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a  b  s  t  r  a  c  t

Measurement  and  Verification  (M&V)  is  often  required  for energy  efficiency  or demand  side  management
projects  in  buildings,  to demonstrate  that  savings  were  in  fact  achieved.  For  projects  where  sampling  has
to be  done,  these  costs  can be  the  most  significant  driver  of  the  overall  M&V  project  cost,  especially
in  multi-year  (longitudinal)  projects.  This  study  presents  a method  for calculating  efficient  combined
metering  and  survey  sample  designs  for  longitudinal  M&V  of  retrofit projects.  In this paper,  a  building
lighting  retrofit  case  study  is considered.  A  Dynamic  Linear  Model  (DLM)  with  Bayesian  forecasting  is
used.  The  Bayesian  component  of  the model  determines  the sample  size-weighted  uncertainty  bounds
on multi-year  metering  studies,  with  results  from  previous  years  incorporated  into  the  overall  calcu-
lation  to reduce  forecast  uncertainty.  The  DLM  is  compared  to previous  meter  sampling  methods,  and
an  investigation  into  the  robustness  of  efficient  sampling  plans  is  also  conducted.  The Mellin  Transform
Moment  Calculation  method  is  then  used  to  combine  the  DLM  with  a Dynamic  Generalised  Linear  Model
ersistence
etering

urvey
ampling

describing  the  uncertainty  in survey  results  for the longitudinal  monitoring  of lamp  population  decay.
A  genetic  algorithm  is  employed  to optimise  the  combined  sampling  design.  Besides  the  reliable  uncer-
tainty  quantification  features  of  the  method,  results  show  a reduction  in  sampling  costs  of  40%  for  simple
random  sampling,  and  approximately  26.6%  for stratified  sampling,  as  compared  to  realistic  benchmark

methods.

. Background

Energy Measurement and Verification (M&V) is the process by
hich energy savings from Energy Efficiency or Demand Side Man-

gement (EEDSM) projects (most often implemented for buildings)
re independently and reliably quantified [1]. For example, 500,000
ompact Fluorescent Lamps (CFLs) may  have replaced their incan-
escent counterparts in a countrywide residential mass roll-out
rogramme. For such a project to be eligible for tax rebates such
s the 12L incentive in South Africa [2] or the United Nations Clean
ramework Convention for Climate Change (UNFCCC) Develop-
ent Mechanism (CDM) programme [3], an M&V  team would be

sked to quantify the savings realised. The output of an M&V report
s an estimate of the energy savings achieved by the project. This
gure must usually be reported with regulator-specified degree of

tatistical precision, which in turn determines the level of mon-
toring required. The statistical precision is stated in terms of an
expanded uncertainty’, such as 90/10. This means that the 90% con-

∗ Corresponding author.
E-mail address: herman.carstens@up.ac.za (H. Carstens).
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378-7788/© 2017 Elsevier B.V. All rights reserved.
©  2017  Elsevier  B.V.  All  rights  reserved.

fidence bounds on the estimated savings should be within 10% of
the mean.

Because the energy saving of a project represents the absence
of energy use, it cannot be measured directly. Rather, energy mea-
surements are made or samples are taken during the pre- and
post-retrofit periods. An energy model is constructed (or ‘trained’)
using pre-retrofit data, and is then used to predict what the energy
use during the post-retrofit period would have been, had no inter-
vention taken place. The difference between these values and the
measured values is the energy saving.

There are three main uncertainty drivers in such an M&V  model
which need be accounted for to report savings with realistic statis-
tical precision. These are measurement, sampling, and modelling
uncertainty. Controlling these uncertainties can be expensive. In
longitudinal studies, metering and sampling uncertainties are the
main cost drivers. Many meters need to be installed, and multi-
ple inspectors need to visit geographically diverse sites to install
meters and inspect the number of surviving retrofit units. The M&V
cost due to minimising metering and sampling uncertainty may

even affect the retrofit project feasibility. For example, Michaelowa,
Hayashi, and Marr [4] document that no lighting retrofit projects
were undertaken under the stringent CDM AM0046 [5] require-

dx.doi.org/10.1016/j.enbuild.2017.08.080
http://www.sciencedirect.com/science/journal/03787788
http://www.elsevier.com/locate/enbuild
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ent. Only when the alternative AMS  II.C [6] and AMS  II.J [7]
ere adopted, did M&V  stringency requirements allow for project

easibility and significant uptake. The same effect is present in
ther M&V  projects. Therefore, a research gap exists for methods
hat can design statistically and financially efficient M&V  plans:
lans which achieve the same precision as other plans, but at a

ower cost in terms of units sampled and money spent [8]. Such
ethods would not only increase M&V  accuracy, but also project

rofitability. Bayesian methods have been recommended for such
ituations where finances and uncertainty interact [9]. Efficient
ethods should also consider measurement, sampling, and mod-

lling uncertainty simultaneously, and trade them off against each
nother. The need for efficient M&V  designs is especially acute
n multi-year (longitudinal) M&V  studies. Although they are also
ostly themselves, longitudinal studies have been found to reduce
he reported cost of savings by up to 70%, compared to single-year

&V  studies [10]. In such longitudinal studies, information from
revious years could be used to reduce current and future uncer-
ainties in the savings estimates or to reduce sample sizes. Although
his is a common problem, it does not have a straightforward solu-
ion for efficient sampling design. Research addressing these gaps
ill, therefore, enhance both the theory and practice of M&V.

As in the example above, this paper will focus on multi-year
amp retrofit projects in which incandescent lamps are replaced
y Compact Fluorescent Lamps (CFLs). Lamp retrofit projects are
opular in M&V  as case studies [1,11–13], since the operation of

amps is simple, they are mostly independent of covariates such
s outside air temperature, and they are well-studied; not many
echnologies have such readily available data on persistence as CFLs
o, for example. They, therefore, serve as a useful introduction to

 method, which can be extended later to include considerations
uch as covariates or other complicating factors.

Such longitudinal energy monitoring projects have two  compo-
ents or dimensions that need to be considered when calculating
otal energy use and uncertainty, and therefore when designing
uch studies. The first is population survival: establishing how
any of the originally installed (retrofitted) units are still effec-

ive at a given point in time. This entails survey sampling and has
een the focus of previous works [14–20]. The second factor is the
verage annual energy use per unit. For lighting studies, this can
e calculated with measured operational hours by lighting loggers
nd estimated power use of lamps. In M&V  jargon this is called
he ‘retrofit isolation with key parameter measurement’ approach
1]. Alternatively, meters may  be installed on a sample of the light-
ng circuits, which is called ‘retrofit isolation with all parameter

easurement’. Even though metering is cross-sectional (in the
patial dimension), there is still a longitudinal component in multi-
ear cross-sectional metering designs. Results up to the previous
ear’s sample should in some way inform the current parameter
nd uncertainty estimates. This calls for a regression model or a
ayesian approach, both of which will be adopted below.

Once such a model has been constructed, survey sampling
esults and uncertainties should be combined with metering results
nd uncertainties to calculate the overall energy use (and savings)
stimation, and overall reporting uncertainty. This will result in

 more realistic uncertainty value being used for efficient study
esign. The American Society of Heating, Refrigeration, and Air-
onditioning Engineers (ASHRAE’s) Guideline 14 on Measurement
f Energy, Demand, and Water Savings [21] (henceforth referred
o as G14) does provide a method for combining the three kinds
f uncertainty mentioned above. However, such a holistic view
f M&V  uncertainty has not been adopted in the design of effi-

ient M&V  methods yet (the literature is discussed below). For
xample, the 90/10 criterion has previously been taken to apply to
ampling uncertainty only, and not to the combined estimated sav-
ngs figure, incorporating sampling, measurement, and modelling
ldings 154 (2017) 430–447 431

uncertainties. The proposed method integrates these uncertainty
drivers in an optimizable manner. It also takes past metering and
survey results into account when calculating the current energy
use values and uncertainties. Incorporating past data in a mathe-
matically sound yet informative manner has been a problem for
M&V sampling design. Past samples in a longitudinal project con-
tain information, both in their results and in their sample sizes.
Since uncertainty in the parameter estimates decreases with more
information, these past samples can be used to decrease uncer-
tainty in the current estimates. The more information is available
from past samples, the less information is needed from present
and future samples to meet the uncertainty criteria for reporting.
This means that smaller sample sizes may  be specified for present
and future points, if past data can be used. This increases statistical
and financial efficiency. However, applying this information from
past samples in a mathematically sound and time-sensitive man-
ner is important. If this can be done, the method can then be used
to forecast future uncertainties under different sampling regimes.
An optimization algorithm can then be employed to select an effi-
cient regime, thereby minimising M&V  costs and increasing project
feasibility.

A substantial body of literature about general M&V  methods
exists. A foundational mathematical description [22] has been pro-
vided, but most studies focus on regression methods for baseline
determination, and not on sampling. For useful surveys of state-of-
the-art regression methods, see Zhang et al. [23] and Granderson
et al. [24]. Recently, Ke et al. have used Particle Swarm Optimization
(PSO) to reduce modelling uncertainty in a regression problem [25]
(although the use of PSO rather than matrix inversion for regression
requires further motivation). Tehrani et al. have also used recursive
Bayesian regression in a novel way  for M&V  adjusted baseline fore-
casting [26], and Shonder and Im [27] have also adopted a Bayesian
approach.

