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Abstract.1 In this paper, a control policy called Unbalanced ∆-Modulated Feedback

(UDMF) is proposed. For one-dimensional discrete-time systems with a parameter 0 <|
a |≤ 1, we show that a system of Type II has only two fixed points and the set of fixed

points is globally attracting. Compared with systems of Type II, the evolutions of systems

of Type I are much more complicated. For 0 < a < 1, systems of Type I have no fixed

points. Moreover, using a constructive method, we prove that there is a denumerable set

of rate value γ = ∆2
∆1

. Corresponding to each parameter γ of the denumerable set, systems

of Type I have no periodic orbits and, in this case, every orbit is dense in the state interval

[−∆1, ∆2). To each of the other rate values of γ, systems of Type I all have an unique

periodic orbit. In particular, the structural property of the periodic motion is robust; that

is, there exists an interval including this value γ such that all parameters in this interval

are corresponding to those periodic orbits of the same structural property. For the case of

a = 1, all points in the interval [−∆1, ∆2) are n−periodic with n ≥ 3 when γ is a rational

number, and every orbit is dense in the interval [−∆1, ∆2) when γ is an irrational number.

Moreover, every such unique periodic orbit is globally attracting for both types of systems.
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1 Introduction

As is well known, even a one-dimensional nonlinear system may have very
complicated dynamics [2, 3, 6, 9].

In this paper, the following discrete-time nonlinear system is considered:

xn+1 = axn + u, (1)

1This research was supported by the Hong Kong Research Grants Council under the
CERG Grant CityU 1114/05E.
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under the so-called Unbalanced ∆-Modulated Feedback (UDMF)

u = ∆(ax) def=
{ −∆1, ax ≥ 0,

∆2, ax < 0,
(2)

where ∆1 and ∆2 are given positive real numbers, ∆1 6= ∆2.
The study of UDMF not only has theoretical significance, but also has

practical importance [1, 11, 5, 4, 7]. A UDMF control system may be con-
sidered as a special switching control system. A practical example of this
control strategy is the ∆-modulated transmitting power control of a mobile
unit in the Direct Sequence Code Division Multiple Access (DS-CDMA) cel-
lular networks [1], where the “state” x is the error of the unit’s power level
of the mobile received at the base station with respect to the desired value.
In this application, the control strategy stems from the observation that if
the level of the received power is higher than the desired level, then it is
decreased by ∆ (dB); if lower, then it is increased by the same amount.
There is only one parameter, ∆, and the power increment is either ∆ or −∆,
which can be stored at the base station or the active mobile unit. The base
station only needs to send 1 or −1 to command the increase or decrease of
the power level; namely, only one bit of datum is needed for implementing
the Delta-modulated control. The requirement of one bit for transmitting
power control is the well-known standard IS-95 [10]. Generally speaking,
∆-modulation provides a common method for converting analog signals to
digital ones, which is also called Sigma-Delta (Σ∆) modulation in the field
of electronic circuits. Today, ∆-modulation has been widely used in digital
electronics and telecommunications. The main interest in ∆-modulation for
digital electronics includes de-modulation schemes, statistical properties of
the digital outputs as well as the complex dynamics involved.

It should be noted that ∆-modulated control is a special case of UDMF,
e.g., the balanced case with ∆1 = ∆2. In the same application area of
transmitting power control, it has witnessed the flexibility of unbalanced ∆-
modulated feedback in, i.e., [12, 13]. All these motivate a careful study of
system (1)-(2) to be carried out in the present paper. The case of ∆1 = ∆2

has been studied in [15, 14, 8]. In the present paper, we further focus on
the important issue of unbalanced ∆-modulated feedback: ∆1 6= ∆2. Define
γ = ∆2

∆1
. Then, γ 6= 1. For convenience in the subsequent discussions, and

without loss of generality, we assume ∆1 = 1 in this paper.
In the following, systems (1) is referred to as a system of Type I when

a > 0, and system of Type II when a < 0, respectively. Moreover, denote

fa(x) = ax + ∆(ax). (3)

We will only consider the case when the parameter 0 <| a |≤ 1. We will
show that a system of Type II has only two fixed points and the set of fixed
points is globally attracting. For 0 < a < 1, systems of Type I have no fixed
points, and there is a denumerable set of values for the ratio γ = ∆2

∆1
, and for
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each parameter γ of the denumerable set, systems of Type I have no periodic
orbits and, in this case, every orbit is dense in the state interval [−∆1, ∆2).
To each of the other rate values of γ, systems of Type I all have an unique
periodic orbit. The structural property of the periodic motion is robust; that
is, there exists an interval including this value γ such that all parameters in
this interval are corresponding to those periodic orbits of the same structural
property. For the case of a = 1, all points in the interval [−∆1, ∆2) are
n−periodic with n ≥ 3 when γ is a rational number, and every orbit is dense
in the interval [−∆1, ∆2) when γ is an irrational number. Moreover, every
such unique periodic orbit is globally attracting for both types of systems.

2 Basic properties of systems in the case of
0 <| a |≤ 1

We firstly prove the following lemma.

Lemma 1 Suppose 0 <| a |≤ 1. Then, the interval [−1, γ) is a global at-
tractor, i.e., every orbit will eventually move into this interval. In particular,
a point x is a periodic point of system (1) only if x ∈ [−1, γ).

Proof 1 Let V (x) = x2. For system (1) of Type I, when x ≥ 0, since

V (fa(x))− V (x) = (ax− 1)2 − x2 = −(1− a2)x2 − 2ax + 1, (4)

one has

V (fa(x))− V (x) =




≥ 0, x ∈

[
0, 1

1+a

]
,

< 0, x ∈
(

1
1+a , +∞

)
.

(5)

Similarly, when x < 0,

V (fa(x))− V (x) =




≥ 0, x ∈

[
− γ

1+a , 0
)

,

< 0, x ∈
(
−∞, − γ

1+a

)
.

(6)

Combining (5) and (6) shows that V (fa(x)) ≥ V (x) if and only if x ∈[
− γ

1+a , 1
1+a

]
. Furthermore, since

fa

([
− γ

1 + a
,

1
1 + a

])
=

[
−1, − 1

1 + a

]⋃ [
γ

1 + a
, γ

)
⊂ [−1, γ) ,

and

fa ([−1, γ)) = [−1, aγ − 1) ∪ [γ − a, γ) ⊂ [−1, γ),

it shows that the interval x ∈ [−1, γ) is a global attractor and, simultane-
ously, that there is no periodic point with period n ≥ 2 out of the interval
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[−1, γ) for system (1) of Type I. Since (ref. Theorem 2 bellow) system (1)
of Type I has no fixed point, the first part of the theorem holds true.

Similarly, for system (1) of Type II, one can verify that V (fa(x)) ≥ V (x)
if and only if x ∈

[
− 1

1−a , γ
1−a

]
. Since, on one hand,

[
− 1

1−a , γ
1−a

]
⊂ [−1, γ),

so

fa

([
− 1

1− a
,

γ

1− a

])
=

[
−1, − 1

1− a

]⋃ [
γ

1− a
, γ

)
⊂ [−1, γ) ,

and

fa ([−1, γ)) = [−1, −(1 + a)] ∪ [(1 + a)γ, γ) ⊂ [−1, γ),

and on the other hand, system (1) of Type II has only two fixed points,{
− 1

1−a , γ
1−a

}
(ref. Theorem 1 below ), there is no periodic point in system

(1) of Type II out of the interval [−1, γ).

2.1 Systems of Type II

First, we focus on system (1) of Type II.

Theorem 1 Suppose −1 ≤ a < 0. Then,
1. except for two fixed points, − 1

1−a and γ
1−a , system (1) of Type II has

no periodic orbits;
2. the set of fixed points

{
− 1

1−a , γ
1−a

}
is globally attracting.

Proof 2 1. It can be easily verified that the two points − 1
1−a and γ

1−a are
fixed points of system (1) of Type II, and that system (1) of Type II has no
other fixed points.

We now prove that system (1) of Type II has no n-periodic orbit for any
n > 1. According to Lemma 1, system (1) of Type II has no periodic points
in the interval (−∞, +∞) \ [−1, γ). Furthermore, since

fa((0, γ)) = ((1 + a)γ, γ) ⊂ (0, γ) (7)

and

fa[−1, 0]) = (−1, −(1 + a)] ⊂ [−1, 0], (8)

it follows that fa is a contraction mapping on the interval [−1, γ). This
property of the mapping implies that system (1) of Type II has no n- periodic
orbit for any n > 1.

2. Combining (7) and (8) shows that fa is a contraction mapping on the
intervals [−1, 0] and (0, γ), respectively. Hence, combining this fact with
Lemma 1 shows that assertion 2 is true.
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2.2 Systems of Type I

Denote the sets of natural numbers and of positive even numbers by N and
PE, respectively, and let PE0=PE ∩ {0}. Also, define

T0 =
{
{tl, 0 ≤ l ≤ N}

∣∣∣∣tl ∈ N, N ∈ PE0

}
,

T =
{
{tl, 0 ≤ l ≤ N}

∣∣∣∣tl ∈ N, N ∈ PE
}

,

Pl(z) = 1 + z + · · ·+ zl,

Ql+1 = (1 + a + · · ·+ al)γ − al+1,

Rl+1 = al+1γ − (1 + a + · · ·+ al),

Bl =
(1− a)al

1− al
,

Bl+1 =
(1− a)al

1− al + (1− a)al+1
,

p
1

= m + k(m + 1) = p1,

p
0

= m + 1 + p
1

= p2,

q
0

= m + 1 + km = q2,

q
1

= m + q
0

= q1,

a1 = ap
1 = a1,

a0 = ap
0 = a2,

b1 = ak(m+1)Qm−1 + Pk−1(am+1)Qm = b1,

b0 = am+1b1 + Qm = b2,

d0 = akmQm + Pk−1(am)Qm−1 = d2,

d1 = amd0 + Qm−1 = d1,

where m ≥ 2, l ≥ 0 and k ≥ 1.

Proposition 1 1. Both sequences Bk and Bk are monotonously decreasing
when k tends to infinity, and the inequalities Bk < Bk < Bk−1 hold true for
all k ≥ 1.

2. Qk ≤ 0 if and only if γ ≤ Bk, and Rk ≤ 0 if and only if γ ≤ 1
Bk

.

Proof 3 The first part of assertions 1 can be easily verified by the definitions
of Bk and Bk.

The second part of assertion 1 is implied by the following inequalities:

1
Bk

=
1

Bk

+
1− ak+1

ak
,

1
Bk

=
1

Bk−1

+ a.



640 R. Gai, G. Chen and X. Xia

The second part of assertion 2 follows from the equalities Qk = ak
(

γ
Bk

− 1
)

and Rk = ak
(
γ − 1

Bk

)
.

Remark 1 From the above two groups of equalities, one can get the following
useful relations about Bk and Bk:

1
Bk

=
1

Bk−1

+
1
ak

, (9)

1
Bk

=
1

Bk−1

+
1

ak−1
(10)

1
Bk

=
1

Bk−1

+ a. (11)

We will have that, compared with system (1) of Type II, the dynamics of
system (1) of Type I are much complicated.

For the subsequent discussions, a property of the mapping fa(x) is firstly
given.

Lemma 2 Suppose 0 < a ≤ 1. Then, the mapping fa(x) is invertible in the
interval [−1, γ) for any γ > 0.

Proof 4 First of all, it is easily seen from the definition of fa(x) that the
mapping fa(x) is monotonously increasing in both (−∞, 0) and [0, +∞).
Therefore, for any x, y ∈ (−∞, 0) or x, y ∈ [0, +∞), fa(x) 6= fa(y) if
x 6= y. Hence, when x 6= y, fa(x) = fa(y) only if x and y are not both in
(−∞, 0) or [0, +∞). Without loss of generality, assume x ∈ (−∞, 0) and
y ∈ [0, +∞) satisfy the equality fa(x) = fa(y). Then, according to (1), we
have a(y − x) = 1 + γ, which shows clearly that the distance between x and
y is larger than 1 + γ, namely, x and y are not both in the interval [−1, γ).
The proof is completed.

Theorem 2 1. Suppose 0 < a < 1. Then, when system (1) of Type I has
an unique periodic orbit, the set of periodic points is globally attracting.

2. Suppose 0 < a ≤ 1 and system (1) of Type I have no periodic orbit for
some γ > 0. Then, every orbit is dense in the interval [−1, γ), namely, for
every point x ∈ (−∞, +∞), the ω limit set ωfa(x) = [−1, γ).

Proof 5 1. First of all, Lemma 1 shows that every orbit will eventually
move into the interval [−1, γ) and then will not go out again. Hence, we
can focus our discussions in this interval. For convenience, we use ωfa(U) to
denote the ω−limit set of mapping fa on a set U .

Let xl, 1 ≤ l ≤ L, be all the points in the unique periodic orbit and be
ordered in magnitude. Denote xL+1 = γ and x0 = −1 if −1 is not a periodic
point.

