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In this paper combined demand side management strategy for residential consumers is studied for five
households in South Africa. This study is twofold; the first part proposes an energy management system
that combines demand side management strategies with a view of minimizing the consumer’s cost and
reducing the power consumption from the grid. Appliance scheduling with a dedicated photovoltaic and
storage system under time-of-use tariff shows that customers can realize cost savings and the power
demanded from the grid is reduced by optimal scheduling of power sources. In the second part of this
study, a model is developed to investigate the joint influence of price and CO2 emissions. It is found that
CO2 emissions could give customers an environmental motivation to shift loads during peak hours, as it
would enable co-optimization of electricity consumption costs and carbon emissions reductions. It is also
demonstrated that the consumer’s preferences on the cost sub-functions of energy, inconvenience and
carbon emissions affects the consumption pattern. These results are important for both the consumer
and the electricity suppliers, as they illustrate the optimal decisions considered in the presence of
trade-offs between multiple objectives. A further study crucial to the consumer on economic analysis
of PV and battery system showed that the consumer could recoup their initial investment within 5 years
of their investment.

� 2016 Elsevier Ltd. All rights reserved.
Introduction

Demand side management (DSM) programs enable utility com-
panies to manage the user-side electrical loads and also consumers
to voluntarily lower their demand for electricity. Alternative to
connecting more conventional generation to the electrical power
system, DSM programs pay electrical energy users to lower their
energy consumption. The utilities around the world pay for DSM
capacity because it is generally economical and uncomplicated to
acquire than conventional generation.1 DSM is a set of flexible
and interconnected programs that permits customers a substantial
role in decreasing their general usage of electricity and shifting their
load during peak times and this fosters better efficiency and
operations in electrical energy systems.2 DSM activities, which are
classified into; energy response (energy efficiency and conservation
(EEC)) and demand response (DR), are becoming more popular due
to technological advances in smart grids and electricity market
deregulation [1,2].

Energy efficiency and conservation programs entail encourag-
ing customers to give up some of their energy usage [3–7] in order
to gain some economic benefits. The energy reduction can be
achieved through activities such as reducing the settings of
thermostat [8,9] or retrofitting projects [10–12].

Demand response (DR) on the other hand is a highly flexible
program that can be customized to the energy consumption and
financial objectives of participants. DR is defined as the reduction
in the consumption of electrical energy by customers from their
expected consumption in response to an increase in the price of
electrical energy or to incentive payments.3,4 DR options are gener-
ally categorized as price-based and incentive-based programs [13]. It
is expected that demand response will be an important stepping
stone towards practical deployments of the smart grid [14]. Residen-
tial demand response (RDR) is used as an energy DSM strategy to
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kthrough
ini.com/

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijepes.2016.01.016&domain=pdf
http://dx.doi.org/10.1016/j.ijepes.2016.01.016
http://www.enernoc.com/our-resources/term-pages/what-is-demand-side-management
http://www.enernoc.com/our-resources/term-pages/what-is-demand-side-management
http://africa-toolkit.reeep.org/modules/Module14.pdf
http://www.ferc.gov/eventcalender
http://www.capgemini.com/insights-and-resources/by-publication//
http://www.capgemini.com/insights-and-resources/by-publication//
http://dx.doi.org/10.1016/j.ijepes.2016.01.016
http://www.sciencedirect.com/science/journal/01420615
http://www.elsevier.com/locate/ijepes


Nomenclature

i appliances index
t an index of the time period
h an index of household
k an index of controllable appliances
A a set of all household appliances
H a set of all households
T the control horizon (24 h)
K a set of controllable appliances
Dt sampling time (15 min)
Pi rated power of appliance i (kW)
Nh

i duration of appliance i being on in household h (min)
qt time of use electricity price at time t (R)
Ch the maximum cost that household h is willing to pay (R)
dhi the on-time start of appliance i in household h
ehi the on-time end of appliance i in household h

ubl;h
i;t baseline commitment status of appliance i at time t in

household h
uh
i;t optimal commitment status of the ith appliance at time t

Eht state of the battery at time t in household h (kW h)
E0 the initial state of charge of the battery at time t
Emin minimum allowable battery capacity (kW h)
Emax maximum allowable battery capacity in (kW h)
Ph
b;t the battery charging power in household h (kW)

�Pb;t the battery discharging power in household h (kW)
gc battery’s charging efficiency

gd battery’s discharging efficiency
DOD depth of discharge
Ph
m;t grid power at time t in household h (kW)