Standard statistical sampling theory has been applied to M&V
by internationally accepted guidelines. The required sample size is
usually expressed in the form

n = CV2z2

p2
(1)

where p is the relative precision and z is the standard score. There-
fore, 68 samples are needed for a 90% confidence interval (z = 1.645)
at 10% precision, when the Coefficient of Variation CV = 0.5 [28]. The
CV of a process provides a normalised measure of its standard devi-
ation with respect to its mean. Therefore a process with a standard
deviation of 50 and a mean of 100 has the same CV as a process
with a standard deviation of two and a mean of four – their relative
standard deviations are equal. Besides the G14, the two  other lead-
ing international M&V  guidelines, the International Performance
Measurement and Verification Protocol (IPMVP) [1] and the Uni-
form Methods Project (UMP) [11], both recommend variations on
(1), but do not consider longitudinal studies. The G14 [21] pro-
vides a method for aggregating results obtained over time based
on Reddy and Claridge’s seminal work [29], but does not consider
varying sample sizes, and does not quantify uncertainty as well as
a Bayesian approach would [27,30]. It is well known that uncer-
tainty quantification in standard regression can be a problem for
anything but very simple cases, and methods such as bootstrapping
and cross-validation are used for more complex cases [31,32]. A
Bayesian approach proves to be a flexible and powerful alternative
for efficient, exact uncertainty quantification.
2. Motivation

Standard sampling theory for non-longitudinal cases is well
established – both for simple random, and stratified cases, and
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lso incorporates cost considerations [33–36]. Luus adopted a fre-
uentist approach to complex sampling problems in her PhD thesis
31], and used bootstrapping to quantify uncertainty. The thesis
rovided an excellent overview of advanced sampling techniques,
ut the uncertainty quantification method is computationally very
xpensive, and not realistic for optimal sampling designs such those
nvestigated below. Not many studies have attempted to devise
fficient sampling methods for longitudinal sampling in retrofit
rojects, and those that do cannot incorporate population survival
urvey sampling (non-normal sampling) for overall M&V  plans as
ill be done below. The most directly relevant work was done by Ye

nd his co-authors [18–20,37]. Improvements on Ye et al.’s method
ere suggested by Carstens et al. [16,38], and an extension consid-

ring modelling uncertainty was done by Olinga [39]. Ye et al.’s
ethod reduces sample sizes in two ways. First, by aggregating

esults in different years. Second, by reducing sample sizes through
he finite population correction (FPC) factor, for later years where
he population size declines because of failures. Further work on
he problem is motivated by the following observations on these
revious methods:

The aggregation of results from multiple years should be refined.
Metering results from a meter installed in year one should not be
added to the result from the same meter at the same facility in
year two, as if they were independent samples (or strata) from
a larger population. For example, 68 metering results from year
one should not be added to 68 metering results from year two, so
that the total sample size is 136. Due to serial correlation (auto-
correlation), samples in year two will contain less information
than samples in year one.
The second factor used previously to reduce meter sample sizes is
finite population correction. However, FPC only becomes relevant
for population sizes below 1000 and is therefore not applicable
to the large-scale studies considered.
The method also assumes that the means of the metering results
for all years are stationary. This is realistic assumption, as energy
use may  increase or decrease due to various factors. The method
proposed below does not make this assumption.
In the previous model, confidence and precision levels are unde-
fined for years in which no sample is taken. The result is that the
precision of the model stays constant when no sampling is done.
For example, if sampling is done at t = 1 and then again at t = 4,
the increase in uncertainty is equivalent to sampling at t = 1 and
t = 2. It would be more realistic to increase uncertainty for years
in which no sampling is done. The method proposed below does
this in a mathematically rigorous manner.
In previous work, low-cost meters with lower accuracies are
selected for low-CV populations [20]. However, high-accuracy
meters only enhance the overall accuracy in low-CV cases, when
process variability plays a smaller role relative to measurement
uncertainty [40]. Furthermore, if meter accuracies are consid-
ered, Current Transformer (CT) accuracies should also be added,
as these uncertainties can be more significant than the meter
uncertainty itself [41]. This is considered in Section 3.2.1. Also,
the time resolution of the meter does not refer to how often the
meter measures current and voltage, but the time period over
which the meter integrates when storing a data point [42]. The
measurement interval is shorter than the integration interval. The
integration interval can also be set, and is not five minutes as was
supposed for a Class 1 meter in previous works.
Regarding optimization, gradient-descent methods were
employed previously. However, the optimization function is

an integer non-linear program (INLP) with discontinuities [16].
Heuristic methods will therefore be used to provide more reliable
results, as discussed in Section 3.2.2. Last, the earlier method
assumes that proportion of lamps surviving at a given point in
ldings 154 (2017) 430–447

time is known with certainty, and does not combine this survey
sampling uncertainty with the meter-sampling uncertainty.
Survey sampling uncertainty was characterised in previous work
[14], and will be incorporated in Section 4.

The method proposed in this paper seeks to improve on the areas
above by providing a Bayesian approach to the lighting retrofit
monitoring problem, which has been suggested for energy mon-
itoring as far back as 1991 [43]. This Bayesian approach extends
previous work [14] from only population survival survey sampling
to also include metering placement and overall M&V  study design –
which has not been done before to our knowledge. Bayesian statis-
tics allows for the use of information from prior meter-samples
to be incorporated in a mathematically consistent manner. In this
framework, the prior probability distributions are combined with
the current sampling data, called the ‘likelihood’. Together, these
form the posterior probability distribution, from which the uncer-
tainty in the posterior estimate can be quantified. Although a
Bayesian prior may  be chosen subjectively in other cases, it is
determined by the underlying mathematics and previous sam-
pling results for our case. Much of this work is based on West and
Harrison’s Bayesian Forecasting and Dynamic Models [44]. Triantafyl-
lopoulos [45] provided a useful comparison of these and related
methods such as particle filters and extended Kalman filters with
posterior mode estimation. Gamerman and others have applied
these models to survival analysis [46–49] and hierarchical models
[50], which applies to the sampling problem described in Section 4.
More general introductions to Bayesian theory have been written
by Kruschke [51] and Gelman [52], and an introduction to Bayesian
measurement theory may  also be useful to readers unfamiliar with
the approach [53].

The paper is structured as follows. Section 3.1 discusses the
theory and methodology of longitudinal cross-sectional metering
uncertainty quantification, and presents Dynamic Linear Model
(DLM) with Bayesian forecasting. A demonstration in a minimal
working example is given, and a case study from previous work is
analysed to compare differences of approach, and results. A more
complete case study is presented in Section 3.3, using an opti-
mization algorithm. An investigation into the execution of efficient
sampling plans is also done. This concludes the first part of the
paper dealing with metering alone. The second part of the paper
combines this metering method with a survey sampling method
from previous work, to obtain a combined efficient monitoring
plan. A brief introduction of previous work on population survival
survey sampling is presented in Section 4.1, so that both of these
models can be integrated into comprehensive energy monitoring
case studies in Section 4. These case studies consider the simple ran-
dom sampling case (Section 4.3), as well as the stratified sampling
case (Section 4.4). Finally, conclusions are drawn and recommen-
dations are made in Section 5.

3. Methodology

3.1. Uncertainty quantification for cross-sectional metering
sampling models

As mentioned above, there are two components to a longitudinal
M&V  model: population survival survey sampling, and metering.
This section focusses on metering. Meters often need to be installed
over a wide geographic area spanning many facilities or circuits,

such as different parts of a factory or different homes. Since it is not
practical to meter all facilities or circuits, only a sample is metered.
The method below describes how the sample size for such a case
can be minimized within the reporting constraints.
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.1.1. Modelling assumptions
It is assumed that meters are placed on circuits containing only

ne kind of luminaire, as per the retrofit isolation approach of the
PMVP [1]. The circuits may  contain one or many fixtures, and may
ontain switches with sub-circuits, so that not all fixtures are on
t the same time. The average annual energy use per lamp is mod-
lled by dividing the annual energy use of a circuit by the number
f lamps in the circuit. Seasonality can be built into the model
o increase model granularity to monthly or hourly levels [44],
ut is not considered here. Last, the aggregated meter results are
ormally distributed. That is, if n meters are placed on different cir-
uits, the distribution of the n average luminaires is approximately
ormal. This assumption seems reasonable by the Central Limit
heorem, but warrants further investigation in future research.

It is assumed that the average annual luminaire energy use
aries linearly over time. A second-order (straight-line) linear
odel is used, although other linear functions may  also be specified.

Last, it is assumed that samples are independent in time. This
eans that the same facilities cannot be sampled repeatedly in

onsecutive years. A new random selection of facilities needs to
e made in each sampling year. Although this was  not done in
revious work on this problem [18–20,37] it is necessary for the
alidity of the study design, and is used in other longitudinal energy
se studies such as the US Commercial Buildings Energy Consump-
ion Survey (CBECS) [54]. If the same meters are used in the same
uildings, the independence assumption is violated, and normal
istribution statistical and linear models will probably be invalid.

 possible solution is to use an autocorrelation correction fac-
or. In previous work we used an exponential windowing function
16,38], but a sample size adjustment factor as per G14 [21] is better.
hese are just adjustment factors, though, and may  not be accurate
nough for uncertainty quantification. Best practice dictates that
f the meters monitor only a sample of the population and cannot
e moved, an unbiased comparison group needs to be found and
onitored, which is a difficult and expensive task in itself. As Vio-

ette [43] has shown, the means of both groups then need to be
etermined with much higher accuracy than 90/10, for the savings
stimate to achieve that level. Chapter 8 of the UMP  discusses such
esigns as applied to M&V  [55].