For any given 1 ≤ l ≤ L, if fs
a([xl, xl+1)) are always in [−1, 0) or [0, γ)

for all 0 ≤ s < L, then, since fL
a (xl) = xl and 0 < a < 1 means fL

a (x) is



Global Dynamics of Unbalanced DMFC Systems 641

contractive, we have fL
a ([xl, xl+1)) ⊂ [xl, xl+1). This implies that the point

xl is an accumulation point of all orbits starting from or passing through the
interval [xl, xl+1), namely, xl ∈ ωfa([xl, xl+1)).

If 0 is an interior point of fs
a([xl, xl+1)) for some 0 ≤ s < L, then, since

L is finite, the times of the cases of 0 being in the interior of fs
a([xl, xl+1))

are also finite. This implies that there must be xl < x
(1)
l < xl+1 such that

fs
a([xl, x

(1)
l )) is always in [−1, 0) or [0, γ) for all 0 ≤ s < L. Of course,

there is also fL
a ([xl, x

(1)
l )) ⊂ [xl, x

(1)
l ), that is, xl ∈ ωfa

([xl, x
(1)
l )). Take

x
(1)
l to be the least upper bound that has the above characteristics. Then,

by the definition of mapping fa(x), there must be fs1
a (x(1)

l ) = 0 for some
0 ≤ s1 < L. Since there is no other periodic point between xl and x

(1)
l , we

have fs1+1
a ([xl, x

(1)
l )) = [xL, γ), which implies also xl ∈ ωfa

([xL, γ)).

If fs
a([x(1)

l , xl+1]) is always in [−1, 0) or [0, γ) for all 0 ≤ s < L, then,
certainly there is an xl+1 ∈ ωfa([x(1)

l , xl+1]). If it is not the case, then there
is an index s such that 0 is an interior of fs

a([x(1)
l , xl+1]). Let s2 be the

first index with the above characteristics and x
(2)
l be the point satisfying

the equation f
(s2)
a (x(2)

l ) = 0. Since there is no periodic point in the interval
[x(1)

l , xl+1), certainly fs2+1
a ([xl, x

(2)
l )) ⊂ [xL, γ). Thus, xl ∈ ωfa([xL, γ))

implies xl ∈ ωfa([x(1)
l , x

(2)
l )). Hence, xl ∈ ωfa([xl, x

(2)
l )).

Repeat the above procedure. If there is an xl+1 = x
(k+1)
l for some k ≥ 1,

then xl ∈ ωfa([x(1)
l , xl+1)); therefore, there should be an xl ∈ ωfa([xl, xl+1)).

Otherwise, there are indexes sk and points xk
l , k = 1, 2, · · · , with xl ∈

ωfa([x(k)
l , x

(k+1)
l )). Since the sequence x

(k)
l is monotonously increasing and

bounded, it has a limit. Denote the limit by x∗l . If x∗l = xl+1, then there still
has xl ∈ ωfa([xl, xl+1)). If x∗l < xl+1, then there must be xl ∈ ωfa([xl, x∗l ))
and xl+1 ∈ ωfa([x∗l , xl+1]); otherwise, there will be a contradiction.

Up to now, we have proved that for any pair of neighboring periodic
points, xl and xl+1, the ω−limit sets ωfa([xl, x∗l )) and ωfa([x∗l , xl+1]) are
included in the set of periodic points. We have known that any periodic orbit
must include points in both intervals [−1, 0) and [0, γ). If we denote x−
as the greatest periodic point in [−1, 0) and x+ the smallest periodic point
in [0, γ), respectively, then it can be easily verified that ωfa([x−, 0)) =
ωfa([xL, γ)) and, when x+ > 0, ωfa([0, x+)) = ωfa([−1, x1)). Thus, we
have completed the proof of part 1.

2. Let M(U) denote the Lebesgue measure of set U . Then, by the
definition of mapping fa(x), it can be easily verified that when U is an
interval, M(fa(U)) = aM(U). Furthermore, it can be verified that this
conclusion is also true when U is the union of any set of finite intervals.
Besides, the equality M(fa(U)) = aM(U) and the invertibility of mapping
fa(x) in the interval [−1, γ) together imply M(f−1

a (U)) = a−1M(U).
According to Lemma 1, any orbit {f l

a(x), l = 0, 1, · · · } is bounded;
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therefore, ωfa(x) is not empty. If for some x ∈ [−1, γ), ωfa(x) is not dense in
the interval [−1, γ), then according to the definition of denseness, there exists
an open δ−neighborhood of some point x0 and a non-negative integer L such
that f l

a(x) /∈ (x0− δ, x0 + δ) for all l ≥ L. Without loss of generality, assume
L = 0. If this is not the case, one can replace x by fL

a (x). Take δ as the least
upper bound that satisfies f l

a(x) /∈ (x0−δ, x0+δ) (if x0−δ = −1 or x0+δ = γ,
then replace (x0− δ, x0 + δ) by fa((x0− δ, x0 + δ))). Then, x0− δ or x0 + δ
either belongs to the orbit {f l

a(x), l = 1, 2, · · · } or is an accumulation point
of the orbit. Here, we assume that x0 + δ has the above characteristics (the
case of x0 − δ can be similarly discussed). Obviously, the invertibility of the

mapping fa(x) in [−1, γ) implies fs
a(x0+δ) /∈ V

def
=

⋃∞
l=0 f l

a((x0−δ, x0+δ)),
0 ≤ s < +∞. But, the equality M(f−s

a ((x0 − δ, x0 + δ))) = 2a−sδ, s ≥ 0,
implies that, when a < 1, there is a finite positive integer s such that 2a−sδ ≥
1 + γ; therefore, there must be an s ≥ 1 such that x ∈ f−s

a ((x0− δ, x0 + δ)),
that is, fs

a(x) ∈ (x0 − δ, x0 + δ).
For a = 1, since M(fs

a((x0− δ, x0 + δ))) = 2δ for all s ≥ 0, it is necessary
that 0 ∈ V . Otherwise, fs

a((x0 − δ, x0 + δ)) is always an interval for any
s ≥ 0, and

⋃∞
s=0 M(fs

a((x0 − δ, x0 + δ))) = ∞; therefore, there must be
l2 > l1 ≥ 0 such that f l1

a ((x0− δ, x0 + δ))∩ f l2
a ((x0− δ, x0 + δ)) 6= ∅. Hence,

1) if f l1
a ((x0 − δ, x0 + δ)) = f l2

a ((x0 − δ, x0 + δ)), then every point in the
interval f l1

a ((x0 − δ, x0 + δ)) is periodic, which contracts the precondition of
part 2;

2) if f l1
a ((x0 − δ, x0 + δ)) 6= f l2

a ((x0 − δ, x0 + δ)), then it can be easily
verified that f l2

a (x0 + δ) ∈ f l1
a ((x0 − δ, x0 + δ)); thus, with respect to the

definition of δ, there also is f l2
a (x) ∈ f l1

a ((x0 − δ, x0 + δ)) ⊂ V .
The above discussion also shows that, for any subinterval Vi ⊂ V , there

must exist 0 ≤ l < +∞ such that 0 ∈ f l
a(Vi).

Let l1 ≥ 0 be the first index that satisfies 0 ∈ f l1
a ((x0−δ, x0+δ)). Here, it

is obvious that f l1
a ((x0−δ, x0+δ)) = (f l1

a (x0−δ), f l1
a (x0+δ)). According to

the above analysis, in the sequence of sets f l
a((0, f l1

a (x0 + δ))), l = 1, 2, · · · ,
there are also sets that contain the origin. Let l2 be the first index that
satisfies 0 ∈ f l2

a ((0, f l1
a (x0 + δ))) = (f l1+l2

a (0), f l1+l2
a (x0 + δ)). Obviously,

f l1
a (x0 + δ) > f l1+l2

a (x0 + δ) > 0. This shows that f l1+l2
a (x0 + δ) ∈ V . Thus,

we arrive at a contradiction. The proof is therefore completed.

Theorem 3 Suppose 0 < a < 1. Then,
1. system (1) of Type I has no fixed points;
2. when γ ∈ [Bn−1, Bn−1) for some n > 2, or 1

γ ∈ (Bn−1, Bn−1] for
some n ≥ 2, system (1) of Type I has a unique periodic orbit and its period
is n.

Proof 6 1. A point x is a fixed point of system (1) of Type I if and only if
the following equality is satisfied:

x = ax + ∆(x) (12)
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that is,

(1− a)x = ∆(x).

Since 0 < a < 1, (12) holds true only if the signs of x and ∆(x) are the same.
However, according to the definition of ∆(x), this is impossible.

2. First, consider the first situation of part 2.
It is not hard to verify that the orbit starting from the point defined

below,

x∗ =
1

1− an
Qn−1, (13)

is an n-periodic orbit of system (1) of Type I when γ ∈ [Bn−1, Bn−1).
In the following, we prove that the n-periodic orbit passing through the

point x∗ is unique.
Firstly, Lemma 1 shows that any orbit of system (1) of Type I will ulti-

mately move into the interval [−1, γ). Thus, we focus on the properties of
mappings fn

a (x) in the interval [−1, γ).
Secondly, consider a group of real numbers: − γ

Bk
, k = 1, 2, · · · , n − 1.

Since γ ≥ Bn−1, we have − γ
Bn−1

≤ −1. Hence, by defining zn = −1,
zk+1 = − γ

Bk
, k = 1, 2, · · · , n− 2, z1 = 0 and z0 = γ, we have

fa ([zk+1, zk)) = [zk, zk−1), 1 ≤ k < n

fk
a ([zk+1, zk)) = [z1, z0) = [0, γ), (14)

fa([0, γ)) = [zn, aγ − 1).

By equality (11) and the precondition γ < Bn−1, we also have

zn−1 − fa(γ) = − γ

Bn−2

− aγ + 1 = 1− γ

Bn−1

> 0. (15)

This shows fa([0, γ)) ⊂ [zn, zn−1). Hence, we conclude that fn
a (x) is a

contraction mapping in each of the n intervals [zk, zk−1), 1 ≤ k ≤ n. Clearly,
if mapping fn

a (x) has a fixed point in the interval [zk, zk−1), then this fixed
point must be unique.

Lastly, we show that those n points of the n-periodic orbit starting from
x∗ belong to the subintervals [zn−k+1, zn−k), 1 ≤ k ≤ n, respectively. In fact,
the precondition γ ∈ [Bn−1, Bn−1) assures that x∗ ∈ [0, γ), and (14)and
(15) clearly show that fk

a (x∗) ∈ [zn−k+1, zn−k), 1 ≤ k ≤ n− 1.
We next discuss the second situation about the parameter γ. First, one

can similarly verify that the orbit starting from the point defined by

x∗ =
1

1− an
Rn−1 (16)

is an n-periodic orbit.
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To prove that this periodic orbit is unique, we use the same method as
above. Define n+1 numbers as follows: z0 = −1, zk = 1

Bk
, k = 1, 2, · · · , n.

It can be easily verified that the first system of the relations in (14) holds
true. Besides,

fa([zk, zk+1)) = [zk−1, zk), 1 ≤ k < n, (17)
fa([z0, z1)) = fa([−1, 0)) = [γ − a, γ). (18)

Thus, according to (10) and the precondition γ < 1
Bn−1

= zn, we have

fa(−1)− zn−1 = γ − a− 1
Bn−2

= γ − 1
Bn−1

≥ 0. (19)

From (17)-(19), it is not hard to verify that fn
a (x) is a contraction mapping

in each subinterval [zk, zk+1), 0 ≤ k ≤ n − 1. This implies that the n-
periodic orbit starting from x∗ is unique and globally attracting, completing
the proof.
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Fig. 1: a = 0.4, n = 6, Fig. 2: a = 0.85, n = 7,
γ ∈ [0.0062, 0.0157) γ−1 ∈ (0.0908, 0.1086]

Remark 2 Theorem 3 characterizes system (1) of Type I when the value of
the rate parameter γ is located in subinterval

[
Bn−1, Bn−1

)
or

[
1

Bn−1
, 1

Bn−1

)
.

Here, we denote the union of these subintervals by U . To the parameter region
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(0, +∞) of γ, it is easily seen that there is an inter-interval
[
Bn, Bn−1

)
be-

tween the two neighboring subintervals
[
Bn, Bn

)
and

[
Bn−1 , Bn−1

)
. Like-

wise,
[

1
Bn−1

, 1
Bn

)
is the inter-interval between the two neighboring subinter-

vals
[

1
Bn−1

, 1
Bn−1

)
and

[
1

Bn
, 1

Bn

)
. If we denote the union of these inter-

intervals by V , then (0, +∞) = U
⋃

V .

In the following, we first prepare some preliminaries for further discussing
the characteristics of the dynamical evolution of system (1) of Type I in V .