Ph
flex;t power consumed by flexible appliances (kW)

Ph
inflex;t power consumed by inflexible appliances (kW)

Ph
ngt;t power consumed by night time appliances (kW)

Ph
A;t power demanded by all appliances excluding battery at

time t in household h (kW)
PD;t total power demanded from the grid by all at time t

(kW)
PD the total power demanded from the grid in a day (kW)
kc the carbon emission price (R/kg)
Mh

c mass of carbon dioxide emission in household h (kg)
agrid CO2 emission rate of the grid (kg/kW h)
w1;w2;w3 sub-objective functions weighting factors
DPV discounted present value
FV future value of the cash flow amount (R)
r discount or interest rate
n time before the future cash flow occurs (yr)
AEO annual energy output (kW h)
AEC annual energy consumption (kW h)
AES annual energy cost saving (R)
RandðRÞ South African currency (1Rand ¼ 0:080USD), as at 16

Mar. 2015.

D. Setlhaolo, X. Xia / Electrical Power and Energy Systems 79 (2016) 150–160 151
manage the peak load by use of time differentiated prices and incen-
tive payments to control the demand5 at household level. It has been
shown that the impact of RDR is significant and most appreciable at
aggregated households than individual household.6

The use of renewable energy sources (RES) has become inevita-
ble in today’s electrical energy system because of their sustainabil-
ity and their environmental advantage. In smart grid applications,
use of RES at residential level cannot be ignored as many countries
including South Africa, have rolled out such systems mainly
through roof-top connections. RDR models integrated with renew-
able energy sources is an active current global research area for
smart grid applications. Electricity use in a household is mostly
dependent upon the activities of the occupants and their associ-
ated use of electrical appliances [15–19], hence modeling such sys-
tems is complex. General models on household appliance
scheduling without storage or renewable energy generators are
presented in [20–26]. These models primarily present household
appliance scheduling under demand response programs for smart
grid applications. In [27,28], the scheduling problem is presented
with a storage system either as a battery or plug-in hybrid electric
vehicle (PHEV); the models of storage systems are also presented
in [29,30]. A number of times the application of photovoltaic
(PV) and battery storage is considered without appliance schedul-
ing, hence as optimal scheduling of power supply sources of vari-
ous combinations of PV/wind/diesel/battery system [31–38] on a
distribution network. However, the shortfall of these models is that
they are presented as a simplified problem as linear problem (LP)
or mixed integer programming (MIP) problems, thereby forgoing
some practical sub-functions and constraints. In our case we have
considered a nonlinear inconvenience cost sub-function and
5 USA Department of energy <http://energy.gov/oe/technology-development/
smart-grid/demand-response>.

6 The Battle Group, Quantifying demand response benefits, Energetics, 27 January
2007 <http://sites.energetics.com/MADRI/battlegroupreport.pdf>.
nonlinear constraints such as appliance’s continuous operation
and the battery’s exclusive operation.

South Africa has over the years implemented residential rooftop
PV systems; however grid connection of small-scale renewable
electricity generation is yet to be implemented because South
Africa’s national energy regulator (NERSA) is currently in the pro-
cess of developing the regulatory framework on small-scale
renewable embedded generation and the guidelines on electricity
reseller tariffs.7 Some of the challenges with small-scale renewable
generation grid tie include but not limited to reverse power flows and
metering tariff solutions. For this reason, in this work, we consider
households with dedicated solar PV and storage systems, without infeed
to the grid. Therefore the purpose of the PV is to charges the battery,
which will in turn discharge during peak times to relieve the grid.

In the second part of this study we develop a model to investi-
gate the joint influence of price and CO2 emissions in a DR program
and the motivation for this is that consumption habits may require
other incentives to change rather than the proposed financial
incentive. This joint influence is rarely covered by the literature.
Knowledge of carbon emissions cost can incentivise investment
in renewable energy at household level. By putting a price on car-
bon emissions, governments can save lives and protect communi-
ties from the threat of climate change.8 In [39], the problem is
presented as a multi-objective problem between two sub-functions
of cost minimization through appliance scheduling and carbon emis-
sions. The model is solved as a Markov-chain load model in order to
forecast the power demands of residential consumers and a schedul-
ing program for providing optimal schedules for smart appliances. In
this paper, the problem is presented as an LP problem, as both sub-
functions and constraints are linear. In [40], the thesis evaluates two
formulations to schedule smart home appliances with respect to
economic benefits and environmental benefits. The thesis also
7 NERSA, response benefits, Energetics, 27 January 2007 <http://www.nersa.org.za/>.
8 S. Blaine, SA first African country to introduce carbon emissions tax, BDLive, 28

