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The dynamic economic emission dispatch (DEED) of electric power generation is a multi-objective
mathematical optimization problem with two objective functions. The first objective is to minimize all
the fuel costs of the generators in the power system, whilst the second objective seeks to minimize
the emissions cost. Both objective functions are subject to constraints such as load demand constraint,
ramp rate constraint, amongst other constraints. In this work, we integrate a game theory based demand
response program into the DEED problem. The game theory based demand response program determines
the optimal hourly incentive to be offered to customers who sign up for load curtailment. The game
theory model has in built mechanisms to ensure that the incentive offered the customers is greater than
the cost of interruption while simultaneously being beneficial to the utility. The combined DEED and
game theoretic demand response model presented in this work, minimizes fuel and emissions costs
and simultaneously determines the optimal incentive and load curtailment customers have to perform
for maximal power system relief. The developed model is tested on two test systems with industrial
customers and obtained results indicate the practical benefits of the proposed model.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The Dynamic Economic Dispatch (DED) problem is a mathemat-
ical problem that has recently received much attention in the liter-
ature. The aim of the DED problem is to determine the optimal
output of thermal generators that will supply electric load and
ensure that the generator limits and ramp rate limits are not
exceeded or violated [1]. Global increasing environmental aware-
ness has led to many researchers considering the DED problem with
emission considerations. The emissions of dangerous and harmful
pollutants like SO2, NOx, CO and CO2 have led to widespread calls
for electric utilities to fashion out ways of curtailing these
pollutants [2]. Some of the proposed solutions include installation
of pollutant cleaning, switching to low-emission fuels, replacement
of the aged fuel burners with cleaner ones, and emission dispatch-
ing [3]. Emission dispatching is however the most preferred
solution because of its low capital burden and ease of implementa-
tion. The most common method of incorporating emission dispatch
into the DED mathematical problem is termed the Dynamic
Economic Emissions Dispatch (DEED). It is a multi-objective
optimization problem that involves simultaneously minimizing
emission and fuel costs under conventional ramp rate constraints,
load constraints, etc.

There have been a lot of research works on DED and DEED in the
literature using different solution algorithms [4]. Most of the
solution algorithms can be categorized as either conventional
mathematical techniques or soft computing techniques. Examples
of conventional mathematical techniques used in the literature
include mixed integer quadratic programming [5], quadratic
constrained programming [5] and benders decomposition [6] to
mention a few. Major advantages of conventional mathematical
techniques are that optimal solutions can often be guaranteed, they
have fast computational times and they have no domain specific
parameters to define. The disadvantage of these methods is that
they often cannot handle non convex cost functions and are in
danger of providing locally optimal solutions. Examples of soft
computing methods include artificial physical optimization algo-
rithm [7], artificial bee colony optimization [8], gravitational search
algorithm [9], harmony search algorithm [10], biogeography based
optimization [11] and spiral optimization algorithm [12], to men-
tion a few. The advantage of soft computing methods is that they
can usually handle non smooth or non-convex cost functions; how-
ever they have the drawback of long computational times and the
need for definition of a large number of domain specific parameters.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.enconman.2014.11.001&domain=pdf
http://dx.doi.org/10.1016/j.enconman.2014.11.001
http://dx.doi.org/10.1016/j.enconman.2014.11.001
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The aim of this research is to present a practical framework for
integrating DEED with demand response programs. Demand
response programs are essentially designed to control and curtail
a customer’s demand for electrical energy [13]. It is obvious that
DEED and DR programs are necessary programs for effective power
system management. Whilst DEED is concerned with optimal gen-
erator output at the supply side, DR programs are concerned with
optimal load curtailment at the demand side. It therefore follows
logically that integrating both formulations together with their
interdependent constraints would yield a more practical system
with more realistic solutions at both the supply and demand
spectrum of the power grid [14]. There are only very few works
that consider the DEED and DR jointly. Most of the works on DEED
deal with novel soft computing algorithms [15–18] or integrating
DEED with renewable energy sources like wind and solar energy
[19–22]. Addition of these renewable sources serves as extra
sources of generated power and thus increases the supply of
electric power. However, it is well known that these sources are
intermittent and there is the problem of grid integration. Other
works on DR in the literature have focused extensively on the
consumer side without consideration to the supply side [23–25].
A few works have considered the DEED problem with different
DR formulations. In [14,26] the authors presented a framework
for integrating renewable economic dispatch with demand
response in a micro grid. The renewable sources considered were
solar and wind energy. Obtained results from their simulations
show that their approach reduces costs at both supply and demand
side. However, the scope of the work concerns optimal dispatch for
only renewable energy sources in a micro grid and not in a conven-
tional grid. In [27,28] where the authors considered DEED with DR
in a large grid, DR is considered as spinning reserves. The authors
did not consider the individual customers cost of interruptions
and the incentives offered to consumers to ensure that the custom-
ers were adequately attracted to participate. There is therefore a
need for a practical mathematical formulation for the integration
of both DEED and DR in such a manner that it can be applied to
either a micro grid or a conventional grid. The DR program as of
a necessity must also be structured so that it is attractive to cus-
tomers. This synergy would enable us get optimal results at both
the supply side and at the demand side instead of considering both
independently [29]. To this end, we introduce a combined DEED
with a game theory based DR program. It is termed a DR-DEED
model and can be solved by either conventional mathematical
techniques or by soft computing techniques. The game theory
based DR program is a voluntary incentivised demand response
program and is structured in such a way that the incentive offered
to customers has to equal or be greater than their cost of partici-
pating in DR [34] and the greater your load curtailed, the greater
your incentive. Moreover to show the benefits of our proposed
approach, two scenarios are considered. Both scenarios are chosen
to show that DR-DEED formulation can be applied either in a micro
grid or in a larger conventional grid. The major contributions of
this paper are: (i) The extension of the game theory demand
response model for multiple customers for multiple time intervals.
(ii) The incorporation of the extended game theory demand
response model into the multi-objective DEED optimization
problem. (iii) The addition of practical constraints like budgetary
and customer maximum load constraints. (iv) The effectiveness
of the final proposed mathematical model is shown with two
scenarios. The first test case involves six generators and five
customers while the second involves ten generators and seven
customers. (v) Obtained results indicate that the proposed
mathematical model leads to optimal generator dispatches,
optimal load reduction and incentives. The rest of this paper is
organized as follows: Section 2 presents the DEED formulations,
Section 3 introduces the game theory based demand response
program formulation. Section 4 details the combined game theory
and DEED mathematical model. Section 5 focuses on numerical
simulations using the developed mathematical model and presents
obtained results. The paper is concluded in Section 6.