Lemma 3 Suppose 0 < a < 1 and γ ∈ [
Bm, Bm−1

)
for some m ≥ 1. Then,

1. the point x∗ = −a−mQm−1 ∈ (0, γ] and x∗ = γ only if γ = Bm;
2. for every point x ∈ [0, γ) and every 1 ≤ l ≤ m−1, one has f l

a(x) < 0.
Also fm

a (x) < 0 if and only if x < x∗, and in this case, fm+1
a (x) > 0;

3. when γ ∈ (
Bm, Bm−1

)
, for any 0 ≤ x < x∗ and x∗ ≤ y < γ, one has

fm+1
a (x) > fm

a (y) ≥ 0;
4. for some l ≥ 0, f

l(m+1)
a (0) ≥ x∗ if and only if

γ ≥ (1− a)am−1

1− am−1 + Pl−1(am+1)
Pl(am+1) am

. (20)

Proof 7 1. Conclusion 1 is just a corollary of the equalities Qm−1 =
am−1

(
γ

Bm−1
− 1

)
and γ − x∗ = 1

a

(
γ

Bm
− 1

)
.

2. According to the definition of fa(x), we have

f([0, γ)) = [−1, aγ − 1),
f2([0, γ)) = [γ − a, (1 + a2)γ − a),

... (21)

fm−1([0, γ)) =
[
am−2

(
γ

Bm−2

− 1
)

, am−2

(
γ

Bm−1

− 1
))

.

Clearly, fm−1([0, γ)) ⊂ [−1, 0), or equivalently, f l
a(x) < 0 for every x ∈

[0, γ) and all 1 ≤ l ≤ m− 1. Moreover,

fm([0, γ)) =
[
am−1

(
γ

Bm−1

− 1
)

, am−1

(
γ

Bm

− 1
))

. (22)

Equality (22) shows that fm
a (0) < 0 and fm

a (γ) ≥ 0. Furthermore, it can
be easily verified that and fm

a (x) < 0 if and only if x < x∗, and fm+1
a (x) =

am+1x + am
(

γ
Bm

− 1
)

> 0.
3. Let 0 ≤ x < x∗ and x∗ ≤ y < γ. Then, we have

fm+1
a (x)− x = Qm − (1− am+1)x

> Qm + a−m(1− am+1)Qm−1

= γ + a−mQm−1 > 0,
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y − fm
a (y) = (1− am)y −Qm−1 > 0,

and

fm+1
a (x)− fm

a (y) = am(ax− y) + am−1(1− a) + am−1γ

> am−1(1− a)(1 + γ).

This complete the proof.

Remark 3 To continue our study of the main issue, let us first have a dis-
cussion on relative prime numbers. Let i > j be given positive integers. Then,
there are integers k ≥ 1 and j > r ≥ 0 such that i = kj + r. In this case, it
is not hard to verify that i and j are relative prime, namely, gcd(i, j) = 1, if
and only if gcd(j, r) = 1. If r > 1, then we can repeat the same operation on
j and r. Thus, one can see that there must exist integers N ≥ 1, rl and tl,
1 ≤ l ≤ N , such that i = tNrN + rN−1 and rl+1 = tlrl + rl−1, where tl ≥ 1,
rN = j and r0 = 1. It can then be verified that gcd(i, j) = 1 is equivalent
to gcd(rl, rl−1) = 1, 1 ≤ l ≤ N . On the contrary, suppose N ≥ 0 and take
r0 = 1, r1 ≥ 1 and tl ≥ 1, 0 ≤ l ≤ N . Then, when rl+1 = tlrl + rl−1, it is
also true that gcd(rl, rl−1) = 1 for every 0 ≤ l ≤ N , so that r−1 = 0.

In the following, we always take r0 = 1, r1 ≥ 1 and rl+1 = tlrl + rl−1,
tl ≥ 1, 0 ≤ l ≤ N . If tl, 0 ≤ l ≤ N , have the above characteristics, then,
the group of positive integers is called a coprime structure. Here, we want
to point out an apparent but non-trivial fact. Suppose that tl, 0 ≤ l ≤ N , is
a coprime structure of a coprime pair i and j. Then, except for the case of
N = 0 and t0 = 1, take a group of positive integers, t

′
l, 0 ≤ l ≤ L, as follows:

1. when t0 ≥ 2, take L = N + 1, t
′
0 = 1, t

′
1 = t0 − 1 and t

′
l+1 = tl, 1 ≤

l ≤ N ;
2. when t0 = 1 and N > 0, take L = N − 1, t

′
0 = t0 + t1 and t

′
l =

tl+1, 1 ≤ l ≤ N − 1. Then, it can be easily verified that the group of positive
integers that we took is also a coprime structure of i and j.

Lemma 4 Suppose γ ∈ [
Bm, Bm−1

)
for some positive integer m ≥ 2.

Then, a positive integer n is the prime period of a periodic orbit of sys-
tem (1) of Type I only if n = i(m + 1) + jm for some positive integers i, j
satisfying gcd(i, j) = 1.

In particular, system (1) of Type I has an n-periodic orbit in which i
points, denoted by xs, 1 ≤ s ≤ i, are in the interval [0, x∗), and j points,
denoted by yt, 1 ≤ t ≤ j, in the interval [x∗, γ), only if

1. when i = kj + r for some k ≥ 1,

Yj =
[

0 ap
1Ej−r

ap
0Er 0

]
Yj +

(
b11j−r

b01r

)
; (23)

2. when j = ki + r for some k ≥ 1,

Xi =
[

0 aq
1Er

aq
0Ei−r 0

]
Xi +

(
d11r

d01i−r

)
, (24)
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where Xi = (x1, x2, · · · , xi)
T , Yj = (y1, y2, · · · , yj)

T and 1s = (1, 1, · · · ,
1)T ∈ Rs.

Proof 8 First of all, respect to the monotonicity of the mapping fa(x) in
each interval of [−1, 0) and [0, γ), any periodic orbit of system (1) of Type
I must simultaneously include some points in [−1, 0) and [0, γ).

The conclusion in part 1 of Lemma 3 and (22) together show that if n is
the prime period of a periodic orbit, then there exist non-negative integers i
and j, with i+ j > 0, such that n = i(m+1)+ jm, where i+ j is the number
of points that are in the n-periodic orbit and belong to the interval [0, γ).
Specifically, i is the number of the points in the interval [0, x∗) and j is the
number of the points in [x∗, γ).

We next prove that gcd(i, j) = 1.
i) Suppose i = 0, i.e., n = jm. Let yl, 1 ≤ l ≤ j, be the j points of an

n-periodic orbit that belong to the interval [0, γ). Without loss of generality,
assume y1 < y2 < · · · < yj . Then, it is obvious that

0 ≤ fm(y1) < fm(y2) < · · · < fm(yj).

These inequalities show that fm(yl) = yl, 1 ≤ l ≤ j, namely,

yl =
am−1

1− am

(
γ

Bm−1

− 1
)

, 1 ≤ l ≤ j.

But this is impossible, since γ < Bm−1.
ii) Suppose j = 0, that is, n = i(m+1). Let xl, 1 ≤ l ≤ i, be the i points of

an n-period orbit that belong to the interval [0, γ), with x1 < x2 < · · · < xi.
Then,

0 < fm+1(x1) < fm+1(x2) < · · · < fm+1(xi).

These inequalities show that fm+1(xl) = xl, 1 ≤ l ≤ i, namely,

xl =
am

1− am+1

(
γ

Bm

− 1
)

=
1

1− am+1
Qm.

But this is also impossible, since γ ≥ Bm, which implies that

xl − γ =
Qm − (1− am+1)γ

1− am+1
=

am

1− am+1

(
γ

Bm

− 1
)
≥ 0.

This is contradictory to Lemma 1.
Thus, we conclude that, if n = i(m+1)+ jm is a period, then it must be

true that i, j ≥ 1. Without loss of generality, let x1 < x2 < · · · < xi < y1 <
· · · < yj . To arrive at a contradiction, assume c = gcd(i, j) > 1.

iii) For the case of i > j, if we denote i by kj +r, then, as we have known,
the residual item r also has factor c.
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Assume r = 0. Then, according to Lemma 3, we have fm(xs) < 0, 1 ≤
s ≤ i, fm(yt) ≥ 0, 1 ≤ t ≤ j, and

0 ≤ fm(y1) < fm(y2) < · · · < fm(yj) < fm+1(x1) < · · · < fm+1(xi). (25)

Inequalities (25) imply that, for 1 ≤ l ≤ j,

fm+s(m+1)(yl) = xsj+l, 0 ≤ s ≤ k − 1,
fp

1(yl) = ap
1yl + b1 = yl,

(26)

which shows clearly that the points yt, 1 ≤ t ≤ j, have the same period
k(m + 1) + m < kj(m + 1) + jm.

For the case of r 6= 0. it can be easily verified that (26) still holds true
except the last equality. From these equalities, we get

fp
1(yr+l) = ap

1yr+l + b1 = yl, 1 ≤ l ≤ j − r,
fp

0(yl) = ap
0yl + b0 = yj−r+l, 1 ≤ l ≤ r,

which are the condition (23) of the lemma.
The above analysis shows that, for any 1 ≤ s, t ≤ j, yt = fN (ys) only

if N = N0p0
+ N1p1

for some non-negative integers N0 and N1 satisfying
N0 + N1 ≥ 1. Now, denote j and r by cj

′
and cr

′
, respectively. Thus, (23)

can be rewritten as follows:

fp
1(ycr′+l) = yl, 1 ≤ l ≤ c(j

′ − r
′
),

fp
0(yl) = yc(j′−r′ )+l, 1 ≤ l ≤ cr

′
.

The above shows clearly that yt = fp
1(ys) or yt = fp

0(ys) only if | t− s | is
a multiple of c. This implies that the j points do not belong simultaneously
to one periodic orbit if c > 1. Thus, the necessity of condition 1 has been
proved.

iv) For the case of j > i > 0, denote j = ki + r as above.
If r = 0, then there will be

fm+1+km(xl) = am+1+kmxl + akmQm + Pk−1(am)Qm−1 = xl,

which shows that the period of xl is m + 1 + km < n for each 1 ≤ l ≤ i.
For the case of r 6= 0, it can be verified that the following equalities hold

for all 0 ≤ s ≤ k − 1 and 1 ≤ l ≤ i:

fm+1+sm(xl) = am+1+smxl + asmQm + Ps−1(am)Qm−1 = y(k−s−1)i+r+l. (27)

Hence, one can further obtain

fq
0(xl) = aq

0xl + d0 = xr+l, 1 ≤ l ≤ i− r,
fq

1(xi−r+l) = aq
1xi−r+l + d1 = xl, 1 ≤ l ≤ r,

(28)
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which are the same as (24). We have known that c = gcd(i, j) > 1 implies
that r has also devisor c. Denote i and r by ci

′
and cr

′
, respectively. Then,

according to (24), we have

fq
1(xl) = aq

1xl + d1 = xcr′+l, 1 ≤ l ≤ c(i
′ − r

′
),

fq
0(xc(i′−r′ )+l) = aq

0xc(i′−r′ )+l + d0 = xl, 1 ≤ l ≤ r,

which shows clearly that xt = fq
1(xs) or xt = fq

0(xs) only if | t − s | is a
multiple of c. This implies that the i points xl, 1 ≤ l ≤ i, do not belong to
the same periodic orbit.

v) It can be easily verified that i = j only if i = j = 1.
This proof is completed.

Corollary 1 For every m ≥ 1, when γ = Bm, system (1) of Type I has not
periodic orbits.

Proof 9 The conclusion directly follows from Lemma’s 3 and 4.

Let YrN+rN+1 ∈ RrN+rN+1 be a given vector. Then, the vector YrN+rN+1

can be expressed as

YrN−2l+rN−2l+1 =




Y
(1)
rN−2l

...
Y

(tN−2l)
rN−2l

YrN−2l−1+rN−2l


 ,

YrN−2l−1+rN−2l
=




YrN−2l−2+rN−2l−1

Y
(1)
rN−2l−1

...
Y

(tN−2l−1)
rN−2l−1


 ,

(29)

or as

YrN−2l+rN−2l+1 =




YrN−2l−1+rN−2l

Y
(1)
rN−2l

...
Y

(tl)
rN−2l


 ,

YrN−2l−1+rN−2l
=




Y
(1)
rN−2l−1

...
Y

(tN−2l−1)
rN−2l−1

YrN−2l−2+rN−2l−1


 ,

(30)

where Y
(β)
rα ∈ Rrα , 1 ≤ β ≤ tα.

The above expressions can be illustrated with the following example. Let
N = 3, r0 = 1, r1 = 7, r2 = 1 × r1 + 1 = 8, r3 = 2 × r2 + r1 = 23 and
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r4 = 3 × r3 + r2 = 77. In this case, one can verify that any given vector
Y100 ∈ R100 can be expressed as

Y100 =
(
Y

T (1)
23 , Y

T (2)
23 , Y

T (3)
23 , Y

T (1)
7 , Y T

1+7, Y
T (1)
8 , Y

T (2)
8

)T

and

Y100 =
(
Y

T (1)
8 , Y

T (2)
8 , Y T

1+7, Y
T (1)
7 , Y

T (1)
23 , Y

T (2)
23 , Y

T (3)
23

)T

.