February 2013 <http://www.bdlive.co.za/national/science/2013/02/28/>.

http://energy.gov/oe/technology-development/smart-grid/demand-response
http://energy.gov/oe/technology-development/smart-grid/demand-response
http://sites.energetics.com/MADRI/battlegroupreport.pdf
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focuses on the reduction of computational time for the scheduling of
smart home appliances as a mixed integer linear programming
(MILP) problem. In [40], the dynamic data for carbon footprint is
obtained from the Institution of Ecology at the Royal Institute of
Technology. In South Africa, however, there is currently a fixed rate
of carbon emissions. Ref. [41] presents a similar model to this work
where a solution is proposed that models a multi-carrier energy sys-
tem in a smart grid with appliances scheduling, gas and carbon emis-
sions. The goal is to find an optimal policy that achieves numerous
rewards over the long run, where the Monte Carlo method is used.
Unlike [40,41], we consider one-way flow of electricity from the grid
because of the reason in the foregoing paragraph. Also, our model is
presented as a more practical problem as mixed integer nonlinear
programming (MINLP) with all practical constraints and we also con-
sider the inconvenience brought by the suggested optimal solution
against the baseline appliance status.

When dealing with renewable energy sources (RES), the length
of time required to recover the cost of investing in them becomes
very interesting to consumers because a major obstacle to the
adoption of such systems is customer uncertainty on both technol-
ogy performance and its economic benefits [38]. The payback per-
iod of investing in such a system is an important determinant of
whether to undertake the project, as longer payback periods are
typically not desirable for investment positions. Hence, in this
work, economical analysis is also carried out to aid the consumer.
In literature, an extensive work on analysis of the renewable
energy sources from a technical and economical point of view
mainly looking at system sizing has been carried out [42–44].
Although techno-economic analysis of RES system is one of the
ongoing research topics, the work has been inclined towards stand
alone hybrid and non-hybrid [45,46] systems. Our work considers
optimal control of an integration of RES to the grid under DR pro-
gram which is hardly covered by the literature.

The purpose of this paper, therefore, is to develop an applicable
optimal control model of residential resources management for
smart grid applications. The paper studies coordinated scheduling
of appliances under demand response in multiple households with
a dedicated PV-battery system with grid supply under time differ-
entiated electricity tariffc. The importance of this is that in current
years, the use of RES is inevitable due to challenges attached to
conventional power generation sources and the short falls in
energy supply. Modeling such systems is a critical issue in smart
grid applications to allow practical models of electrical energy
usage patterns [47]. This paper advances previous research done
in [20,27,28] which considered optimal control of household appli-
ances while minimizing the energy and inconvenience costs in one
household with and without a storage system. However, it is
important to also give consumers information about reduction of
carbon emissions as this could give them an environmental moti-
vation to control their loads. For further environmental sustain-
ability, the use of PV systems is encouraged in many countries to
promote near net zero energy buildings. These motivations are also
in line with the current ongoing global environmental awareness
campaigns and trainings. Finally economic analysis is carried out
to determine the length of time required to recover the cost of
investing in the PV-battery system because a major obstacle to
the adoption of such systems is customer uncertainty on both tech-
nology performance and its economic benefits [38]. The above
points are the main contributions in this work and the adoption
of this optimal control strategy will go along way in conserving
the environment and ensuring energy security in developing
nations.

The remainder of this paper is organized as follows: Sec-
tion ‘‘Problem definition” focuses on defining the problem and
optimization model formulations. Section ‘‘Optimization model”
provides information on the data used in this study. The solution
methodology and simulation results are presented and discussed
in Section ‘‘Data”. Section ‘‘Solution methodology” covers the eco-
nomical analysis of such a system and lastly a conclusion and fur-
ther study are presented in Section ‘‘Simulation results and
discussion”.
Problem definition

We consider a set of households H with an index h as shown in
Fig. 1. The households under study are assumed to be connected at
a distribution bus Pbus. Fig. 2 shows the power flows in one house-
hold with a dedicated PV and storage system.

The nature of renewable energy sources makes it a challenge to
integrate them in a power system. The two main characteristics of
renewable energy sources that present challenges are their inter-
mittency and their unpredictability. The impact of both these char-
acteristics can be mitigated by the application of batteries in the
system. Each house has a dedicated PV-battery system and the
purpose of the paper is to formulate an optimal control model that
seeks to minimize energy cost, the inconvenience and carbon
emissions.