2. The dynamic economic emission dispatch model

The DEED problem determines the optimal power generation
schedule over a time interval whilst simultaneously minimizing
fuel and emission costs. The mathematical representation is pre-
sented below [30]:

min
XT

t¼1

XI

i¼1

CiðPi;tÞ; ð1Þ

min
XT

t¼1

XI

i¼1

EiðPi;tÞ; ð2Þ

with

CiðPi;tÞ ¼ ai þ biPi;t þ ciP
2
i;t ; ð3Þ

EiðPi;tÞ ¼ ei þ f iPi;t þ giP
2
i;t; ð4Þ

subject to the following network constraints:

XI

i¼1

Pi;t ¼ Dt þ losst ; ð5Þ

Pi;min 6 Pi;t 6 Pi;max; ð6Þ

�DRi 6 Pi;tþ1 � Pi;t 6 URi; ð7Þ

where

losst ¼
XI

i¼1

XK

k¼1

Pi;tBi;kPk;t ð8Þ

Pi;t is the power generated from generator i at time t.
Ci is the fuel cost of generator i.
Ei is the emissions cost for generator i.
Dt is the total system demand at time t.
losst is the total system losses at time t.
Pi,min and Pi,max are the minimum and maximum capacity of
generator i respectively.
DRi and URi are the maximum ramp down and up rates of
generator i respectively.
ai, bi and ci are the fuel cost coefficients of generator i
respectively.
ei, fi and gi are the emission cost coefficients of generator i
respectively.
Bi,k is the ikth element of the loss coefficient square matrix of
size I.
I and T are the number of generators and the dispatch interval
respectively.

The following is a brief description of the constraints:

� The first constraint (5) is the power balance constraint and
ensures that at any time t, the total power generated equals
the demand and total power losses.
� The second constraint (6) is the generation limits constraint and

ensures that the generator limits are not exceeded.
� The final constraint (7) is the generator ramp rate limits

constraints and ensures that the generator ramp rate limits
are not violated.
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The fuel cost and emission cost (Eqs. (3) and (4)) are both
assumed to be quadratic functions of the generators active power
output [30]. Power balance constraint, generation limit constraints
and generator ramp rate limits constraints and network losses are
the only practical constraints considered. Other constraints will be
incorporated in future studies. The reason for this is that the
authors do not want to lose sight of the main motivation of this
work which is not to delve too deeply into various DEED setups
but rather to present a practical framework for integrating DEED
with DR programs.

The multi-objective optimization can be transformed into a
single objective function using a weighting factor w subject to
the same constraints (5)–(8).

min w
XT

t¼1

XI

i¼1

CiðPi;tÞ þ ð1�wÞ
XT

t¼1

XI

i¼1

EiðPi;tÞ
" #

: ð9Þ
3. Game theory based demand response design

Demand response, as one DSM approach can simply be defined
as a change in electric usage by end-use customers from their nor-
mal consumption patterns in response to changes in the price of
electricity over time, or to incentive payments designed to induce
lower electricity use at times of high wholesale market prices or
when system reliability is jeopardized [31,32]. In cases where the
utility is a monopoly, an advantage of demand response programs
is an improvement in power system efficiency and reliability. An
added advantage is a reduction in operating costs and emissions.
In deregulated markets, the same advantages in monopolistic
markets apply. Furthermore, there is the advantage of reduced
wholesale market prices [33].

One of the core requirements for electric utilities in the design
of voluntary demand response programs is that the customer
incentive (monetary benefit) always has to be greater than the
customer outage cost [34]. It is noteworthy to add that typically
the monetary benefit can either be in the form of reduced negoti-
ated electricity rates or monetary disbursements [35]. Furthermore
the customer always has the option of specifying how much elec-
tric power they are voluntarily shedding. In [34–36], the authors
introduce the concept of demand management contracts. The
authors define a contract as: ‘‘an agreement between utility and
customer wherein the customer agrees to willingly shed load and
in return receive monetary compensation’’ [34,35]. Furthermore
in [32], the authors explicitly detail three crucial requirements in
the design of such contracts. They are given as follows:

� The ability to differentiate between the customers: Different
customers mean different load sizes and hence imply different
outage costs.
� The ability to estimate customer outage costs: Since different

customers have different costs, the utility should be able to
accurately estimate individual customer outage costs [36].
� The ability to incorporate locational attributes of the customers

into the contract design.

3.1. Game theory based demand response formulations

To illustrate the concept of game theory demand contract
formulations as was shown in [34], we begin initially by assuming
a single customer.

We define c(h,x) as the cost incurred by a customer of type h
who decreases power consumption by x MW. The benefit function
of the customer is given as:

V1ðh; x; yÞ ¼ y� cðh; xÞ ð10Þ
where y is the value of monetary compensation the customer
receives. It follows logically, that the customer would only partici-
pate if V1 P 0.

Similarly, the benefit function of the utility is given as:

V2ðh; kÞ ¼ kx� y ð11Þ

k is the cost of not supplying power to a particular location on the
grid. Under certain conditions, it might be costly for the power
utility to supply electric power to some load buses on the grid.
The electric utility can easily calculate this cost of not supplying
power. This calculated value has hitherto been defined as the ‘‘value
of power interruptibility’’ (k) [34] and is typically calculated from
optimal power flow (OPF).

The objective of the utility is to maximize its benefit function:

max
x;y
½kx� y� ð12Þ

� h: ‘‘customer type’’, normalized in [0,1].
� x: quantity of power reduced by a participating customer.
� c(x,h): cost of reducing x MW by customer of type h.
� k: ‘‘value of power interruptibility’’.

