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a b s t r a c t

This paper presents an optimal energy management model of a solar photovoltaic-diesel-battery hybrid
power supply system for off-grid applications. The aim is to meet the load demand completely while sat-
isfying the system constraints. The proposed model minimizes fuel and battery wear costs and finds the
optimal power flow, taking into account photovoltaic power availability, battery bank state of charge and
load power demand. The optimal solutions are compared for cases when the objectives are weighted
equally and when a larger weight is assigned to battery wear. A considerable increase in system opera-
tional cost is observed in the latter case owing to the increased usage of the diesel generator. The results
are important for decision makers, as they depict the optimal decisions considered in the presence of
trade-offs between conflicting objectives.

! 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A hybrid renewable energy (RE) system comprising solar photo-
voltaic (PV) generators, diesel generators (DGs) and battery storage
in a hybrid system can solve single source power supply problems.
RE systems incorporating DGs and batteries have been studied by
various authors, such as Muselli et al. [1], Dufo-Lopez and Ber-
nal-Augustin [2], Jenkins et al. [3], Adaramola et al. [4], but battery
wear has not been evaluated in the analyses. The lifetime charac-
teristics of battery energy storage systems have therefore not been
fully considered in many RE based hybrid energy management
optimization studies. The variable nature of RE sources means that
the battery banks in PV applications experience a wide range of
operational conditions, including varying rates of charge and dis-
charge, depth of discharge (DoD), temperature fluctuations and
charging strategies [5,6]. These operating conditions vary signifi-
cantly in different locations and applications. Battery lifetime is
thus determined by operating conditions, which are a function of
the system sizing and the dispatch strategy. In most RE based
hybrid systems, battery banks constitute a major part of the invest-
ment costs and are often the most expensive component when
considering the lifetime costs, as their lifetime is considerably

shorter than that of any of the other hybrid components [7]. Talaq
and EI-Hawary [5] investigate the performance and expected life-
times of different sized batteries, using a previously developed lead
acid battery model. The results, based on the lifetime algorithm
assumptions used, show that the lifetime of a battery should
increase linearly with battery size. Kaiser [8] developed a battery
management system that considers the various characteristics of
the individual battery strings and decides how the strings are trea-
ted considering the load profile. A grid-tied microgeneration and
storage model has been developed for quantifying the performance
of energy storage options and the challenges of relying on micro-
generation for autonomy are highlighted [9]. Riffonneau et al.
[10] also propose a grid-tied system with a peak shaving service
as a way of increasing the penetration of PV production in the grid
and consider battery ageing, but the PV generation is not opti-
mized. An optimal hybrid scheme of a micro-grid with combined
heat and power that consists of a gas-engine, wind generator,
and PV generator, with the objective of minimizing fuel consump-
tion, is proposed by Hernandez-Aramburo et al. [11]. The bone of
contention is that in most optimisation work battery wear cost is
neglected, yet battery lifetime in RE based applications poses great
uncertainty for investors owing to the replacement cost during the
hybrid system’s lifetime.

This paper minimizes the operational cost of a PV-diesel-bat-
tery (PDB) hybrid system in which lead-acid batteries are used.
The main contribution is the consideration of battery wear cost,
as battery wear has a great impact on battery life and this has
not been considered in the optimization of RE based distributed
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hybrid systems. The model considers hourly fuel and battery wear
costs as components of the hybrid system operational cost. The
results show the effect of the weighting factors on the system’s
operational cost and on the state of charge (SOC) of the battery.
The effect of restricting the allowable depth of discharge (DoD) is
also revealed, as this has a great impact on battery life. The results
of this work enable consumers and practitioners to obtain an idea
of the system operations and also to appreciate the need for opti-
mal control of the system. Application of multi-objective optimiza-
tion means that optimal decisions can be achieved in the presence
of trade-offs between conflicting objectives. Designers typically
arbitrarily assign weight factors either uniformly or based on the
significance of the objectives [12,13]. Varying weights and solving
each multi-objective problem for its optimum result in various
optimal solutions, depending on the weighting factors [14,15].
These solutions are important for designers, performance analyz-
ers, control agents and decision makers who are faced with multi-
ple objectives to make appropriate trade-offs, compromises or
choices. Typically, there is an entire curve or surface of points,
whose shape depicts the nature of the trade-off between different
objectives. In this research, weights could be determined taking
into account factors such as energy prices, and environmental con-
cerns. However, in the absence of adequate data concerning such
factors, cases with different weights are proposed to determine
the overall tendency by considering fuel and battery wear cost
while maximizing PV output. It would therefore be convenient to
select appropriate weights if corresponding data are available. It
is important to note that weight scheduling is still an open ques-
tion in optimization.