Optimization model

In this section mathematical model is formulated for the opti-
mal control of the system presented in Section ‘‘Problem defini-
tion”. This model is an enhancement of our previous work [27]
with augmented features of; multiple households rather than a
single household, consideration of carbon emissions for the co-
optimization of the energy and carbon emissions, PV system, and
economic analysis which is performed in Section ‘‘Economic anal-
ysis”. The formulations are presented as model objective function
followed by formulation of constraints.

Model objective function

In order to obtain an optimal operational scheme that balances
the objectives in (1), a weighting method is employed to integrate
the sub-objectives into one. The advantage of this approach is that
the consumer has an option to choose the objective to use to con-
trol their consumption. Each household seeks to minimize the fol-
lowing combined cost function:

min J ¼ w1Je þw2JI þw3Jc; ð1Þ
where w1;w2 and w3 are the weighting attached to these objectives

according to the consumer’s preference, and
P3

j¼1wj ¼ 1. Je is the
energy cost function as in (2), JI is the inconvenience cost function
shown in (4) while Jc is the carbon emissions cost objective function
given in (5).

Energy cost model
The energy cost objective function (2) minimizes the cost of

energy consumed by households through optimal scheduling of
appliances and the battery using TOU electricity tariff.

Je ¼ qtDt
XH
h¼1

XT
t¼1

Ph
inf ;t þ Ph

ngt;t þ
XK
k¼1

Ph
k;tu

h
k;t þ gcP

h
b;t

 !
ð2Þ

Ph
k;t P 0; qt > 0; k ¼ 1; . . . ;K; t ¼ 1; . . . ; T; h ¼ 1; . . . ;H;

uh
i;t ¼

1; when appliance i is on in household h at t;
0; when appliance i is off in household h at t:

�



.   .   .h1 hH

i1 . . . iI i1 . . . iI

Pbus,t

Fig. 1. Problem layout.
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Fig. 2. Power flows in a household.
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Ph
inf ; P

h
flex and Ph

ngt are appliance classifications denoting inflexi-
ble, flexible and night-time load, respectively, and each household
consists of these three types of loads. Flexible loads can be adjusted
according to the consumer’s preferences and night-time loads can
be committed during the night (22:00–0:500), while inflexible
appliances are non-shiftable. k is an index of controllable
appliances.

Inconvenience cost model
The scheduling inconvenience, I, minimizes the disparity

between the baseline and the optimal schedule [27]. The consumer
therefore also minimizes the inconvenience given by:

Ih :¼
XT
t¼1

XK
k¼1

ðubl;h
k;t � uh

k;tÞ
2
; ð3Þ

JI ¼ qtDt
XH
h¼1

XT
t¼1

XK
i¼1

ðubl;h
k;t � uh

k;tÞ
2
: ð4Þ

The baseline ubl;h
k;t of controllable appliances is obtained from the

measured results as explained in data section.

Carbon emissions cost model
The carbon emissions model is the carbon footprint of the con-

sumer from the grid electricity usage offset by the injection of
emission-free electricity from the PV battery system. The objective
function is tominimize the cost of carbon emissions by a household.

Jc ¼
XH
h¼1

XT
t¼1

kCM
h
C;tDt; ð5Þ
where Jc is the CO2 emission cost, kC , is the emission price andMh
C;t is

themass of CO2 emission in kilogram, which is computed as follows;

Mh
C;t ¼

XA
i¼1

Ph
i;t þ Ph

b;t � Ph
b;t � Ph

pv;t

 !
� agrid; ð6Þ

and with Ph
b;t ¼ Ph

pv;t , therefore, (6) reduces to;

Mh
C;t ¼

XA
i¼1

Ph
i;t � Ph

b;t

 !
� agrid; ð7Þ

where agrid is the CO2 emission rate of the grid, which is 0.99 kg of
CO2/kW h for South Africa’s utility,9 and is charged at kC ¼ R0:1323/kg.
Note that the charging of the battery is taken care of by the PV
system.

Model constraints

Battery model
The PV-battery system is considered in this work because of

their numerous benefits to both the consumer and the utility.
The PV system typically has a peak generation around mid-day,
which generally does not align well with on-site demand with
more consumption in the evening. Storage at the PV system is used
to store this energy. PV energy, like other renewable energy
sources, is subject to rapid weather variations, and the resultant
of this is significant grid instability. In this work, storage system
is optimally charged and discharged to compensate for these fluc-
tuations. This improves the interconnection of PV systems to the
grid, and support grid stability. The battery model is presented
with general battery dynamics presented by the battery’s state of
charge (SOC) [27,33]. The battery energy storage system is charac-
terized by continuous charging and discharging power, therefore

Ph
b;t and �Ph

b;t are considered continuous variables at time step t.

