the interval [-A1, Ag) are n—periodic with n > 3 when + is a rational
number, and every orbit is dense in the interval [-A1, Ag) when 7 is an irrational number.

Moreover, every such unique periodic orbit is globally attracting for both types of systems.
Keywords. Unbalanced A-modulated feedback, Periodic orbit, Global attractor.
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1 Introduction
As is well known, even a one-dimensional nonlinear system may have very
complicated dynamics [2, 3, 6, 9].

In this paper, the following discrete-time nonlinear system is considered:

Tpal = ATy + U, (1)

IThis research was supported by the Hong Kong Research Grants Council under the
CERG Grant CityU 1114/05E.
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under the so-called Unbalanced A-Modulated Feedback (UDMF)

def [ —Aq, ax >0,
u=A(az) = { A21 az < 0 (2)

where A; and A, are given positive real numbers, A; # As.

The study of UDMF not only has theoretical significance, but also has
practical importance [1, 11, 5, 4, 7]. A UDMF control system may be con-
sidered as a special switching control system. A practical example of this
control strategy is the A-modulated transmitting power control of a mobile
unit in the Direct Sequence Code Division Multiple Access (DS-CDMA) cel-
lular networks [1], where the “state” z is the error of the unit’s power level
of the mobile received at the base station with respect to the desired value.
In this application, the control strategy stems from the observation that if
the level of the received power is higher than the desired level, then it is
decreased by A (dB); if lower, then it is increased by the same amount.
There is only one parameter, A, and the power increment is either A or —A,
which can be stored at the base station or the active mobile unit. The base
station only needs to send 1 or —1 to command the increase or decrease of
the power level; namely, only one bit of datum is needed for implementing
the Delta-modulated control. The requirement of one bit for transmitting
power control is the well-known standard IS-95 [10]. Generally speaking,
A-modulation provides a common method for converting analog signals to
digital ones, which is also called Sigma-Delta (¥A) modulation in the field
of electronic circuits. Today, A-modulation has been widely used in digital
electronics and telecommunications. The main interest in A-modulation for
digital electronics includes de-modulation schemes, statistical properties of
the digital outputs as well as the complex dynamics involved.

It should be noted that A-modulated control is a special case of UDMF,
e.g., the balanced case with Ay = A,. In the same application area of
transmitting power control, it has witnessed the flexibility of unbalanced A-
modulated feedback in, i.e., [12, 13]. All these motivate a careful study of
system (1)-(2) to be carried out in the present paper. The case of A; = A,
has been studied in [15, 14, 8]. In the present paper, we further focus on
the important issue of unbalanced A-modulated feedback: A; # A,. Define

= ﬁ—f. Then, v # 1. For convenience in the subsequent discussions, and
without loss of generality, we assume A; = 1 in this paper.

In the following, systems (1) is referred to as a system of Type I when
a > 0, and system of Type II when a < 0, respectively. Moreover, denote

fa(z) = ax + A(azx). (3)

We will only consider the case when the parameter 0 <| a |< 1. We will
show that a system of Type II has only two fixed points and the set of fixed
points is globally attracting. For 0 < a < 1, systems of Type I have no fixed
points, and there is a denumerable set of values for the ratio v = %7 and for
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each parameter v of the denumerable set, systems of Type I have no periodic
orbits and, in this case, every orbit is dense in the state interval [—Ay, Ay).
To each of the other rate values of v, systems of Type I all have an unique
periodic orbit. The structural property of the periodic motion is robust; that
is, there exists an interval including this value v such that all parameters in
this interval are corresponding to those periodic orbits of the same structural
property. For the case of a = 1, all points in the interval [—A;, As) are
n—periodic with n > 3 when ~ is a rational number, and every orbit is dense
in the interval [—~A;, A) when 7 is an irrational number. Moreover, every
such unique periodic orbit is globally attracting for both types of systems.

2 Basic properties of systems in the case of
0<|al<1
We firstly prove the following lemma.

Lemma 1 Suppose 0 <| a |< 1. Then, the interval [—1, 7) is a global at-
tractor, i.e., every orbit will eventually move into this interval. In particular,
a point x is a periodic point of system (1) only if x € [—1, 7).

Proof 1 Let V(z) = 22, For system (1) of Type I, when x > 0, since
V(fa(2)) = V(z) = (ax — 1)? — 2% = —(1 — a®)x? — 2ax + 1, (4)
one has
Z O’ xz E |:07 ?]ﬁ:| )
V(fal@) = Viz) = 1
<0, ze (m7 +OO) .

Similarly, when = < 0,

>0, xe{—ll—a, 0),

<0, z€ (—oo, _14%1)

(6)

Combining (5) and (6) shows that V(f.(z)) > V() if and only if z €
{—Hia, H%} Furthermore, since
v 1 1 ~
“\| 1+a’ =1 - , -1, 7),
f({ 1+a 1+CJ) { 1—|—a}UL+a ’y)C[ 7)
and

fa([-1, 7)) =[-1, ay =1 U [y —a, v) C[-1, v),

it shows that the interval x € [—1, ) is a global attractor and, simultane-
ously, that there is no periodic point with period n > 2 out of the interval
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[—1, ) for system (1) of Type I. Since (ref. Theorem 2 bellow) system (1)
of Type I has no fixed point, the first part of the theorem holds true.
Similarly, for system (1) of Type II, one can verify that V(f,(x)) > V(z)

if and only if € —ﬁ, 172 |. Since, on one hand, —ﬁ, | C [-1, ),
SO
1 Y 1 gl
_ = -1 — -1
(P T T EEE P
and

fa([=1, 7)) = [=1, =1+ a)]U[(1 +a)y, v) C[=1, ),

and on the other hand, system (1) of Type II has only two fixed points,

{fﬁ, ﬁ} (ref. Theorem 1 below ), there is no periodic point in system

(1) of Type II out of the interval [—1, 7).

2.1 Systems of Type II

First, we focus on system (1) of Type II.

Theorem 1 Suppose —1 < a < 0. Then,

1. except for two fixed points, —ﬁ and 7, system (1) of Type II has
no periodic orbits;

2. the set of fized points {—# - } 18 globally attracting.

l1-a’ 1—a

Proof 2 1. It can be easily verified that the two points —ﬁ and X are
fixed points of system (1) of Type II, and that system (1) of Type II has no
other fixed points.

We now prove that system (1) of Type II has no n-periodic orbit for any
n > 1. According to Lemma 1, system (1) of Type II has no periodic points
in the interval (—oo, 400) \ [-1, ). Furthermore, since

fa((0, 7)) = (1 +a)y, 7) € (0, 7) (7)

and
fa[f]-v OD = (ila 7(1 +a)] c [717 0}’ (8)

it follows that f, is a contraction mapping on the interval [—1, 7). This
property of the mapping implies that system (1) of Type II has no n- periodic
orbit for any n > 1.

2. Combining (7) and (8) shows that f, is a contraction mapping on the
intervals [—1, 0] and (0, ), respectively. Hence, combining this fact with
Lemma 1 shows that assertion 2 is true.
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2.2 Systems of Type I

Denote the sets of natural numbers and of positive even numbers by N and
PE, respectively, and let PEq=PE N {0}. Also, define

TO:{{tl,0<l<N}

t; € N, NePE0}7

T{{tz,oglsN}

t €N, NGPE},

P(2)=14z+---+2,
Q1= +a+ - +a)y—at
Riyi=d 'y —Q+a+---+d),
(1—a)d
1—at’
(1—a)a
1—da+ (1—a)att’
p, =m+k(m+1)=p,
Py =m+1+p, =D,
q, =m+1+4km =7y,
a4, =m+4q,=14d,
a1 = abr = ay,
ag = alo = ay,
by =a"" Q1 + Py (™) Qm = b1,
by = a"™ by + Q= b,
dy = a""Qm 4+ Pr_1(a™)Qum—1 = dy,
d1 = amdo + mel = dp

Eg:

B =

where m > 2,1 >0 and k > 1.

Proposition 1 1. Both sequences B,, and By, are monotonously decreasing
when k tends to infinity, and the inequalities B), < By < B,_, hold true for
all k> 1.

2. Qr <0 if and only if v < By, and Ry <0 if and only if v < Bik.

Proof 3 The first part of assertions 1 can be easily verified by the definitions
of B;, and By.
The second part of assertion 1 is implied by the following inequalities:

1 1 1 —gkt?

Kk a* ’

L,
- = — +a.
By, B4
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The second part of assertion 2 follows from the equalities Q; = a* (Bik — 1)
N _ 1

and Ry = a (7 Bk)'

Remark 1 From the above two groups of equalities, one can get the following

useful relations about B;, and By,:

R B )
B, By, d’

1 1 1

E = y + = (10)
1 1

By, By e a

We will have that, compared with system (1) of Type II, the dynamics of
system (1) of Type I are much complicated.

For the subsequent discussions, a property of the mapping f,(x) is firstly
given.

Lemma 2 Suppose 0 < a < 1. Then, the mapping f,(x) is invertible in the
interval [—1, 7) for any v > 0.

Proof 4 First of all, it is easily seen from the definition of f,(z) that the
mapping f,(x) is monotonously increasing in both (—oco, 0) and [0, +00).
Therefore, for any z, y € (—oo, 0) or z, y € [0, +00), fa(z) # fu(y) if
x # y. Hence, when x # vy, fo(x) = fo(y) only if 2 and y are not both in
(=00, 0) or [0, +00). Without loss of generality, assume z € (—oo, 0) and
y € [0, +o0) satisfy the equality f,(x) = f.(y). Then, according to (1), we
have a(y — z) = 1 4 -, which shows clearly that the distance between = and
y is larger than 1 4+ v, namely, z and y are not both in the interval [—1, 7).
The proof is completed.

Theorem 2 1. Suppose 0 < a < 1. Then, when system (1) of Type I has
an unique periodic orbit, the set of periodic points is globally attracting.

2. Suppose 0 < a <1 and system (1) of Type I have no periodic orbit for
some v > 0. Then, every orbit is dense in the interval [—1, v), namely, for
every point © € (—oo, 400), the w limit set wy, (xz) = [—1, 7).

Proof 5 1. First of all, Lemma 1 shows that every orbit will eventually
move into the interval [—1, 7) and then will not go out again. Hence, we
can focus our discussions in this interval. For convenience, we use wy, (U) to
denote the w—limit set of mapping f, on a set U.

Let z;,1 <1 < L, be all the points in the unique periodic orbit and be
ordered in magnitude. Denote xy41 =y and x¢g = —1 if —1 is not a periodic
point.

For any given 1 <1 < L, if f5([z;, x141)) are always in [—1, 0) or [0, 7)
for all 0 < s < L, then, since fX(z;) = ; and 0 < a < 1 means fZ(z) is
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contractive, we have fZ([x;, x;41)) C [z, 2141). This implies that the point
x; is an accumulation point of all orbits starting from or passing through the
interval [x;, x;41), namely, ; € wy, ([z1, Ti41)).