Proposition 2 Suppose N ≥ 0 is a non-negative integer, a0, a1, b0 and b1

are real numbers with 0 < a0, a1 < 1, and

ArN+rN+1

def
=

[
0 a1ErN+1

a0ErN
0

]
. (31)

Then, the system of linear equations

(ErN+rN+1 −ArN+rN+1)YrN+rN+1 =
(

b11rN+1

b01rN

)
(32)

has a unique solution. When the vector YrN+rN+1 is expressed in the form of
(29), the system of linear equations (32) can be solved by a recursive formula
as follows:

ArN−2l+1+rN−2(l−1)YrN−2l+1+rN−2(l−1) =
(

b2l−11rN−2l+1

b2l1rN−2(l−1)

)
, 2 ≤ 2l ≤ N,

Y
(s)
rN−2(l−1) = a2l−1Y

(s+1)
rN−2(l−1) + b2l−11rN−2(l−1) , 1 ≤ s ≤ tN−2(l−1),

ArN−2l+rN−2l+1YrN−2l+rN−2l+1 =
(

b2l+11rN−2l+1

b2l1rN−2l

)
, 2 ≤ 2l ≤ N,

Y
(s)
rN−2l+1 = a2lY

(s−1)
rN−2l+1 + b2l1rN−2l+1 , 1 ≤ s ≤ tN−2l+1,

(33)

where Arl+rl+1

ref
= Erl+rl+1 − Arl+rl+1 , Y

(tN−2(l−1)+1)
rN−2(l−1) consists of the first

rN−2(l−1) components of the vector YrN−2l+1+rN−2(l−1) , and Y
(0)
rN−2l+1 consists

of the last rN−2l+1 components of the vector YrN−2l+rN−2l+1 , with

ArN−2l+1+rN−2(l−1) =
[

0 a2l−1ErN−2l+1

a2lErN−2(l−1) 0

]
, (34)

ArN−2l+rN−2l+1 =
[

0 a2l+1ErN−2l+1

a2lErN−2l
0

]
, (35)

as+2 = asa
tN−s

s+1 , 0 ≤ s ≤ N, (36)
bs+2 = bs + bs+1asPtN−s−1(as+1). (37)
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When N is an odd integer, the above procedure ends at 2l − 1 = N , and the
system of linear equations (32) reduces to the following special form:

(
E1+r1 −

[
0 aN

aN+1Er1 0

])
Y1+r1 =

(
bN

bN+11r1

)
. (38)

Moreover, the solution of (38) is obtained as follows:

Y
(1)
1+r1

= 1
1−aN a

r1
N+1

bN+2

Y
(s+1)
1+r1

= aN+1Y
(s)
1+r1

+ bN+1, 1 ≤ l ≤ r1.
(39)

When N is zero or an even integer, the above procedure ends at 2l = N ,
and the system of linear equations (32) reduces to the following special form:

(
E1+r1 −

[
0 aN+1Er1

aN 0

])
Y1+r1 =

(
bN+11r1

bN

)
, (40)

whose solutions are given by

Y
(1+r1)
1+r1

= 1
1−aN a

r1
N+1

bN+2,

Y
(l)
1+r1

= aN+1Y
(l+1)
1+r1

+ bN+1, 1 ≤ l ≤ r1.
(41)

A proof of Proposition 2 is given in Appendix I.

Property 1 Suppose m ≥ 2, k ≥ 1, and N ∈ PE0, {tl, 0 ≤ l ≤ N} ∈ T0

and rl+1 = tlrl + rl−1, 1 ≤ l ≤ N .
1. If p

l+2
= p

l
+ tN−lpl+1

, 0 ≤ l ≤ N , and the value n = i(m + 1) + jm

is evaluated with j = rN + rN+1 and i = kj + rN , then n = p
N+2

.
2. If pl+3 = pl+1 + tN−lpl+2, 0 ≤ l ≤ N , and the value n = i(m+1)+ jm

is evaluated with j = rN + rN+1 and i = kj + rN+1, then n = pN+3.
3. If q

l+2
= q

l
+ tN−lql+1

, 0 ≤ l ≤ N , and the value n = i(m + 1) + jm

is evaluated with i = rN + rN+1 and j = ki + rN , then n = q
N+2

.
4. If ql+3 = ql+1 + tN−lql+2, 0 ≤ l ≤ N , and the value n = i(m+1)+ jm

is evaluated with i = rN + rN+1 and j = ki + rN+1, then n = qN+3.

A proof of Property 1 is given in Appendix II.

Property 2 Suppose γ ∈ (
Bm, Bm−1

)
for some positive integer m ≥ 2,

and bs+2 are defined by (36) and p
s

is defined as before. Then, for any
non-negative integer N , {ts, 0 ≤ s ≤ N} ∈ T0, and 0 ≤ 2l ≤ N , we have

1. The following inequalities hold:

b2l

1− ap
2l

>
b2l+2

1− a
p
2l+2

, (42)

b2l+1

1− a
p
2l+1

<
b2l+3

1− a
p
2l+3

, (43)

b2l+2

1− a
p
2l+2

− b2l+1

1− a
p
2l+1

=
Pk(am+1)Qm − (ap

1γ + b1)
(1− a

p
2l+1)(1− a

p
2l+2)

> 0. (44)
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2. For given N ∈ PE0 and {tl, 0 ≤ l ≤ N} ∈ T0, except for 1
1−ap2 b2 with

t0 = 1, there exist L ∈ N and a group of positive integers {t′l, 0 ≤ l ≤ L},
such that

a
p
′
L+1

1− a
p′

L+2

b
′
L+2 + b

′
L+1 =

1
1− a

p
N+2

bN+2, (45)

1

1− a
p′

L+2

b
′
L+2 =

a
p

N+1

1− a
p

N+2
bN+2 + bN+1, (46)

and vice versa, where p
′

0
= p

0
, p

′

1
= p

1
, p

′

l+2
= p

′

l
+ t

′
L−lp

′

l+1
and b

′
l+2 =

b
′
l + b

′
l+1a

p
′
lPt

′
L−l−1(a

p
′
l+1), 0 ≤ l ≤ L.

3. For given N ∈ PE0 and {tl, 0 ≤ l ≤ N} ∈ T0, except for 1
1−ap3 b3 with

t0 = 1, there exist L ∈ N and a group of positive integers {t′l, 0 ≤ l ≤ L},
such that

ap
′
L+2

1− ap
′
L+3

b
′

L+3 + b
′

L+2 =
1

1− apN+3
bN+3, (47)

1

1− ap
′
L+3

b
′

L+3 =
apN+2

1− apN+3
bN+3 + bN+2, (48)

and vice versa, where ps+3
def
= ps+1+tN−sps+2, 0 ≤ s ≤ N , p

′
1 = p1, p

′
2 = p2,

p
′
l+3 = p

′
l+1 + t

′
L−lp

′
l+2 and b

′

l+3 = b
′

l+1 + b
′

l+2a
p
′
l+1Pt

′
L−l−1(a

p
′
l+2), 0 ≤ l ≤ L.

A proof of Property 2 is given in Appendix III.

Property 3 When Y1+r1 is the solution vector of (38), its first component
Y

(1)
1+r1

= yrN+1 . When Y1+r1 is the solution vector of (40), its last component
Y

(1+r1)
1+r1

= yrN+1+1.

Proof 10 For N = 1, the expression of (29) shows that there is t1r1 compo-
nents of Yr1+r2 ahead of Y

(1)
1+r1

, since r2 = t1r1 + r0, r0 = 1, and Y
(1)
1+r1

is the
first component of yrN+1 , therefore, the first assertion holds true for N = 1.
Assume Y

(1)
1+r1

= yrN+1 for some odd integer N . For N + 2, by assump-
tion, there are rN+1 − 1 components of YrN+rN+1 ahead of Y

(1)
1+r1

, and from
the expression (29), we know that there are tN+2rN+2 components ahead of
YrN+rN+1 . Hence, there are tN+2rN+2 + rN+1 − 1 = rN+3 − 1 components
ahead of Y

(1)
1+r1

in the vector YrN+2+rN+3 .
The second assertion can be similarly discussed. This completes the proof.

From Proposition 2, we can see that to solve the system of linear equations
(32) one should distinguish two cases: i = kj + r and j = ki + r. For each
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of the two cases, it should be distinguished two situations: j > 2r and
j < 2r (similarly, i > 2r and i < 2r), which are corresponding to (32)
and respectively to the initial system of linear equations with the coefficient
matrix in the following form

ArN+rN+1 =
[

0 a1ErN

a0ErN+1 0

]
. (49)

Besides, it seems to be necessary to consider N being an odd and an even
(or zero) integers, separately, but it will be seen that the case of N being an
odd integer can be replaced by the case of N = 0 or an even integer. Thus,
we only need to consider four cases besides the above two special cases.

Theorem 4 Suppose γ ∈ (
Bm, Bm−1

)
for some positive integers m ≥ 2

and N ≥ 1. Then:
1. A necessary and sufficient condition for system (1) of Type I to have

n = (k+1)(m+1)+m-periodic orbits, in which k+1 points belong to [0, x∗)
and one to [x∗, γ), is

(1−a)am−1

1−am−1+
Pk(am+1)

Pk+1(am+1)
(1−a)am

≤ γ < (1−a)am−1

1−am−1+
Pk−1(am+1)+a

p1

Pk(am+1)+a
p1

(1−a)am

. (50)

2. A necessary and sufficient condition for system (1) of Type I to have
n = m + 1 + (k + 1)m-periodic orbits, in which one point belongs to [0, x∗)
and k + 1 points to [x∗, γ), is

(1−a)am−1

1−am−1+ akm

Pk(am)+a
q0

(1−a)am
≤ γ < (1−a)am−1

1−am−1+ a(k+1)m

Pk+1(am) (1−a)am
. (51)

3. Suppose n = i(m + 1) + jm and i = kj + r for some positive integers
m ≥ 2, k ≥ 1, i, j and r, with gcd(i, j) = 1. Then, system (1) of Type I has
an n-periodic orbit, in which i points are in the interval [0, x∗) and j points
in the interval [x∗, γ), if and only if

3.1 when j > 2r, there exist N ∈ PE0 and {tl, 0 ≤ l ≤ N} ∈ T0, such
that j = rN + rN+1, i = kj + rN and

{
1

1−an bN+2 ≥ Pk(am+1)Qm,
a

p
N+1

1−an bN+2 + bN+1 < ap
1γ + b1;

(52)

3.2 when j < 2r, there exist N ∈ PE0 and {tl, 0 ≤ l ≤ N} ∈ T0, such
that j = rN + rN+1, i = kj + rN+1 and

{
1

1−an bN+3 < ap1γ + b1,
apN+2

1−an bN+3 + bN+2 ≥ Pk(am+1)Qm.
(53)

4. Suppose n = i(m + 1) + jm and j = ki + r for some positive integers
m ≥ 2, k ≥ 1, i, j and r, with gcd(i, j) = 1. Then,
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4.1 when i > 2r, system (1) of Type I has an n-periodic orbit, in which
i points are in the interval [0, x∗) and j points in the interval [x∗, γ), if
and only if there exist N ∈ PE0 and {tl, 0 ≤ l ≤ N} ∈ T0, such that
i = rN + rN+1, j = ki + rN and

{
1

1−an dN+2 ≥ d0,
a

q
N+1

1−an dN+2 + dN+1 < a(k+1)mγ + Pk(am)Qm−1;
(54)

4.2 when i < 2r, system (1) of Type I has an n-periodic orbit, in which
i points are in the interval [0, x∗) and j points in the interval [x∗, γ), if
and only if there exist N ∈ PE0 and {tl, 0 ≤ l ≤ N} ∈ T0, such that
i = rN + rN+1, j = ki + rN+1 and

{
1

1−an dN+3 < a(k+1)mγ + Pk(am)Qm−1

aqN+2

1−an dN+3 + dN+2 ≥ d2.
(55)

In particular, when one of the above conditions holds true, system (1) of
Type I has a unique n-periodic orbit, which is globally attracting.

Proof 11 In the following, both xl and yl are the same as that in Lemma 4.
1. According to Lemma 3, it can be easily verified that y1 ∈ [x∗, γ) is a

periodic point with the stated characteristics only if the point is given by

y1 =
b0

1− an
. (56)

Thus,

y1 ≥ x∗ ⇒ a(k+1)(m+1)Qm−1 + Pk(am+1)Qm + a−m(1− an)Qm−1 ≥ 0
⇒ amPk(am+1)Qm + Qm−1 ≥ 0,

which is just the first inequality of (50). On the other hand, from the precon-
dition y1 ≥ x∗ and the first part of (26), we know that f

p
1

a (y1) = xk < x∗;
thus, we have

f
p
1

a (y1)− x∗ < 0
⇒ am(ap

1Qm + b1) + (1− an)Qm−1 < 0
⇔ am

(
ap

1 + Pk−1(am+1)
)
Qm + (1 + ap

1 − an)Qm−1 < 0

⇔ am
(
ap

1 + Pk−1(am+1)
)
γ +

(
ap

1 + Pk(am+1)
)
Qm−1 < 0.