The purpose of the PDB hybrid power system is to supply power
to consumers reliably and economically, taking into account fuel
and battery wear costs. This work is a follow-up of our previous
work that considered only fuel costs, in Tazvinga et al. [22], and
also modeling of uncertainties, in Zhu et al. [30]. Modeling of
uncertainties is however not included in this paper. This paper is
organized as follows: Section 2 describes the problem formulation,
Section 3 is the case study and Section 4 covers the results and dis-
cussion; the last part is the conclusion.

2. Problem formulation

The PDB system is made up of the PV, DG and battery sub-sys-
tems and the configuration is as shown in Fig. 1. The DG supplies
the load when the PV output, Ppv , the battery output or a combina-
tion of the two cannot meet the load. The control variables P1 and
P2 represent the energy flows from the DG and from the PV gener-
ator and battery to the load respectively, while P3 represents the
power flow to and from the battery. Priority is given to the PV gen-
erator to supply the load. If the PV output is more than the load,
charging power is supplied to the battery. When the PV output is
low, the battery supplies power to the load to make up for the
imbalance, provided it is within its operating limits. The DG comes

on when the PV and/or battery cannot meet the load. The model is
thus able to show the performance of the system in terms of bat-
tery dynamics and power flow from each sub-system at any given
time interval. The sub-models in the following sub-sections are as
described in our previous work [22,24].

2.1. Photovoltaic system model

The hourly power output from the PV generator of a given area
is written as:

Ppv ¼ gpvAcIpv : ð1Þ

In Eq. (1), gpv is the efficiency of the PV generator, which can be
expressed as a function of the hourly solar irradiation incident on
the PV array, Ipv (kW h/m2), and the ambient temperature, TA, as
well as the test parameters of the PV generator at standard and
nominal cell operating temperature (NT) conditions. Ac is the PV
array area and Ppv is the hourly power output from a PV generator
of a given array area. The efficiency of the PV generator is given by
[26]:

gpv ¼ gR 1$ 0:9b
Ipv

Ipv;NT

! "
ðTc;NT $ TA;NTÞ $ bðTA $ TRÞ

# $
; ð2Þ

where gR is the PV generator efficiency measured at reference cell
temperature TR, i.e., under standard test conditions (25 "C). b is
the temperature coefficient for cell efficiency (typically 0.004–
0.005 "C); Ipv;NT is the average hourly solar irradiation incident on
the array at NT (0.8 kW h/m2); TC;NT (typically 45 "C) and TA;NT

(20 "C) are, respectively, the cell and ambient temperatures at NT
test conditions. The hourly solar irradiation incident on the PV array
is a function of time of day, expressed by the hour angle, the day of
the year, the tilt and azimuth of the PV array, the location of the PV
array site as expressed by the latitude, as well as the hourly global
solar irradiation and its diffuse fraction [17–19]. The actual expres-
sion relies on the sky model, which is a mathematical representa-
tion of the distribution of diffuse radiation over the sky dome
presented in Duffie and Beckman [17]. In the study, the simplified
isotropic diffuse formula suggested in Collares-Pereira and Rabl
[18] is used. The hourly solar irradiation incident on the PV array
is given by:

Nomenclature

P1ðkÞ control variable representing energy flow from the die-
sel generator to the load at the kth hour [kW]

P2ðkÞ control variable representing energy flow from the PV
array and battery at the kth hour [kW]

P3ðkÞ control variable representing energy flow to and from
the battery at the kth hour [kW]