.1.2. Dynamic linear model with Bayesian forecasting
The proposed solution to the problem described above uses

ynamic Linear Models (DLMs). These can be thought of as adap-
ive models in which the new information that becomes available
t each time step changes not only the estimates of the mean, but
lso the parameter estimates and variance matrix of the underly-
ng model. For non-adaptive or static models, the model parameters

ould be fixed before calculation, and the process data would only
pdate the state of the system. For example, in previous work the
verage annual energy use measured by the meters was fixed at
he beginning of the study [18,19,37,38]. For models taking popu-
ation decay into account (cf. Section 4), the population decay rates

ere fixed at study inception, and not updated as new information
ecame available. Only the uncertainties are updated as the model
rogresses through time, given the sampling plan nm. These dif-

erences are illustrated in Fig. 1 vs. Fig. 10. In a dynamic modelling
ramework, new data alter both the parameters and the estimates
f the system state in real-time.

The sequential updating and filtering aspects of Bayesian fore-
asting used with the DLM are the same as Kalman filtering [56,57],
pplied to time-series analysis rather than control. However,
ccording to West and Harrison, “To say that ‘Bayesian forecast-

ng is Kalman filtering’ is akin to saying that statistical inference is
egression” [44]. The function of Bayesian forecasting is therefore
roader than only fitting models and making forecasts. Further-
ore, where Kalman filters assume normality and use least squares
Fig. 1. Flow diagram illustrating existing methods [18,19,37,38], where nm denotes
the  metering plan.

and minimum variance methods, Linear Bayesian Estimation (LBE)
is more general. Kalman filters are therefore a special case of gen-
eral LBE where normality is not assumed. The disadvantage of LBE
is that the solution is linearised (similar to extended Kalman filters)
and that only the first two moments of the distribution are used.
For normal distributions, the first two  moments define the distri-
bution, but for other kinds they may  not do so. A more complete
explanation of LBE in the context of DLMs is given by West and
Harrison [44].

For simple special cases, the DLM estimate at a given point in
time would be equal to the Ordinary Least Squares (OLS) regression
estimate. For example, the DLM estimate (and forecast) given three
data points would be the same as the OLS regression estimate and
forecast, given that OLS regression assumptions hold. If a fourth
point is added, redoing the OLS regression on all four data points
(offline estimation) would yield the same value as the DLM updated
“online” only for the fourth point. In such cases, the DLM would not
yield a better ‘Best Linear Unbiased Estimator’ (BLUE). However,
DLMs with Bayesian forecasting have other desirable properties
and capabilities that will be explored below.

The Bayesian forecasting component allows for exact uncer-
tainty quantification, which is not always available for OLS
Regression. These uncertainty results may  then be used for efficient
or robust sampling design, without resorting to computationally
expensive bootstrapping or cross-validation approaches [31,32].

The informative prior and updating steps of the DLM are useful
for forecasting, and sampling planning. This is because although
past data can be incorporated into a regression model, future data
also needs to be simulated for sampling planning. Consider two
scenarios. In the first case, a sample of 50 m is planned. In the sec-
ond case, a sample of 20 m is planned. Only their means are used in
the regression model. How should the model distinguish between
these two  plans? For small sample sizes, random draws from a
Monte Carlo simulation will not reflect the variance of underlying
distribution accurately. It is therefore desirable to specify the vari-
ance of the distribution from which they were sampled. However,
the sample variance will vary with the number of samples planned
or taken, making the model heteroscedastic and thus violating a
key OLS regression assumption. Unequal variances is allowed in
the DLM, however. The constant variance (V) can be scaled by a fac-
tor, in this case the sample size nt, to obtain the standard error on
the sample mean. This variance can be added to the prior variance
to produce the posterior variance on the regression estimate, as a

function of the sample sizes taken or planned for different points
in time.

Similar work on Dynamic Generalised Linear Models (DGLMs)
has already been done in the context of lamp population survival
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urveys [14]. In that case, Generalised Linear Models were needed
ince population proportions are binomially distributed. A paral-
el in Kalman filtering would be an extended Kalman filter, which
as some non-Bayesian elements combined with OLS theory [44].
owever, in the case under investigation, normal distributions can
e assumed with reasonable confidence, and a DLM is adequate.

Turning to the method now, for the univariate case, the obser-
ation equation is

t = F′�t + �, �∼N[0, V ] (2)

here Yt is the observed value at time t, F is called the regression
ector, � the state vector at t, V is the population variance as defined
efore, and ′ denotes the transponent. The state equation is

t = G�t−1 + ωt , ωt∼N[0, Wt] (3)

here G is the evolution matrix and Wt is the evolution variance.
or the Time-Series Dynamic Linear Model (TSDLM) under inves-
igation, F and G are constant in time, although for many other

odels (e.g. [14]) this may  not be the case.
During M&V  modelling and sampling planning, there are two

ases that need to be considered. The first is step-ahead forecasting
nto the future given the current data, but no new data. The second
s updating parameters to the current time-step, given new data
t time t. For sampling planning in future years, these two  steps
appen simultaneously: a forecast to t + k is made and using the

orecast value and the planned sample size, the uncertainty in Yt+k
s determined.

Variable definitions
Since we assume that the annual average energy use after the

etrofit, Er,t can vary linearly from one year to the next according to
he gradient ˇt, it can be described as

ˆr,t = ˇtt + constant (4)

he state vector for this system is then

t = [Êr,t, ˇt], (5)

here the regression vector is

′ = [1,  0],  (6)

o that (2) is satisfied by yielding Yt = Êr,t . The evolution matrix is
efined as

 =
[

1 1

0 1

]
, (7)

o that (3) is satisfied by yielding �′
t = (Er,t−1 + ˇt−1, ˇt−1). In this

ay, the linear regression line is extended to time t through fore-
asting, given all previous data Dt−1.

For a linear growth model such as the one under consideration,
iven that the mean estimate at time t is �t, the linear algebra
educes to

t = �t + �t (8)

t = �t−1 + ˇt−1 + ωt−1 (9)

t = ˇt−1 + ωt−1. (10)

Forecasting
Forecasting is done when no data are available for that time

tep. The joint forecast distribution can be described as follows.

et ft be the forecast mean, at the prior on �t, Qt the variance on
he mean in (14), Rt the prior variance in (15), and At the adaptive
ector in (20) (not used explicitly in forecasting). Let the data up
o the previous time step be Dt−1, and the | sign indicate “given”,
ldings 154 (2017) 430–447

or “conditional on”. In the LBE scheme only the first and second
moments are specified. The joint distribution on Yt and �t is then(
Yt

�t
| Dt−1

)
∼

[(
ft

at

)
,

(
Qt QtA

′
t

AtQt Rt

)]
. (11)

In this study, the equation above describes a normal distribution,
although other kinds can also be described this way. Again, West
and Harrison [44] provide a full explanation of the DLM and dis-
tributions on all parameters. For the purpose of this study and its
application to M&V, the updating, forecasting, and filtering equa-
tions will be given in an applied format useful to M&V.

The step-ahead forecast mean ft+1, which corresponds to the
energy use Et+1 is defined as

(Êr, t+1|Dt) = ft+1 = F′at+1. (12)

Since there is no posterior in the forecast case, the prior for � is
simply updated by evolving it according to

at = Gat−1. (13)

Updating the variance is more involved. The variance on the mean,
Qt+1, is calculated as

Qt+1 = F′Rt+1F. (14)

The prior variance R is evolved according to

Rt+1 = GRtG′ + Wt . (15)

The evolution variance Wt can be static, but from previous work
[14] we prefer to update it according to

Wt = GUtG′ (16)

where using a discount factor ı and covariance matrix Ct,

Ut = ıCt . (17)

Wt has a small effect on the uncertainty at times steps where data
are available, but becomes prominent during forecasting periods.
Since ı is subjective, it should be chosen carefully if it is non-zero.

Calculation
The equations below apply to the time steps in which data are

available, so that Dt = {Yt, Dt−1}. They combine calculations from
the updating or filtering steps in the standard method. The values
ft, at, Rt, and Wt are updated according to (12), (13), (15), and (16)
respectively.

In the calculation step, at and Rt in the forecasting calculation
are replaced by mt and Ct respectively, so that

(�t |Dt)∼T[mt , Ct]. (18)

These are calculated as follows. Because data are available, rather
than using (14), the variance on Et is updated according to

Qt = F′RtF + ktV (19)

where V is the observational variance and kt is a weight, or vari-
ance divisor. If one assumes the variance to be constant throughout
the process, it may  result in a non-constant CV if the mean esti-
mate x̄ changes, since CV= √

V/x̄. It is therefore preferable to define
V = ftCV. Furthermore, the term added in (19) refers to the obser-
vational variance, and should therefore be scaled according to the
sample size at t: kt = 1/nt.

The adaptive vector At translates the forecasting error from the
previous step into an adjustment when new data becomes avail-
able. It is calculated as
At = RtFQ−1
t . (20)

The state is updated by

mt = at−1 + Atet (21)
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here

t = Yt − ft, (22)

nd

t = Rt − AtA
′
tQt. (23)

.1.3. DLM demonstration and comparison to previous methods
To demonstrate how (and verify that) the DLM works, a hypo-

hetical case is considered, and is illustrated in Fig. 2. Sampling is
one at t = 0, 1, 2, 3, 4, 5, and the mean of E = 12.49 kWh  is set for
very sampling result. According to standard theory for normal dis-
ributions, the sample size n is calculated as in (1). We denote a

etering sample size at time t by nm,t. The demonstration sam-
ling plan (the vector containing the sample sizes for future years)
m is

m = [68, 68,  68,  68,  200, 68,  0, 0, 0, 68,  0].  (24)

t is evident that the 90% confidence interval narrows as more infor-
ation becomes available between t = 0 and t = 2. When a large

ample of nm,4 = 200 is taken, there is a more dramatic change in the
nterval, but it widens again, when a smaller sample of nm,5 = 68 is
aken. This widening occurs because of the inherent process vari-
tion specified through the CV. For other CV-to-sample size ratios,
o widening may  take place. The narrowing of the confidence inter-
als over the first three years (t = 0 to t = 2) is also considerably more
ramatic for smaller CVs. After t = 5, no samples are taken for three
ears, and the confidence interval on the forecast widens, but is
educed again at t = 9 when a sample is planned.