If 0 is an interior point of f5([z;, x;+1)) for some 0 < s < L, then, since
L is finite, the times of the cases of 0 being in the interior of f2([z;, zi11))

are also finite. This implies that there must be z; < ml(l) < x141 such that

£2([z, xl(l))) is always in [—1, 0) or [0, «) for all 0 < s < L. Of course,
there is also fX([x, acl(l))) C [z, l’l(l)), that is, x; € wy, ([z1, xl(l))). Take
:cl(l) to be the least upper bound that has the above characteristics. Then,

by the definition of mapping f,(x), there must be f(fl(asl(l)) = 0 for some

1)

0 < s1 < L. Since there is no other periodic point between x; and z; ~, we

7

have f51+1([z, xl(l))) = [z, 7), which implies also z; € wy, ([, 7))

If f;([xl(l), x14+1]) is always in [—1, 0) or [0, «) for all 0 < s < L, then,
certainly there is an z;41 € wfa([xl(l), x14+1]). If it is not the case, then there
is an index s such that 0 is an interior of fj([acl(l)7 x1+1]). Let sy be the
first index with the above characteristics and xl@) be the point satisfying
the equation fé”)(a:l@)) = 0. Since there is no periodic point in the interval

[xl(l), x741), certainly fo2 ([, :rl@))) C [zr, 7). Thus, z; € wy, ([zL, 7))
implies z; € wfa([xl(l), ml@))). Hence, x; € wy, ([, xl(Q))).

Repeat the above procedure. If there is an z; 1 = xl(kﬂ) for some k£ > 1,

then z; € wy, ([xl(l), zi+1)); therefore, there should be an x; € wy, ([z1, 14+1))-
Otherwise, there are indexes s; and points acf, k=1, 2, ---, with x; €
wy, ([:cl(k)7 J:l(kﬂ))). Since the sequence l’l(k) is monotonously increasing and
bounded, it has a limit. Denote the limit by z;. If ; = x;41, then there still
has z; € wy, ([z1, ®i41)). If 27 < 2141, then there must be z; € wy, ([x;, z}))

and x;41 € wy, ([z], 2141]); otherwise, there will be a contradiction.

Up to now, we have proved that for any pair of neighboring periodic
points, x; and 11, the w—limit sets wy, ([, 7)) and wy, ([z], ®4+1]) are
included in the set of periodic points. We have known that any periodic orbit
must include points in both intervals [—1, 0) and [0, 7). If we denote z_
as the greatest periodic point in [—1, 0) and z; the smallest periodic point
in [0, 7), respectively, then it can be easily verified that wy, ([z—, 0)) =
wr,([xr, 7)) and, when 1 > 0, wy, ([0, z4)) = wy, ([-1, z1)). Thus, we
have completed the proof of part 1.

2. Let M(U) denote the Lebesgue measure of set U. Then, by the
definition of mapping f,(z), it can be easily verified that when U is an
interval, M(f,(U)) = aM(U). Furthermore, it can be verified that this
conclusion is also true when U is the union of any set of finite intervals.
Besides, the equality M(f,(U)) = aM(U) and the invertibility of mapping
fa(z) in the interval [—1, v) together imply M (f;*(U)) =a M (U).

According to Lemma 1, any orbit {f!(z), { = 0, 1, ---} is bounded;
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therefore, wy, (x) is not empty. If for some x € [—1,7), wy, (z) is not dense in
the interval [—1, «), then according to the definition of denseness, there exists
an open d—neighborhood of some point zy and a non-negative integer L such
that fl(z) ¢ (w0 —6, xo+9) for all I > L. Without loss of generality, assume
L = 0. If this is not the case, one can replace = by fL(x). Take § as the least
upper bound that satisfies f!(z) ¢ (vo—0, zo+6) (if 7g— = —1 or mg+8 = 7,
then replace (xg — 9, xg+9) by fo((xo—9, o+9))). Then, xog— 0 or g+ 9
either belongs to the orbit {f!(z), I =1, 2, ---} or is an accumulation point
of the orbit. Here, we assume that zy + ¢ has the above characteristics (the

case of xg — J can be similarly discussed). Obviously, the invertibility of the
def

mapping fo(2) in [~1, 7) implies f5(z0+0) ¢ V= U2, fa((zo—0, 20+0)),
0 < s < +oo. But, the equality M(f;*((zg — 8, xo +93))) = 2a7%5, s > 0,
implies that, when a < 1, there is a finite positive integer s such that 2a=%§ >
14 +; therefore, there must be an s > 1 such that « € f,*((xo — 9, zo +9)),
that is, f(z) € (xg — 9§, zo + ).

For a =1, since M (f2((zo— 9, xo+9))) = 26 for all s > 0, it is necessary
that 0 € V. Otherwise, f2((zg — 0, xo + 0)) is always an interval for any
s >0, and Jgo g M(f3((wo — 6, xo + J))) = oo; therefore, there must be
Iy > 13 > 0 such that fi((xg—6, xo+0))N f2((xo — 6, xo+6)) # 0. Hence,

1) if flr((wg — 8, o +9)) = f2((wg — J, wo +)), then every point in the
interval fit((xg—d, wo +9)) is periodic, which contracts the precondition of
part 2;

2) if fli((xo — 6, o +9)) # fl2((xo — 6, o+ J)), then it can be easily
verified that fl2(xg +6) € fir((xo — 8, zo + 0)); thus, with respect to the
definition of 4, there also is f2(z) € fi((zo — 6, 7o +9)) C V.

The above discussion also shows that, for any subinterval V; C V, there
must exist 0 < I < +oo such that 0 € f!(V;).

Let I; > 0 be the first index that satisfies 0 € fl((zg—6, 9+6)). Here, it
is obvious that f((zo—6, zo+9)) = (fi(xo—9), fi(zo+6)). According to
the above analysis, in the sequence of sets f((0, fit(zo+0))),1=1, 2, ---,
there are also sets that contain the origin. Let Iy be the first index that
satisfies 0 € f2((0, fl(wg+0))) = (firtt2(0), flatl2(xg + 6)). Obviously,

bL(zg+6) > fatl2(zg +6) > 0. This shows that fli+(zg + §) € V. Thus,
we arrive at a contradiction. The proof is therefore completed.

Theorem 3 Suppose 0 < a < 1. Then,

1. system (1) of Type I has no fized points; -

2. when v € [B,,_y, Bn—_1) for some n > 2, or% € (B,_1, Bn-1] for
some n > 2, system (1) of Type I has a unique periodic orbit and its period
5 n.

Proof 6 1. A point T is a fixed point of system (1) of Type I if and only if
the following equality is satisfied:

7= a7+ A7) (12)



Global Dynamics of Unbalanced DMFC Systems 643

that is,
(1—-a)T =A(T).

Since 0 < a < 1, (12) holds true only if the signs of Z and A(Z) are the same.
However, according to the definition of A(z), this is impossible.

2. First, consider the first situation of part 2.

It is not hard to verify that the orbit starting from the point defined
below,

« 1

x =
1—a”

anla (13)

is an n-periodic orbit of system (1) of Type I when v € [B,,_1, Bn_1)-

In the following, we prove that the n-periodic orbit passing through the
point z* is unique.

Firstly, Lemma 1 shows that any orbit of system (1) of Type I will ulti-
mately move into the interval [—1, «). Thus, we focus on the properties of
mappings f(x) in the interval [—1, 7).

Secondly, consider a group of real numbers: —Eik, k=12, ---, n—1.
Since v > B,,_;, we have 75:_1 < —1. Hence, by defining 2, = —1,
Zk+1 :fﬁlk, k=1,2, -+, n—2, 2z =0 and 2y = v, we have

fa([Zkt1s 28)) = [2ky 2k-1), 1<k <n
£8 (zesns 21)) = [z1, 20) = [0, ), (14)
fa(10, 7)) = [zn, ay —1).

By equality (11) and the precondition v < B,,_1, we also have

ZvL—l_fa(’Y):_Bry _a7+1:1_§7 > 0. (15)

n—2 n—1

This shows f,([0, 7)) C [zn, #n—1). Hence, we conclude that f(z) is a
contraction mapping in each of the n intervals [z;, zx—1), 1 < k < n. Clearly,
if mapping f(x) has a fixed point in the interval [zx, zx—1), then this fixed
point must be unique.

Lastly, we show that those n points of the n-periodic orbit starting from
x* belong to the subintervals [z, _r1+1, 2n—k), 1 <k < n, respectively. In fact,
the precondition v € [B,,_;, Bn_1) assures that 2* € [0, v), and (14)and
(15) clearly show that fX(z*) € [zn—ky1, 2n—k), 1 <k <n—1.

We next discuss the second situation about the parameter . First, one
can similarly verify that the orbit starting from the point defined by

1
S l—an

x*

Rn—l (16)

is an n-periodic orbit.
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To prove that this periodic orbit is unique, we use the same method as
above. Define n+ 1 numbers as follows: zg = —1, 2z, = Bi, k=1,2, -, n.
Dy
It can be easily verified that the first system of the relations in (14) holds
true. Besides,

fallze, zk41)) = [zr—1, ), 1<k <n, (17)
fa(lz0, 21)) = fa([-1, 0)) = [y —a, 7). (18)
Thus, according to (10) and the precondition v < 5 1 - = Zn, We have
ol 1) 1 L>0 (19)
(1) —zp 1 =v—a-— =5— = > 0.
! 7 En—Q 7 anl

From (17)-(19), it is not hard to verify that fJ'(z) is a contraction mapping
in each subinterval [zx, zkt1), 0 < k < nm — 1. This implies that the n-
periodic orbit starting from z* is unique and globally attracting, completing
the proof.

lllustrate of Theorem 3: Uniqueness an d Attractability of Periodic Orbit

()

lllustrate of Theorem 3: Uniqueness and Attractability of Periodic Orbit

Fig. 1: a =0.4, n =6, Fig. 2: a =085, n =7,
~ € [0.0062, 0.0157) v~1 € (0.0908, 0.1086]

Remark 2 Theorem 3 characterizes system (1) of Type I when the value of

the rate parameter vy is located in subinterval [ﬁn_l, En_l) or [Enl_l , inil )

Here, we denote the union of these subintervals by U. To the parameter region
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(0, +00) of v, it is easily seen that there is an inter-interval @n, Qn_l) be-
tween the two neighboring subintervals [ﬁn, En) and [B En,l). Like-

“n—1>
wise, [%, %) 1s the inter-interval between the two neighboring subinter-
—n—1 n
vals {El , 31 ) and [%7 Bi) If we denote the union of these inter-
n—1 —n—1 n =n

intervals by V', then (0, +00) =UJV.