PLðkÞ control variable representing the load at the kth hour
[kW]

Ac the PV array area [m2]

PpvðkÞ the hourly energy output from a PV generator of a given
array area at the kth hour [kW h/m2]

gpv the PV generator efficiency
E the battery capacity
gB the battery round trip efficiency
SOCðkÞ the current state of charge of the battery bank

Fig. 1. PDB configuration.
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Ipv ¼ ðIB þ IDÞRB þ ID: ð3Þ

In (3), IB and ID are respectively the hourly global and diffuse irradi-
ation in kW h/m2. RB is a geometric factor representing the ratio of
beam irradiance incident on a tilted plane to that incident on a hor-
izontal plane. Monthly average hourly meteorological data, global
irradiation, diffuse irradiation and ambient temperature are used
as inputs in evaluating (1)–(3) of the performance simulation
model. The evaluation is performed at the mid-point of each hour
of the day, on the ‘‘average day’’ of each month as defined in Duffie
and Beckman [17]. For any energy supply system, the hourly aver-
age energy demand depends on the energy demand profile for the
particular application.

A study done at seven South African sites revealed that using
monthly average radiation values to model PV performance intro-
duced a mean error of 15.8% when compared to 5-min time step
values [31]. Hourly radiation data introduced a much smaller error
that can be neglected, justifying why a 1-h step is used in most
research works. This time step is used for many solar radiation data
sets and is considered adequate for modeling intermittent RE
sources with acceptable accuracy, as the underlying principle used
to model the system is the same when using a 1- or 5-min and
hourly data [32]. The time step used in this work is thus 1 h, as this
balances the trade-off among accuracy, computational time, load
data and the nature of available RE data for the location consid-
ered. Only hourly data are available for the Zimbabwean site under
investigation.

2.2. Battery bank model

The power output from the PV and the load demand at a given
hour determine the charge or discharge power into and out of the
battery bank. k is an integer representing the kth hour interval. The
SOC of the battery bank at the next time step, SOCðkþ 1Þ, depends
on the current SOC; SOCðkÞ. At any given hour the battery SOC will
be given by the expression:

SOCðkþ 1Þ ¼ SOCðkÞ $ aP3ðkÞ; ð4Þ

in which a ¼ gBDt=Emax and gB is the battery round trip efficiency,
while Dt is the time step. E is the capacity of the battery.

The following general expression applies to the battery
dynamics:

SOCðkÞ ¼ SOCð0Þ $ a
Xk

s¼1

P3ðsÞ; for 1 6 s 6 k; ð5Þ

where SOCð0Þ is the initial SOC of the battery.
P3ðsÞ is the charge or discharge rate of the battery at time k.
The available battery bank capacity must not be less than the

minimum allowable capacity SOCmin and must not be higher than
the maximum allowable capacity SOCmax [8]:

SOCmin 6 SOCðkÞ 6 SOCmax;

and

SOCmin ¼ ð1$ DoDÞSOCmax;

where DoD is the depth of discharge expressed as a percentage.

2.3. Battery lifetime modeling

Modeling of the lifetime characteristics of battery energy stor-
age systems is a vital aspect of hybrid power system simulation
that has not been fully considered in many RE based hybrid energy
management optimization studies [20]. The uncertainty associated
with the expected lifetime of the batteries used in RE based hybrid
energy systems makes the estimates of cost of energy of the

systems uncertain, as the life cycle cost of the batteries is one of
the significant hybrid system expenses.

The two common lead acid batteries lifetime models are the
post-processing models and the performance degradation models.
The former are pure lifetime models in that they do not include a
performance model and can be used to analyze measured data
from real systems. The latter integrates a performance model with
a lifetime model and the performance model is updated continu-
ously during the simulation so that the performance of the battery
can be analyzed depending on the utilization pattern of the battery
[21]. There are various methods for calculating the lifetime con-
sumption; these include the Ah-throughput and cycle counting
methods. In this work the Ah-throughput counting method is
employed to evaluate the lifetime consumption of the battery. This
method assumes that a fixed amount of energy can be cycled
through a battery before it requires replacement. The estimated
throughput, kL (the total throughput over a battery bank lifetime),
obtained mostly from the DoD vs. cycles to failure curve provided
by the manufacturer, is expressed as follows [21]:

kL ¼ DoDiCiE; ð6Þ

where E is the battery capacity, DoDi is the DoD being considered, Ci

represents the cycles to failure, and i represents each DoD and
cycles to failure as given by the manufacturer. Kaiser [8] notes that
the degradation of battery bank capacity depends most strongly on
the interrelationships of the following parameters: the charging/
discharging regime that the battery has experienced, the DoD of
the battery over its life, its exposure to prolonged periods of low
discharge and the average temperature of the battery over its life-
time. Battery wear is mainly determined by the cycles of the bat-
tery, that is, the battery completes a cycle when it is charged and
discharged once. In a solar based system, the batteries are charged
during the day and discharged at night and this cycle corresponds to
one day.

For optimal control formulation, the total throughput of the
battery bank over a daily time horizon, kD, is given by [29]:

kD ¼
1
2

X24

k¼1

jP3ðkÞj: ð7Þ

In order to understand any business model, the cost per cycle,
measured in $/kW h/Cycle, is important. This is obtained by con-
sidering the battery cost, which is the sum of the cost of batteries,
transportation and installation costs (multiplied by the number of
times the battery is replaced during the lifetime of the system). The
sum of these costs is divided by the net consumption of the system.
The battery bank operating cost over a given day is derived from
literature is modeled as [15,27]:

Bop ¼
kD

kL
Cb; ð8Þ

where Bop is the battery operational cost, and Cb is the cost of the
battery bank. The battery wear cost, Cbw, is expressed as [27]:

Cbw ¼
Cb

kL
: ð9Þ

The battery bank life, BL, is expressed as [9,27,28]:

BL ¼
kyr

kL
; ð10Þ

where kyr denotes the annual throughput of the battery bank.

2.4. Diesel generator model

DGs are incorporated in hybrid power supply systems as back-
ups. The DG energy dispatch strategy determines the switching on

106 H. Tazvinga et al. / Energy Conversion and Management 102 (2015) 104–110



or off conditions and in this paper, a load-following strategy is
employed in which the DG is switched on when the PV and/or
the battery is unable to meet the load. In this strategy, the DG is
dispatched only when required and this is economical in terms
of usage of DG energy and fuel cost. The DG produces only enough
power to meet the load demand and does not charge the battery.
The DG is more likely to operate at high load factors, resulting in
low specific fuel consumption and longer DG life [25]. In this work
a variable speed Rush generator type is employed in which an elec-
tronic control system is used to vary the output by sensing the load
and sending an electrical signal to the fuel injection system to
adjust the fuel supply and engine revolutions in response to the
load. The advantage of this type of generator is its ability to supply
the required power output at any given time [22,16]. The generator
is also constrained by its lower and upper operating limits.

3. Case study

The solar radiation data used in this study are calculated from
stochastically generated values of hourly global and diffuse irradi-
ation using the simplified tilted-plane model of Collares-Pereira
and Rabl [18]. This is calculated for a Zimbabwean site, Harare (lat-
itude 17.80 &S) and the PV data are derived from our previous work
[22]. A typical load demand profile for institutional applications
that is based on an energy demand survey carried out in rural com-
munities in Zimbabwe is used and the methodology for calculating
the load demand profile is as described in Tazvinga and Hove [23].
The load profile is as shown in Fig. 2.

The parameters used in this model are shown in Table 1. The
generator cost coefficients are specified by the manufacturer while
the DG, PV and battery bank capacities are chosen based on a sizing
model developed by Hove and Tazvinga [24]. The system is
designed such that demand is met at any given time. A small sys-
tem means demand will not always be met, while an oversized sys-
tem means the demand will be met but the system will be
unnecessarily costly and energy will be wasted. The sizing is
within ‘‘rule of thumb’’ provisions, for example the PV array area
for 1 kW p varies from 7 m2 to 20 m2 depending on cell material
used. The energy generated by the PV and the DG is consumed
by the load, and the PV and wind generators also charge the bat-
tery, depending on the instantaneous magnitude of the load and
SOC of the storage battery. The DG on or off times depend on the
DG energy dispatch strategy employed. In this work, the load-fol-
lowing strategy is employed whereby the DG switches on when
the hourly output of PV is lower than the hourly load and the com-
bined output of the battery and PV cannot meet the load.