Another realisation is shown in Fig. 3. In this case, random sam-
ling results were drawn from the sampling distributions defined
y the sample sizes and process variances. Multiple results are
verlaid to demonstrate the randomness inherent in each sam-
ling realisation. It can be seen that DLM estimates also follow an
pproximately normal distribution, with a greater density of pre-
ictions close to the mean. A large sample is planned for t = 9 rather
han t = 4 as in the previous example. Such a sample “filters” the
stimate, forcing subsequent estimates to be much closer to the
rue mean, and forecasting an approximately constant energy use,
hich is accurate.

.1.4. Case Study 1: comparison to previous method
In this section, the DLM will be compared against the earlier

ethod [18–20,37,38], using the case study from [38]. However,
 direct comparison can be misleading because of the differences
etween the two approaches. Some of these differences can be
ddressed by restricting the capability of the current model. For
xample,

The earlier method assumes a stationary mean. A comparison can
therefore only be made if the DLM is restricted to a horizontal line,
no matter the trend in the data. To do this, the prior on the slope
is set to zero.
The earlier method uses Finite Population Correction (FPC) to
compensate for population decay. FPC cannot be included in the
DLM without significant changes. However, for models such as
those under investigation, FPC is only applicable to populations
smaller than about 1000, or 0.16% of the installed population in
the benchmark study [38]. Therefore it does not affect the calcu-
lation and may  be neglected in the DLM.

Other differences are not as easy to address, and indicate fun-

amental differences of approach:

The previous approach uses frequentist confidence intervals. As
Neyman, who developed these intervals, remarked, these inter-
ldings 154 (2017) 430–447 435

vals do not really convey a degree of belief. Rather, they are the
product of a process that produces an interval which contains the
true value a given percentage of the time [58]. Since the bounds
are random [59], using such intervals for risk calculation is prob-
lematic. The Bayesian credible interval used by the DLM does,
however, produce the interval sought for uncertainty quantifica-
tion. The two intervals do sometimes agree numerically, but their
interpretations are different and should not be equated [51,52].

• The improvements to the previous model [38] include an expo-
nential windowing function. This decreases the influence of prior
data points exponentially, to compensate for the autocorrelation
present in taking repeated measurements from the same study
units. It transforms the method into a moving average function.
Exponential windowing is mathematically convenient for the
way the model was  set up, and is better than nothing. However,
it does not address autocorrelation satisfactorily because such
correlation is the strongest between consecutive measurements,
while the windowing function reduces the influence of less recent
samples. The discount factor in (17) is a similar mechanism in
the DLM but increases the estimated variance. The problem with
choosing a discount or windowing factor is that the figure is arbi-
trary. When this is done, uncertainty quantification is no longer
objective.

• The increase in uncertainty for years in which no sampling is
done, cannot be removed without removing a fundamental com-
ponent of the DLM. It is therefore difficult to compare it to a model
in which it is assumed that the uncertainty stays constant over
years of non-sampling.

With these caveats in mind, a case study for the previous method
[38] is analysed by the DLM, using the optimal sample sizes deter-
mined using that method. This case study has become somewhat
of a benchmark since all models solving this problem consider
it. In this case study based on a real UNFCCC CDM project [60],
607,559 CFLs rated at 20 W were distributed to households in the
South African provinces of the Northern Cape, Free State, Gauteng,
Limpopo, and Mpumalanga, to replace 100 W ICLs. Crushing cer-
tificates for the replaced lamps were obtained to verify that they
were indeed replaced. It was  assumed that they burn for an aver-
age of 4.5 h per day, but no uncertainty on this value was  specified.
Exponential windowing (for the earlier method) is neglected, as
is the discount factor for the DLM, in order to avoid confusion
about their functions. The earlier method disregards autocorrela-
tion from consecutive measurements of the same facility, while
the DLM assumes random sampling. This will narrow the apparent
uncertainty bounds resulting from the DLM calculation using those
results, but is left as-is. Other changes in the bulleted points above
also apply. The average annual energy saving for that study was
131.4 kWh. The sampling plan nm was

nm = [68, 68,  28,  16,  8, 8, 6, 6, 4, 4, 2].  (25)

Results and discussion
The resulting uncertainty bounds using the earlier method’s

sampling plan, calculated with the DLM, is plotted in Fig. 4. The red
error bars represent the 10% precision limits. The figure indicates
that (had the samples been independent), there is slight oversam-
pling in years two, four and six, and undersampling in years eight
and ten. However, since the model is simplified to a case where
there is zero inter-sample variance, it becomes sensitive to the DLM
priors on the mean energy use and slope. For example, increasing
the prior on the slope of the regression line to a number above zero
results in undersampling for all years. Such changes do not affect

DLM models accounting for inter-sample variance as strongly.

When decreasing the effective sample size by using an auto-
correlation factor of 0.25 [21], it is found that year six is also
undersampled. However, when the exponentially windowed sam-
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Fig. 2. DLM demonstration where the relative sizes of the markers provide a qualitative indication of sample sizes. The blue shaded area represents the instantaneous 90%
credible  interval around the estimate. Hypothetical case where all sampling results fall on the mean. Sample sizes are nm,0–3,9 = 68, and nm,4 = 200.
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Fig. 3. DLM demonstration reflecting true

ling plan is used, the confidence bounds are much closer to the
recision limits for all years.

Although the results indicate that the previous methods do not
ield ‘optimal’ or even efficient sampling designs, the improved
odel with exponential windowing [38] is relatively safe to use,

nder its assumptions of a stationary mean, etc. Although con-
enient, these assumptions can be restrictive and unrealistic,

owever, as discussed in the bulleted points above. To mitigate
hem, a randomised control trial will have to be designed. This
ould involve having a treatment group (retrofits installed), and

 control group (no retrofits installed), where these two groups
ling results. Multiple realisations shown.

are similar in all other relevant aspects. The difference between
their energy use would have to be reported with 90/10 accuracy,
meaning that the energy use in each group would have to be
determined with an accuracy exceeding 90/10, making them much
larger. Selecting such groups would be difficult: those who volun-
teer that their energy use be monitored for ten years, and who do
not plan to use energy efficient lighting during that time, may not

be representative of the population as a whole: called self-selection
bias. The groups may  also change over time: young couples may
have children, and the children of older couples may  move out, for
example. People may  renovate, disqualifying them and leading to
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Fig. 4. 90% Confidence bounds (shaded) compared to 10% precision limits (red error bar
interpretation of the references to color in this figure legend, the reader is referred to the
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ig. 5. Flow diagram of cross sectional metering sampling designs as in Section 3.2.

ubject dropout. Such phenomena would skew the measurements
nd indicate spurious trends, and would need to be accounted for
n the sampling design in cases were the same facilities are con-
inually metered and taken to represent the whole population. The
LM presents fewer such practical and mathematical difficulties,
s will be shown in the next section.

.2. Efficient cross-sectional metering sampling designs using
LMs

In the previous subsection, the DLM was compared to earlier
ethods. In this one, the DLM is used in an optimization routine

o design an efficient sampling plan, given past data. The flow is
llustrated in Fig. 5. The extension of the above methodology to an
ptimization problem will first be discussed in theory, and a case

tudy will then be presented. Note that the study commences at

 = 0.
We  note that the design with the smallest sample size that still

dheres to the reporting precision requirement is not necessar-
s) for previous sampling plan using earlier method [19,38], analysed by DLM. (For
 web  version of this article.)

ily the most cost-efficient design when uncertainty is present. It
is only optimal in the best-case scenario, where the forecast is
perfectly accurate. This is because installing just enough meters
in future years, based on a forecast, runs the risk of not control-
ling variance adequately, since the forecast may be inaccurate. A
meter may  malfunction, or the sampled result may differ from the
forecast so as to increase the variance in the estimate enough to
violate the reporting precision constraint. By the end of the mea-
surement period, it is too late to install more meters for measuring
the energy use of that period. Insufficient reporting precision would
render the project ineligible, or incur a penalty from the regulator.
We therefore refer to these as naïve efficient designs, following the
convention in mismeasurement studies [62–64]. A robust design
with more meters, on the other hand, will therefore prove to be
more cost-efficient over the whole range of possible scenarios (thus
lowest expectation cost), even though the metering cost may  be
higher than the most efficient design for the most likely scenario
would be. However, determining such a robust cost-efficient sam-
pling design will depend on assumptions made about the penalty
incurred for not complying to the reporting precision constraint,
which may  vary significantly between programmes. In the more
common case where projects are rendered ineligible, the cost of
non-compliance may  be very high. For these reasons, as well as
for brevity, the current investigation is limited to the narrow sense
of the meaning of efficiency (except for Section 3.3.3) and robust
efficiency is recommended for future research.

3.2.1. Adding metering uncertainty
Modelling and sampling uncertainty are combined automati-

cally in the Bayesian framework described above. However, meters
also have inherent uncertainty. It has been shown [40] that meter-
ing uncertainty makes a small contribution to overall uncertainty

for sampling designs with standard variance assumptions. We
assume Class 1 m [65] are used with Class 1 Current Transform-
ers (CTs) [66], as these are common for revenue metering. Since
no load profiles are assumed for the study, a flat error rate of 3%
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Table  1
GA parameter values. These values have been used in all case studies.