In the following, we first prepare some preliminaries for further discussing
the characteristics of the dynamical evolution of system (1) of Type I in V.

Lemma 3 Suppose 0 < a <1 and~y € [Em, Em_l) for somem > 1. Then,

1. the point z* = —a"™Q,,—1 € (0, 7] and x* = only if v = By;

2. for every point x € [0, ) and every 1 <1 <m—1, one has f.(z) < 0.
Also f™(x) < 0 if and only if x < x*, and in this case, f+(z) > 0;

3. when v € (Em, Em71)7 for any 0 < x < x* and z* <y < 7, one has
fort (@) > fM(y) = 0;

4. for somel >0, f(ll(mﬂ)(O) > z* if and only if

(1—a)am™1

v > — - (20)
1—am1+ 7p}:éém,+ir)l)am
Proof 7 1. Conclusion 1 is just a corollary of the equalities Q,,—1 =
am™ ! (737;’71 - 1) and vy — 2* = % (E’in — 1).
2. According to the definition of f,(x), we have
f([oa ’Y)) = [_1, ay — 1)3
fz([oa ’7)) = [’7_(1’ (1+a2)’y_a)a
(21)

o, w). = {a’”” (BZ_z”)’“m_Q (321_1»'

Clearly, f™~1([0, v)) C [~1, 0), or equivalently, f\(z) < 0 for every = €
[0, 7) and all 1 <1 < m — 1. Moreover,

o = (g ) o (3o

Equality (22) shows that f*(0) < 0 and f*(y) > 0. Furthermore, it can
be easily verified that and f™(x) < 0 if and only if z < z*, and f™+1(z) =

a™Hz+am(5-—-1)>0.

3. Let O §;m< z* and x* <y < . Then, we have

d @) -2 = Qu-(1-ad" )z

> Qm + a—m(l _ am—H)mel
= Py + a_QO,1 > 0;
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y—fa'(y) =1 —-a™)y—Qu-1>0,
and

)~ £ () a™(ax —y)+a" (1 —a)+amy
> a1 —a)(1+7).

This complete the proof.

Remark 3 To continue our study of the main issue, let us first have a dis-
cussion on relative prime numbers. Leti > j be given positive integers. Then,
there are integers k > 1 and j > r > 0 such that i« = kj +r. In this case, it
is not hard to verify that i and j are relative prime, namely, ged(i, j) =1, if
and only if ged(j, r) = 1. If r > 1, then we can repeat the same operation on
j and r. Thus, one can see that there must exist integers N > 1, r; and t,
1 <1< N, such that i = tyry +ryn—1 and ri41 = tyry + 11, where t; > 1,
ry = j and ro = 1. It can then be verified that ged(i, j) = 1 is equivalent
to ged(ry, ri—1) =1, 1 <1< N. On the contrary, suppose N > 0 and take
ro=1,7r1>1andt; > 1,0 <1< N. Then, when ri41 = t;r; + ri—1, it is
also true that ged(ry, ri—1) =1 for every 0 <1< N, so that r_1 = 0.

In the following, we always take ro = 1, r1 > 1 and ri41 = tyry + ri—1,
t; >1,0<I1I<N. Ift;, 0<1 < N, have the above characteristics, then,
the group of positive integers is called a coprime structure. Here, we want
to point out an apparent but non-trivial fact. Suppose that t;, 0 <1 < N, is
a coprime structure of a coprime pair i and j. Then, except for the case of
N =0 and tqg = 1, take a group of positive integers, t;, 0<I<L, as follows:

1. whenty >2, take L= N+1,tg=1,t; =tg—Landt, , =t;, 1 <
I < N;

2. when ty =1 and N > 0, take L = N — 1, tz) =ty + t1 andt; =
tiv1, 1 <1< N —1. Then, it can be easily verified that the group of positive
integers that we took is also a coprime structure of i and j.

Lemma 4 Suppose v € [Em, Qm_l) for some positive integer m > 2.
Then, a positive integer n is the prime period of a periodic orbit of sys-
tem (1) of Type I only if n = i(m + 1) + jm for some positive integers i, j
satisfying ged(i, j) =1.

In particular, system (1) of Type I has an n-periodic orbit in which i
points, denoted by x5, 1 < s < i, are in the interval [0, =*), and j points,
denoted by y, 1 <t < j, in the interval [x*, ), only if

1. wheni=kj+r for some k> 1,

_[ 0 ahE, ] bl .
V=l s o |ne (5 ): (23)

2. when j = ki +r for somek > 1,

[0 auB, ] d, 1,
Xi=lawp,_, o |NF ( o, > (24)
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where Xl = (‘rlv T2, =y xi)T) }/j = (ylvaa"' ayj)T and 18 = (17 17 Tty
T € Re.

Proof 8 First of all, respect to the monotonicity of the mapping f,(z) in
each interval of [—1, 0) and [0, 7), any periodic orbit of system (1) of Type
I must simultaneously include some points in [—1, 0) and [0, 7).

The conclusion in part 1 of Lemma 3 and (22) together show that if n is
the prime period of a periodic orbit, then there exist non-negative integers %
and j, with i+ 7 > 0, such that n = i(m+1) + jm, where i+ j is the number
of points that are in the n-periodic orbit and belong to the interval [0, 7).
Specifically, 4 is the number of the points in the interval [0, z*) and j is the
number of the points in [z*, 7).

We next prove that ged(i, j) = 1.

i) Suppose i = 0, i.e., n = jm. Let y;,1 <1 < j, be the j points of an
n-periodic orbit that belong to the interval [0, 7). Without loss of generality,
assume y; < y2 < --- < y;. Then, it is obvious that

0< f"(yr) < fM(y2) < < f™(yy)-

These inequalities show that f™(y;) = y;, 1 <1 < j, namely,

m—1
y = — ( 7 —1), 1<1<j.

T 1—am \ B

=m-—1

But this is impossible, since v < B,,,_;.

ii) Suppose j = 0, that is, n = i(m—+1). Let 2;,1 <1 < 4, be the ¢ points of
an n-period orbit that belong to the interval [0, «), with 21 < 29 < -+ < a;.
Then,

0 < [ (@) < [ () < - < f7 ().
These inequalities show that f™*!(x;) = x;,1 <[ < i, namely,
am

__a" gl _ 1
S (B_1> =g

m

But this is also impossible, since v > B,,,, which implies that

o Qm_(l_aerl)'}’_ a™ Y
ner= et —1-gmi\p, )70

This is contradictory to Lemma 1.

Thus, we conclude that, if n = i(m+ 1)+ jm is a period, then it must be
true that ¢, 7 > 1. Without loss of generality, let 1 < zo < -+ < z; <y <
.- < y;. To arrive at a contradiction, assume ¢ = ged(i, j) > 1.

iii) For the case of ¢ > j, if we denote ¢ by kj+r, then, as we have known,
the residual item r also has factor c.
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Assume r = 0. Then, according to Lemma 3, we have f™(z,) < 0,1 <
s <, f™(y) 20,1 <t <j, and

0< ™) < f™(y2) <+ < f™yy) < f™ () <o < (). (25)
Inequalities (25) imply that, for 1 <1 < j,

frrsmID () = 2y, 0<s<k—1,

26
T2 (u) = alry; 4+ by =y, (26)

which shows clearly that the points y;,1 < ¢t < j, have the same period
E(m+1)+m < kj(m+ 1)+ jm.

For the case of r # 0. it can be easily verified that (26) still holds true
except the last equality. From these equalities, we get

FPr(yrp) = Py + by =y, 1<1<j—
fBoy) = aPoyr +by =y, 1<1<,

which are the condition (23) of the lemma.

The above analysis shows that, for any 1 < s, t < j, v = f¥(y,) only
if N = Nop, + Nip, for some non-negative integers Ny and N satisfying
No + Ny > 1. Now, denote j and r by ¢j and er', respectively. Thus, (23)
can be rewritten as follows:

fgl(ycr'+l) = i, 1 SZSC(]J—/T,),
fﬁo(yl) = Yo(j =)+l 1<i<er.

The above shows clearly that y; = f21(ys) or y, = fPo(ys) only if | t — s | is
a multiple of ¢. This implies that the j points do not belong simultaneously
to one periodic orbit if ¢ > 1. Thus, the necessity of condition 1 has been
proved.

iv) For the case of j > i > 0, denote j = ki + r as above.

If r = 0, then there will be

ferlJrkm(iL'l) _ am+1+km1,l + akam +Pk71(am)Qm71 =2,

which shows that the period of x; is m + 1+ km < n for each 1 <[ <.

For the case of r # 0, it can be verified that the following equalities hold
forall0<s<k—land1<I[<i:

f-m+1+sm(ml) _ a7n+1+sm$l + astm + P571(am)Qm71 = Y(k—s—1)itril- (27)
Hence, one can further obtain

fo(x)) = atoxy +dy = 4y, 1<
[ (@iopp) =adhai g +dy =a, 1
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which are the same as (24). We have known that ¢ = ged(i, j) > 1 implies
that r has also devisor ¢. Denote i and r by c¢i and cr , respectively. Then,
according to (24), we have

Fh(xy) = dhay+d=x,0 1 <l<e(i —r1),
fﬂo (xc(ilfr')Jrl) = agoxc(ilfr/)Jrl + dO = Z, 1 < ! < T,

which shows clearly that x; = f%4i(z;) or 2 = flo(xs) only if |t —s | is a
multiple of ¢. This implies that the ¢ points x;, 1 <[ < ¢, do not belong to
the same periodic orbit.

v) It can be easily verified that ¢ = j only if i = j = 1.

This proof is completed.

Corollary 1 For every m > 1, when v = B,,, system (1) of Type I has not
periodic orbits.

Proof 9 The conclusion directly follows from Lemma’s 3 and 4.