3.1. Open loop optimal control model

In order to obtain an optimal operational scheme that balances
the objectives in (11), a weighting method is employed to integrate
the objectives into one. The sum of the weight coefficients w1; w2

and w3 is 1 and weight factors indicate the objectives’ significance.
Each set of weights should generate one optimal solution. Various
cases can be considered; however in this paper, two cases are elab-
orated, when the first two objectives are treated as equally impor-
tant and when more weight is given to the battery wear cost. This
problem is formulated as follows:

min
XN

k¼1

ðw1Cf ðaP2
1ðkÞ þ bP1ðkÞÞ þw2CbwjP3ðkÞj$w3PpvðkÞÞ ð11Þ

subject to the following constraints:

P1ðkÞ þ P2ðkÞ ¼ PLðkÞ; ð12Þ
P2ðkÞ þ P3ðkÞ 6 PpvðkÞ; ð13Þ

Pmin
i 6 PiðkÞ 6 Pmax

i ; ð14Þ

0 6 P1ðkÞ 6 DGrated; ð15Þ

Pmin
3 6 P3ðkÞ 6 Pmax

3 ; ð16Þ

SOCmin 6 SOCð0Þ $ a
Xk

s¼1

P3ðsÞ 6 SOCmax; ð17Þ

for all k ¼ 1; . . . ;N, where N is 24 and Cf is the fuel price. w1 $w3

are weight coefficients whose sum is 1. SOCð0Þ is the initial SOC
of the battery. Pmin

i and Pmax
i are the minimum and maximum limits

for each variable. The optimisation problem is solved in a MATLAB
environment using the ‘‘quadprog’’ function. This solves problems
in the form:

min
1
2

xT Hxþ f T x;

subject to:

Ax 6 b;
Aeqx ¼ beq;

lb 6 x 6 ub:

4. Results and discussion

Increasing the battery capacity reduces the DoD requirements,
thus extending the life cycle of the batteries and reducing interim
capital costs, but results in increased initial capital costs. Figs. 3
and 4 show the power flow in case 1: w1 ¼ 0:45, w2 ¼ 0:45, and
w3 ¼ 0:1 while in case 2: w1 ¼ 0, w2 ¼ 0:9 and w3 ¼ 0:1 respec-
tively, revealing the effect of different optimal solutions on the
operational cost. The power flows in Fig. 3 show that the DG
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Fig. 2. Typical demand profile.

Table 1
Parameters.

Battery capacity 40 kW h
Battery efficiency 85%
Battery allowable depth of discharge 50%
Battery purchase cost $65/kW h
Minimum state of charge 0:5
Maximum state of charge 1
Initial state of charge 0:6
PV array 47 m2

DG capacity 5 kV A
System voltage 24 V
a US$0.246/h
b US$0.1/kW h
Fuel cost US$1.2/l
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operates only during the early hours of the morning when the SOC
of the battery is at such a level that it cannot satisfy the load and
the PV is not yet producing any output. During daytime, as soon
as the PV can supply the load, the generator switches off com-
pletely. The PV system is able to satisfy the load and excess power
is used to charge the battery. The total combined power from the
PV system and from the battery bank is represented by Graph
P2. Graph P2 shows that when the PV system ceases to generate
power at the end of the daytime, the battery bank has been
charged enough to satisfy the load on its own initially before the
DG comes in to cover the imbalance as the battery gets depleted.
In Fig. 4 the situation is different, as the DG supplies more power
than in Fig. 3 in the early hours of the morning, and also continues
to supply reduced power throughout the remainder of the day. The
total power supplied to the load, PT, is represented by Graph PT to
show the system power balance. Graph PT in both figures shows
that the demand is always met completely at any given time, con-
firming the reliability of the hybrid system.