It is not hard to verify that the above is equivalent to the second inequality
of (50).

Next, we prove the sufficiency of conditions (50). Firstly, it can be easily
verified that, for any given positive real number c, the function

t

c + t
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is strictly increasing in the interval (0, +∞). Hence,

Pk−1(a
m+1)+ap1

Pk(am+1)+ap1 > Pk−1(a
m+1)

Pk(am+1) > am+1Pk−2(a
m+1)

am+1Pk−1(am+1) > · · · > 1
P1(am+1) (57)

and

Pk−1(am+1) + ap
1

Pk(am+1) + ap
1

<
Pk−1(am+1) + ak(m+1)

Pk(am+1) + ak(m+1)
<

Pk(am+1)
Pk+1(am+1)

. (58)

As a straightforward corollary of (57) and (58), we have

fk(m+1)
a (0) = Pk−1(am+1)Qm < x∗, (59)

f (k+1)(m+1)
a (0) = Pk(am+1)Qm > x∗. (60)

In the following, we prove that the point given by formula (56) is n-
periodic when condition (50) is satisfied.

As a matter of fact, the conclusion in part 2 of Lemma 3 and the first
inequality of (50) together imply that

fm
a (y1) =

amb0

1− an
+ Qm−1 =

1
1− an

(
amPk(am+1)Qm + Qm−1

) ≥ 0;

that is, y1 ∈ [x∗, γ). On the other hand, according to the conclusions in
parts 3 and 4 of Lemma 3, for every 0 < l ≤ k,

f l(m+1)
a (0) > f l(m+1)

a (fm
a (y1)) ≥ 0.

Hence, we have

f
p
0

a (y1) = fn
a (y1)

=
a(k+1)(m+1)

1− an

(
amPk(am+1)Qm + Qm−1

)
+ Pk(am+1)Qm

= y1.

The above proof shows clearly that system (1) of Type I has a unique periodic
orbit passing through the point defined by (56).

2. This assertion can be discussed in the same way as above.
Before proving assertions 3− 4, we firstly have an explanation about the

conditions in parts 3− 4. One can see that all the conditions in parts 3− 4
are related to zero or positive even integers for N . The reason is that, with
respect to Remark 3, two positive integers i and j are coprime if and only
if there exists a coprime structure tl, 0 ≤ l ≤ N , with N being zero or a
positive even integer. Therefore, there is no need to discuss the case of N
being odd integers.

3. Necessity of condition 3.1. Assume that system (1) of Type I has
an n-periodic orbit, in which i points are in the interval [0, x∗) and j
points in the interval [x∗, γ). Here, we take the expression of YrN+rN+1 =
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(y1, y2, · · · , yj)
T as in the form of (29). According to Lemma 4, YrN+rN+1

should be a solution of the system of linear equations (32) with a0 = ap
0 ,

a1 = ap
1 , b0 = b0 and b1 = b1. Moreover, by Properties 1 and 2, we have

y
(r1+1)
r1+1 = 1

1−aN a
r1
N+1

[
bN + bN+1aNPr1−1(aN+1)

]
= 1

1−an bN+2,

y
(l)
r1+1 = aN+1y

(l+1)
r1+1 + bN+1 = a

p
N+1y

(l+1)
r1+1 + bN+1, 1 ≤ l ≤ r1,

(61)

where y
(r1+1)
r1+1 = yrN+1+1 and yrN+1 = y

(r1)
r1+1 = a

p
N+1y

(r1+1)
r1+1 + bN+1. By

assumption, y1 ≥ x∗, hence,

yrN+1+1 = ap
0y1 + b0 ≥ ap

0x∗ + b0 = Pk(am+1)Qm,

which is just the first part of (52). On the other hand, the restriction condi-
tion yj < γ and the relation yrN+1 = ap

1yj + b1 together show clearly that
the second part of (52) is also necessary.

Sufficiency of condition 3.1. We divide the proof into several parts.
1) yrN+1+1 = ap

0y1 + b0 ≥ Pk(am+1)Qm implies y1 ≥ x∗.
2) ap

1yj + b1 = a
p

N+1yrN+1+1 + bN+1 < ap
1γ + b1 implies yj < γ.

3) According to the first assertion of Property 2, it is known that condition
(52) implies yrN+1+1 > yrN+1 . Moreover, this inequality and the second
part of (52) together ensure that the inequality yl+1 > yl holds true for all
rN+1 + 1− r1 ≤ l ≤ rN+1.

4) In the following, we prove that vector YrN+rN+1 is ordered in magni-

tude. A vector Yr ∈ Rr will be denoted as Yr =
(
Y

(1)
r , Y

(2)
r , · · · , Y

(r)
r

)T

.
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As to vector Y
(l)
rs , 0 ≤ l ≤ ts, 1 ≤ s ≤ N + 1, we will denote it by

Y
(l)
rs =

(
Y

(l,1)
rs , Y

(l,2)
rs , · · · , Y

(l,rs)
rs

)T

.
Firstly, from 3), we know that the vector Y1+r1 is ordered in magnitude.
Secondly, according to the second part of (33), it can be easily seen that

each of {Y (s)
r1 , 0 ≤ s ≤ t1} is also ordered in magnitude. Thus, if Y

(1,1)
r1 >

Y
(0,r1)
r1 , that is, the first component of vector Y

(1)
r1 , which is just behind Y1+r1 ,

is greater than the last component of vector Y1+r1 , then, for all 1 ≤ l ≤ t1,

Y (l+1,1)
r1

− Y (l,r1)
r1

= ap
N

(
Y (l,1)

r1
− Y

(l−1,r1)
1+r1

)
> 0,

which implies that vector Yr1+r2 is also ordered in magnitude. Now, compare
Y

(1,1)
r1 and Y

(0,r1)
r1 with their values. Since Y

(0,r1)
r1 is just the component

Y
(1+r1)
1+r1

, according to (40), we have Y
(1+r1)
1+r1

= aNY
(1)
1+r1

+ bN . Hence, from
the second part of (33) with 2l = N , we have

Y (1,1)
r1

− Y (0,r1)
r1

= ap
N Y (0,1)

r1
+ bN − ap

N Y
(1)
1+r1

− bN = ap
N

(
Y

(2)
1+r1

− Y
(1)
1+r1

)
> 0.

Thirdly, as to vector Yr2+r3 , the second part of (33) and the above
conclusion on Yr1+r2 together imply that each of Y

(l)
r2 , 1 ≤ l ≤ t2, is or-

dered in magnitude. Besides, by a reason similar to the above, this vector
Yr2+r3 is also ordered in magnitude if Y

(t2+1,1)
r2 > Y

(t2,r2)
r2 . This inequality

can be verified as follows: on one hand, the first part of (33) shows that
Y

(t2+1,1)
r2 = aN−1Y

(r2+1)
r1+r2

+ bN−1; on the other hand, from the second part of
(33), we have Y

(t2,r2)
r2 = aN−1Y

(t2+1,r2)
r2 +bN−1, in which Y

(t2+1,r2)
r2 = Y

(r2)
r2+r3

.
Hence, the inequality Y

(t2+1,1)
r2 > Y

(t2,r2)
r2 holds true.

Finally, we assume that YrN−2l+rN−2l+1 is ordered in magnitude for some
2l ≤ N . We then prove that both vectors YrN−2l+1+rN−2l+2 and YrN−2l+2+rN−2l+3

are ordered in magnitude. Combining the above conclusions with Proposi-
tion 2, it is not hard to verify that vector YrN−2l+1+rN−2l+2 is ordered in
magnitude if Y

(1,1)
rN−2l+1 > Y

(0,rN−2l+1)
rN−2l+1 . According to (29) and (33),

Y (1,1)
rN−2l+1

= a2lY
(0,1)
rN−2l+1

+ b2l

and

Y (0,rN−2l+1)
rN−2l+1

= a2lY
(rN−2l)
rN−2l+rN−2l+1

+ b2l,

where

Y (0,1)
rN−2l+1

= Y
(rN−2l+1)
rN−2l+rN−2l+1

= Y
(rN−2l+1)
rN−2l+rN−2l+1

.

Thus, by assumption, inequality Y
(1,1)
rN−2l+1 > Y

(0,rN−2l+1)
rN−2l+1 holds true. As to

vector YrN−2l+2+rN−2l+3 , from (29) and (33), we have

Y (tN−2l+2+1,1)
rN−2l+2

= a2l−1Y
(rN−2l+1+1)
rN−2l+1+rN−2l+2

+ b2l−1
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and

Y (tN−2l+2,rN−2l+2)
rN−2l+2

= a2l−1Y
(tN−2l+2+1,rN−2l+2)
rN−2l+2

+ b2l−1,

where

Y (tN−2l+2+1,rN−2l+2)
rN−2l+2

= Y
(rN−2l+2)
rN−2l+1+rN−2l+2

.

We have proved that vector YrN−2l+1+rN−2l+2 is ordered in magnitude. So,
Y

(tN−2l+2+1,1)
rN−2l+2 > Y

(tN−2l+2+1,rN−2l+2)
rN−2l+2 , which implies that vector YrN−2l+2+rN−2l+3

is also ordered in magnitude.
5) Combining 1), 2) and 4), we conclude that x∗ ≤ yl < γ. In the

following, we further prove that f
p
1

a (yl) = ap
1yl + b1 for all 1 ≤ l ≤ j and

f
p
0

a (yl) = ap
0yl + b0 for 1 ≤ l ≤ rN .

Firstly, since

ap
0y1 + b0 = am+1(ap

1y1 + b1) + Qm = a [am(ap
1y1 + b1) + Qm−1] + γ,

it follows that

γ > yrN+1+1 = ap
0y1 + b0 ≥ Pk(am+1)Qm,

which implies am(ap
1y1 + b1) + Qm−1 < 0. Furthermore,

x∗ > ap
1y1 + b1 ≥ Pk−1(am+1)Qm. (62)

Generally, utilizing (62), we can prove the following equalities:

a(l+1)(m+1)(amy1 + Qm−1) + Pl(am+1)Qm

= am+1
(
al(m+1)(amy1 + Qm−1) + Pl−1(am+1)Qm

)
+ Qm

= a
[
am

(
al(m+1)(amy1 + Qm−1) + Pl−1(am+1)Qm

)
+ Qm−1

]
+ γ.

Using induction, we can verify the following inequalities:

x∗ > al(m+1)(amy1 + Qm−1) + Pl−1(am+1)Qm ≥ Pl−1(am+1)Qm, (63)

for all 0 ≤ l ≤ k, where we stipulate P−1(am+1) = 0. By (63), we get
f

l(m+1)
a (0) = Pl−1(am+1)Qm for every 0 ≤ l ≤ k + 1. This conclusion and

part 2) of Lemma 3 together show that, for each 1 ≤ l ≤ j, the following
inequalities hold for all 0 ≤ l ≤ k:

f l(m+1)
a (0) ≤ fm+l(m+1)

a (yl)
= am+l(m+1)yl + al(m+1)Qm−1 + Pl−1(am+1)Qm (64)
< f (l+1)(m+1)

a (0).
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An obvious conclusion followed from (64) is f
p
1

a (yl) = ap
1yl + b1, 1 ≤ l ≤ j.

Besides, according to (23), when 1 ≤ l ≤ rN , f
p
1
+m

a (yl) ≥ 0,

yrN+1+l = ap
0yl + b0 = a

(
fm

a

(
f

p
1

a (yl)
))

+ γ.

The above implies f
p
1

a (yl) < x∗, which is obviously equivalent to f
p
0

a (yl) =
ap

0yl + b0, 1 ≤ l ≤ rN .
6) Now, we prove that the group {yl, 1 ≤ l ≤ j} belongs to an n-periodic

orbit. At first, it is not hard to see that (23) defines a one-to-one mapping
in the group:

F(yl) =

{
f

p
0

a (yl), 1 ≤ l ≤ rN

f
p
1

a (yl), rN < l ≤ j.

This implies that there must be a positive integer Nl such that yl = fNl
a (yl)

for each 1 ≤ l ≤ j, i.e., each point in {yl, 1 ≤ l ≤ j} is a periodic point.
Without loss of generality, we take Nl as the smallest positive integer that
satisfies the equality yl = fNl

a (yl). Clearly, this stipulation and conclusion 1)
of Property 2 together imply that Nl ≤ rNp

0
+ rN+1p1

= n.
If there is an Nl < n for some 1 ≤ l ≤ j, then there must be 1 ≤

s ≤ j and s 6= l such that f t
a(yl) 6= ys and f t

a(ys) 6= yl for all t ≥ 1.
This leads the system of linear equations (32) to be separated into some
independent subsystems. But this is impossible according to Proposition
2. Therefore, the group {yl, 1 ≤ l ≤ j} must belong to the same n-periodic
orbit. Furthermore, the uniqueness of the solution of (32) ensures that the
periodic orbit is unique.