Parameter Value

GA algorithm MuPlusLambda

Crossover rule Uniform crossover
Crossover proportion 45%
Crossover exchange probability 75%
Mutation proportion 40%
Individual gene mutation probability 30%
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Number of generations 35
Population size 100

s assumed. (For plots showing the change in error rate as a func-
ion of the rated current of the instruments, see [41]). The 3% figure
llows for the combined meter-CT accuracy, as well as for low-cost
alibration [61]. However, at this level, it can be shown [40] that
he difference made by metering error is so small that the required
ample sizes do not change due to the additional uncertainty.

.2.2. Optimization
Thus far a model has been created that determines the overall

ncertainty at a specific point in time, given the sampling regime
nd certain modelling assumptions. Such a model can be used to
etermine an efficient sampling regime, given past sample times,
izes, and results. These are combined with a forecast of future
nergy use and associated uncertainties. Planned (future) sample
izes can then be used to control the reporting precision at future
eporting points. Sampling is not constrained to reporting years
nly, however. If it is advantageous for the algorithm to sample in

 non-reporting year, it may  do so.
Optimization can be done in one of two ways. If the present time

s �, the first is to forecast one step ahead to � + 1, and then deter-
ine an efficient sample size. This can be repeated for all time steps.

he other option is to consider all future sample sizes simultane-
usly, given the forecast from the present time. This will produce

 multi-year sampling plan in which earlier future samples may
e traded off against later future samples. The latter approach is
dopted.

Since only a discrete number of meters can be installed, an inte-
er program is needed. Although the DLM is linear, the behaviour
f the uncertainty bounds is not linear. The optimization algo-
ithm will therefore need to be able to solve an integer non-linear
rogram (INLP). Gradient search methods are therefore not appro-
riate choices for optimization, and a Genetic Algorithm (GA) was
elected. The constraints are discontinuous [38], and will in our case
e represented by very large stepwise changes rather than invalid
egions, as this is more efficient for the GA. Similar optimization
rograms have been described in previous work [14,38]. The GA
as implemented via the DEAP Python library [67].

The parameters used to tune the GA for this case will need to
e the same as for the optimization in Section 4, and are shown

n Table 1. The mutation function was set so that the genes that
re selected for mutation are altered by adding a number from the
istribution ∼Normal(−10, 500).

Previous cross-sectional efficient metering studies have consid-
red installation, maintenance, and meter removal costs separately
or each meter [18,19,37,38]. This cost structure is based on the
ssumption that the same facilities are monitored throughout the
tudy, and that these individuals are representative of the whole
opulation. However, as discussed in Section 3.1.1, the least prob-

ematic and most consistent solution would be to draw random
ndividuals from the population at each sampling point, as is

ssumed in this study. The costing structure for such a sampling
lan would be a simple fixed rate per meter per sampling point. This
xed rate would possibly include purchasing costs, subscription to
n Advanced Meter Reading (AMR) telemetry service for access-
ldings 154 (2017) 430–447

ing the data online, as well as installation and removal costs. Since
the rate is fixed, the optimization function will simply reduce the
total number of meters installed over the duration of the study. The
price is therefore irrelevant. It does become a factor when meter-
ing is traded off against surveying as in Section 4, however. From
industry experience, we  set this rate at R3000 (South African Rand)
per meter per sampling point, although it may  vary significantly by
contract and supplier.

3.2.3. Notation
Let:

� Number of sampling points where et �>  ε
nm,benchmark Non-DLM solution at time t
nm,t Decision variable. Sample size at time t

n  = {�, � + 1, . . .,  N}
wm Cost per meter in Rand/sample
� Present time, where � ∈ {1, 2, . . .,  N}
N  Last year of study
et Precision of reported average annual energy use

at time t, where et ∈ [0, 1]
ε  Given precision limit, where ε ∈ [0, 1]
M Required reporting points (years), where

M ⊂ {� + 1, � + 2, . . .,  N − 1}
Êr,t Estimate of average annual energy use at t
LCLm,t Lower Confidence Limit at t

3.2.4. Mathematical formulation
From the notation above, the fitness function can be defined as

min
N∑
t=�
nm,twm + r(nm), (26)

where

r(nm) =
∑
t ∈ M

(
105wm(et − ε) + 107 + 5wmnm,benchmark,t

)∀t ∈ �(27)

and

et = Êr,t − LCLm,t

Êr,t
.

(28)

3.2.5. Description
The decision variable is the metering sampling plan nm, the

individual elements of which are written as nm,t in (26).
The fitness function (objective function) for the model is rea-

sonably simple. There is a cost to metering and a cost to violating
the reporting precision requirement. The first term in (26) describes
the metering cost, and the second term describes a penalty function
for violating the precision constraint. Setting a hard constraint for a
GA is not efficient due to the randomness inherent in the optimiza-
tion process [14]. The penalty r(nm) is therefore invoked only for
sampling plans which violate the precision constraint. The shape
of this penalty function is determined so that solutions that do
incur a penalty are directed into the feasible region, rather than
away from it [14]. Consider Fig. 6. If there were no constraint, the
cost would increase with nm,twm along line ab,  and the GA would
optimise to zero, violating the actual constraint. A penalty function
could be specified simply as a constant added to the cost function
if the confidence/precision bounds are violated: line dcb. However,
this is not efficient. If a solution (or population of solutions) vio-
late the constraint (placing it on d), the algorithm would tend to
optimise away from the constraint boundary in the wrong direc-

tion towards the local minimum at the y-intercept of d. Mutation
could transport an individual to b, but it is inefficient to rely solely
on this mechanism. Therefore line ef is needed to direct the algo-
rithm towards the constraint rather than away from it. This is what
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ig. 6. Genetic Algorithm constraint function r(n) in (27), where nε represents the
hreshold sample size.

he 105wm(et − ε) term does. The 105 term increases the gradient
f the line (or ‘gain’ of the error size), and therefore encourages
he algorithm to optimise downwards. The threshold value nε at
hich the penalty occurs is unknown — that is why the GA heuris-

ic is needed. A step is built into the model to ensure that adhering
o the constraint is always preferred over violating the constraint.
owever, since the exact number of samples at which this occurs is
nknown, and a larger required sample size would also increase the
onstraint violation cost. A step of 107 + 5wmnm,benchmark,i is there-
ore built in to ensure that constraint violation is always costly,

here nm,benchmark,i is defined by (1). This step is represented by
ine ce.

Regarding (28), only the lower bounds are considered when cal-
ulating precision. For a normal distribution where these bounds
re symmetric about the mean, this makes no difference. How-
ver, for asymmetric distributions as will be encountered later,
here may  be a difference. The reason the lower bounds are consid-
red rather than the upper bounds is that reported savings should
lways be conservative in M&V  [1]. This means that although the
ost-retrofit savings value may  be higher than the reported value,

t should not be lower.

.3. Case Study 2: efficient cross-sectional metering design

Because the method creates the possibility to measure such
rojects in more realistic ways than before, no adequate data are
vailable, and synthetic data based on industry standards will be
ombined with real data from similar projects, extending Case
tudy 1.

We assume that the luminaires are 11 W CFLs that operate for
n average of 3.11 h per day [68], or E = 12.49 kWh  per year. The CV
n the sample is set to 0.5; a standard M&V  assumption [69]. This
mplies that the distribution on the estimate of the annual energy
se per luminaire is Ê∼N(12.49, 6.24) kWh. Assuming CV = 0.5 is
easonably conservative and dominates the priors. At lower CV val-
es, the information contained in the prior becomes dramatically
ore significant. For this case study, it was assumed that CV is con-

tant. However, if sampling results from the first few years justify
t, the CV value may  be decreased. The Bayesian model can easily be
pdated in any year to adjust the CV values – another useful feature
f the DLM.
We  model the true energy use as being constant in time (thus a
traight line with zero gradient). However, the estimate for a spe-
ific year will fall in the probability distribution described above.
t may  therefore seem as if there are short-term trends, depending
ldings 154 (2017) 430–447 439

on the realisations of the data from the underlying distributions,
since the meters are installed in only a sample of the population
buildings. It is assumed that three years’ data are available and that
the remainder of the 11-year study is to be planned. Let the vector
defining the reporting points be M.  For this study, M = {3, 5, 7, 9}.

The priors are defined as follows. It is assumed that the average
annual energy use can be approximated reasonably well from pre-
vious case studies. It is assumed that there is a 99% chance that the
energy use is within 25% of the prior. The same numbers hold for
the expected change in energy use: not more than 25% per year, at
a 99% confidence. Therefore 3� = 12.49/4, with the prior variance
specified as �2.

3.3.1. Benchmark
The DLM model with Bayesian forecasting should be bench-

marked against current best-practice efficient sampling designs.
It has been suggested that for cases involving weighted or normal
regression, the sample size may  be reduced by a factor of (1 − R2)
[13]. R2 is the coefficient of determination, which is the square
of the Pearson moment correlation coefficient. This is similar to
‘ratio-estimation’, where the additional information contained in
the known ratio or regression line can be used to reduce the sam-
ple size. However, for cases where the process is supposed to be
stationary, the regression line will have a slope coefficient equal to
zero. It should therefore be “uncorrelated” even if the regression
line exhibits high goodness of fit. This means that the correlation
coefficient and thus R2 will be zero, even if all the sampled points
fall exactly on the straight (horizontal) line. In fact, for a stationary
process, any other (erroneous) slope estimate would increase the
R2 value spuriously and thus decrease sample size.