3.2. Customer cost function

As stated before, c(h, x) is the cost incurred by a customer of
type h who decreases power consumption by x MW. In this work,
it is assumed that the mathematical function is given as in [34]:

cðh; xÞ ¼ K1x2 þ K2x� K2xh ð13Þ

where K1 and K2 are cost co-efficients. h is the customer type [36]
and is used to categorize the different kinds of customers based
on their desire/readiness to curb electric power.

h is normalized in the interval 0 6 h 6 1, thus h = 1 for the most
willing customer and h = 0 for the least willing. We provide a sum-
mary of all the conditions that the cost function must satisfy:

� Assumed form c(h,x) = K1x2 + K2x � K2xh.
� K2xh term sorts customers by way of h.
� As h increases marginal cost decreases: The most willing

customer (h = 1) has the least marginal cost and thus has the
highest marginal benefit, whilst the least willing customer
(h = 0) has the highest marginal cost and thus the lowest
marginal benefit.
� @c

@x ¼ 2K1xþ K2 � K2h.
� Non-negative marginal cost.
� Increasing marginal cost (convex cost function).
� Zero curtailment: curbing zero power should cost (c(h,0) = 0).

The concept of contract formulations to more than one
customer is given as in [34]:

Thus, if yj is the amount of payment paid to customer j, the
customer benefit is obtained from:

uj ¼ yj � K1x2
j þ K2xj � K2xjhj

� �
; for j ¼ 1; . . . ; J: ð14Þ

The utility benefit is determined from:

u0 ¼
XJ

j¼1

kjxj � yj ð15Þ

The objective is thus to maximize the expected utility benefit

max
x;y

XJ

j¼1

½kjxj � yj� ð16Þ

s.t.

yj � ðK1x2
j þ K2xj � K2xjhjÞP 0; for j ¼ 1; . . . ; J: ð17Þ
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Fig. 2. Hourly values of power interruptibility (kj;t) for different customers
(Scenario 1).

Table 1
Customer cost function coefficients, customer type and daily customer power limit
(Scenario 1).

Customer (j) K1,j K2,j hj CMj (MW)

1 1.847 11.64 0 200
2 1.378 11.63 0.1734 280
3 1.079 11.32 0.4828 410
4 0.9124 11.5 0.7208 500
5 0.8794 11.21 1 700
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yj � ðK1x2
j þ K2xj � K2xjhjÞP yj�1 � ðK1x2

j�1 þ K2xj�1 � K2xj�1hj�1Þ;
for j ¼ 2; . . . ; J: ð18Þ

The mathematical formulation presented above has two variables;
the power curtailed (x MW) and the incentive paid ($ y).
Furthermore, the two constraints are defined and described below:

The ‘‘Individual rationality constraint’’ (Constraint (17) ensures
that each customer benefit is greater than or exceeds zero).

The ‘‘Incentive compatibility constraint’’ (Constraint (18) ensures
that customers are appropriately compensated for their level of
load curbed).

In this paper, we extend the demand management contract
formulations (Eqs. (14)–(18)) to more than one time interval and
incorporate it into the DEED problem. We also modify the individual
rationality constraint and the incentive compatibility constraint and
enforce it over the total optimization horizon (a day) instead of a
single time interval (every hour). This we believe makes more
practical and economic sense. Finally, we add maximum power
targets and total budget as practical constraints into the model.
The mathematical model is given as:

max
x;y

XT

t¼1

XJ

j¼1

kj;txj;t � yj;t

� �
ð19Þ

s.t.

XT

t¼1

yj;t � K1;jx2
j;t þ K2;jxj;t � K2;txj;thj

� �h i
P 0; for j ¼ 1; . . . ; J: ð20Þ

XT

t¼1

yj;t � K1;jx2
j;t þ K2;jxj;t � K2;txj;thj

� �h i

P
XT

t¼1

yj�1;t � K1;j�1x2
j�1;t þ K2;j�1xj�1;t � K2;j�1xj�1;thj�1

� �h i
;

for j ¼ 2; . . . ; J: ð21Þ

XT

t¼1

XJ

j¼1

yj;t 6 UB ð22Þ

XT

t¼1

xj;t 6 CMj; for j ¼ 1; . . . ; J: ð23Þ

where UB is the utility’s total budget and CMj is the daily limit of
interruptible power for customer j.

Constraint (20) ensures that the total daily incentive received
by a customer exceeds or equals his daily cost of interruption.
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Fig. 1. Total initial hourly demand (Scenario 1).
Constraint (21) ensures that the greater the customer power cur-
tailed, the greater the customer benefit.

Constraint (22) ensures that the total incentive paid by the
utility is less than or equal to the utility’s budget.

Constraint (23) ensures that the total daily power curtailed by
each customer is less than or equal to its daily limit of interruptible
power.

In the next section, we present the combined DEED and game
theory based demand response model.

4. Combined DEED and game theory based mathematical model

Thus, the weighted single objective DR-DEED mathematical for-
mulation from the utility perspective can be given as:

min w1

XT

t¼1

XI

i¼1

CiðPi;tÞ
" #

þw2

XT

t¼1

XI

i¼1

EiðPi;tÞ
" #

�w3

XT

t¼1

XJ

j¼1

kj;txj;t � yj;t

� �" #" #

ð24Þ
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Fig. 3. Total initial hourly demand (Scenario 2).
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Fig. 4. Hourly values of power interruptibility (kj;t) for different customers
(Scenario 2).

Table 2
Customer cost function coefficients, customer type and daily customer power limit
(Scenario 2).