Necessity of 3.2. For notational convenience, in the case of i = kj +rN+1,
we use N + 1 instead of N in (31) and take the vector YrN+rN+1 in the form
of (30). Let a1 = ap

1 , a2 = ap
0 and replace b1 and b2 by b1 and b2 in the first

part of (33), respectively. Then, (33) becomes

ArN+rN+1YrN+rN+1 =
(

b11rN

b21rN+1

)
, (65)

where

ArN+rN+1 =
[

0 a1ErN

a2ErN+1 0

]
.

Clearly, the system of linear equations (65) is the same as (23) with the above
parameters. Thus, when N is zero or a positive even integer, we meet the
special situation (38) and its solution is given by

Y
(1)
1+r1

= 1
1−aqN+1+r1qN+2

[
bN+1 + bN+2aN+1Pr1−1(aN+2)

]
= 1

1−an bN+3,

Y
(l+1)
1+r1

= apN+2Y
(l)
1+r1

+ bN+2, 1 ≤ l ≤ r1.
(66)
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Besides, by comparing expression (29) with (30), and utilizing Property 1, it
is not hard to verify that Y

(1+r1)
1+r1

= yrN+1 and Y
(1)
1+r1

= yrN
. Thus, similar

to conclusion 3.1 of this theorem, conclusion 3.2 holds true.
4. Necessity of condition 4.1. Suppose that system (1) of Type I has an

n-periodic orbit, in which i points are in the interval [0, x∗) and j points in
the interval [x∗, γ). Let the vector XrN+rN+1 = Xi be expressed as in the
form of (29). Let a0 = aq

0 , a1 = aq
1 and replace b0 and b1 by d0 and d1,

respectively. Then, according to Lemma 4 and Proposition 2, when N is zero
or a positive even integer, we have

X
(1+r1)
1+r1

= 1
1−aN a

r1
N+1

dN+2 = 1
1−an dN+2,

X
(l)
1+r1

= aN+1X
(l+1)
1+r1

+ dN+1 = a
q

N+1X
(l+1)
1+r1

+ dN+1, 1 ≤ l ≤ r1.
(67)

By Property 3, we know that X
(1+r1)
1+r1

= xrN+1+1, and Lemma 4 shows
xrN+1+1 = aq

0x1 + d0. Thus, the inequality x1 ≥ 0 implies the first in-
equality of (54). On the other hand, it can be verified that the necessity
xi < x∗ and the relation xrN+1 = aq

1xi + d1 together imply also the second
part of (54).

Sufficiency of condition 4.1. We again separate the proof into several
parts.

1) According to Lemma 4 and conditions (54), we get xi < x∗ and x1 ≥ 0.
2) Inequalities (54) and the following inequality

d0 −
(
a(k+1)mγ + Pk(am)Qm−1

)
= akm ((1− am)γ − (1− a)Qm−1) > 0 (68)

together imply xrN+1 < xrN+1+1. Thus, in the same way as the proof of
3.1, it can be verified that vector XrN+rN+1 is ordered in magnitude, with
0 ≤ xl < x∗, 1 ≤ l ≤ i.

3) In the following, we prove that f
q
0

a (xl) = aq
0xl + d0 for all 1 ≤ l ≤ i

and that f
q
1

a (xrN+l) = aq
1xrN+l + d1 for 1 ≤ l ≤ rN+1.

Firstly, the two inequalities, x1 ≥ 0 and (68), imply d0 > 0. Moreover,
by Qm−1 < 0, we get

aq
0x1 + d0 = a(k−1)m

[
am(am+1x1 + Qm) + Qm−1

]
+ Pk−2(am)Qm−1 > 0,

which implies

fm+1
a (x1) = am+1x1 + Qm > x∗.

Generally, for 1 ≤ s ≤ k − 1, utilizing the equalities

aq
0x1 + d0 = asm

[
a(k−s)m(am+1x1 + Qm) + Pk−s−1(am)Qm−1

]

+ Ps−1(am)Qm−1,

we get

a(k−s)m(am+1x1 + Qm) + Pk−s−1(am)Qm−1 > x∗. (69)
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On the other hand, the first part of conditions (54) shows that ap
1xi +

d1 < a(k+1)mγ + Pk(am)Qm−1. By comparing this inequality with (69), it
is obvious that the equality f

q
0

a (xl) = aq
0xl + d0 is true for every 1 ≤ l ≤ i.

Besides, since f
q
0

a (xrN+1+l) > f
q
0

a (xl) = xrN+1+1 ≥ x∗, 1 ≤ l ≤ rN+1, we
have, f

q
1

a (xrN+1+l) = aq
1xrN+1+1 + d1.

4) Thus, we conclude, from conclusion 3) and (24), that every xl is a
periodic point. In the same way as the proof of 3.1, it can be proved that
the period of xl is n.

4.2 As done in the proof of conclusions 3.2, we use N + 1 instead of N
and let the vector XrN+rN+1 be in the form of (30). Let a1 = aq1 , a2 = aq0

and replace d1 and d2 by d1 and d2 in (65), respectively. We get

ArN+rN+1XrN+rN+1 =
(

d11rN

d21rN+1

)
. (70)

Clearly, the system of linear equations (70) is also the same as (24) with the
above parameters. Thus, when N is zero or a positive even integer, according
to the recursive algorithm of Proposition 2, the system of linear equations
(70) reduces to the special situation (40) and its solution is as follows:

X
(1)
1+r1

= 1
1−an dN+3,

X
(l+1)
1+r1

= aqN+2X
(l)
1+r1

+ dN+2, 1 ≤ l ≤ r1,

where the equality X
(1)
1+r1

= xrN−1 still holds true. Thus, similar to conclusion
3.2 of this theorem, condition (55) is necessary and sufficient. This completes
the proof.

Remark 4 Since γ ∈
[

1
Bm−1

, 1
Bm

)
is the same as 1

γ ∈ (
Bm, Bm−1

]
, we

can equivalently transform the discussion of the case γ ∈
[

1
Bm−1

, 1
Bm

)
into

the case of 1
γ ∈

(
Bm, Bm−1

]
for system (1) with parameter 1

γ . As a result,
we can obtain conclusions similar to the above.

In the following, we discuss the distribution characteristics of the periodic
orbits.

Corollary 2 For any given {tl, 0 ≤ l ≤ N} ∈ T0, the set of parameters γ,
corresponding to every periodic orbit expressed by (52)-(55), is a left-closed
and right-open interval.

A proof of Corollary 2 is given in Appendix IV.

Theorem 5 1. Let

i(m, k) =
(1− a)am−1

1− am−1 + ap1+Pk−1(am+1)
ap1+Pk(am+1)

(1− a)am
, (71)

i(m, k) =
(1− a)am−1

1− am−1 + Pk−1(am+1)
Pk(am+1) (1− a)am

, (72)
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and

γ1(m, k) =





γ

∣∣∣∣

γ = sup
{

γ

∣∣∣∣ a
p

N+1

1−a
p

N+2 bN+2 + bN+1 < α(m, k)
}

or

γ = sup
{

γ

∣∣∣∣ bN+3

1−apN+3
< α(m, k)

}
,

{tl, 0 ≤ l ≤ N} ∈ T0





,(73)

where α(m, k) = ap
1γ+b1. Then, for any given k ≥ 1, j > r ≥ 1, i = kj+r,

gcd(i, j) = 1 and n = i(m + 1) + jm, a necessary and sufficient condition
for system (1) of Type I to have an n-periodic orbit, in which i points belong
to [0, x∗) and j points to [x∗, γ), is γ ∈ (

i(m, k), i(m, k)
) ∖

γ1(m, k).
2. Let

j(m, k) =
(1− a)am−1

1− am−1 + akm

Pk(am) (1− a)am
, (74)

j(m, k) =
(1− a)am−1

1− am−1 + akm

Pk(am)+aq0 (1− a)am
, (75)

and

γ2(m, k) =





γ

∣∣∣∣

γ = sup
{

γ

∣∣∣∣a
q

N+1

1−an dN+2 + dN+1 < β(m, k)
}

or

γ = sup
{

γ

∣∣∣∣ dN+3
1−an < β(m, k)

}
,

{tl, 0 ≤ l ≤ N} ∈ T0





, (76)

where β(m, k) = a(k+1)mγ + Pk(am)Qm−1. Then, for any given k ≥ 1,
i > r ≥ 1, j = ki + r, gcd(i, j) = 1 and n = i(m + 1) + jm, a neces-
sary and sufficient condition for system (1) of Type I to have an n-periodic
orbit, in which i points belong to [0, x∗) and j points to [x∗, γ), is γ ∈(
j(m, k), j(m, k)

) ∖
γ2(m, k).

Proof 12 Since the two conclusions are similar, for simplicity in the follow-
ing proof of the theorem, we only prove the first one.

We firstly prove that the parameter γ, corresponding to a periodic orbit
determined by (52) and (53), belongs to

(
i(m, k), i(m, k)

)
.

Assume that yl ∈ [x∗, γ), 1 ≤ l ≤ j, are j points of an n-periodic orbit.
Then, according to Lemma 4, yj−r+1 = ap

0y1 + b0. Since, by assumption,
y1 ≥ x∗ and yj−r+1 < γ, we have

ap
0x∗ + b0 = Pk(am+1)Qm < γ ⇔ amPk−1(am+1)γ + Pk(am+1)Qm−1 < 0.

It can be verified that the last inequality above is equivalent to the inequality
γ < i(m, k). On the other hand, from the equality y1 = ap

1yr+1 + b1, we
have

ap
1γ + ak(m+1)Qm−1 + Pk−1(am+1)Qm > x∗

⇔ am(ap
1 + Pk−1(am+1))γ + (ap

1 + Pk(am+1))Qm−1 > 0.
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This shows γ > i(m, k).
In the following, we investigate the distribution of the parameter γ cor-

responding to the periodic orbits given by (52) and (53). For this pur-
pose, we need to know the evolution property of these points appearing in
(52) and (53), which depend on tl and N . For any given positive integers
tl, 0 ≤ l ≤ N , with N being zero or positive even, by simple differential oper-
ations, one can verify that both points 1

1−a
p

N+2 bN+2 and a
p

N+1

1−a
p

N+2 bN+2+bN+1

are monotonously decreasing when t0 tends to infinity. Especially, due to
Property 2, we have

lim
t0→∞

(
a

p
N+1

1− a
p

N+2
bN+2 + bN+1

)
≤ lim

t0→∞

(
ap

1

1− ap
2
b2 + b1

)
(77)

and

lim
t0→∞

(
ap

1

1− ap
2
b2 + b1

)
< (ap

1γ + b1)

⇔ b0 +
ap

0

1− ap
1
b1 − γ < 0 (78)

⇔ Pk(am+1)Qm−1 + Pk−1(am+1)amγ < 0
⇔ γ < i(m, k).

On the other hand, to those periodic orbits expressed by (53), we have

apN+4

1− apN+5
bN+5 + bN+4 − apN+2

1− apN+3
bN+3 − bN+2

= apN+4

(
bN+5

1− apN+5
− bN+3

1− apN+3

)

> 0

and

lim
t0→∞

ap2

1− ap3
b3 + b2 ≥ Pk(am+1)Qm ⇔ γ ≥ i(m, k). (79)

Besides, in the case of t0 = 1 and N = 0, one can easily verify that

ap2

1− ap3
b3 + b2 =

1
1− ap

2
b2, (80)

1
1− ap3

b3 =
ap

1

1− ap
2
b2 + b1. (81)

The above shows that, except for the periodic orbit with N = 0 and t0 = 1,
γ corresponding to the periodic orbits expressed by (52) and (53) distributes
in two different parts of the interval

(
i(m, k), i(m, k)

)
.

For any given {tl, 0 ≤ l ≤ N − 2} ∈ T0, let the point 1

1−a
p
′
N+2

b
′
N+2 be

determined by t
′
0 = 1, t

′
1 ≥ 1 and t

′
l+2 = tl, 0 ≤ l ≤ N − 2. Then, by (42),
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we know that 1
1−ap

N
bN > 1

1−a
p
′
N+2

b
′
N+2. To simplify the notation, denote t

′
1

by t below. Thus, we have

d

dt

1

1− a
p′

N+2

b
′
N+2 = ap

N
d

dt

bN+1

1− a
p

N
+p

N+1

= −a2p
N

[
(1− a

p
N−1)bN − (1− ap

N )bN−1

]

(1− ap
N )(1− a

p
N

+p
N+1)

da
p

N+1

dt
(82)

> 0.