Let Y, € R"™T"N+1 he a given vector. Then, the vector Y,

N+TN41 N+TN41
can be expressed as
(1)
Y;'N—2l
YTN—21,+TN—21+1 = : )
Y(tN—Zl)
TN -2l
YTN—21—1+TN—2Z (29)
Y,
TN—2Z(—12)+7'N—21—1
YYTN72171
Yin o atrno = : ’
(tn—21-1)
}/TN—Zl—l
or as
YTN—QL(—1)+TN—ZZ
1
YTme
YT’N—2L+"”N—2Z+1 = . )
(t1)
Y;'N—2l (30)
e
TN—2i—1
Yoy o itry o = ’ ’
Y(tN—Ql—l)
TN—21—1

Y”’N—2l—2+’f‘N—2l—1

where Y,V € Rre, 1 < B < t,.
The above expressions can be illustrated with the following example. Let
N=3,r=1,1r=T1r=1xr+1=8 r3=2xry+7r; =23 and
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ry = 3 X r3+re = 77. In this case, one can verify that any given vector
Yioo € R'° can be expressed as

T
T(1 T(2 T(3 T T(1 T(2
Y100 — (ng( ) }/23( )7 Y23( )7 Y7 ( )’ Ylj-;-7’ YS ( ), }/8 ( ))

)

and
T
T(1 T(2 T(1 T(1 T(2 T3
YIOO _ (YS ( )’ YVS ( )7 Yljjr7’ Y7 ( )7 23( )7 Y23( )’ YYQB( )) .
Proposition 2 Suppose N > 0 is a non-negative integer, ag, ai, by and by
are real numbers with 0 < ag, a1 <1, and

def 0 alE,«NH
A & [ woEs . . (31)

TN+TN+1
Then, the system of linear equations

by 1,
(ETN+TN+1 - ATN+TN+1)Y"N+TN+1 = ( (1) 1N+1 ) (32)
0Lryn

has a unique solution. When the vector Y, 1y, is expressed in the form of
(29), the system of linear equations (32) can be solved by a recursive formula
as follows:

— by_11,
_ - N—21+1
ATN*2Z+1+TN—2(Z—1)KN—2l+1+TN_2(l_1) = ( bor 1 , 2<2I <N,
(s) (s+1) ey
s s+
Yoy ioan =aa—1Yry o0 Fba—1Lry_ ), 1 <8 <in_20-1)

- bay11ry_
ATN—21+TN—21+1YTN—21+TN—21+1 = ( b2l17N 2 ) 2<2l< N,

(s) (s-1) e (33)
S S—
K’N—ZH»I = a2lY7’N—2l+1 + b2l1r1vfzz+1’ 1<s< IN—2i+1,
- ref (tN—2(1—-1)+1) .
where Apjyryy = Erppry — Aty Yonoogen) consists of the first

0 .
rN-_2(1-1) components of the vector Yy , i 4ry 5y, and YT(N)_m+1 consists
of the last rx_o1y1 components of the vector Y,y o 4ry o1, With

B 0 ag 1By
ArN_21+1+rN72(l71) = l: anEerwil) ON k1| (34)
0 a1 B
ATN—2l+7’N—2l+1 = |:a2lE * ON R I (35)
TN -2l
Gs10 = asaiiis, 0<s<N, (36)

bs+2 - bs + bs+1asPtN,571(as+1)~ (37)
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When N is an odd integer, the above procedure ends at 21 — 1 = N, and the
system of linear equations (32) reduces to the following special form:

0 an _ by
<E1+r1 - [ aN+1Er1 0 :|) Y1+r1 - ( bN+11r1 ) . (38)

Moreover, the solution of (88) is obtained as follows:

1 _ 1
Yivn = Tanay,, ON+2 (39)
1
Y1(ijl) = aN+1Y1(i)T1 +bng1, 1 <1<y
When N 1is zero or an even integer, the above procedure ends at 2l = N,

and the system of linear equations (32) reduces to the following special form:

<E1+'f‘1 - |: 0 aN+SET1 :|> Yl—i—m = ( bN+1 1r1 > ) (40)

an by
whose solutions are given by

(A+ry) _ 1
Y1+r1 - 17aNa71“\71+1 bN+27

(41)
Yl(_?rl = ULN+1Y1(_Z|:;11) +bny1, 1Ty

A proof of Proposition 2 is given in Appendix I.

Property 1 Suppose m > 2, k > 1, and N € PEy, {t;, 0<I< N} e T,
and rip1 =tirp+r—1, 1 <I<SN.

1. Ifp,_,=p +tnap, ,» 0 <I< N, and the value n = i(m+1)+jm
is evaluated with j =ry +ryny1 and i = kj +ry, then n = Prnio

2. If i3 = Dy1 +tN-iDiy2, 0 < U< N, and the value n = i(m+1)+jm
is evaluated with j =N +7rN41 and i = kj +rny1, then n =Dy, 3.

3. Ifgl+2 =q,+tnag,,, 0< Il < N, and the value n = i(m + 1) + jm
is evaluated with i = ry +ry41 and j = ki +ry, thenn = Ao

4. If Q3 =Gy FEN-1Gpy0, 0 < TS N, and the value n = i(m+1) +jm
is evaluated with ¢ = rn +ryy1 and j = ki +ryy1, then n = Q5.

A proof of Property 1 is given in Appendiz I1.

Property 2 Suppose v € (Em, Em_l) for some positive integer m > 2,
and b, o are defined by (36) and p, s defined as before. Then, for any
non-negative integer N, {ts, 0 < s < N} € Ty, and 0 <20 < N, we have

1. The following inequalities hold:

bZl bQH—Q
1 — a2 > 1 — qP2+2’ (42)
o1 gy 3
1 — a£2L+1 < 1— a£2l+3 ’ (43)
b b Pr(a™™)Q,, — (P + b
02142 _ Bl _ k(a p)Q (a IPW +b) S 0. (44)

1— a321+2 1 — gf2i+1 (1 — a72z+1)(1 — CL*ZH'?)
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2. For given N € PEy and {t;, 0 <1 < N} € Ty, except for {—p3b, with

to = 1, there exist L € N and a group of positive integers {tl, 0<I< L},
such that

/

P

Y L+ L 4
1-— a£L+2 che i chl 1—0,781\’“71\“_2’ ( 5)
1 ’ apN+1
e = gty then  (49)
— g-L+2

’

and vice versa, where pO =Py Py =Dy Py, =P T tL*lBl-&-l and by, =
bl—I—leaZP/ lil( L+1) 0<l<L

3. For given N € PEy and {t;, 0 <1 < N} € Ty, except for i— b3 with

to = 1, there exist L € N and a group of positive integers {tl, 0 § 1< L},
such that

apL+2 _ 1 —
i = Tt (7
1 _’ aPN+2  _ _
L T Tt (89)

def o
and vice versa, wherep, 3 = psﬂ—i—tN SpsH, 0<s<N, p1 D1, Do = Da,

Dirs = Pro1+1p Py and bz+3 = bz+1 +bl+2ap“lp - 1(apl”) 0<l<L.

A proof of Property 2 is given in Appendiz I11.

Property 3 When Yi4,, is the solution vector of (38), its first component
Yl(i)rl Yrnir- When Y1y, is the solution vector of (40), its last component

147 = Yrny1+1-

Proof 10 For N =1, the expression of (29) shows that there is ¢;7; compo-
nents of Y, +,, ahead of Y1+r , since ro = t111 + 719, 19 = 1, and Y1(+T is the
first component of y, ., ,, therefore, the first assertion holds true for N = 1.
Assume Y1( +)m Yry,, for some odd integer N. For N + 2, by assump-
tion, there are ry4 1 — 1 components of Y, ..., ahead of Y1+r , and from

the expression (29), we know that there are ¢y o7 n12 components ahead of
Y y+4ryy.- Hence, there are txyorni2 +7rvy1 — 1 = ryy3 — 1 components

ahead of Y( ) in the vector Y,y ,1ry.s-
The second assertion can be similarly discussed. This completes the proof.

From Proposition 2, we can see that to solve the system of linear equations
(32) one should distinguish two cases: i = kj +r and j = ki + r. For each
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of the two cases, it should be distinguished two situations: j > 2r and
Jj < 2r (similarly, ¢ > 2r and i < 2r), which are corresponding to (32)
and respectively to the initial system of linear equations with the coefficient
matrix in the following form

0 alErN

AT‘N +rNy1 T aoE
T

49

0 (49)
Besides, it seems to be necessary to consider N being an odd and an even
(or zero) integers, separately, but it will be seen that the case of N being an
odd integer can be replaced by the case of N = 0 or an even integer. Thus,
we only need to consider four cases besides the above two special cases.

Theorem 4 Suppose v € (Em, Emfl) for some positive integers m > 2
and N > 1. Then:

1. A necessary and sufficient condition for system (1) of Type I to have
n = (k+1)(m+1)+m-periodic orbits, in which k+1 points belong to [0, z*)
and one to [x*, ), is

1—a)a™ ! 1—a)a™ !

( 7 (377L+1) <7< 7 ( 7)n+1 Py : (50)
l—am—14 ko (1-a)a™ 1—qm-14 Dt 8T T (1 o) gm

Pt1(amTh P (amt1)+aP1

2. A necessary and sufficient condition for system (1) of Type I to have
n=m+ 1+ (k+ 1)m-periodic orbits, in which one point belongs to [0, x*)
and k + 1 points to [z*, ~), is

(1—a)a™? (1—a)a™"?
|—am—14—afm_ (1 yom <7< |—am-1. atDm o . (51)
“ Py (a™)+a%0 aa @ +Pk+1(am)( —a)a

3. Suppose n =1i(m+ 1)+ jm and i = kj + r for some positive integers
m>2,k>1,1, 7 andr, with ged(i, j) = 1. Then, system (1) of Type I has
an n-periodic orbit, in which i points are in the interval [0, x*) and j points
in the interval [z*, ), if and only if

3.1 when j > 2r, there exist N € PEy and {t;, 0 <1 < N} € Ty, such
that j =ry +7rN+1, ¢ = kj +ry and

b > Pp(a™™)Qpm,
{ T—an ON+2 = k(a )Q (52)

aZN+1

WQN+2 +bN+1 < aglf}/_’_bl;

3.2 when j < 2r, there exist N € PEy and {t;, 0 <1 < N} € Ty, such
that j =ry +7rN+1, t = kj +ry41 and

obnys < aPry + by,
aPN+2 T T m—+1 (53)
SNz + v = Pr(a™)Qy,

4. Suppose n = i(m + 1)+ jm and j = ki +r for some positive integers
m>2,k>1,4, j and r, with ged(i, j) = 1. Then,
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4.1 when i > 2r, system (1) of Type I has an n-periodic orbit, in which
i points are in the interval [0, x*) and j points in the interval [z*, ~), if
and only if there exist N € PEy and {t;, 0 <1 < N} € Ty, such that
i=rNy+7TNny1, ] =ki+ry and
>

ﬁd]\f“rQ - 407 (54)
aiN+1
rdy s tdyy < aF Ty 4 P(a™)Qmo;

4.2 when i < 2r, system (1) of Type I has an n-periodic orbit, in which
i points are in the interval [0, x*) and j points in the interval [z*, ), if
and only if there exist N € PEy and {t;, 0 <1 < N} € Ty, such that
i=rN+7TNt1, J=ki+rNny1 and

(55)

B —dngs < a* My 4 Pr(a™)Qum-1
S Angs +dne > ds.

amn

In particular, when one of the above conditions holds true, system (1) of
Type I has a unique n-periodic orbit, which is globally attracting.