Et ¼
XH
h¼1

ðE0 þ Dt
Xt
c¼1

ðgcP
h
b;c � gd

�Ph
b;cÞÞ;1 6 t 6 T; ð8Þ

where Et is the SOC of the battery, E0 is the initial SOC of the battery,

whereas gc

Pt
c¼1P

h
b;cDt and gd

Pt
c¼1

�Ph
b;cDt are the battery energy dur-

ing the charging and discharge period, respectively.
The following constraints are applied to the battery model:

Emin 6 Eh
t 6 Emax; t ¼ 1; . . . ; T; ð9Þ

Emin ¼ ð1� DODÞEmax; ð10Þ

Ph
b;t � �Ph

b;t ¼ 0; t ¼ 1; . . . ; T; ð11Þ
where (9) is the battery energy capacity limits, (10) is the relation

between Emin and Emax through the battery’s depth of discharge
(DOD) that describes how deeply the battery is discharged. (11) pre-
sents the exclusive operation of the battery because the battery
cannot charge and discharge at the same time. This constraints also
allows the battery to be in idle mode.

Power flows
The total power consumed by a set of all appliances (A) in one

household at time step t is given by:XA
i¼1

Ph
i;t ¼ Ph

inf ;t þ Ph
flex;t þ Ph

ngt;t; ð12Þ

Ph
inf ;t ; P

h
flex;t; P

h
ngt;t

� �
P 0;
Eskom Integrated report,2014 <http://http://www.integratedreport.eskom.co.za//>.

http://http://www.integratedreport.eskom.co.za//


Table 1
Flexible appliances data.

Index (i) Appliance Rated power Pi (kW)

h1 h2 h3 h4 h5

Flexible
1 Kitchen lights 0.11
2 Laundry room lights 0.11
3 Microwave 0.8 1.5 0.6 1.2 0.6
4 Stove 2.2 2.0 2.4 2.0 2.0
5 EWH 2.0 2.0 2.0 2.0 2.0
6 Washing machine 2.0 2.4 2.2 2.0 2.0
7 Clothes dryer/spin 2.0 0.6 2.0 0.6 0.6
8 Vacuum cleaner 0.8 0.8 0.4 0.8 0.35
9 DVD player 0.025 0.025 0.025 0.015 0.015

Inflexible
10 TV room lights 0.11
11 Refrigerator 0.35 0.4 0.25 0.35 0.15
12 Television 0.133 0.1 0.25 0.1 0.09
13 Decoder 0.07

Night loads
14 Breadmaker 1.5 1.5 1.6 1.2 -
15 Dishwasher 1.5 1.2 1.2 1.5 1.5 -
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while the total power demanded by a household h at each time step
is given by,

Ph
t ¼

XA
i¼1

Ph
i;t þ Ph

b;t; ð13Þ

and Ph
b;t is the power consumed by the battery while charging at t.

The total power demanded by the load in household h at time

t; Ph
t , is satisfied by the battery power output Ph

b;t , grid power

(Ph
m;t) and the output (Ppv ;t) charges the battery, hence the power

balance equation is given by,
�Ph
b;t þ Ph

m;t ¼ Ph
t ; ð14Þ

where

0 6 Ph
m;t 6 Pmax

m ; ð15Þ
The grid’s power upper bound is estimated as,

Pmax
m ¼ 230V � 60A � 0:75 ¼ 10:35 kW, with nominal single phase

voltage and current ratings of 230 V and 60 A, and an assumed
power factor of 0.75.

0 6 Ph
b;t 6 Ppv;t: ð16Þ

Constraint (16) bounds the battery charge to the PV output. The
total power consumption in each household in a day is given by
(17). k is the controllable appliance index and K is a set of control-
lable appliances. Pk;t is the rated power of controllable appliance k
at time t. uh

k;t is the commitment status of appliance k in household
h at time t and qt is the TOU electricity price at t.

Ph ¼
XT
t¼1

Pinf ;t þ Pngt;t þ
XK
k¼1

Pk;tuk;t þ gcPb;t

 !
: ð17Þ

The aggregated consumption as seen by the distribution bus
from a set of serviced households is given by;

Pbus;t ¼
XH
h¼1

XT
t¼1

Ph
inf ;t þ Ph

ngt;t þ
XK
k¼1

Pk;tuh
k;t þ gcP

h
b;t � gdP

h
b;t

 !
: ð18Þ

Note that the battery’s power during charging is met by the PV.
The individual household energy consumption at time step t is
capped to the capacity of the distribution board installed in the
house as in (19).