A more reliable and popular measure of goodness of fit in M&V
is the Coefficient of Variation on the Standard Deviation on the Root
Mean Square Error [21,24], which does not reduce to zero for sta-
tionary processes. However, these are not ratios bounded by zero
and one like R2. How they relate to a sample size reduction factor
can be the topic of future research as an extension of G14 [21] and
Reddy and Claridge’s work [29].

We therefore benchmark the method against the standard M&V
approach of (1). Since metering error has been determined to not
affect sample size, it may  be neglected.

3.3.2. Case Study 2: results and discussion
The values generated for the first three points are D0–2 = [12.39,

13.02, 12.71], where the sample sizes are nm,0–3 = [68, 68, 68]. One
efficient sampling for one realisation of results is shown in Fig. 7.
The planned sample sizes nm are

nm,DLM = [56, 0, 36,  0, 32,  0, 26], (29)

while standard sampling theory yields

nm,Benchmark = [68, 0, 68,  0, 68,  0, 68]. (30)

The total number of meters under the DLM plan is 147 at a cost of
R450,000, while under the standard plan 272 m are installed at a
cost of R816,000. A saving of 66% is achieved.

The red error bars in Fig. 7 indicate the reporting precision limits.
Should the uncertainty bounds (light blue area) fall outside these
limits, the reporting precision requirement will have been violated,
and r(nm) in (27) invoked. Efficient sampling plan precisions tend
to be in the range 0.97 to 0.99. If a certain year has a precision of
0.97, sample sizes can be reduced to so that the precision is closer to
0.1 (being more efficient), but doing so usually results in precisions

in later years violating their constraints, requiring more samples in
those years.

Since the full solution space is not known and convergence is
not guaranteed mathematically, the solution cannot claim to be
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ig. 7. Efficient sampling plan using the DLM for one random model realisation. (F
ersion  of this article.)

optimal’. It may  be the case that the solution is only a local min-
mum, or that one or two samples may  still be removed from the
olution, resulting in an even more efficient sampling plan. That is
hy the solution is presented as ‘an efficient solution’ rather than

the optimal solution’, although the GA does converge reliably to
ery efficient solutions. This consideration has been noted before
16,38], but has not always been adopted [18–20,37].

This model illustrates certain crucial characteristics that M&V
tudy designers should take into account. The first is that although
his is a stationary process, random realisations from the distribu-
ion could indicate a trend. In this case it appears as though energy
se is increasing, although it is not the case. Another realisation
ay  show the opposite with equal probability. The larger the sam-

le size, the less pronounced this trend should be, but the sampling
rror effect will not be mitigated completely.

As in Fig. 2, the uncertainty decreases over time as more sam-
les are taken and the prior information of the Bayesian method
ecomes more prominent. This results in smaller sample sizes in

ater years. The CV of the process plays a significant role in this
arrowing effect.

An interesting relationship emerges when solving the optimiza-
ion model for different energy use realisations in years zero to
hree (sampling results drawn from the relevant distributions). It
s plotted in Fig. 8. The sum of all future (efficient) sample sizes
re related to the gradient of the energy use line (least-squares
egression line) plotted through these three data points. From this
elationship, an estimate of future sampling costs may  be obtained,
ven before a GA is used to determine exactly how these samples
hould be spread over the remaining years. This can be done by sim-
ly calculating the gradient of the weighted regression line drawn
hrough the past sampling points. The relationship is illustrated in
ig. 8. The caveats for using the graph are that it is specific to the
arameters used for this model, since many variables may  affect
his relationship. These include past sampling points and sample
izes, CV, future reporting points, reporting precision, and others.

he model also assumes that such an increasing or decreasing rela-
ionship apparent in the past sampling results, does exist. However,
ll the points on the graph were generated from realisations of what
s, in fact, a stationary process (gradient = 0). One should, therefore,
Fig. 8. Natural logarithm of the total number of future samples under efficient sam-
pling plans, as a function of the gradients of the regression lines on past samples,
e.g. in Fig. 7.

be very careful about interpreting low future sample sizes from a
positive gradient-model, especially with few past sampling points.
The algorithm may  recommend small future sample sizes (as illus-
trated in Fig. 8, when such sample sizes will yield inadequate
precision). The forecasting uncertainty bounds should certainly be
considered. (Note that the forecasting uncertainty bounds in Fig. 7
are instantaneous future sample sizes which include results from
planned future samples). Nonetheless, the relationship shown in
Fig. 8 is true in the sense that if that relationship is correct, the
required future sample sizes do follow that curve.

3.3.3. The reliability of efficient sampling designs

After an efficient sampling plan has been designed, it should

be executed. In this section, we  investigate the reliability of effi-
cient sampling plans, in terms of compliance to reporting precision
requirements. Since the sampling plan needs to be updated every



H. Carstens et al. / Energy and Bui

F
S

t
s
t
f
a

1

2
3

4

5
6
7

s
c
p
w
a
c
a
s
M
[
o
s
i
f
i

a
t
t
i
e

ig. 9. The effect of oversampling on the probability on non-compliance, as per
ection 3.3.3.

ime new data becomes available, we investigate only the next time
tep beyond the sampling plan already devised. We  suppose that
hree years’ data are available (D0–2), and that the fourth year is
orecast, planned, and executed. We  simulate such scenarios and
nalyse the result. The investigation proceeds as follows:

. Generate D0–2 from the distribution

∼Normal
(

12.49, 12.49CV√
nm,  0−2

)
.

. Fit DLM to data points, forecasting t = 3.

. Find minimum sample size nm,3 that adheres to the reporting
uncertainty limit.

. Instead of assuming that D3 will correspond exactly to the most
likely forecast value, generate a random realisation of D3, given

the planned sample size nm,3: D3∼Normal
(

12.49, 12.49CV√
nm, 3

)
.

. Update the DLM to include D3|nm,3

. Calculate reporting precision at t = 3.

. Repeat steps 1–6 10,000 times to examine the adequacy of the
sample size for different random realisations of the sampling
distribution.

As discussed in Section 3.2, a naïve efficient design is not neces-
arily efficient when all possible scenarios are considered. For this
ase study, if only the best-case scenario is considered and sam-
ling is planned accordingly, the reporting precision requirement
ill be met  in only 48% of cases, as shown in Fig. 9. Taking only

 naïvely efficient (or ‘optimal’) number of samples has a 50/50
hance of being inadequate, according to the simulation described
bove. Note that this lack of power is not due to the DLM or regres-
ion generally, but due to the sample size produced by the standard
&V  sampling formula (1) recommended by the leading guidelines

1,21,70]. When simulating n = 68 from a distribution with CV = 0.5,
ne finds that the interval produced includes the true value and
atisfies the 90/10 criterion in only 50% of cases. Since this formula
s so common in M&V  it will be used in this study, but M&V  pro-
essionals are encouraged to do this simulation and consider the
mplications on M&V  sampling designs.

Fig. 8 also illustrates that efficient designs are sensitive to the
pparent gradient inferred from past samples. The gradient illus-

rated in Fig. 7 is slightly positive, leading to smaller sample sizes
han if the gradient were very negative (due to the randomness
n the realisations of the sampling points). There is a danger that
fficient sample sizes will undersample in cases where energy use
ldings 154 (2017) 430–447 441

seemingly increases dramatically but is only due to randomness in
the samples.

We therefore investigate two rudimentary risk mitigation
strategies. The first is to oversample by a given percentage. The sec-
ond is to use the information from the DLM to determine a robust
sample size.

In the first approach, we oversample by 0–100% and plot the
results in Fig. 9. This relationship depends past sample sizes, CV,
reporting uncertainty requirements, and other factors. It can be
seen that the probability of compliance increases as the percent-
age of oversampling increases, but there is also a diminishing return
on investment. The UMP  recommends 10–30% oversampling [71]
for other reasons; a useful recommendation for the considerations
under discussion as well.

The second approach is to determine a robust sampling design
based on the DLM. In this approach, Step 3 above is planned
not according to D3 taking the most likely value of the forecast,
but according to the value at the forecast lower confidence limit
LCLm,3,90%. Instead of blindly oversampling, this result leverages
the capabilities of the DLM to decrease the likelihood of non-
compliance. It was found that when this is done, the probability
of compliance reaches 100%. It comes at a cost, however. Robust
designs have larger samples, following the curve illustrated in Fig. 9.

From these results it is evident that naïve efficient M&V  designs
have an inherent risk in cases where metering is done. The risk is
compounded by the fact that the sampling plan cannot be amended
or expanded at a later date, as survey designs could be.

It may  seem as though robust sampling is much more costly
than naïve efficient sampling. However, this is only if cost is nar-
rowly defined as metering cost. In a robustly efficient sampling
plan, on the hand, the cost of metering is traded off against the cost
of non-compliance to uncertainty reporting requirements. Consid-
ering non-compliance makes naïve efficient plans costly, because
such penalties may  be incurred in all but the best-case scenarios.
Furthermore, a robust sample size in the next year will decrease the
sample sizes needed in the years after that. One should not expect
the robust plan to have the same overall cost a naïve efficient plan,
however.

The analysis above represents a very simple robust plan, and
future work may  develop more a complete, robust framework, sim-
ilar to that of Rysanek and Choudhary [72].

4. Combined longitudinal and cross-sectional sampling

Thus far, the paper has only considered metering sampling,
which is the first aspect of a complete longitudinal energy retrofit
M&V  study design. The second aspect is longitudinal population
survival survey sampling. This was  investigated in detail in pre-
vious work [14]. That work will be summarised below to provide
context, after which the population survival survey sampling com-
ponent will be integrated with the metering sampling component
discussed above to give a complete longitudinal M&V  design for a
building lighting retrofit project.