Customer (j) K1,j K2,j hj CMj (MW)

1 1.847 11.64 0 180
2 1.378 11.63 0.14 230
3 1.079 11.32 0.26 310
4 0.9124 11.5 0.37 390
5 0.8794 11.21 0.55 440
6 1.378 11.63 0.84 530
7 1.5231 11.5 1 600
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Fig. 5. Total load profile before and after demand response (Scenario 1).
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subject to the following network constraints:

XI

i¼1

Pi;t ¼ Dt þ losst �
XJ

j¼1

xj;t ; ð25Þ

Pi;min 6 Pi;t 6 Pi;max; ð26Þ

�DRi 6 Pi;tþ1 � Pi;t 6 URi; ð27Þ

XT

t¼1

yj;t � ðK1;jx2
j;t þ K2;jxj;t � K2;txj;thjÞ

h i
P 0; for j ¼ 1; . . . ; J: ð28Þ

XT

t¼1

yj;t � ðK1;jx2
j;t þ K2;jxj;t � K2;txj;thjÞ

h i

P
XT

t¼1

yj�1;t � ðK1;j�1x2
j�1;t þ K2;j�1xj�1;t � K2;j�1xj�1;thj�1Þ

h i
;

for j ¼ 2; . . . ; J: ð29Þ

XT

t¼1

XJ

j¼1

yj;t 6 UB ð30Þ

XT

t¼1

xj;t 6 CMj; for j ¼ 1; . . . ; J: ð31Þ

where w1, w2 and w3 are the weights and the following condition is
required to be satisfied when choosing weights:

w1 þw2 þw3 ¼ 1 ð32Þ

losst ¼
XI

i¼1

XK

k¼1

Pi;tBi;kPk;t ð33Þ
The variables to be determined by the optimization model are xj,t,
yj,t and Pi,t.

5. Numerical simulations, obtained results and discussions

In this section, we present the parameters and results of the
proposed optimization model given in Eqs. (24)–(33).

5.1. Customer side data

A number of assumptions were made concerning the mathe-
matical model. It is assumed that the customer makes known to
the utility, its daily limit of interruptible power (CMj). This
customer daily limit of interruptible power determines the
customer willingness (hj). As stated earlier hj is normalized to the
interval 0 6 h 6 1, thus Customer 1 who has the lowest CMj has a
hj value of 0 and Customer 2 who has the highest CMj has a hj value
of 1 and all other values of CMj fall within the normalized interval.
The customers are thus ranked in order of increasing willingness to
curtail power. It is also assumed, the utility knows the different
coefficients of the customers outage cost function (K1,j) and (K2,j).
In this work Locational Marginal Prices (LMP) [33] are used as k
or ‘‘locational attribute’’ or ‘‘value of power interruptibility’’ as this
gives the cost of NOT delivering power to a specific location or
customer [36]. Since we need hourly k values, hourly Locational
Marginal Prices (LMP) are used from the Pennsylvania–New
Jersey–Maryland (PJM) Market [37].

The goal is to obtain the optimal customer power to be curtailed
(xj,t), optimal incentive to be paid to customers (yj,t) and power
generated from all generators (Pi,t). Two test scenarios are utilized
in this work to investigate the effectiveness of the proposed math-
ematical formulations (Eqs. (23)–(31)). The reason for choosing
these scenarios is because they show that optimizing DR-DEED
jointly instead of independently and enables optimal results at
both the supply side and at the demand side instead of considering
both independently. The two scenarios also show that integration
of both DEED and DR can be applied to either a micro grid or a
conventional grid. The first scenario consists of six generator units
and five aggregated customers. The maximum load is 1263 MW
with a single load peak synonymous with industrial customers.
The second scenario is a larger power system with greater demand,
greater utility budget, more number of generators and customers.
Scenario 2 consists of ten generator units and seven aggregated
customers. The maximum load is 2220 MW with two peaks synon-
ymous with residential customers. In both scenarios, it is assumed
that the utility gives equal preference to each of the three
objectives. Using a weighted sum approach we convert the three
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Fig. 12. Generation output of unit 6 (Scenario 1).

Table 3
Final results from the combined DR-DEED program (Scenario 1).

Total power saved (MW) Total incentive received ($)

Customer 1 195.18 5775.42
Customer 2 276.01 7791.49
Customer 3 405.23 10774.40
Customer 4 495.07 11995.48
Customer 5 581.53 13663.22
Utility 1953.02 50000.00

Bold text shows the total power saved and total incentive paid to customers by the
utility.
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Fig. 13. Total load profile before and after demand response (Scenario 2).
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objectives to a single objective and give equal weights to the three
objectives, thus w1 ¼ w2 ¼ w3 ¼ 1

3.

5.2. Scenario 1 (six generator units and five customers)

The fuel cost coefficients and the emission cost coefficients are
obtained from [30] and shown in Table A1 in the appendix. Fig. 1
presents the total initial hourly demand, with one mid-day peak
which is consistent with industrial customers, Fig. 2 gives the
hourly values of power interruptibility (kj;t) obtained from the
PJM Market on the 30th of April 2014 and Table 1 gives the cost
function coefficients, customer type and daily customer power
limit. It is further assumed that the utility has a daily budget of
$50000. The transmission loss formula coefficients for the six unit
test system are given by Eq. (34).

B¼10�4�

0:420 0:051 0:045 0:057 0:078 0:066
0:051 0:180 0:039 0:048 0:045 0:060
0:045 0:039 0:195 0:051 0:072 0:057
0:057 0:048 0:051 0:213 0:090 0:075
0:078 0:045 0:072 0:090 0:207 0:096
0:066 0:060 0:057 0:075 0:096 0:255

2
666666664

3
777777775

per MW

ð34Þ
5.3. Scenario 2 (ten generator units and seven customers)

The fuel cost coefficients and the emission cost coefficients are
obtained from [4] and shown in Table A.2. Fig. 3 presents the total
initial hourly demand. Fig. 4 gives the hourly values of power inter-
ruptibility (kj;t) obtained from the PJM Market on the 1st of May
2014 and Table 2 gives the cost function coefficients, customer
type and daily customer power limit. It is further assumed that
the utility has a daily budget of $100000. The transmission loss for-
mula coefficients for the ten unit test system are given by Eq. (35).