Ph
inf ;t þ Pngth ;t þ

XK
k¼1

Pk;tuh
k;t þ gcPb;t 6 Pmax

m : ð19Þ
10 Eskom tariffs and charges 2011/2012 <http://eskom.com>.
Appliance operational constraints
Given the predetermined parameters of the controllable appli-

ances; dh
k ; e

h
k and Nh

k , as the beginning and end of time to which
each flexible appliance is to be scheduled, and duration required
to finish the normal operation of each controllable appliance in
household h, the following; inequality (20) holds.

Xehk
t¼dhk

uh
k;t ¼ Nh

k ; 8h; 8k; ð20Þ

where

Nh
k 6 ðehk � dh

kÞ; ð21Þ
Xehk
t¼dhk

uk;t � uk;ðtþ1Þ � uk;ðtþ2Þ � � � uk;ðtþðNk�1ÞÞ ¼ 1; t ¼ 1; . . . ; T; ð22Þ

u2;t � u6;t � u7;t ¼ 0; ð23Þ
d6 þ N6 6 d7þ1; ð24Þ
0 6 Pk;t 6 Pmax

k ; ð25Þ
where nonlinear constraint (22) models the non-interruptible oper-
ation of appliances. (23) and (24) are coordination constraints. (23)
coordinates lighting with the appliances used in their respective
rooms, using the the laundry room as a reference. The time the
laundry lights are off is when neither washing machine nor drier
is on. (24) ensures that, for example, the dryer follows the washing
machine. The numerical indices in equality (23) and inequality (24)
correspond to appliance index as provided in Table 1. The laundry
room lights has index i ¼ 2, washing machine, i ¼ 6, and dryer has
index i ¼ 6. (25) is the appliance power consumption limit.

XT
t¼1

Ph
inf ;t þ Ph

ngt;t þ
XK
k¼1

Pk;tuh
k;t þ gcP

h
b;t

 !
¼ Ch: ð26Þ

This constraint models the maximum cost that each household
is willing to incur within the control horizon. The parameter C is
obtained from the consumer’s bill and provided in the data section,
Table 2.

The formulated model is MINLP optimal control problem with

control variables uh
i;t ; P

h
b;t ; P

h
b;t , and Ph

m;t .

Data

Five typical apartments in South Africa have been used as a case
study which are connected to a common point as shown in Fig. 1.
Each household has a dedicated PV and battery system.

Tariff

The tariff used is based on South Africa’s TOU Homeflex 1 tariff
structure for residential consumers. The Homeflex 1 tariff has five
charge components10 as service charge, network charge, environ-
mental levy, peak charge and off-peak charges. We model these into
fixed and variable charges as follows:

qt ¼ FC þ VC ;

where FC is a fixed charge and consist of service charge, network
charge and environmental levy, while VC are peak and off-peak
energy charges.

FC ¼ Rð2:96þ 3:68þ 2:00Þ=100;

http://eskom.com


Table 2
Appliance baseline data for flexible appliances.

Appliance Duration (dk; ek), Run-time Nk (min)

h1 h2 h3 h4 h5 h1 h2 h3 h4 h5

Kitchen lights As kitchen appliances
Laundry room lights As laundry appliances
Microwave 06:00–21:00 04:00–18:00 08:00–11:00 05:30–09:00 01:00–19:00 6 8 6 6 9
Stove 06:30–15:00 06:00–15:00 08:00–11:00 05:30–09:00 01:00–15:00 54 45 48 62 36
EWH 06:00–15:00 09:15:00 23:00–04:00 16:00–23:00 – 180 120 180 180 180
Washing machine 10:00–15:00 18:00–22:00 15:00–17:00 16:00–22:00 01:00–19:00 60 60 60 60 60
Clothes dryer 10:00–15:00 18:00–22:00 15:00–17:00 16:00–22:0 01:00–19:00 30 30 30 30 15
Vacuum cleaner 10:00–18:00 09:00–12:00 08:00–15:00 08:00–14:00 01:00–19:00 12 24 16 18 10
DVD player 10:00:23:00 08:00–23:00 08:00–23:00 08:00–22:00 01:00–19:00 120 180 120 120 120
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and

VC ¼
R1:7487; peak time; t 2 ½07 : 00;10 : 00Þ; ½18 : 00;20 : 00Þ
R0:5510; off � peak time; t 2 ½00 : 00;07 : 00Þ; ½10 : 00;18 : 00�;

½20 : 00;00 : 00�:
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Fig. 3. Baseline demand for each household.
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Fig. 4. Aggregated baseline demand for five households.