Proof 11 In the following, both z; and y; are the same as that in Lemma 4.
1. According to Lemma 3, it can be easily verified that y; € [x*, 7) is a
periodic point with the stated characteristics only if the point is given by

bo

T 1_an

4 (56)

Thus,

Y > 5 = a(k+1)(m+1)Qm71 +Pk(am+1)Qm +a—7rz(1 _ an)mel >0
= a"Pr(a™™M)Qpm + Qm-_1 >0,

which is just the first inequality of (50). On the other hand, from the precon-
dition y; > a* and the first part of (26), we know that fgl (y1) = xp < ™
thus, we have

fatpn) —a* < 0
= a"(Qm+b)+(1-a")Qm-1<0
s g™ (a& + Pk_l(am+1)) Qm+(1+ad’r —a™)Qum-1 <0
& a™ (aPr + P (a™h) v+ (aBr + Pr(a™)) Q-1 < 0.
It is not hard to verify that the above is equivalent to the second inequality
of (50).

Next, we prove the sufficiency of conditions (50). Firstly, it can be easily
verified that, for any given positive real number ¢, the function

t
c+t
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is strictly increasing in the interval (0, +o00). Hence,

Pi_1(a™t)+a2 Pj_1(a™t?t a™ P, _5(a™t?
e > Bl ) s ettt > > ey (B7)
and
Pkil(am—&-l) +a£1 Pkil(am-i-l) +ak(m+1) Pk(am—i-l) (58)
Pk(am+1) + aﬂl Pk(aerl) + ak:(m+1) Pk+1(am+1) .
As a straightforward corollary of (57) and (58), we have
FRD(0) = Proa (@) Qm < 27, (59)
SN () = Py (@™ Q> 2™ (60)

In the following, we prove that the point given by formula (56) is n-
periodic when condition (50) is satisfied.

As a matter of fact, the conclusion in part 2 of Lemma 3 and the first
inequality of (50) together imply that

a™b 1

f') = = n t@m1= 17—

(a"Pr(@™ ™) Qm + Qm—1) = 0;

that is, y1 € [z*, 7). On the other hand, according to the conclusions in
parts 3 and 4 of Lemma 3, for every 0 <[ < k,

FLmED(0) > fLmTD (£ (y)) > 0.

Hence, we have

fa* (1)

fa (y1)
q (k1) (m+1)

= W(a/"LPk(aerl)Qm'i'Qm—l)+Pk(am+1)Qm

= Y-

The above proof shows clearly that system (1) of Type I has a unique periodic
orbit passing through the point defined by (56).

2. This assertion can be discussed in the same way as above.

Before proving assertions 3 — 4, we firstly have an explanation about the
conditions in parts 3 — 4. One can see that all the conditions in parts 3 — 4
are related to zero or positive even integers for N. The reason is that, with
respect to Remark 3, two positive integers ¢ and j are coprime if and only
if there exists a coprime structure t;, 0 < [ < N, with N being zero or a
positive even integer. Therefore, there is no need to discuss the case of N
being odd integers.

3. Necessity of condition 3.1. Assume that system (1) of Type I has
an n-periodic orbit, in which ¢ points are in the interval [0, z*) and j
points in the interval [z*, ). Here, we take the expression of Y, 1,y,, =
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Illustrate For Theorem 4: Uniqueness and Attractability of Periodic Orbit

o8 X o4 oz o 0z 0.4
x

lilustrate For Theorem 4: Uniqueness and Attractability of Periodic Orbit

Fig. 34: a=0.7, m =3, k=1, 0.2416 < v < 0.2474 and y; = 0.2934

(v1, Y2, -, yj)T as in the form of (29). According to Lemma 4, Y, 47y,
should be a solution of the system of linear equations (32) with ag = ao,

ay = a1, by = by and by = b;. Moreover, by Properties 1 and 2, we have

+1
ot = ﬁ [by + by ranPr—1(ant1)] = T=gwby o (61)
l I+1 I+1
y§1)+1 = aN+1y£1+1) +bN+1 = QBN"'lyilJrl) +é1\r+17 1<i<m,
h (ritl) _ d _ () JLN (ri+1) b B
WRere Y. 41" = Yrypa+1 ANA Yy = Yy = A Yri4+1 +7N+1' y

assumption, y; > x*, hence,
Yrnart1 = aloyr + by > alox™ + by = Py (a™ ) Qum,

which is just the first part of (52). On the other hand, the restriction condi-
tion y; < v and the relation y,,,, = a®1y; + b, together show clearly that
the second part of (52) is also necessary.

Sufficiency of condition 3.1. We divide the proof into several parts.

1) Yryyi+1 = aPoys + by > Py (a™1)Q,, implies y; > z*.

2) aPry; + by = a"N 1y g+ by gy < Py 4 by implies y; < .

3) According to the first assertion of Property 2, it is known that condition
(52) implies Yry, 41 > Yry,,- Moreover, this inequality and the second
part of (52) together ensure that the inequality y;41 > y; holds true for all
rne1 1 =7 <T<ryga.

4) In the following, we prove that vector Y,y , is ordered in magni-

T
tude. A vector Y, € R” will be denoted as Y, = (Y,.(l)7 Yr(2), cee YT(T)> .
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As to vector Yr(sl), 0 <1l <tg,1 <5 < N+1, we will denote it by
T
v = (v, v, )

Firstly, from 3), we know that the vector Y14, is ordered in magnitude.

Secondly, according to the second part of (33), it can be easily seen that
each of {Yr(ls), 0 < s <t} is also ordered in magnitude. Thus, if YT(ll’l) >
Yr(lo’rl), that is, the first component of vector Yr(ll), which is just behind Yi4,,,
is greater than the last component of vector Y14, , then, for all 1 <1 <y,

1

Yr(ll+1,1) —_yr) P (Yr(ll’l) B Yl(er_T}m)) S0,

which implies that vector Y;, 4, is also ordered in magnitude. Now, compare
Yr(ll’l) and Yr(lo’rl) with their values. Since Yr(lo’rl) is just the component
Yl(ijln), according to (40), we have Yl(ijfl“) =a NYl(i)r , +by. Hence, from
the second part of (33) with 2l = N, we have

}/;(1171) - Ytr(107rl) = aBN Y’I’(1071) + QN - G’BN Yl(-il-)rl - QN = G'BN (Yl(i)m - Yi(-&l-i‘l) > 0.

Thirdly, as to vector Y;,i.,, the second part of (33) and the above

conclusion on Y;, 4., together imply that each of YT(QZ),l < I < tg, is or-
dered in magnitude. Besides, by a reason similar to the above, this vector
Y, +rs is also ordered in magnitude if Yr(; SRS Yg 272) " This inequality
can be verified as follows: on one hand, the first part of (33) shows that

YT(;2+1’1) =a N_lﬁ(lrijzl) + by _1; on the other hand, from the second part of

(33), we have YT(QtZ’TZ) = aN_lYT(;zH’T?) +bn_1, in which Y}(;ﬁl“) = YT(Z?_)”.
Hence, the inequality ;02" > v,2"2) holds true.

Finally, we assume that Y, _,, +ry_s,, is ordered in magnitude for some
2] < N. We then prove that both vectors Y., i try_oipe a0d Yoy ooiry oiis
are ordered in magnitude. Combining the above conclusions with Proposi-

tion 2, it is not hard to verify that vector Y., . try_s,. is ordered in

magnitude if YT(,?};H > x(ﬁi'g;fl“). According to (29) and (33),

AR ) + by,

TN—21+1 TN—21+1
and
YT = @V s + b
where
y o1 Y(TN—ZlJrl) _ yrn—a+l) .
TN—20+1 TN—21+TN 2141 TN—-21+TN 2141

Thus, by assumption, inequality Y; o), > }43{5;3““ holds true. As to
vector Y, from (29) and (33), we have

N—214+2Ft"N—21+3)

(tn—2042+1,1) _ (rN—2041+1)
Y”‘N—21,+2 - a2l71Y7’N—2L+1+""N—2l+2 + lefl
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and
(tN—2142,"N—2142) _ (tN—2142+1,rN_2142)
YT‘N—ZL+2 - a2l—1YTNle+2 ' + le—U
where
(tN—2142+1,rN—2142) _ Y(TN*ZHQ)
TN—20+42 TN—20+1Ft"N—-214+2"

We have proved that vector Y. ..., +ry_ ., is ordered in magnitude. So,

tne 1,1 tn Lrn_ L
E(N]i;i;ﬁ )>YT(NJXQL2$2+ TN -242) which implies that vector Y,

is also ordered in magnitude.

5) Combining 1), 2) and 4), we conclude that z* < y < ~+. In the
following, we further prove that fi' (y1) = alry; + by forall 1 <[ < j and
fgo(yl) = aloy; + b, for 1 <1 <ry.

Firstly, since

N-—214+2F+T"N—-21+3

aloyy + by = a™(aBryy + b)) + Q= afa™ (aPryr +by) + Q1] + 7,
it follows that
Y > Yryrat1 = aBoyr + by > Pr(a™ ) Qum,
which implies a™(af1y; + ;) + Qm—1 < 0. Furthermore,
x* > aliy; + by > Pr_1(a™) Q. (62)
Generally, utilizing (62), we can prove the following equalities:

a(l+1)(m+1)(amy1 + Qm-1) + Pi(a”™ ) Qu,
=qmt! (al(’”“)(amyl + Qm-1) + Plfl(am—‘_l)Qm) + Qm

=a [am (al(mﬂ)(amyl +Qm-1) + Pl—l(am+1)Qm> + Qm—1:| +7.
Using induction, we can verify the following inequalities:
" > a' " (@ y1 + Qo) + Pima(@™T)Qu = Proa (@) Qe (63)

for all 0 < [ < k, where we stipulate P_;(a™*!) = 0. By (63), we get

f(ll(mH)(O) =P;_1(a™t)Q,, for every 0 < [ < k + 1. This conclusion and
part 2) of Lemma 3 together show that, for each 1 < [ < j, the following
inequalities hold for all 0 < < k:

FLm) (0)

A

faem gy

= a0y @+ Py (@™ Qm (64)
< fEDEmED) (),
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An obvious conclusion followed from (64) is fo (y)) =alry +by, 1 <1< 5.
Besides, according to (23), when 1 <! < ry, fgl+m(yl) >0,

Yrvpr4+l = aloy, +by=a (f;n (fgl (yl))) + 7.

The above implies fgl (y;) < 2*, which is obviously equivalent to f§0 (y) =
aPoy; 4+ by, 1 <1 <ry.

6) Now, we prove that the group {y;, 1 <1 < j} belongs to an n-periodic
orbit. At first, it is not hard to see that (23) defines a one-to-one mapping
in the group:

fgo(yz), 1<li<ry
Fluy) —
(W) { fa (), v <l1<j.