B ¼ 10�5 �

4:9 1:4 1:5 1:5 1:6 1:7 1:7 1:8 1:9 2:0
1:4 4:5 1:6 1:6 1:7 1:5 1:5 1:6 1:8 1:8
1:5 1:6 3:9 1:0 1:2 1:2 1:4 1:4 1:6 1:6
1:5 1:6 1:0 4:0 1:4 1:0 1:1 1:2 1:4 1:5
1:6 1:7 1:2 1:4 3:5 1:1 1:3 1:3 1:5 1:6
1:7 1:5 1:2 1:0 1:1 3:6 1:3 1:2 1:4 1:5
1:7 1:5 1:4 1:1 1:3 1:2 3:8 1:6 1:6 1:8
1:8 1:6 1:4 1:2 1:3 1:2 1:6 4:0 1:5 1:6
1:9 1:8 1:6 1:4 1:5 1:4 1:6 1:5 4:2 1:9
2:0 1:8 1:6 1:5 1:6 1:5 1:8 1:6 1:9 4:4

2
6666666666666666664

3
7777777777777777775

per MW

ð35Þ
5.4. Solution methodology and results

The optimization model is built and solved using the CONOPT
solver in the Advanced Interactive Multidimensional Modelling
System (AIMMS) [38] on a computer with an Intel (R) Core™ pro-
cessor and 4 GB of RAM. All scenarios are solved in less than 1 s.
AIMMS is an Algebraic Modelling language (AML) used for solving
optimization and scheduling type mathematical problems. A major
advantage of using AIMMS is the similarity of the software’s syntax
to the mathematical representation of optimization problems. The
software supports the solution of a large number of optimization
problem types and allows for an easy reproduction of their results.
For Scenario 1, Fig. 5 shows the total load demand profile before
and after demand response, Fig. 6 shows the optimal power cur-
tailed and optimal determined incentive for all the five customers.
Figs. 7–12 show the optimal power generated for all generators
under normal DEED and after the DR program schedule has been
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Fig. 14. Optimal power curtailed and optimal incentive for all customers (Scenario 2).

Table 4
Final results from the combined DR-DEED program (Scenario 2).

Total power saved (MW) Total incentive received ($)

Customer 1 180.00 5849.30
Customer 2 230.00 6901.25
Customer 3 310.00 8992.28
Customer 4 390.00 10762.01
Customer 5 440.00 11338.26
Customer 6 530.00 18720.82
Customer 7 590.57 23448.62
Utility 2670.57 86012.54

Bold text shows the total power saved and total incentive paid to customers by the
utility.

Table 5
Various weighting factor values.

w1 w2 w3

Base Case (BC) 1
3

1
3

1
3

Case 2 (C2) 1 0 0
Case 3 (C3) 0 1 0
Case 4 (C4) 0 0 1

Table 6
Optimal DR-DEED results with various weighting factor values (Test System 1).

Cost (DR-DEED) ($) Emissions (DR-DEED) (lb)

BC 291898.16 24474.04
C2 288430.67 31426.55
C3 299397.36 21106.33
C4 300815.08 21473.48

Bold text shows the base case (BC) when equal preference is given to the three objectiv

Table 7
Optimal DR-DEED results with various weighting factor values (Test System 2).

Cost (DR-DEED) ($) Emissions (DR-DEED) (lb)

BC 989439.22 192743.96
C2 968899.75 356332.96
C3 994464.46 183068.82
C4 1006653.84 210026.09

Bold text shows the base case (BC) when equal preference is given to the three objectiv
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implemented. Table 3 presents the final parameters from the com-
bined DR-DEED program for the case of Scenario 1.

For Scenario 2, Fig. 13 shows the total load demand profile
before and after demand response, Fig. 14 shows the optimal
power curtailed and optimal determined incentive for all the seven
customers. Table 4 presents the final parameters from the
combined DR-DEED program for Scenario 2.

5.5. Discussion of results

Considering Scenario 1, from Fig. 5 it is observed that the com-
bined DR-DEED model brings about a reduction in the load profile.
As shown in Fig. 6, each customer contributes to the eventual
power reduction shown in Fig. 5. Another observation as shown
in Fig. 6 is that the incentive received by customers increases as
the customer willingness increases. Thus the most willing
customer (with CMj of 700 MW and hj of 1) has a higher incentive
than the least willing customer (with CMj of 200 MW and hj of 0).
Figs. 7–12 simply show that the generators actually reduce power
Power generated (DR-DEED) (MW) Loss (DR-DEED) (MW)

24266.59 265.61
24205.79 308.20
24176.39 231.01
24291.10 234.85

es.

Power generated (DR-DEED) (MW) Loss (DR-DEED) (MW)

38574.55 1137.11
38682.66 1254.66
38548.88 1120.88
39125.16 1190.38

es.



Table 8
Optimal DEED results with various weighting factor values (Test System 1).

Cost (DEED) ($) Emissions (DEED) (lb) Power generated (DEED) (MW) Loss (DEED) (MW)

w = 0 322786.57 25639.31 26233.14 279.14
w = 0.5 317046.37 28029.95 26262.74 308.74
w = 1 315021.43 35096.95 26308.30 354.30

Bold text shows the base case (BC) when equal preference is given to the three objectives.

Table 9
Optimal DEED results with various weighting factor values (Test System 2).

Cost (DEED) ($) Emissions (DEED) (lb) Power generated (DEED) (MW) Loss (DEED) (MW)

w = 0 1057670.13 248103.17 41438.53 1330.53
w = 0.5 1052722.84 249936.27 41440.51 1332.51
w = 1 1035411.67 380595.81 41540.71 1432.71

Bold text shows the base case (BC) when equal preference is given to the three objectives.