In Fig. 3, the objectives are treated as equally important, while
in Fig. 4 fuel cost is given less weight. When the two cases are com-
pared, there is a considerable increase of 43% in the annual opera-
tional cost in favor of the former case. The former case may be
considered a more economic dispatch strategy that minimizes

system operation costs. The latter case is an extreme case where
fuel cost is given less weight, and the cost increase is due to
increased usage of the DG, depicting the importance of balancing
and prioritizing the objectives. In the latter case, the DG supplies
the load continuously and this may be an unfavorable option for
any decision maker, as it results in high DG operation cost and
reduces the DG life. The system in this case limits the battery bank
usage, resulting in battery life being prolonged at the cost of fuel
and DG life. In such a case the DG supplies power during the early
morning hours to complement what is coming from the battery.
The optimization results thus provide a platform for designers, per-
formance analyzers, control agents and decision makers who are
faced with multiple objectives to make appropriate trade-offs,
compromises or choices. The results demonstrate that the pro-
posed model can be used to balance the system’s operational cost
effectively.

While Figs. 3 and 4 show the situation when the radiation out-
put is high, Figs. 5 and 6 show cases where the radiation level is
low in the two cases considered above. The major differences in
the power flows are the increased usage of the DG to cater for
the low power output from the PV system. In all cases shown in
the figures the power output from the PV system is maximized.
There is still a considerable increase in the operational cost for
the weight factors considered. The system’s operation costs are
also higher than in the case of high radiation owing to the
increased fuel cost.

The daily battery operational costs are shown in Fig. 7 for each
DoD, showing that the higher the DoD, the higher the battery oper-
ation cost. The relationship between battery operational cost and
battery wear cost is as given in (8) and (9). It is therefore revealed
that the operational cost increases owing to the increase in battery
wear as the allowable DoD increases. Fig. 7 shows the fraction of
the battery cost used in a 24-h interval. The results show that dur-
ing system design, it is important to restrict the allowable DoD, as
this can improve the cycle life of the battery bank. It is thus shown
that the more the battery works, the sooner it will fail, thus higher
capacity withdrawal would result in a reduction of battery life
cycle.

In Fig. 8 the SOCs of the battery bank are shown for the weight-
ing factors considered in this work. It can be seen that although in
all cases the battery bank operates within its limits, for case 1, SOC
1 and case 1, SOC 3, the battery bank is discharged more, while in
case 2, SOC 2, and case 2, SOC 4, the battery operates at higher
SOCs, as the system penalizes discharging. The less the battery is
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Fig. 3. Optimal power flow for high radiation case 1. Power: from PV = Ppv;
DG = P1; to/from battery = P3; to load = P2; load = PL; Power balance = PT.
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discharged, the less the cost per cycle, owing to the fact that if the
battery is operated at higher SOCs. The higher the SOC, the less the
daily battery throughput, thus the battery bank is preserved more
when discharging is penalized. In this work battery life increases,
for instance for the high radiation case, from 4.6 years in Case 1

to 9 years in Case 2. It is however important to note that Case 2
is not an ideal case, as it promotes more use of the DG. The results
for the cases considered are given to illustrate the effect of limiting
battery usage, for instance on fuel cost and on its life span. The
results of this work provide a platform for decision makers to make
informed decisions by considering various combinations of battery
and fuel costs.

5. Conclusion

An optimal model of a PDB hybrid energy management system
that minimizes both fuel costs and battery wear costs is presented.
Insights into the significance of weight factors are provided and
intuition suggests that when a larger weight is assigned to an
objective, the optimization result favors that objective. The effect
of DoD on battery wear cost has also been shown, confirming that
limiting the allowable DoD can prolong battery life in RE based
hybrid power supply systems. The optimal model results reveal
how the system power flows change in response to the chosen
combination of the components of the cost function. A practical
platform for decision making has been presented. Future work will
include a techno-economic analysis of the system, taking into
account various cost combinations. Reduced time steps will also
be the subject in our future work for locations that have suitable
data, as the current 1 h time step is somewhat coarse. Future work
will thus extend the proposed research into continuous cases.
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