This shows that the sequence
{

1

1−a
p
′
N+2

b
′
N+2, t

′
1 ≥ 1

}
is monotonously in-

creasing when t
′
1 tends to infinity, and

lim
t1→∞

b
′
N+2

1− a
p′

N+2

− a
p

N−1bN

1− ap
N
− bN−1 = (1− a

p
N−1)bN − (1− ap

N )bN−1

= Pk(am+1)Qm − (ap
1γ + b1). (83)

The result (83) shows clearly that the infimum of the set
{

γ

∣∣∣∣ lim
t1→∞

b
′
N+2

1− a
p′

N+2

≥ Pk(am+1)Qm

}

is the same as the supremum of the set
{

γ

∣∣∣∣
a

p
N−1

1− ap
N

bN + bN−1 < ap
1γ + b1

}
,

namely,

inf

{
γ

∣∣∣∣ lim
t1→∞

b
′
N+2

1− a
p′

N+2

≥ Pk(am+1)Qm

}

= sup
{

γ

∣∣∣∣
a

p
N−1

1− ap
N

bN + bN−1 < ap
1γ + b1

}
. (84)

On the other hand, for the case of N ≥ 2 and t0 = 1, one can show, in
the same way, that both points 1

1−apN+3
bN+3 and apN+2

1−apN+3
bN+3 + bN+2 are

monotonously decreasing when t1 tends to infinity. In particular,

lim
t1→∞

1
1− apN+3

bN+3 = apN+1bN +
1− apN+1 + apN+pN+1

1− apN+1
bN+1. (85)

Hence, for any given {tl, 0 ≤ l ≤ N} ∈ T0, let t
′
0 = 1, t

′
1 ≥ 1 and t

′
l+2 =

tl, 0 ≤ l ≤ N , so that

apN+2bN+3

1− apN+3
+ bN+2 − lim

t1→∞
b
′

N+5

1− ap
′
N+5

= (1− apN+3)bN+2 − (1− apN+2)bN+3

= Pk(am+1)Qm − (ap
1γ + b1). (86)
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This implies that

sup



γ

∣∣∣∣ lim
t1→∞

b
′

N+5

1− ap
′
N+5

< ap1γ + b1





= inf
{

γ

∣∣∣∣
apN+2

1− apN+3
bN+3 + bN+2 ≥ Pk(am+1)Qm

}
. (87)

Thus, for any two different group of positive integers tl, 0 ≤ l ≤ N and
t
′
l, 0 ≤ l ≤ L, if

inf
{

γ

∣∣∣∣
bN+2

1− a
p

N+2
≥ Pk(am+1)Qm

}

6= sup



γ

∣∣∣∣
a

p
′
L+1

1− a
p′

L+2

b
′
L+2 + b

′
L+1 < ap

1γ + b1



 ,

then, according to (84), there must be a periodic orbit such that the corre-

sponding parameter γ is between inf
{

γ

∣∣∣∣
bN+2

1−a
p

N+2 ≥ Pk(am+1)Qm

}
and

sup
{

γ

∣∣∣∣ a
p
′
L+1

1−a
p
′
L+2

b
′
L+2 + b

′
L+1 < ap

1γ + b1

}
. For the case of

inf
{

γ

∣∣∣∣
apN+2

1− apN+3
bN+3 + bN+2 ≥ Pk(am+1)Qm

}

6= sup



γ

∣∣∣∣
b
′

L+3

1− ap
′
L+3

< ap1γ + b1



 ,

we also have the same conclusion.
Assume γ0 ∈

(
i(m, k), i(m, k)

)
is not corresponding to any periodic

orbit, and not equal to sup
{

γ

∣∣∣∣ a
p

N+1

1−a
p

N+2 bN+2 + bN+1 < ap
1γ + b1

}
nor

sup
{

γ

∣∣∣∣ bN+3

1−apN+3
< ap1γ + b1

}
for any given group of positive integers tl, 0 ≤

l ≤ N . Then, according to Corollary 2, every parameter interval determined
by (52) and (53) is left-closed and right-open. Hence, there must be an open
interval, denoted by (α, β), such that γ0 ∈ (α, β) and every γ ∈ (α, β) is
not corresponding to any periodic orbit. But, from (78), (79), (84) and (87),
we know that this case is impossible.

Assume γ0 = sup
{

γ

∣∣∣∣ a
p

N+1

1−a
p

N+2 bN+2 + bN+1 < ap
1γ + b1

}
for some group

of given positive integers tl, 0 ≤ l ≤ N , with N being zero or positive even,
and it is corresponding to some periodic orbit. Then, by the definition of
γ0 and characteristics of the parameter interval corresponding to a periodic
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orbit, there is a positive real number, γ1 > γ0, such that every parameter
γ ∈ [γ0, γ1) corresponds to the same periodic orbit. But equality (84) and

lim
t1→∞


 b

′
N+2

1− a
p′

N+2

− a
p
′
N+1b

′
N+2

1− a
p′

N+2

− b
′
N+1


 = Pk(am+1)Qm − (ap

1γ + b1) (88)

together show that such an interval does not exist.
Similarly, one can reach the same conclusion about

γ0 = sup
{

γ

∣∣∣∣
bN+3

1− apN+3
< ap1γ + b1

}
.

With respect to the foregoing Theorems 3 - 5 and Corollary 1, one can
immediately draw the following conclusion.

Corollary 3 Suppose 0 < γ < a < 1. Then, system (1) of Type I has no
periodic orbits if and only if

γ ∈ {Bm, m ∈ N}
⋃

γ1(m, k)
⋃

γ2(m, k). (89)

In the rest of this paper, we discuss the characteristics of the dynamics
of system (1) for the case of a = 1.

Theorem 6 Suppose a = 1. Then, system (1) of Type I has the following
properties:

1. System (1) of Type I has no 2-periodic orbit.
2. For every positive integer n > 2, system (1) of Type I has an n-periodic

orbit if and only if there are two positive integers, l and m, with gcd(l,m) = 1,
such that n = l + m and γ = l

m . In particular, when the above condition is
satisfied, all the points in the interval [−1, γ) are n-periodic points.

3. Suppose γ = l
m satisfies the conditions in part 2. Then, any peri-

odic orbit has the following property: when the n points of the periodic orbit
{xi, 1 ≤ i ≤ n} are sorted by their values, the distance between two neigh-
boring points satisfies 1

m ≤ |xi+1 − xi| < 2
m , 1 ≤ i < n.

Proof 13 1. We have known that a point x is 2- periodic only if ∆(x)and
∆(f1(x)) have different signs. Therefore, equality

f2
1 (x) = x + ∆(x) + ∆(f1(x)) = x

holds true only if ∆(x) + ∆(f1(x)) = 0, namely, ∆1 = ∆2. This contradicts
the assumption of ∆1 6= ∆2.

2. Necessity. First of all, we have known that any periodic orbit must
include points in the two intervals [−1, 0) and [0, γ). Moreover, for any
point x ∈ [0, γ), the following equality holds true:

fn
1 (x) = x + mγ − l, (90)
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where l, m are positive integers and n = l +m. Therefore, a point x ∈ [0, γ)
is n-periodic only if mγ − l = 0, that is, γ = l

m .
Let c = gcd(l, m). We next prove c = 1.
Case one: Assume γ = l

m < 1. Let m = Kl+r. Since, for each x ∈ [0, γ),

fN
1 (x) = x +

(N − 1)l
m

− 1 = x− l + r

m
< 0 (91)

and

f1+N
1 (x) = x +

Nl

m
− 1 = x− r

m
, (92)

we know that a positive integer n > 2 is a period of system (1) of Type I with
parameter a = 1 only if there are non-negative integers l1 and l2, l1 + l2 ≥ 1,
such that n = l1(2 + N) + l2(1 + N). Here, l1 + l2 is obviously the number
of points that belong to an n-periodic orbit and to the interval [0, γ). In
particular, l1 is the number of the points that satisfy f1+N

1 (x) < 0 and l2 is
the number of the points that satisfy f1+N

1 (x) ≥ 0, respectively. Besides, it
is clear that m = N(l1 + l2) + l1; therefore, c > 1 if and only if l1 = 0, l2 > 1
or l2 = 0, l1 > 1.

Assume l1 = 0 and l2 > 1. Let x1, x2, · · · , xl be l positive points. Then,
for each 1 ≤ i ≤ l, by (91) and (92), we have f1+N

1 (xi) = x. This shows
clearly that the point x is not n-periodic. Similarly, one can prove that x is
not n-periodic if l2 = 0.

Case two: Assume γ = l
m > 1. Let l = Km + r.

For each x ∈ [−1, 0), since

f1(x) = x + γ ≥ (N − 1) +
r

m
> 0, (93)

we have

fN
1 (x) = x + γ − (N − 1) ≥ r

m
(94)

and

f1+N
1 (x) = x +

r

m
. (95)

Since 0 ≤ r
m < 1, we conclude that n is a period of system (1) of Type I

with parameter a = 1 only if there are non-negative integers m1 and m2,
m1 + m2 ≥ 1, such that n = m1(2 + N) + m2(1 + N). Here, m1 + m2 is
obviously the number of points that belong to an n-periodic orbit and to the
interval [−1, 0). In particular, m1 is the number of the points that satisfy
f1+N
1 (x) ≥ 0 and m2 is the number of the points that satisfy f1+N

1 (x) < 0,
respectively. Clearly, l = N(m1 + m2) + m1; therefore, c > 1 if and only if
m1 = 0, m2 > 1 or m2 = 0, m1 > 1.

Similar to the above proof, one can verify that the point x is not n-periodic
in both of the two cases.
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Sufficiency. We prove it by contradiction. Assume that there exists a
point x ∈ [−1, γ) that is not n periodic. Then, there should exist two
positive integers, M and L, with M + L = n, M 6= m and L 6= l, such that

fn
1 (x) = x + Mγ − L. (96)

i. If M < m, let m −M = P . Then, one must have that L = l + P , so
that

fn
1 (x) = x + Mγ − L = x− P (1 + γ) < −(P − 1)γ − P ≤ −1. (97)

ii. If M > m, let M = m + P . Then, one must have that L = l − P , so
that

fn
1 (x) = x + Mγ − L = x + P (1 + γ) ≥ (P − 1) + Pγ ≥ γ. (98)

Obviously, both of the above situations cannot occur.
3. For any point x ∈ [−1, γ) and any positive integer 1 ≤ k < n, there

exist two non-negative integers, M ≤ m , L ≤ l and M + L < n, such that

fk
1 (x) = x + Mγ − L.

Since |Mγ − L| 6= 0, one must have |Mγ − L| = |Ml−mL
m | ≥ 1

m . This shows
that the distance between any two neighboring points is greater than 1

m . If
there are two neighboring points whose distance is equal to or greater than
2
m , then we have

xn − x1 ≥ n

m
=

m + l

m
= 1 + γ.

But this is a contradiction, since x1, xn ∈ [−1, γ). This completes the proof.

3 Appendices

Appendix I. Proof of Proposition 2

Firstly, it is not hard to verify that the coefficient matrix of the linear
system of equations (31) is in the form of

ArN+rN+1 =


ErN
−a1ErN

0 · · · 0

0
. . . . . . . . . 0

...
. . . ErN

−a1FrN×rN−1 −a1FrN

0 · · · 0 ErN−1 −a1FrN−1×rN

−a0ErN 0 · · · 0 ErN




,(99)
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where

FrN×rN−1 =
[

ErN−1

0

]
,

FrN−1×r1 =
[

0 ErN−1

]
, (100)

FrN
=

[
0 0

ErN−rN−1 0

]
.

Thus, multiplying ArN+rN+1 by the elementary transform matrix

TrN+rN+1 =




ErN
0 · · · 0

0
. . . . . .

...
...

. . . ErN

0 · · · 0 ErN−1 0
a0ErN · · · a0a

tN−1
1 ErN 0 ErN




(101)

to the left side, one gets

TrN+rN+1ArN+rN+1 =



ErN
−a1ErN

0 · · · 0

0
. . . . . . . . . 0

...
. . . ErN −a1ErN×rN−1 −a1FrN

0 · · · 0 ErN−1 −a1ErN−1×rN

0 · · · 0 −a0a
tN
1 ErN×rN−1 ErN

− a0a
tN
1 FrN



(102)

It can be verified that
[ −a1ErN×rN−1 −a1FrN

]
=

[ −a1ErN
0

]
(103)

and

ArN−1+rN
=

[
ErN−1 −a1ErN−1×rN

−a0a
tN
1 ErN×rN−1 ErN − a0a

tN
1 FrN

]
, (104)

which can be expressed in detail as follows:

ArN−1+rN =



ErN−1 0 · · · 0 −a1ErN−1

−a2HrN−2×rN−1 ErN−2

. . . 0

−a2HrN−1 −a2HrN−1×rN−2 ErN−1

...

0
. . . . . . 0

0 · · · 0 −a2ErN−1 ErN−1




(105)
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where

HrN−2×rN−1 =
[

ErN−2 0
]
,

HrN−1×rN−2 =
[

0
ErN−2

]
, (106)

HrN−1 =
[

0 ErN−1−rN−2

0 0

]
.