This implies that there must be a positive integer N; such that y; = £V (y;)
for each 1 < 1 < j, i.e., each point in {y;, 1 <1 <j} is a periodic point.
Without loss of generality, we take N; as the smallest positive integer that
satisfies the equality y; = f2(y;). Clearly, this stipulation and conclusion 1)
of Property 2 together imply that N; < TNDy + TN41P, = N

If there is an N; < n for some 1 < [ < j, then there must be 1 <
s < jand s # [ such that fi(y;) # ys and fi(ys) # y for all £ > 1.
This leads the system of linear equations (32) to be separated into some
independent subsystems. But this is impossible according to Proposition
2. Therefore, the group {y;, 1 <! < j} must belong to the same n-periodic
orbit. Furthermore, the uniqueness of the solution of (32) ensures that the
periodic orbit is unique.

Necessity of 3.2. For notational convenience, in the case of i = kj +ryy1,
we use N + 1 instead of N in (31) and take the vector Y;., 4, , in the form
of (30). Let a; = a¥1, as = a2 and replace b; and by by by and by in the first
part of (33), respectively. Then, (33) becomes

_ b1,
ATN+TN+1YT‘N+T‘N+1 - ( 621 N ) ) (65)
TN+1
where
0 a1 E,
ArN+7'N+1 = { asEry ., 10 " :| ’

Clearly, the system of linear equations (65) is the same as (23) with the above
parameters. Thus, when N is zero or a positive even integer, we meet the
special situation (38) and its solution is given by

1) _ 1 7 — — _ 1 7
Yisr = ommirmmys [Ov+1 T 0v2an 1 Pr —1(@n2)] = = bas,

le(-l&-ti) = aﬁN-%—?Yl(_l’_)rl +5N+27 1<i<ryg.

(66)
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llustrate to Theorem 4.3.1: Uniqueness and Attractability of Periodic Orbit

()

Fig. 56: a =095, m=3 k=1 N=2t,=1,j>2r,
0.3651 < v < 0.3657 and Y, 1) = 0.3385

lllustrate to Theorem 4.3.2: Uniqueness and Attractability of Periodic Orbit

)

05

-05

Fig. 78 =095, m=3 k=1, N=2t,=1,j<2r,
0.3604 < 7 < 0.3609 and Y,\"), = 0.2585
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Besides, by comparing expression (29) with (30), and utilizing Property 1, it
is not hard to verify that Yl(_‘l_;f:l) = Yry+1 and Yl(—ll-)rl = Y. Thus, similar
to conclusion 3.1 of this theorem, conclusion 3.2 holds true.

4. Necessity of condition 4.1. Suppose that system (1) of Type I has an
n-periodic orbit, in which ¢ points are in the interval [0, 2*) and j points in
the interval [z*, 7). Let the vector X,  ,,,, = X; be expressed as in the
form of (29). Let ap = a%, a; = ar and replace by and b; by d, and d;,
respectively. Then, according to Lemma 4 and Proposition 2, when N is zero
or a positive even integer, we have

X = ﬁdm% = o (67)

XO v x®D g i x D g 1<1<r.

1+7 N+1A 149y ZEN+1 1+ry YNNI St
By Property 3, we know that Xﬁtfl) = ZTry,,+1, and Lemma 4 shows
Tryoy 4l = a%ox; + dy. Thus, the inequality x; > 0 implies the first in-
equality of (54). On the other hand, it can be verified that the necessity
x; < z* and the relation x,, , = a®iz; + d; together imply also the second
part of (54).

Sufficiency of condition 4.1. We again separate the proof into several
parts.

1) According to Lemma 4 and conditions (54), we get z; < «* and z1 > 0.

2) Inequalities (54) and the following inequality

dy — (a(k+1)m7 + Pk(am)Qm_1) =a" (1 —a™)y — (1 —a)Qm_1) > 0(68)

together imply z,y,, < Zry,,+1. Thus, in the same way as the proof of
3.1, it can be verified that vector X, .., is ordered in magnitude, with
0<y <z, 1 <1<

3) In the following, we prove that f3°(x;) = a%x; +dy for all 1 <1 < i
and that fgl (Tyya1) =ahim,,y+dy for 1 <1 <ryyq.

Firstly, the two inequalities, z; > 0 and (68), imply d, > 0. Moreover,
by Qm-1 <0, we get

aboxy +dy = a* V™ [a™ (@™ 21 + Qi) + Q1] + Pr—2(a™)Qm-1 > 0,
which implies
f;"“(xl) =a" e +Q, >zt
Generally, for 1 < s < k — 1, utilizing the equalities
aory +d, = a’™ a(k_s)m(am+1x1 +Qm) +Pr_s 1(a™)Qm—_1
+ Ps1(a™)Qm-1,
we get

a* M (@™ gy + Q) + Pr_s—1(a™) Q1 > 27 (69)
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On the other hand, the first part of conditions (54) shows that aZix; +
d; < a®* D™y 4 Pr(a™)Qpm_1. By comparing this inequality with (69), it
is obvious that the equality f§0 (z1) = a%ox; + d; is true for every 1 <1 <.
Besides, since fgo(x,.NHH) > fgo(a:l) = Try 41 > 25, 1 <1 < ryqq, we
have, fgl (xTN-HJrl) =ah Lryp1+1 +dl'

4) Thus, we conclude, from conclusion 3) and (24), that every z; is a
periodic point. In the same way as the proof of 3.1, it can be proved that
the period of z; is n.

4.2 As done in the proof of conclusions 3.2, we use N + 1 instead of N
and let the vector X, 4,y,, be in the form of (30). Let a; = a7, ay = a%
and replace d, and d, by d; and ds in (65), respectively. We get

- di1
A + X -+ = ( - "N ) . (70)
TNHTN+1ATN+TN 41 d21TN+1
Clearly, the system of linear equations (70) is also the same as (24) with the
above parameters. Thus, when N is zero or a positive even integer, according
to the recursive algorithm of Proposition 2, the system of linear equations
(70) reduces to the special situation (40) and its solution is as follows:

) _
Xy, = ardns,
XD = qinea XU p e, 1< <,

where the equality X ﬁi-)m = Z,,_, still holds true. Thus, similar to conclusion
3.2 of this theorem, condition (55) is necessary and sufficient. This completes
the proof.

Remark 4 Since v € [Eiil, i) is the same as % € (Em, mel], we
can equivalently transform the discussion of the case v € [B L %) into
—=—m—1 m

the case of% € (Em, Bm_l] for system (1) with parameter % As a result,

we can obtain conclusions similar to the above.

In the following, we discuss the distribution characteristics of the periodic
orbits.

Corollary 2 For any given {t;, 0 <1< N} € Ty, the set of parameters -,
corresponding to every periodic orbit expressed by (52)-(55), is a left-closed
and Tight-open interval.

A proof of Corollary 2 is given in Appendiz IV.
Theorem 5 1. Let

) (1—a)a™ 1
i(m, k) = PP (T ; (71)
1— am_l + algj>+;;(10(lm+1) )<1 - a)am

- (1—a)am1!
Z(m> k) = _ Pr_1(amT1) ) (72)
1—am 1+w(1—a)am




Global Dynamics of Unbalanced DMFC Systems 663

and

aZN+1

Y = sup {’}/ mbl\/‘i‘? +bN+1 < Oé(m, ]’C)} or

m(m. k)= 7‘ ¥ =supq 7y 1_5;5@3 <a(m, k),

{t;,, 0<I< N} e T,

73)

where a(m, k) = aliy+b,. Then, for any givenk > 1,5 >r>1,i=kj+r,
ged(i, j) =1 and n = i(m+ 1) + jm, a necessary and sufficient condition
for system (1) of Type I to have an n-periodic orbit, in which i points belong
to [0, =*) and j points to [x*, v), is v € (i(m, k), i(m, k)) \yi(m, k).

2. Let

(1—a)am!

i(m, k) = — , 74
2( ) 1— am—l + ;:Eca?’") (1 — a)am ( )
= 1—a)am !
L — )L (75)
1—a + W(l — a)a
and
7Y = sup {'Y algiVTtleN+2 + dN+1 < ﬁ(m, k)} or
el D=0 7= sup 1| {255 < Blm. k)| (1)

{t;, 0<I< N}e T,

where B(m, k) = a*tVy 4 Pr(a™)Qum_1. Then, for any given k > 1,
t>r>1,j=ki+r, ged(i, j) =1 and n = i(m + 1) + jm, a neces-
sary and sufficient condition for system (1) of Type I to have an n-periodic
orbit, in which i points belong to [0, z*) and j points to [z*, 7), is v €
(l(mv kl)a ](m7 k)) \72(m7 k)

Proof 12 Since the two conclusions are similar, for simplicity in the follow-
ing proof of the theorem, we only prove the first one.

We firstly prove that the parameter «y, corresponding to a periodic orbit
determined by (52) and (53), belongs to (i(m, k), i(m, k)).

Assume that y; € [z*, 7), 1 <1 < j, are j points of an n-periodic orbit.
Then, according to Lemma 4, y;_,4y1 = a®oy; + by. Since, by assumption,
y1 = 2" and y;_r41 < 7y, we have

aoz* + by = Pr(a™)Qm < v & a™Pi_1(a™ )y + Pr(a™ Q.1 < 0.

It can be verified that the last inequality above is equivalent to the inequality
v < i(m, k). On the other hand, from the equality y1 = a?ry,+1 + by, we
have

aliy +a" Q1 + P (a™)Qy > 27

& a™ (@ + Pr_1(a™ )y + (alr 4+ Pr(a™ ) Q-1 > 0.
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This shows v > i(m, k).

In the following, we investigate the distribution of the parameter v cor-
responding to the periodic orbits given by (52) and (53). For this pur-
pose, we need to know the evolution property of these points appearing in
(52) and (53), which depend on t; and N. For any given positive integers
t;, 0 <1< N, with N being zero or positive even, by blmple differential oper-
ations, one can verify that both points WbNJrQ and Wb]vﬁ +bni1
are monotonously decreasing when ¢y tends to infinity. Especially, due to
Property 2, we have

. apN+1 agl
lim libzvn oy ) < lim méz +by (77)

to— 00 — a- N+2 0—00

and
ap
tlim (1 bz—l-b ) < (aliy+ 1)
0—00
aPo
1—ak
= Pk<am+1)mel _’_Pkil(am—H)am,}/ < 0

& v <i(m, k).

< by +

-by =7 <0 (78)

On the other hand, to those periodic orbits expressed by (53), we have

aPN+4  _ _ aPrN+z  _ _
1 — agPn+s bN+5 + bN+4 - 1 — gPnN+3 N+3 ™ bN+2
_ aﬁNH ( BNi—5 - BN—i—fﬁ )
1 — aPnN+s 1 — aPn+s
>0
and
Dy _ _
lim —by+by > Prp(a™ Q. &y >i(m, k). (79)
to—oo 1 — aPs

Besides, in the case of tg = 1 and N = 0, one can easily verify that

a2 -~ - 1
Tyt h = by, (80)

1 - abr
T—a® = 1_ab by +by. (81)

The above shows that, except for the periodic orbit with N = 0 and ty, = 1,
~ corresponding to the periodic orbits expressed by (52) and (53) distributes
in two different parts of the interval (i(m, k), i(m, k)).