4.1. Longitudinal population survival survey sampling

The total energy saved by a retrofit project in a given year would
be proportional to the number of retrofitted units installed by the
project which are still active during that year. The purpose of these
surveys is therefore to estimate the proportion of the population
surviving at time t, which is denoted 	̂t .
The decay of many populations, including lamp populations,
can be described by a logistic function [17,73,74]. Such a logistic
function has been developed [15,38], and was applied to the prob-
lem at hand by using a Dynamic Generalised Linear Model (DGLM)
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14]. A DGLM is similar to the DLM described in Section 3.1.2, but
ses a Generalised Linear Model (GLM), because the survey result

s distributed according to the beta/binomial distributions. These
istributions result from pass/fail Bernoulli trials obtained through
elephone interviews or site visits. The beta and binomial distri-
utions form a conjugate prior pair, with the same advantages
egarding the speed and accuracy of this solution over numerical
olutions as for the DLM of Section 3.1.2.

A difficulty arises when combining this beta-distributed survey
esult with other parameter distributions. These parameters could
e meter results of average annual energy use (as in Section 3.3), or
stimates such as annual hours of use and average power draw per
uminaire. If all the distributions are normal (as has been the case
p to this point), then their convolution can be calculated quickly
nd accurately using analytical equations. However, parameters are
ften normally distributed and need to be convolved with the beta
opulation proportion estimate – an operation that is usually only
one by Monte Carlo (MC) methods. MC  is powerful and versa-
ile, but for accurate uncertainty determination in a GA it can be
rohibitively expensive. Also, in a GA with hundreds of individuals
ver several generations, the GA algorithm identifies ‘outlier dis-
ributions’ as the fittest individuals. The apparent fitness of these
nomalies is merely the result of a random, favourable realisation of
he underlying distributions. This is rare enough in standard MC  to
e irrelevant, but becomes important in a threshold heuristic opti-
ization program where slight MC  noise can mean the difference

or an unfit individual to be seen as fit. These outlier distributions
eem to adhere to the precision limits at lower cost when they actu-
lly violate the constraint. They are then registered falsely by the GA
s fit individuals. To mitigate this effect, a recently developed tech-
ique called Mellin Transform Moment Calculation (MTMC) [75,76]
as used instead of MC.  MTMC  takes the scale and shape param-

ters of the input distributions, and describes the moments of the
onvolved resultant distribution analytically, where this convolu-
ion can be any polynomial function. The first four moments (mean,
ariance, skewness, kurtosis) from the MTMC  were then used to fit

 Johnson distribution, which is nearly identical to the MC  result
nd can be used to calculate uncertainty bounds cheaply and con-
istently. For more information on uncertainty evaluation through
oment-based distribution fitting, see Rajan et al. [77]. As in Sec-

ion 3.3, the MTMC  uncertainty estimates are applied in a GA to find
n optimal multi-year sampling plan.

Finally, because the beta distribution can be asymmetrical,
ighest Density Intervals (HDIs) are preferred to standard equal-

ailed confidence intervals [14,51].

.2. Combining survey sampling with metering data

Instead of combining the survey result uncertainty from the pre-
ious section with estimates for energy consumption (hours of use
nd power consumption), it will be combined with more accurate
eter sampling results. For this case, metering and survey sample

izes need to traded off against one another to ensure adherence
o the overall uncertainty reporting bounds, at low cost. A diagram
llustrating the how the various components discussed so far fit
nto the overall plan is shown in Fig. 10. This is different to previ-
us combined sampling designs (Fig. 1), where only meter sampling
as optimised, assuming that population decay was known with

ertainty and with no adaptive population decay model considered.
The vector of the saved energy distributions in this combined

odel may  be calculated by element-wise multiplication of vectors
s

ˆ
saved∼	̂n
Ê,  (31)

here 
Ê is  the difference in annual energy use between an origi-
al and a retrofitted luminaire. The power difference between these
Fig. 10. Flow diagram illustrating proposed method for combining metering and
surveying data. The metering plan is denoted nm , and the sampling plan ns .

luminaires can be taken from the product specification, but G14
[21] recommends that this difference be measured in-situ. A sim-
ple measurement may  therefore be done in the retrofitting year by
measuring the pre- and post-retrofit energy use on the lighting cir-
cuit. Let Pb be the baseline lamp power draw, Pr the retrofitted lamp
power draw, and sb and sr be their respective standard deviations.
Assuming that there is measurement error in the meter of 2.52% as
described in Section 3.2.1, the uncertainty distribution on the ratio
of the power draws Pb/Pr can be described by the distribution

Pb/Pr∼N
(
Pb
Pr
, z
Pb
Pr

√(
sr
Pr

)2
+

(
sb
Pb

)2
)

(32)

as per the ASHRAE’s guideline RA96 [78]. The annual energy saving
per luminaire given this ratio can then be expressed as


Ê∼Êr(Pb/Pr − 1).  (33)

As mentioned previously, the MTMC  method can then be used to
calculate the first four moments of Esaved in (31). These are used as
inputs to the Johnson distribution, which will describe the overall
probability distribution on the savings estimate for a specific point
in time.

The fitness function (26) is modified to include the survey cost
term. Let v be the survey initiation cost (v = 1000), and ws the cost
per survey sample (ws = 10). Also let dt = 1 for years in which sur-
veying is done, and dt = 0 otherwise. Then the fitness equation is
modified to
min
N∑
t=1

nm,twm +
N∑
t=1

ns, tws + dtv + r(n). (34)
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he penalty function is also modified accordingly:

(n) =
∑
t  ∈ M

(
105(ws + wm)(et − ε) + 108 (35)

 5(wmnm,benchmark,t + wsns,benchmark,t
)∀ t ∈ �. (36)

In this case, the relative cost of surveying and metering play
 large role in determining an optimal solution, since the GA will
rade these sources of uncertainty off against one another when
valuating different solutions. Since these costs are project-specific,
he result from any single study is not normative but may  illumi-
ate the characteristics of the method and the kinds of results the
an be expected. Two cases will be considered below. The first is

 simple random sampling case: monitoring a single population
f retrofitted lamps over multiple years. The survey and cross-
ectional metering sample sizes are then optimised simultaneously
o minimise cost while still adhering to the required reporting pre-
ision levels. In the second case, the study is expanded so that
hree distinct sub-populations of lamps are monitored over multi-
le years to achieve the same objective. This is a combined stratified
ampling design.

In the interest of brevity, these case studies will not be described
n as much detail as those above or from previous work [14], from

hich they are expanded. However, the details will remain the
ame unless otherwise stated.

.3. Case Study 3: combined simple random sampling design

The first case considers a single population of retrofitted lamps
racked over a number of years. The lamp population is assumed to
ecay according to the Polish Efficient Lighting Project (PELP) data
oints [14,17]. This was a large study of over one million lamps,
racked over a number of years. Unlike the metering data, PELP
oints were used rather than randomly generated points according
o the past sample sizes. This is because while a randomly varying
pward trend in the metering data is not of concern, an apparently
pward trend in a logistic curve such as that of the population decay
ata, results in an invalid model. The meter data, however, were
enerated as before.

It is assumed that three years’ data has been collected (years
–2), and that reporting is to be done annually for M = {4, 5, 6, 7}.

n the project, 100,000 CFLs of 11W each replace their 60 W incan-
escent counterparts and the savings need to be determined. Past
eter samples were nm,0–2 = [68, 68, 68], and past survey samples
ere ns,0–2 = [250, 250, 100].

.3.1. Benchmark
The combined benchmark is calculated using a GA with the

ombination of the survey sampling and metering uncertainty
etermined as in (31), where the uncertainty in Er in (33) is cal-
ulated according to (1) combined with the meter measurement
rror. As in previous work on longitudinal survey sampling, the
urvey sampling benchmark was selected as a Jeffreys interval on
he proportion [79].

The benchmark is therefore an optimal sampling plan in which
rior data are not taken into account through the Bayesian method.

.3.2. Case Study 3: results and discussion
An efficient sampling plan is listed in Table 2, at a cost of

772240. A benchmark sampling plan is listed in Table 3, at a cost
f R1,128,940. The Bayesian method therefore achieves a saving of
0.13% for these cases.
The results for this case study are shown in Fig. 11. The top four
raphs show the individual metering and survey sampling plans
nd results, with the bottom graph combining these results into an
verall savings estimate.
ldings 154 (2017) 430–447 443

No reporting was deliberately specified for t = 3, to force the
algorithm to forecast for that year. The increase in uncertainty is
evident.

As would be expected, the algorithm favours oversampling on
the survey side to compensate for metering cost. Under present
assumptions, three hundred survey samples can be taken for the
cost of a single meter. However, metering cannot be completely
neglected. Furthermore, the additional information contained in
a sample decreases with the square root of the sample size. This
means that to double the amount of information available from a
sample of size n, a sample of size 4n, (or 2

√
n) will be needed. The

principle of diminishing returns therefore applies to large survey
sample sizes traded off against small metering samples. Although
an additional meter may  be more expensive, its relative contribu-
tion to uncertainty reduction is greater than the additional three
hundred surveys samples would be.

The method shows a clear advantage over existing methods.
Smaller sample sizes than existing sampling methods such as (1)
are needed. Not only does the DLM-DGLM method offer a more
complete consideration of sampling, but it does so using well-
established and mathematically consistent methods.