Besides,

TrN+rN+1

(
b11rN+1

b01rN

)
=

(
b11rN+1

[b0 + b1a0PtN−1(a1)]1rN

)
=

(
b11rN+1

b21rN

)
(107)

Hence, we can see that the system of linear equations (32) reduces to the
system of linear equations (33) with l = 1.

Moreover, multiplying ArN−1+rN
by the elementary transform matrix

TrN−1+rN
=




ErN−1 0 a1a
tN−1−1
2 ErN−1 · · · a1ErN−1

0 ErN−2 0 · · · 0
...

. . . ErN−1

. . .
...

. . . 0
0 · · · 0 ErN−1




(108)

to the left side, and noticing of the relation as+2 = asa
tN−s

s+1 , one gets

TrN−1+rN
ArN−1+rN =




ErN−1 − a3HrN−1 −a3ErN−1×rN−2 0 · · · 0

−a2ErN−2×rN−1 ErN−2 0
...

−a2HrN−1 −a2ErN−1×rN−2 ErN−1

. . .

. . . 0
0 · · · 0 ErN−1



(109)

where
[−a2HrN−1 − a2ErN−1×rN−2

]
=

[
0 −a2ErN−1

]
, (110)

ArN−2+rN−1 =
[

ErN−1 − a3HrN−1 −a3ErN−1×rN−2

−a2ErN−2×rN−1 ErN−2

]
, (111)

and

TrN−1+rN

(
b11rN−1

b21rN

)
=

( [
b1 + b2a1PtN−1−1(a2)

]
1rN−1

b21rN

)

=
(

b31rN−1

b21rN

)
. (112)
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Clearly, the first subsystem of linear equations (33) is also translated into
its equivalent form (33) with l = 1.

The general cases can be proved by induction without any technical dif-
ficulty. Thus, based on the above analysis and discussions, when N is odd,
solving the system of linear equations (32) reduces to solving the recursive
systems of linear equations (33), (33), and the program will end at (38).
Similarly, when N is zero or an even integer, the recursive program will end
at (41), where al and bl are given by (36) and (37).

Appendix II. Proof of Property 1

Since the proof methods for assertions 1−4 are totally the same, we only
give a proof for assertion 1.

On one hand, we have

n = i(m + 1) + jm

= (k(rN + rN+1) + rN )(m + 1) + (rN + rN+1)m
= rNp

0
+ rN+1p1

,

and on the other hand, by the stipulation on t0 = r1 and the definition of p
l
,

we have

p
N+2

= p
N

+ t0pN+1
= p

N
+ r1pN+1

= p
N

+ r1(pN−1
+ t1pN

) = r1pN−1
+ r2pN

... (113)
= rN−1p1

+ rNp
2

= rN−1p1
+ rN (p

0
+ tNp

1
)

= rNp
0

+ rN+1p1
.

Thus, we have actually proved assertion 1. Other assertions can be similarly
verified.
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Appendix III. Proof of Property 2

1. First, we verify (44). For any 0 ≤ 2l ≤ N , due to (36), (37) and the
formula p

s+2
= p

s
+ tN−sps+1

, we have

b2l+2

1− a
p
2l+2

− b2l+1

1− a
p
2l+1

=
(1− a

p
2l+1)b2l+2 − (1− a

p
2l+2)b2l+1

(1− a
p
2l+1)(1− a

p
2l+2)

=
(1− a

p
2l+1)b2l − (1− ap

2l)b2l+1

(1− a
p
2l+1)(1− a

p
2l+2)

... (114)

=
(1− ap

1)b0 − (1− ap
0)b1

(1− a
p
2l+1)(1− a

p
2l+2)

=
Pk(am+1)Qm − (ap

1γ + b1)
(1− a

p
2l+1)(1− a

p
2l+2)

> 0.

Thus, we have already proved inequality (44). Utilizing this result, assertions
(42) and (43) can be easily verified as follows:

b2l

1− ap
2l
− b2l+2

1− a
p
2l+2

=
(1− a

p
2l+2)b2l − (1− ap

2l)b2l+2

(1− ap
2l)(1− a

p
2l+2)

=
(ap

2l − a
p
2l+2)

[
(1− a

p
2l+1)b2l − (1− ap

2l)b2l+1

]

(1− ap
2l)(1− a

p
2l+1)(1− a

p
2l+2)

> 0 (115)

and

b2l+3

1− a
p
2l+3

− b2l+1

1− a
p
2l+1

(116)

=
(1− a

p
2l+1)b2l+3 − (1− a

p
2l+3)b2l+1

(1− a
p
2l+1)(1− a

p
2l+3)

=
(ap

2l+1 − a
p
2l+3)

[
(1− a

p
2l+1)b2l+2 − (1− a

p
2l+2)b2l+1

]

(1− a
p
2l+1)(1− a

p
2l+2)(1− a

p
2l+3)

> 0. (117)

2. Denote t0 by t. Then, since

d

dt

1
1− ap

2
b2 =

1
ap

1(1− ap
1)

d

dap
2

(
b0(1− ap

1) + b1(a
p
0 − ap

2)
1− ap

2

)

=
ap

2 ln a

ap
1(1− ap

1)
b0(1− ap

1)− b1(1− ap
0)

(1− ap
2)2

(118)

< 0,
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we know that 1
1−ap2 b2 is monotonously decreasing when t tends to infinity.

Thus, for 1
1−ap2 b2 with t0 = 1, according to this monotonicity and inequality

(42), we have

ap
′
2

1− ap′
3

b
′
3 + b

′
2 <

1

1− ap′
2

b
′
2 ≤

1
1− ap

2
b2. (119)

Generally, utilizing (42), we obtain

a
p
′
L+1

1− a
p′

L+2

b
′
L+2 + b

′
L+1 <

1

1− a
p′

L+1

b
′
L+1 <

1

1− ap′
2

b
′
2 ≤

1
1− ap

2
b2. (120)

The above shows that there are no L and t
′
l, 0 ≤ l ≤ L, such that the equality

(45) is satisfied with 1
1−ap2 b2 when t0 = 1.

If t0 ≥ 2, we take L = N+1 and arrange an ordered set of positive integers
{t′l, 0 ≤ l ≤ L} as follows: t

′
0 = 1, t

′
1 = t0 − 1 and t

′
l+1 = tl, 1 ≤ l ≤ N .

With this choice, one can easily verify that p
′

l+2
= p

l+2
and b

′
l+2 = bl+2,

0 ≤ l ≤ N − 1. Hence,

p
N+2

= p
N

+ t0pN+1
= p

N
+ (t

′
1 + 1)p

N+1
= p

′

N+1
+ p

′

N+2
= p

′

N+3
, (121)

1

1− a
p′

L+2

b
′
L+2

=
1

1− a
p

N+2

[
b
′
N+1 + a

p
′
N+1b

′
N+2

]

=
1

1− a
p

N+2

[
bN+1 + a

p
N+1

(
bN + bN+1a

p
N Pt

′
1−1(a

p
N+1)

)]
(122)

=
1

1− a
p

N+2

[
bN+1 + a

p
N+1

(
bN+2 − a

p
N

+(t0−1)p
N+1bN+1

)]

=
p

N+1

1− a
p

N+2
bN+2 + bN+1,

and

a
p
′
L+1

1− a
p′

L+2

b
′
L+2 + b

′
L+1

=
a

p
′
N+2

1− a
p′

N+3

(
b
′
N+1 + a

p
′
N+1b

′
N+2

)
+ b

′
N+2

=
1

1− a
p′

N+3

(
a

p
′
N+2b

′
N+1 + b

′
N+2

)
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=
1

1− a
p′

N+3

[
b
′
N + b

′
N+1

(
a

p
′
N+2 + ap

′
N Pt

′
1−1(a

p
′
N+1)

)]
(123)

=
1

1− a
p′

N+3

[
b
′
N + b

′
N+1a

p
′
N Pt

′
1
(ap

′
N+1)

]

=
1

1− a
p

N+2
bN+2.

If t0 = 1 and N ∈ PE, then we take L = N−1 and arrange an ordered set
of positive integers {t′l, 0 ≤ l ≤ L} as follows: t

′
0 = t1 + 1 and t

′
l = tl+1, 1 ≤

l ≤ L. With this choice, we have p
′

l+2
= p

l+2
and b

′
l+2 = bl+2, 0 ≤ l ≤ L−1.

Hence,

p
′

L+2
= p

′

N−1
+ t

′
0p
′

N
= p

′

N
+ p

′

N−1
+ t1p

′

N
= p

N
+ p

N+1
= p

N+2
, (124)

1

1− a
p′

L+2

b
′
L+2 =

1
1− a

p
N+2

(
bN−1 + bNa

p
N−1Pt1(a

p
N )

)

=
1

1− a
p

N+2

(
bN+1 + bNa

p
N+1

)

=
1

1− a
p

N+2

[
a

p
N+1bN+2 + (1− a

p
N+2)bN+1

]
(125)

=
a

p
N+1

1− a
p

N+2
bN+2 + bN+1,

and

a
p
′
L+1b

′
L+2

1− a
p′

L+2

+ b
′
L+1 =

ap
N

1− a
p

N+2

(
bN−1 + bNa

p
N−1Pt1(a

p
N )

)
+ bN

=
1

1− a
p

N+2

(
ap

N bN+1 + bN

)
(126)

=
1

1− a
p

N+2
bN+2.

The proof of conclusion 3 can be similarly carried out.

Appendix IV Proof of Corollary 2

Due to the similarity of the proofs, we only prove (52).
Firstly, by the definition of Ql, it is obvious that the coefficients of γ in

both of Qm−1 and Qm are positive. Furthermore, with respect to (37), bl,
0 ≤ l ≤ N + 2, are linear compositions of bl = αl(a)Qm + βl(a)Qm−1, where
αl(a) > 0 and βl(a) > 0. Since α0(a) = Pk(am+1) > (1−ap

0)Pk(am+1), and
by (37), αl+2(a) > αl(a) for all l ≥ 0, we can see that both of αl(a) − (1 −
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ap
l)Pk(am+1) and βl(a) + a(αl(a)− (1− ap

l)Pk(am+1)) are positive. Thus,
we have

1
1− a

p
l+2

bl+2 ≥ Pk(am+1)Qm ⇔ [
αl+2(a)− (1− a

p
l+2)Pk(am+1)

]
Qm

+ βl+2(a)Qm−1 ≥ 0;

that is,

γ ≥ am−1

(
1− am−1

1− a
+

αl+2(a)− (1− a
p

l+2)Pk(am+1)
βl+2(a) + a(αl+2(a)− (1− a

p
l+2)Pk(am+1))

)−1

.

For l ≥ 0, let

µl+2 = a
p

l+1αl+2(a) + (1− a
p

l+2) [αl+1(a)− α1(a)] ,
νl+2 = a

p
l+1βl+2(a) + (1− a

p
l+2) [βl+1(a)− β1(a)] .

Obviously, νl+2 > 0 for all l ≥ 0. Besides, when l = 0,

µ2 = ap
1α2(a) > ap

1(Pk(am+1) > ap
1(1− ap

2);

when l ≥ 1,

µl+2 = a
p

l+1αl+2(a) + (1− a
p

l+2) [αl+1(a)− α1(a)]
> (1− a

p
l+2) [α0(a)− α1(a)]

> ap
1(1− a

p
l+2).

Hence, we have

a
p

l+1

1−a
p

l+2 bl+2 + bl+1 < ap
1γ + b1

⇔
(

1−am−1

1−a + µl+2−ap1 (1−a
p

l+2 )
νl+2+aµl+2

)
γ − am−1 < 0

⇔ γ < am−1
(

1−am−1

1−a + µl+2−ap1 (1−a
p

l+2 )
νl+2+aµl+2

)−1

.

Assume that

sup
{

γ

∣∣∣∣
a

p
N+1

1− a
p

N+2
bN+2 + bN+1 < ap

1γ + b1

}

≤ inf
{

γ

∣∣∣∣
bN+2

1− a
p

N+2
≥ Pk(am+1)Qm

}
.

Then, when γ = sup
{

γ

∣∣∣∣ a
p

N+1

1−a
p

N+2 bN+2 + bN+1 < ap
1γ + b1

}
, we have

a
p

N+1

1−a
p

N+2 bN+2 + bN+1 = ap
1γ + b1 and

bN+2

1−a
p

N+2 ≤ Pk(am+1)Qm; therefore,

1
1− a

p
l+2

bl+2 −
a

p
l+1

1− a
p

l+2
bl+2 − bl+1 ≤ Pk(am+1)Qm − ap

1γ − b1.
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But, according to (43), we know that, for any γ,

1
1− a

p
l+2

bl+2 −
a

p
l+1

1− a
p

l+2
bl+2 − bl+1

=
1

1− a
p

l+2

(
Pk(am+1)Qm − ap

1γ − b1

)

> Pk(am+1)Qm − ap
1γ − b1,

which shows that the above assumption is not true. Thus, we have completed
the proof.
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