Table A.1
Data of the six-unit system.

i ai ($/h) bi ($/MW h) ci ($/MW2 h) ei (lb/h) fi (lb/MW h) gi (lb/MW2 h) Pi,min (MW) Pi,max (MW) DRi (MW/h) URi (MW/h)

1 240 7 0.007 13.8593 0.32767 0.00419 100 500 120 80
2 200 10 0.0095 13.8593 0.32767 0.00419 50 200 90 50
3 220 8.5 0.009 40.2669 �0.54551 0.00683 80 300 100 65
4 200 11 0.009 40.2669 �0.54551 0.00683 50 150 90 50
5 220 10.5 0.008 42.8955 �0.51116 0.00461 50 200 90 50
6 190 12 0.0075 42.8955 �0.51116 0.00461 50 120 90 50

Table A.2
Data of the ten-unit system.

i ai ($/h) bi ($/MW h) ci ($/MW2 h) ei (lb/h) f i (lb/MW h) gi (lb/MW2 h) Pi;min (MW) Pi;max (MW) DRi (MW/h) URi (MW/h)

1 958.2 21.6 0.00043 360.0012 �3.9864 0.04702 150 470 80 80
2 1313.6 21.05 0.00063 350.0056 �3.9524 0.04652 135 460 80 80
3 604.97 20.81 0.00039 330.0056 �3.9023 0.04652 73 340 80 80
4 471.6 23.9 0.0007 330.0056 �3.9023 0.04652 60 300 50 50
5 480.29 21.62 0.00079 13.8593 0.3277 0.0042 73 243 50 50
6 601.75 17.87 0.00056 13.8593 0.3277 0.0042 57 160 50 50
7 502.7 16.51 0.00211 40.2669 �0.5455 0.0068 20 130 30 30
8 639.4 23.23 0.0048 40.2669 �0.5455 0.0068 47 120 30 30
9 455.6 19.58 0.10908 42.8955 �0.5112 0.0046 20 80 30 30

10 692.4 22.54 0.00951 42.8955 �0.5112 0.0046 55 55 30 30
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output in light of the demand reduction by willing customers. This
shows that demand response programs especially in the form of
incentive payments are useful in altering customer load patterns
and total system demand. This reduction of the customers’ load
patterns in turn reduces the probability of events like blackouts
and brown outs thus improving the reliability or security of the
power system. Table 3 details the total power saved and total
incentive received by each customer over a 24 h period. As can
be seen from Table 3, the higher the customer willingness, the
greater the power curtailed and incentive received.

Obtained results from Scenario 2 which consists of more gener-
ators and customers than Scenario 1, corroborate the conclusions
drawn from Scenario 1. The combined DR-DEED formulation
reduces total demand over a 24 h period by 2670.57 MW (see
Figs. 13 and 14) and an inspection of the incentive received by each
customer (see Fig. 14 and Table 4) shows that the customers are
compensated commensurate with the level of load they are
actually willing to curb (i.e. customer willingness). Furthermore,
there is also a reduction in power generated by the generators
due to the curtailed customer demand. The optimal customer
power curtailed (xj,t), optimal incentive paid to customers (yj,t)
and power generated from all generators (Pi,t) (the three variables
obtained by the mathematical model) for both Scenario 1 and
Scenario 2 are given in the appendix. (Tables A.3–A.8).
In the simulations done, it is assumed that the utility gives
equal preference to the three objectives and gives equal weights
to the three objectives, thus w1 ¼ w2 ¼ w3 ¼ 1

3. It is important in
multi-objective optimization problems with conflicting and com-
peting objectives, to show how giving increased preference to
one objective at the expense of the other influences the obtained
results. We therefore present an analysis of optimization results
using the base case when the utility gives equal preference to each
objective (w1 ¼ w2 ¼ w3 ¼ 1

3), when the utility chooses to minimize
cost alone (w1 = 1, w2 = w3 = 0), when the utility chooses to maxi-
mize emissions alone (w2 = 1, w1 = w3 = 0) and when the utility
chooses to maximize its DR benefit alone (w3 = 1, w1 = w2 = 0).
The four parameters evaluated are the total generator costs ($),
total emissions (lb), total generator power (MW) and total power
losses (MW). Table 5 gives the various weight cases and Tables 6
and 7 give the various results for Scenario 1 and 2 respectively.
They show that the best results are obtained when DR and DEED
are considered jointly. Considering DR alone i.e. maximizing only
the utility benefit (C4), produces suboptimal results. C2 always
gives the lowest cost, but gives the highest emissions and the
highest losses. C3 gives the lowest emissions but does not give
the lowest cost. Depending on the most pressing objective of the
utility, the model can be adjusted accordingly. However analyses
of the results show that the results are best with cases BC and C3.



Table A.3
Optimal customer power curtailed (xj;t) (Scenario 1).

t j

1 2 3 4 5

xj;t (MW)
1 3.64 5.61 9.10 11.76 14.67
2 3.93 5.99 9.58 12.36 15.25
3 3.74 5.73 9.24 11.97 14.80
4 3.72 5.38 9.20 11.99 14.75
5 4.29 5.90 10.18 13.14 15.96
6 5.02 7.01 11.46 14.57 17.55
7 13.49 18.00 26.27 31.27 35.98
8 12.43 17.41 24.47 29.12 33.67
9 17.31 23.97 33.02 38.76 44.25

10 11.36 16.00 22.55 27.10 31.22
11 12.22 17.11 23.95 28.80 32.87
12 10.25 14.51 20.46 25.05 28.51
13 7.14 10.32 15.09 18.80 21.86
14 10.27 14.52 20.54 25.01 28.65
15 7.30 10.52 15.42 19.04 22.37
16 7.40 10.66 15.66 19.19 22.75
17 10.40 14.44 20.95 25.12 29.36
18 10.15 13.29 20.14 22.98 28.26
19 8.52 12.08 17.59 21.18 25.11
20 8.71 12.39 17.98 21.45 25.60
21 7.18 10.40 15.23 18.94 22.18
22 7.92 11.43 16.44 20.59 23.66
23 4.73 7.11 10.91 14.12 16.82
24 4.07 6.21 9.78 12.75 15.44

Table A.4
Optimal customer incentive (yj;t) (Scenario 1).