For any given {t;, 0 <1 < N — 2} € Ty, let the point 7bN+2 be

1— aN+2

determined by tzj =1, tll > 1 and t2+2 =1, 0 <1< N —2. Then, by (42),
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we know that 17i£N by > X a;wz Q;V+2~ To simplify the notation, denote ¢,
by t below. Thus, we have
d 1 / d byt
dt 1-— a£;V+2 bz = o dt 1—d? ++pN+1
_ _ang [(1 — aBNfl)bN — (1 B agN)bN—l] da"y (82)
(1 — an)(1 — aBy i) dt
> 0.

This shows that the sequence { b, bnas tl > 1} is monotonously in-

1— aT’N+2
creasing when t/l tends to infinity, and

. bl]V+2 aPN-1by p

lim — — —by_y = (A —a*"-1)by — (1 —aln)by_,

p
t1—00 1— a£N+2 1 —a®~

= Pp(@")Qm — (aPry +1y). (83)
The result (83) shows clearly that the infimum of the set

b/
{'y lim —2+2 >Pk(am+1)Qm}

t1—o00 1— aBNH

is the same as the supremum of the set

(=

b/
inf {’y lim —N+2 > Pk(aerl)Qm}

t1—o00 1 _ a£N+2

apN 1

1-—

bN+bN 1 <af 17+b}

namely,

pN 1
—sup{’y’la bN+bN 1<a1'y+b} (84)

On the other hand, for the case of N > 2 and t; = 1, one can show, in
the same way, that both points wa+3 and T%BNH, + bN+2 are
monotonously decreasing when t; tends to infinity. In particular,

1 — aPr+1 + aPN TP+

1 o
- — P
tlhjgo T o bN+3 aPN+1by + 1 — g by (85)

Hence, for any given {t;, 0 <1 < N} € Ty, let tg =1, t’l > 1 and t;+2 _
t;, 0 <1< N, so that

b _ _
1 — ogPnes + bN+2 — lim 1N7:/5 — (1 _ aPN+3)bN+2 _ (1 _ aPN+2)bN+3
_ t1—00 aPN+s

a§N+25N+3

= Pu(a")Qm — (aPry+by).  (86)
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This implies that

’

b _ _
sup < y tlim N7ﬁ<ap17+b1
1700 1 — gPN+s
) aPN+2  _ _ Ml
=inf <~y mbN—s-?) +bn42 > Pr(a )Qm ¢ - (87)

Thus, for any two different group of positive integers ¢;, 0 < I < N and
t, 0<I<L,if

. bN+2 m—+1
inf {’yllapNH > Py(a")Qm
p/
a—L+1 ’ ’
7Z/QL+2 +bpp <Py +b g,

# sup 7‘
1 —a~1+2

then, according to (84), there must be a periodic orbit such that the corre-

QN+2 Z Pk (aerl)Qm} and

1—afN+2

sponding parameter 7y is between inf {'y

s

a,g/L*l b/ ’ P
Dby 1o+ by 1 <at1y+by . For the case of

1—aPL+2

) aPN+2  _ _ M1
inf v mbNH +bn42 2> Pr(a™)Qm

7/
bris
—/

# sup 7‘ <aPy+by o,

1 — aPrs

we also have the same conclusion.
Assume vy € (1'(m7 k), i(m, k)) is not corresponding to any periodic

orbit, and not equal to sup 7‘ %QNH +byp < abriy+ bl} nor

sup {7’ % < aP1y + by ¢ for any given group of positive integers t;, 0 <

! < N. Then, according to Corollary 2, every parameter interval determined
by (52) and (53) is left-closed and right-open. Hence, there must be an open
interval, denoted by («, ), such that vy € (o, () and every v € (o, () is
not corresponding to any periodic orbit. But, from (78), (79), (84) and (87),
we know that this case is impossible.

Assume 79 = sup {W‘mbl\fﬂ + by <abiry +b1} for some group
of given positive integers t;, 0 <1 < N, with N being zero or positive even,
and it is corresponding to some periodic orbit. Then, by the definition of
7o and characteristics of the parameter interval corresponding to a periodic
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orbit, there is a positive real number, y; > 7y, such that every parameter
v € [v0, 1) corresponds to the same periodic orbit. But equality (84) and

b, abnih, ,
lim 7N+,2 - 7/N+2 - bN+1 = Pk(am+1)Qm - (aglly + bl) (88)
t1i—oo \ | _ (Prie 1 — oBn+2

together show that such an interval does not exist.
Similarly, one can reach the same conclusion about

_ by s P 7
’}/()Sup{’}/‘l_aw’<alf}/+b1 .

With respect to the foregoing Theorems 3 - 5 and Corollary 1, one can
immediately draw the following conclusion.

Corollary 3 Suppose 0 < v < a < 1. Then, system (1) of Type I has no
periodic orbits if and only if

v €{Bm, me€ N}U%(m, k)U’yQ(m, k). (89)

In the rest of this paper, we discuss the characteristics of the dynamics
of system (1) for the case of a = 1.

Theorem 6 Suppose a = 1. Then, system (1) of Type I has the following
properties:

1. System (1) of Type I has no 2-periodic orbit.

2. For every positive integer n > 2, system (1) of Type I has an n-periodic
orbit if and only if there are two positive integers, | and m, with ged(l,m) =1,
such thatn =1+ m and v = % In particular, when the above condition is
satisfied, all the points in the interval [—1,7) are n-periodic points.

3. Suppose v = # satisfies the conditions in part 2. Then, any peri-
odic orbit has the following property: when the n points of the periodic orbit
{z;, 1 <i < n} are sorted by their values, the distance between two neigh-
boring points satisfies % <xipr — x4 < %, 1<i<n.

Proof 13 1. We have known that a point x is 2- periodic only if A(z)and
A(f1(x)) have different signs. Therefore, equality

@) =2+ A@) + A(f(x) ==

holds true only if A(z) + A(fi(x)) = 0, namely, A; = A,. This contradicts
the assumption of A; # As.

2. Necessity. First of all, we have known that any periodic orbit must
include points in the two intervals [—1, 0) and [0, 7). Moreover, for any
point z € [0, ), the following equality holds true:

(@) =z +my—1, (90)
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where [, m are positive integers and n = I +m. Therefore, a point z € [0, )
is n-periodic only if my — 1 = 0, that is, v = %

Let ¢ = ged(l,m). We next prove ¢ = 1.

Case one: Assume vy = % < 1. Let m = Kl+r. Since, for each z € [0, v),

N (N -1)! I+
= ——l=z- 0 91
Nay=ot O p-l o (o1)
and
NI T
TNy =+ — —1=x—— 92
V@) et S m1=a- L (92)

we know that a positive integer n > 2 is a period of system (1) of Type I with
parameter ¢ = 1 only if there are non-negative integers l; and ls, I1 +1o > 1,
such that n = 11(2+ N) + l2(1 + N). Here, I; + I3 is obviously the number
of points that belong to an n-periodic orbit and to the interval [0, ). In
particular, I; is the number of the points that satisfy f11+N(x) < 0 and ls is
the number of the points that satisfy f11+N (z) > 0, respectively. Besides, it
is clear that m = N(l; + l2) + l1; therefore, ¢ > 1 if and only if [; =0, lo > 1
OI"ngO7 1 > 1.

Assume I; = 0 and [y > 1. Let 1, xs,--- ,x; be [ positive points. Then,
for each 1 < i < I, by (91) and (92), we have f;™(z;) = x. This shows
clearly that the point x is not n-periodic. Similarly, one can prove that z is
not n-periodic if I = 0.

Case two: Assume vy = % >1. Letl=Km+r.

For each z € [—1, 0), since

fl(m):x+72(N—1)+%>07 (93)
we have
V@) =z +r-(N-1 >~ (94)
and
1N (@) =+ % (95)

Since 0 < - < 1, we conclude that n is a period of system (1) of Type I
with parameter a = 1 only if there are non-negative integers m; and mso,
my + mg > 1, such that n = m1(2 + N) + mo(1 + N). Here, m; + mg is
obviously the number of points that belong to an n-periodic orbit and to the
interval [—1, 0). In particular, m; is the number of the points that satisfy
1N () > 0 and my is the number of the points that satisfy fi ™ (z) < 0,
respectively. Clearly, I = N(mj + ma) + my; therefore, ¢ > 1 if and only if
my =0, mg >10r mg=0,m; > 1.
Similar to the above proof, one can verify that the point x is not n-periodic
in both of the two cases.
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Sufficiency. We prove it by contradiction. Assume that there exists a
point x € [—1, ) that is not n periodic. Then, there should exist two
positive integers, M and L, with M + L =n, M # m and L # [, such that

fi(x)=x+ M~y — L. (96)

i. If M < m, let m — M = P. Then, one must have that L = [ + P, so
that

ff@z)=2+My—L=2z—P(l+vy)<—-(P-1)y—P<-1. (97)

ii. If M > m, let M =m + P. Then, one must have that L =1 — P, so
that

@)=+ My—L=x+P(1l+~)>(P—1)+Py>n. (98)

Obviously, both of the above situations cannot occur.
3. For any point € [—1, «) and any positive integer 1 < k < n, there
exist two non-negative integers, M < m , L <[ and M 4 L < n, such that

fi(@) =+ My~ L.
Since |M~y — L| # 0, one must have |[M~ — L| = |[ME=mL| > L This shows
that the distance between any two neighboring points is greater than % If

there are two neighboring points whose distance is equal to or greater than
%, then we have

n
Tp—21 > —=——=1+1.
m m

But this is a contradiction, since x1, =, € [—1, ). This completes the proof.