Table 3
Other data.

Household h1 h2 h3 h4 h5

Daily maximum bill (C) (R) 15.90 23.08 12.16 22.57 10.23

Table 4
Battery data.

Battery capacity 10 kW h
gc 75%
gd 100%
DOD 50%
Appliance data

Appliance maximum rated power is specified by the appliance
manufacturers and can be obtained from the appliances. One
month’s weekday data on appliance usage in the households under
study were collected. Table 1 shows common flexible, inflexible
and night-time loads. Different power ratings are due to different
appliance brands and sizes. It must be noted that depending on
the type of consumer, flexibility of appliances differs as shown in
Table 2 for the duration at which appliances may be committed
and this is also depicted in Fig. 3. In Table 2, for example; stove
usage commitment time ranges varies in all households. House-
hold 1, h1, proposes to commit stove usage any time from 06:00
to 21:00 making them more flexible on this appliance whereas
h4 is less flexible compared to the former with time ranges of
05:30–09:00. One of the practical reasons is that household with
non-working family members may be willing to have a less strin-
gent/time scheduling horizon while working class families or fam-
ilies school-going children, may have to cook within specified
times. This observation motivates for further research into actual
classification of appliance usage based on family types. Table 2 also
shows the measured maximum run-time, Nk, of appliance k.

Individual households shows that most of them portray differ-
ent consumptions; h1 displays different consumption behavior
with one evening peak. However, household h5 is the lowest con-
sumer with missing data for EWH which was non functioning at
a time of data collection.

Based on the data obtained, we estimated the percentage of

flexible load in each household as
PT

t
Pflex;tPT

t
PA;t

� 100, and it is found that

it ranges from 20% to 42%. Fig. 4 shows the baseline load profile for
aggregated total load of the five households and the load for inflex-
ible and night loads. It is observed that the baseline has three
peaks, morning, lunch and evening peak, with morning as the high-
est peak at 09:00–10:00. This shows that the highest consumers
are stay-home families, as also revealed in Fig. 3 with h2, h1 and
h3 as morning peak high contributors.

Table 3 provides data for the maximum budget that each house-
hold is willing to incur in the study horizon. This data is obtained
from the bill of each household (see Table 4).

Ppv and battery data

Each household is assumed to have the same battery and PV.
The battery bank data is provided in Table 2 and the data for PV
is shown in Fig. 5; this data is adopted from [31]. The battery
capacity is an assumed value of 10 kW h. The minimum discharge
capacity of 50% has been shown to sustain the lifespan of the
battery [32].
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Fig. 5. Simulation results for h3 with w1 ¼ 0:2;w2 ¼ 0:8.
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Solution methodology

The MINLP optimization problem (1)–(26) is solved with an
optimization solver, SCIP, available in the Matlab interface OPTI
toolbox. The simulation study is performed for 24 h at a sampling
time of 15 min. SCIP is currently one of the fastest non-commercial
solvers for MIP and MINLP. It is also a framework for constraint
integer programming and branch-cut-and-price.11,12 It uses Interior
Point Optimizer (IPOPT) and SoPlex as nonlinear and integer algo-
rithms. SoPlex is an advanced implementation of the revised simplex
algorithm for solving linear programs. It features preprocessing,
exploits sparsity, and provides primal and dual solving routines. It
is the default LP solver in SCIP. IPOPT is an open-source solver for
large-scale nonlinear programming. IPOPT implements a primal–d-
ual interior point method and uses line searches based on filter
methods.7,13 The solver offers solutions to problems of the form:

min f ðxÞ; s:t:;

Ax 6 b;Aeqx ¼ beqðlinear constraintsÞ
cðxÞ 6 d; ceqðxÞ ¼ deqðnonlinear constraintsÞ
Lb 6 x 6 Ubðvariable boundsÞ
xi 2 Zðinteger decision variablesÞ
xj 2 f0;1g; i– jðbinary decision variablesÞ:

8>>>>>><
>>>>>>:

The measured results are compared with simulation results to
demonstrate the effectiveness of the algorithm.
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Simulation results and discussion

This section presents simulation results of two cases. Case 1
demonstrates an energy management system that combines DSM
strategies with a dedicated PV and storage system under TOU tariff.
Case 2 presents the results of an investigation on the joint influ-
ence of dynamic electricity price and CO2 emissions in a DR pro-
gram. These two cases give two typical scenarios for residential
houses with DR.