t j

1 2 3 4 5

yj;t ($)
1 66.77 97.38 142.73 163.93 189.25
2 74.23 107.15 155.22 178.97 204.42
3 69.36 100.37 146.19 169.21 192.72
4 68.97 91.72 145.25 169.64 191.29
5 83.85 104.57 171.44 199.84 224.04
6 104.85 135.13 208.72 240.43 270.90
7 493.22 619.34 898.62 992.56 1138.20
8 430.06 584.81 789.42 867.07 996.98
9 755.00 1022.53 1369.56 1495.06 1721.79

10 370.73 506.67 680.55 757.22 857.15
11 417.86 568.09 758.94 849.43 950.14
12 313.12 429.42 571.70 653.06 714.90
13 177.38 246.00 334.09 383.01 420.35
14 314.36 430.13 575.72 651.20 721.88
15 183.30 253.79 346.86 391.88 439.96
16 187.43 259.17 356.34 397.59 455.04
17 320.93 426.30 596.22 656.51 757.93
18 308.29 371.06 555.80 555.61 702.35
19 233.26 317.23 436.70 477.43 554.32
20 241.40 330.81 454.14 488.53 576.21
21 178.82 249.18 339.32 388.05 432.79
22 207.89 289.72 387.94 452.73 492.38
23 96.45 138.15 192.33 227.32 248.68
24 77.88 112.79 160.60 189.18 209.53

Table A.5
Optimal power generated by generators (Pi;t) (Scenario 1).

t i

1 2 3 4 5 6

Pi;t (MW)
1 282.56 121.40 179.94 100.98 145.23 89.29
2 279.47 118.87 177.75 98.79 142.48 86.43
3 278.38 117.98 176.99 98.02 141.52 85.43
4 277.46 117.22 176.34 97.37 140.70 84.58
5 277.58 117.32 176.42 97.45 140.80 84.68
6 282.00 120.93 179.54 100.58 144.72 88.76
7 273.23 113.77 173.35 94.38 136.95 80.67
8 281.69 120.68 179.33 100.36 144.45 88.49
9 294.38 131.06 188.30 109.33 155.72 100.21

10 309.17 143.14 198.75 119.79 168.84 113.88
11 318.67 150.91 205.47 126.50 177.27 120.00
12 331.14 161.10 214.28 135.31 188.33 120.00
13 326.31 157.15 210.86 131.90 184.04 120.00
14 335.06 164.30 217.05 138.09 191.81 120.00
15 344.10 171.70 223.44 144.48 199.84 120.00
16 340.62 168.85 220.98 142.01 196.74 120.00
17 327.29 157.95 211.56 132.59 184.91 120.00
18 323.92 155.20 209.18 130.21 181.93 120.00
19 315.81 148.57 203.44 124.48 174.73 120.00
20 301.91 137.20 193.61 114.65 162.39 107.16
21 290.42 127.81 185.49 106.53 152.19 96.55
22 281.30 120.36 179.05 100.09 144.11 88.13
23 284.80 123.23 181.53 102.56 147.21 91.36
24 282.88 121.65 180.16 101.20 145.50 89.58

Table A.6
Optimal customer power curtailed (xj;t) (Scenario 2).

t j

1 2 3 4 5 6 7

xj;t (MW)
1 1.50 1.50 2.17 3.78 5.57 13.73 17.27
2 1.50 1.50 1.50 2.75 4.52 13.06 16.71
3 1.50 1.56 2.47 4.18 5.96 13.98 17.62
4 2.28 2.87 4.39 6.40 8.31 15.48 18.95
5 2.88 3.83 5.45 7.68 9.62 16.31 19.73
6 5.24 7.04 9.49 12.47 14.54 19.46 22.49
7 6.71 8.49 11.60 14.88 17.09 21.08 23.80
8 7.17 9.18 12.51 15.94 18.21 21.79 24.37
9 8.47 10.92 14.80 18.62 20.99 23.57 25.91

10 10.93 14.31 18.69 23.31 25.69 26.57 28.57
11 12.08 15.76 20.84 25.80 28.28 28.22 29.93
12 11.07 14.44 19.22 23.88 26.39 27.01 28.99
13 9.97 12.85 17.21 21.49 23.89 25.42 27.57
14 9.29 12.17 15.91 20.07 22.27 24.38 26.78
15 7.61 9.64 13.20 16.75 18.99 22.29 24.73
16 7.07 8.96 12.37 15.76 17.99 21.65 24.09
17 6.71 8.65 11.99 15.30 17.51 21.35 23.78
18 8.42 10.51 14.43 18.20 20.51 23.26 25.50
19 8.09 10.34 14.18 17.90 20.22 23.08 25.40
20 11.74 15.19 20.55 25.38 28.05 28.07 29.76
21 27.22 34.54 45.11 50.00 50.00 47.12 46.04
22 7.95 10.04 13.62 17.22 19.52 22.63 25.04
23 3.12 4.03 5.75 7.98 9.92 16.51 19.80
24 1.50 1.69 2.56 4.24 5.95 13.97 17.75
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To provide a comparison of the DR-DEED with normal DEED
we vary the weights for DEED with both the six bus and ten
bus systems (Scenario 1 and 2 respectively). Tables 8 and 9 give
the total generator costs ($), total emissions (lb), total generator
power (MW) and total power losses (MW) for DEED in both
example scenarios. It is observed that as w increases, the costs
decreases and the emission and losses increases. This means that
as the weighting factor is increased (the importance of minimiz-
ing emissions is decreased, while the importance of minimizing
costs increases), emissions and losses actually increase and costs
decrease. This is expected and consistent with results obtained
from the literature [2,4,16,30]. To see the benefits of DR-DEED
over conventional DEED we compare Table 6 (DR-DEED) and
Table 8 (normal DEED) for Scenario 1 and Table 7 (DR-DEED)
and Table 9 (normal DEED) for Scenario 2. When the objective
is to solely minimize cost (C2 in Table 6 and w = 1 in Table 8),
DR-DEED gives lower cost, emissions, losses and generated
power. When the objective is to solely minimize emissions (C3
in Table 7 and w = 0 in Table 9), again DR-DEED give lower costs,
emissions, losses and generated power. It can be rightly
concluded, that integrating both DR and DEED formulations



Table A.7
Optimal customer incentive (yj;t) (Scenario 2).