3 Appendices
Appendiz I. Proof of Proposition 2

Firstly, it is not hard to verify that the coefficient matrix of the linear
system of equations (31) is in the form of

|

TNHTNF1 T
E,, -—aiE., 0 0
,(99
: . ET‘N 70’1F’I"N><’I"N_1 70’1F’I’N ( )
0 0 E. . . —a1Fry  xrn

—aoEy 0 e 0 Ey\
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where
E,
F?”NXTN—l = [ 871 :| 9
FTNleTl = [ 0 ETN,l } s (100)
0 0
F. = .
N |: ETN—TN—l 0 :|

Thus, multiplying A, 1y 41 by the elementary transform matrix

By 0 - 0
0 .
TTN+TN+1 = . E’I"N (101)
0 . 0 E._, 0
akbry - aoath_lETN 0 K.,
to the left side, one gets
TTN+TN+1ZTN+TN+1 =
E.. —aiB., 0 s 0
102
: . ETN _alErerN,l _alFrN ( )
0 0 E.._, —a1 By xrn
0 e 0  —ap@NEryxry .y Ery —aodMF,y
It can be verified that
[ 7a1ErN><rN_1 7a1FrN ] - [ 7a1ErN 0 ] (103)
and
A _ E""N—l _alErN,l XTN
A""N—l“r"'N - 7(100‘51\1 ET‘NXT‘N_l ET‘N . aOGJiN F’I”N ’ (104)
which can be expressed in detail as follows:
ZTN—1-H”N =
[ B 0 - 0 —wB,
_a2HTN_2XTN_1 E’I"N_Q B : 0
_a2H7'N—1 _GQHTN—I XTN—2 E”'N—l (105)
0 " . 0
L 0 T 0 _a2ETN—1 ETN—I J




Global Dynamics of Unbalanced DMFC Systems 671

where
HTN—QX"'N—I = [ ETN—2 0 } ?
0
Hyp  xrny = [ 5 } , (106)
TN-2
Hy, , = [ A } ‘
Besides,

bl 1r b11r bl]-'r
T’r‘ r N+1 — N+1 — N+1 107
NHTN 41 ( bol,«N ) ( [bo —|—b10,0PtN_1(CL1)} 1,«N > ( b217~N ) ( )
Hence, we can see that the system of linear equations (32) reduces to the

system of linear equations L?)S) with [ = 1.
Moreover, multiplying A, _,+,, by the elementary transform matrix

Ery_, 0 alagN’l_lEmW1 < a1Eny_,
0 ETN?z 0 . 0
Try_yirny = ; By, : (108)
. 0
0 0 ETN—l

to the left side, and noticing of the relation asyo = asag]s, one gets

TTN—1+7"N ATN—l"F"‘N =

ETN—l - a3HrN71 _GBETN,l XTN_2 0 0
_G“QETN—QXTN_l ErN_2 0 :
—agHTN*1 _G'QETN—1X’I‘N72 E’I‘N71 109)
0
L 0 0 E., |
where
[_QQHTN,l _QQETN,l XTN,Q] == [ 0 _GZEerl ] B (110)
T Er _ _a3Hr _ _a3E'r _1XTN—
Ar - _ N-1 N-1 N—1XTN—2 , 111
N—2+trN-—1 [ _GQETN,ger,l ETN72 ( )
and

bl]-'r' —_
TTNHH"N( b21N ! )
rN

[bl + bgalPthl,l (ag)] 1TN—1
b21TN

_ b317"N71
_ ( - ) (112)



672 R. Gai, G. Chen and X. Xia

Clearly, the first subsystem of linear equations (33) is also translated into
its equivalent form (33) with I = 1.

The general cases can be proved by induction without any technical dif-
ficulty. Thus, based on the above analysis and discussions, when N is odd,
solving the system of linear equations (32) reduces to solving the recursive
systems of linear equations (33), (33), and the program will end at (38).
Similarly, when N is zero or an even integer, the recursive program will end

at (41), where a; and b; are given by (36) and (37).
Appendiz II. Proof of Property 1

Since the proof methods for assertions 1 —4 are totally the same, we only
give a proof for assertion 1.
On one hand, we have
n = im+1)+jm
= (k(rv +rye1) +ra)(m+1) + (ry + rvg)m
= TND, + TN+1D;s

and on the other hand, by the stipulation on ¢ty = r; and the definition of P
we have

Pyyo = Py TPy, =Py +TiPyy,

= pytrilpy , Htpy) =rmipy | +Tpy

(113)
= rN-1p, +TND, = TN-ap, + TN (P, + D)
= TNQO + TN+1P;-

Thus, we have actually proved assertion 1. Other assertions can be similarly
verified.
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Appendiz III. Proof of Property 2

1. First, we verify (44). For any 0 < 21 < N, due to (36), (37) and the

formula Py, =P+ tN—SBsH’ we have
P P
baryo by (A =a)by gy — (1= a™2)by 4y
1 — qPeit2 1 — P+ o (1 — a£2l+1)(1 — agzurz)

(1 — aP2e+1 )by — (1 — aPer)byy 44
(1 — a£2l+1)<1 — a£21+2)

(114)
(1 —aP)by — (1 —aPo)b,
(1 — aB2l+1>(1 — a£21+2)
= Pk(am—H)Qm - (aglfy + bl)
(1 — a£21+1)(1 _ a£21+2)

> 0.

Thus, we have already proved inequality (44). Utilizing this result, assertions
(42) and (43) can be easily verified as follows:

by borio (1= aP2re2)by — (1 — aP2i)by; 1o

1—afar 1 — qlase (1 — aPar)(1 — qPai+2)
(a2 — aPauss) [(1— aPtss oy — (1 — a0y
(1 — aPar)(1 — aP2+1)(1 — alai+2)
> 0 (115)

and

bori3 boi41 (116)

1— a82l+3 1— a£21+1

_ (L —aPoren)by g — (1 — aP2ee0)by gy
(1 _ a£21+1)(1 _ ag2l+3)
= (aP2re — aPares) [(1 = P20 )by g — (1 — aP2t+2)by 4
(1 _ a£21+1)(1 _ a£21+2)(1 _ CLBQH':’)
> 0. (117)

2. Denote ty by t. Then, since

A0 d (bt by —a)
dtl—a22"? — a2i(1—ad2) dab2 1—ak
alzlna  by(1 —alr) — b, (1 — abo)
= 11
ali(1 —at) (1— aBQ)Q (118)

< 0,
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we know that ﬁ@ is monotonously decreasing when ¢ tends to infinity.

Thus, for ﬁbQ with tgp = 1, according to this monotonicity and inequality

(42), we have

’

Ly

/ ’ ]_ / 1
by < b,. 11
1 — aEi; b3 + bQ < 1 — aBIQ =2 = 1 — agz =2 ( 9)

Generally, utilizing (42), we obtain

QEL+1 ’ ’ 1 ’ ]_ ’
—bpiotbpi < ———bpy < by <
1 — qPr+2 1 — qBr+ 1— a2

by. (120)

1 — ak-

The above shows that there are no L and t;, 0 <[ < L, such that the equality
(45) is satisfied with ﬁ@ when ¢y = 1.

Iftg > 2, we take L = N+1 and arrange an ordered set of positive integers
{t;, 0 <1< L}asfollows: ty =1t =to—landt,, =1, 1 <l <N.
With this choice, one can easily verify that BZ 4o and b; 12 = biyos

0 <1< N —1. Hence,

=D
Pryis =Py ttopy =Pyt +0py =Py Py =Py, (121)

1 /
————0br.o
1— aPr+2

1 I ’ / ’
— P
1 — alaee bN‘H +a N+1QN+2

1 r

= Tz v a0 (b by et Py @) (12)
1 I T(to—1

T 1 v [ @t (bN+2 — gt )BN“QNH)}

S
1 — Pz N+2 T EN+1

and

’

aEL+1 ’

7
—— b2+l
1— aPr+e
,

alnt2

= <b;\/+1 + apN“blN-u) + b;\/+2

1—aln+s

1 / ’ ’
= (apN+2bN+1 +bN+2)

1 — afn+s
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1 , , ’ / ’
= [ (e bR @)
_ 2
1 ’ ’ 4 !
= 171)/ [bN + QN+1CLBN Pt'l (apN“)}
— agEN+s
1
= T ONe
1—an+2

Ifty=1land N € /PE, then we take L = N—/l and arrange an ordered set
of positive integers {t,, 0 <1 < L} as follows: ¢, =t; +1 and ¢, = t;41, 1 <
I < L. With this choice, we have £;+2 and Q;+2 =b 0<I<L-1
Hence,

TPy
Pryo =Py i Tty =Pyt Py T 1Py =Py Py =Py, (124)

1 / 1 P
R — R — EN-1P p
1-— a£/L+2 bL+2 1— a£N+2 (bel +bNa T (a N)>
1

T 1—dBvre (bygy + byaPn+)

1
= T [ by + (- aPve)by ] (125)
aBNJrl

= 1P ST I INSEP

aBL+1bL+2 , aPn

_ oy Py, »
Prios - I (bel +bN0J N Pt1 (a N)) J’_bN

1
= 5 (a®vby 1 +by) (126)

1— aPr+e
1

1 — g by o

The proof of conclusion 3 can be similarly carried out.

Appendiz IV Proof of Corollary 2

Due to the similarity of the proofs, we only prove (52).

Firstly, by the definition of @y, it is obvious that the coefficients of v in
both of Q-1 and Q,, are positive. Furthermore, with respect to (37), b,
0 <1< N +2, are linear compositions of b; = a;(a)Qm + 51(a)Qm—1, Where
ai(a) > 0 and B;(a) > 0. Since ag(a) = Pr(a™t) > (1 —alo)Py(a™*!), and
by (37), ajya2(a) > ay(a) for all [ > 0, we can see that both of oy(a) — (1 —
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a2)Py(a™*) and B(a) + a(ay(a) — (1 — a2)Py(a™*!)) are positive. Thus,
we have

ﬁblm > Pi(@™)Qm & [urz(a) — (1 —aP2)Pr(a™ )] Qu
+  Birya(a)Qm-1 > 0;
that is,
s gt <1 —am owa(a) = (1 - ae)Pi(am ) )
l—a Prvz(a) + alouga(a) = (1 — a=+2)Pg(a™*1))
For [ > 0, let

vz = aftragga(a) + (1 - af2) [ (a) — ai(a)],
_ a£l+1@l+2(a) +(1— aBHZ) [Bi1(a) — B1(a)].

Obviously, vj1o > 0 for all [ > 0. Besides, when [ = 0,

Viy2

pe = dlrag(a) > al (Pr(a™) > a2i(1 — al2);
when [ > 1,
fre = dPiagia(a) + (1 —a®+2) (g (a) — aq(a)]

> (1—afr2) fag(a) — ai(a)]

> abi(1 — abiee).
Hence, we have

P
s biys by <afiy + by
1_gm—1 w 7a21(17a31+2) 1
=4 ( 1‘ia + l+21/z+2+0«#l+2 ) v - a™ <0

P —1
m—1 (1—a™! piye—aPl(1—a~+2)
< Y <a ( 1—a + Viyotapiio :

Assume that

a1 »
ST mbl\”ﬂ +byp1 <amy+by

b
< inf {7‘W > Pk(aerl)Qm} .

1—alnee

Then, when v = sup {7 1?27;:2@1\42 + by < abry +b1}, we have

aZN+1
1—afN+2

byio+ by =aliy+b; and LIE < Pr(a™t1)Q,n; therefore,

1—afN+2

1 P+

1
mbl” B mélw — by S Pr(@™)Qp — aliy — by
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But, according to (43), we know that, for any ~,

S S e A
1_ a£l+2 Zi+2 T 1_ aEH? Zi+2 7 241
1 m
= 1= Pre@™)Qm —atiy —by)

> Pr(a™ ) Qm — aliy = by,

which shows that the above assumption is not true. Thus, we have completed
the proof.
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