4.4. Case Study 4: combined stratified sampling design

To demonstrate the scalability of the method, a stratified sam-
pling design is considered. As before, both survey sampling and
meter placement are considered simultaneously over a number of
years. However, instead of considering a project with a single popu-
lation, a project with three different sub-populations is considered.
These sub-populations (or strata) can be specified according to
technology, application, location, or any criterion that would make
one group of units distinct from a second group of units. An exam-
ple is given by Ye [37] where 263,519 CFLs and 140,777 LEDs
were installed as retrofits in 45 provincial hospitals in South Africa.
No population decay data was  available for that project, and it
is assumed that it was imputed with the PELP data discussed
above. Two-stratum designs are relatively simple to solve by other
means as well, and so to illustrate the scalability of the proposed
method, a three stratum case along similar lines is considered
below. Although the numbers of units may  differ, all other aspects
are the same.

In stratum one, 50,000 incandescent lamps of 60 W each, burn-
ing for 3.11 h per day, are replaced by 11 W CFLs. In stratum two,
20 000 incandescent lamps of 60 W each, that burn for 2 h per day,
are replaced by 11 W CFLs. In stratum three, 30,000 incandescent
lamps of 100 W each, that burn for 4.11 h per day are replaced by
14 W CFLs. To provide realistic population survival curves, three
curves from the Lighting Research Centre’s Specifier Report on
CFLs are used [14,74]. The data were transformed from time-to-
failure data (i.e. “3.3 years to 20% failures”) to lamp survival (i.e.
“at 3 years, 18% had failed”, for example), since for M&V  studies
the monitoring interval is fixed. Curves with short, medium, and
long lives were selected. Data points D were then randomly gener-
ated as Dsim,t ∼ Binomial(n = ns t, p = 	t,sim), so that large sample size
results have less random scatter than small sample size results. It
was assumed that meter placement and surveying costs are con-
stant across the strata, although this could easily be changed if
there were a reason to do so. The method is unaltered from the
simple random sampling case, except for minor changes in the
fitness function to sum all three strata in terms of cost and uncer-
tainty.

Five years of sampling are assumed to have been conducted

in the past. Meter samples sizes were nm,0–4 = [50, 50, 40, 30, 20,
10] for each stratum. Survey sampling was  conducted based on
the decay rates of the individual populations. For stratum one, the
sample sizes were ns,0–4 = [100, 100, 100, 100, 200]. For strata two
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Table  2
Combined sampling plan for Case Study 2. Years beyond seven are not shown since no reporting was required, and no samples were taken.

Years 3 4 5 6 7

Survey 3448 7008 0 0 5568
Meters  0 50 39 90 24

Table 3
Benchmark of combined sampling plan for Case Study 2. Years beyond seven are not shown since no reporting was required, and no samples were taken.

Years 3 4 5 6 7

Survey 0 1189 3730 12842 7633
Meters 84 74 92 94 0
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ig. 11. Plot of combined survey sampling (top left) and metering (top right) for a
ottom. Dark blue indicates past samples, and light blue indicates planned future 

eferred  to the web  version of this article.)

nd three, the sample sizes were ns,0–4 = [50, 50, 75, 75, 100, 150].
he reason that the sample sizes increase for the survey sampling

s that it is critical to identify the point at which the population
urve changes from the plateau to the transition phase. Small sam-
le sizes during these years add disproportionate noise which leads
o inaccurate forecasts.

.4.1. Benchmark
Wherever possible, stratified sampling designs are preferable
o simple random sampling designs, because the intra-stratum
ariance is homogenised, leading to smaller sample sizes [70].
tratified designs should therefore be benchmarked against other
tratified designs. The most efficient stratified sampling design for
e population (Case Study 3), with the combined savings estimate over time at the
es. (For interpretation of the references to color in this figure legend, the reader is

normally distributed strata with unequal variances is the ‘Neyman
allocation’. If different costs are incurred for different strata, the
cost-weighted Neyman allocation should be used. These methods
cannot capture the complexities of the case at hand, however. To
provide a robust benchmark, we expand the benchmark method
described in Section 4.3.1 to the stratified case. In effect, a GA is
used to devise a stratified sampling design with all the complex-
ity of proposed method, except for the Bayesian forecasting and
dynamic model components.
4.4.2. Case Study 4: results and discussion
One efficient sampling result is shown in Table 4 and Table 5

and has a cost of R1,417,010. The benchmark is R1,918,350, rep-
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Table  4
Stratified survey sampling plans for Case Study 3. Benchmark (top), efficient (bottom).

Years 6 7 8 9 10 11 12

Stratum 1 886 45 923 132 440 0 849
Stratum 2 945 60 872 0 284 0 447
Stratum 3 783 11 189 23 363 0 183

Stratum 1 780 0 291 0 553 0 848
Stratum 2 692 0 238 0 141 0 100
Stratum 3 403 0 799 0 259 0 97

Table 5
Stratified meter sampling plans for Case Study 3. Benchmark (top), efficient (bottom).

Years 6 7 8 9 10 11 12

Stratum 1 49 0 108 0 146 0 159
Stratum 2 11 0 0 0 0 0 0
Stratum 3 26 0 61 0 22 0 26
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Stratum 1 40 0 62 

Stratum 2 0 0 0 

Stratum 3 35 0 41 

esenting a 26.55% saving. It is evident that the algorithm favours
lacing meters and doing surveys in strata where many lamps are

eft, as these have the highest contribution to overall energy use. In
ther respects, the result is similar to the simple random sampling
ase. The survey component is oversampled to offset the high cost
f metering.

The result shows the scalability of the method to multiple strata,
s well as the advantage of doing so. By stratifying the population,
maller sample sizes are needed. The noisiness of efficient samples
s also shown in the top right subplot of Fig. 12. Bear in mind that the
-axis is only between 12 and 14. Nevertheless, the random varia-
ion in relatively small samples (50–150 m)  does result in spurious
rends in the regression lines.

The overall energy savings curve (bottom subplot of Fig. 12),
s a smooth line in this case. However, if the different strata
ad significantly different population survival characteristics, a
ascade-profile would be observed.

Both metering and survey sample sizes seem to increase
owards the end of the study. That is because as the savings figure
ecomes smaller, the relative precision bound (in this case 10%)
ecomes more stringent. For example, 10% of 4 × 106 (year 6) is
uch larger than 1.5 × 106 (year 12). This is counter-productive:
uch of the project’s budget is spent on measuring small savings.

t would be more sensible to place the precision reporting require-
ent on the total savings to date figure, rather than the reported

nnual savings figure. It is possible that some jurisdictions have
mplemented such an approach, although we are not aware of such
ases.

The Neyman allocation method recommended by M&V  guide-
ines [70] is efficient and accurate, provided that only simple
tratified designs are attempted, without considering other fac-
ors such as different sources of uncertainty. However, the method
roposed in this paper is more flexible, and allows for complex,
eal-world stratified designs needed for most M&V  projects. The

ethod finds smaller sample sizes and distributes them intelli-
ently over time so that uncertainty constraints are adhered to,
hile reducing costs.

. Conclusion and recommendations
A Dynamic Linear Model (DLM) with Bayesian forecasting is
hown to provide superior uncertainty quantification and sample
esigns compared to standard and previously proposed methods,
0 116 0 109
0 0 0 0
0 30 18 0

and does so under more realistic conditions. The current method
combines the three significant M&V  uncertainty sources, namely
metering, sampling, and modelling uncertainty, into a coherent
energy model which can be used for quantifying uncertainty and
designing other types of M&V  studies. It is applied to a multi-year
M&V  lighting retrofit study, and found to reduce metering costs
by 40%. However, an investigation into the robustness of efficient
sampling plans is also conducted. It is found that efficient plans
yield valid results for only one half of possible scenarios, given the
assumptions in the case study. This is due to the lack of statistical
power in the standard M&V  sampling formula.

The DLM, in combination with a Dynamic Generalised Linear
Model (DGLM) can be used to model metering and surveying simul-
taneously, and is shown to reduce overall M&V  project costs by
almost 40% for the simple random sampling case, while still adher-
ing to the 90/10 reporting uncertainty requirement. This figure
depends on the cost profile of the specific project, however. The
method is then expanded to a stratified sampling case with three
metered and surveyed sub-populations, for which sampling and
metering costs are reduced by 26.6%.

DLMs are recommended as a useful alternative to standard lin-
ear regression for M&V, should reliable uncertainty quantification
be required. At the moment the model works with annual energy
data, as this is the frequency at which reporting is done most often.
However, DLMs can be extended to finer resolutions by taking sea-
sonality and periodicity into account. The addition of covariates
such as temperature may  then become necessary. It is possible to
add these. This further extension recommended for future research.

Because DLMs are updated on-line, and regression need not be
redone every time new data becomes available, it holds promise for
M&V  2.0, where M&V  big data need to be processed continuously to
give real-time feedback. DLMs provide the option to quantify uncer-
tainty while maintaining a relatively low computational overhead,
and its application in this domain should be investigated further.

Further research into robust M&V  sampling decision frame-
works is also recommended, since the disadvantages of the low
statistical power of the standard sampling formula proposed by
most M&V  guidelines are well illustrated in this study.

M&V  guidelines recommend the normal-distribution approach
to binomial sampling (useful for population survival survey analy-

sis). This approach has been shown to be inaccurate [79], and should
be amended to more accurate methods.

From a regulation perspective, it is recommended that statistical
accuracy constraints on reported savings pertain to the total savings
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o date, and not to the annual reported savings. This would make
 large difference to M&V  budgets, increasing project feasibility
ithout sacrificing overall project objectives.
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