t j

1 2 3 4 5 6 7

yj;t ($)
1 21.62 18.10 23.30 40.42 55.41 285.29 454.27
2 21.62 18.10 14.99 26.86 40.81 259.35 425.32
3 21.62 19.00 27.21 46.21 61.27 295.16 472.92
4 36.09 40.13 57.57 83.66 102.73 359.00 547.06
5 48.88 58.43 77.66 109.56 129.86 396.98 592.75
6 111.57 138.68 176.58 232.12 259.41 557.81 770.40
7 161.10 184.38 242.20 309.93 342.92 651.42 862.98
8 178.27 207.84 273.79 347.38 383.38 695.02 904.22
9 231.19 273.69 360.14 451.39 493.33 809.33 1022.21

10 348.09 425.15 533.69 664.71 710.20 1022.34 1242.93
11 409.99 500.05 643.01 794.31 846.14 1150.16 1364.10
12 354.95 431.90 559.84 693.52 745.32 1055.71 1280.48
13 299.89 355.93 463.54 577.08 622.43 937.72 1157.52
14 267.63 325.70 406.25 512.89 548.39 864.74 1092.48
15 195.45 224.39 298.55 377.24 413.00 726.37 931.21
16 174.58 200.23 268.74 340.85 375.22 686.30 883.64
17 161.08 189.48 255.49 324.57 358.01 667.79 861.27
18 228.89 257.50 345.74 433.97 473.30 788.89 990.38
19 215.09 250.88 335.72 422.07 461.44 776.72 982.72
20 391.43 469.64 627.97 771.50 833.36 1138.29 1348.83
21 1685.36 1989.37 2573.84 2643.25 2450.73 3147.16 3229.11
22 209.08 239.30 314.07 395.41 433.74 748.06 955.03
23 54.23 62.58 83.91 115.92 136.68 406.20 596.89
24 21.62 20.78 28.48 47.19 61.18 295.01 479.98
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together with their interdependent constraints gave better results
than considering either DR or DEED independently.
6. Conclusion

This paper presents a modification of the DEED formulation
with a game theory based DR program. The three objectives in
the optimization problem are to minimize the fuel and emissions
costs and maximize the utility DR benefit subject to the conven-
Table A.8
Optimal power generated by generators (Pi;t) (Scenario 2).

t i

1 2 3 4 5

Pi,t (MW)
1 150.00 135.00 73.00 60.00 165.66
2 150.00 135.00 76.17 60.00 211.46
3 150.00 135.00 119.16 85.66 243.00
4 155.62 162.08 164.93 131.13 243.00
5 171.55 178.11 181.05 147.14 243.00
6 200.80 207.55 210.64 176.54 243.00
7 216.29 223.14 226.30 192.10 243.00
8 234.44 241.40 244.66 210.33 243.00
9 270.10 277.29 280.73 246.17 243.00

10 303.12 310.52 314.13 279.35 243.00
11 319.59 327.10 330.79 295.90 243.00
12 358.70 366.46 340.00 300.00 243.00
13 305.72 313.14 316.77 281.97 243.00
14 268.07 275.25 278.68 244.13 243.00
15 234.12 241.08 244.34 207.01 243.00
16 178.39 184.99 187.96 157.01 243.00
17 162.11 168.61 171.50 137.65 243.00
18 193.61 200.32 203.36 169.31 243.00
19 230.27 237.21 240.45 212.13 243.00
20 305.30 312.46 315.88 262.13 243.00
21 225.30 232.46 235.88 212.13 243.00
22 197.21 203.94 207.00 162.13 243.00
23 150.00 136.54 139.26 112.13 243.00
24 150.00 135.00 88.67 62.13 243.00
tional DEED constraints and some extra constraints. The model
determines the optimal generator output from the available
generators and the game theory demand response program helps
the utility determine the optimal customer load to curtail and
the optimal incentive to be paid to customers who agree to curtail
their load. The game theory model used in developing the DR
model also included extra practical constraints like maximum
power targets and total budget. Furthermore the individual
rationality constraint and the incentive compatibility constraint were
modified and optimized over a day instead of just an hour. From
obtained results, it can be observed that the DR-DEED program
helps to reduce total demand over a 24 h period by 1953.02 MW
in the first scenario and reduces the total demand by
2670.57 MW in the second scenario. Results obtained from the
model also show that willing customers can provide a cost efficient
way to reduce demand in the power system. The mathematical
framework proposed in this work assumes that the utility knows
the customers cost function coefficients and that the customers
follow the optimal schedule obtained by the model. This
sometimes does not always happen. Thus, future work is on-going
on how to incorporate a feedback scheme that would be robust
against uncertainties and disturbances. Another promising
research direction would be to incorporate a penalty function for
customers who refuse to curtail the requested amount of power.
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Appendix A

See Tables A.1–A.8.
6 7 8 9 10

160.00 130.00 60.00 20.00 55.00
160.00 130.00 90.00 21.92 55.00
160.00 130.00 120.00 39.66 55.00
160.00 130.00 120.00 58.55 55.00
160.00 130.00 120.00 65.20 55.00
160.00 130.00 120.00 77.41 55.00
160.00 130.00 120.00 80.00 55.00
160.00 130.00 120.00 80.00 55.00
160.00 130.00 120.00 80.00 55.00
160.00 130.00 120.00 80.00 55.00
160.00 130.00 120.00 80.00 55.00
160.00 130.00 120.00 80.00 55.00
160.00 130.00 120.00 80.00 55.00
160.00 130.00 120.00 80.00 55.00
160.00 130.00 120.00 80.00 55.00
160.00 130.00 120.00 68.05 55.00
160.00 130.00 120.00 61.26 55.00
160.00 130.00 120.00 74.41 55.00
160.00 130.00 120.00 80.00 55.00
160.00 130.00 120.00 80.00 55.00
160.00 130.00 120.00 59.34 55.00
160.00 130.00 120.00 75.91 55.00
160.00 130.00 120.00 47.96 55.00
160.00 130.00 109.28 27.08 55.00
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