Case 1

To make this case concise, we start looking at one
household then aggregated households with an objective;
11 SCIP: Solving Constraint Integer Programs. <http://scip.zib.de/>.
12 T. Berthold, et al., Solving mixed integer linear and nonlinear problems using the
SCIP Optimization Suite, ZIB-Report 12–27 (July 2012), Takustrae 7 D-14195 Berlin-
Dahlem Germany. <file:///C:/Users/User/Downloads/ZR-12–27%20(1).pdf>.
13 Opti Toolbox solvers. <http://www.i2c2.aut.ac.nz/Wiki/OPTI/index.php/Solvers>.
min J ¼ w1Je þw2JI where w1 þw2 ¼ 1. The purpose of this
approach is for the consumer to appreciate the trade off between
the energy cost and the inconvenience in the presence of a PV-
battery system. This is in contrast to our previous work [27] where
we did not consider the PV. Simulation results are given at
assumed consumer’s preference of w1 ¼ 0:2 and w2 ¼ 0:8.

The results in Fig. 5 show one household’s results with the bat-
tery’s SOC, power flows and Ppv . The battery charges at hour 11; at
that time it is charged by the PV power. Ph; �Pb and Pm are the power
consumed in the household according to (17) but for h3, power dis-
charge from the battery and power from the grid, respectively. The
morning household load (05:00–09:00) is covered by the grid
power as at that time the grid power is cheaper to acquire. The bat-
tery discharges at a time when the load within the house is high.
The baseline cost of flexible appliances excluding the battery is
R28.96. The cost due to load shifting, battery and PV is R20.03, a
cost saving of 30.84%. This is comparably a significant amount of
savings compared to previous work where the savings without
PV-battery system reported are in the ranges of 15–25% [27,20].
Note that the contribution share between the sub-costs is sensitive
to the weighting factors as demonstrated in case 2, therefore the
consumers’ preferences affect the savings. The inconvenience cost
at these weighting factors however is R11.41, which one can argue
that it is a relatively large value that may not be economical to the
electricity suppliers. The power is reduced from 6.794 kW at hour
19 to 4.58 kW owing to appliance shifting and battery discharge.

Fig. 6 shows the results of the aggregated households assumed
to have the same weighting factors of w1 ¼ 0:2 and w2 ¼ 0:8. The
baseline power as seen by the distribution bus and the optimal
power seen by the same bus after optimal control: shows a total
power reduction seen by the distribution bus from 205.50 kW to
176.44 kW, a reduction of 14%. A total energy cost reduction from
R164.18 to R139.21 of 15.21% is realized by aggregated house-
holds. The DR combined with PV and battery show that the aggre-
gated strategy can reduce the power demanded from a distribution
system by a significant amount and thus relieve the power system
network and according some residential members significant col-
lective savings. It must be noted in Fig. 6 that the maximum peak
present in the morning still occurs after optimal control because it
appears during off-peak and this also observed for the mid-day
peak. In addition, this is due to unavailability of PV power where
the battery starts charging at around 11:00. However, in the eve-
ning peak a significant reduction is realized, since the TOU tariff
is high during those times and the battery is fully charged. This also
shows the effectiveness of the optimizer in scheduling both appli-
ances and the battery.
0 5 10 15 20 25
0

Time (hours)

Fig. 6. Simulation of aggregated households for case 1.

http://scip.zib.de/
http://www.i2c2.aut.ac.nz/Wiki/OPTI/index.php/Solvers


Table 5
Effect of weighing factors on energy (Je), inconvenience (JI) and carbon emissions (Jc)
costs for a typical household.

Scenario w1 w2 w3 Je (R) JI (R) Jc (R)

1 0 0 0 21.76 10.31 3.53
2 1 0 0 18.60 9.45 3.52
3 0 1 0 27.92 4.89 3.88
4 0 0 1 27.89 10.42 3.40
5 0.2 0.4 0.4 21.44 5.21 3.46
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Case 2

In this case we consider carbon emissions with the objective
min J ¼ w1Je þw2JI þw3Jcwhere w1 þw2 þw2 ¼ 1. We investigate
the joint influence of dynamic electricity price and CO2 emissions.
As in case 1, we also look at one typical household with typical
controllable loads. We compare two scenarios with different pref-
erences. Fig. 7 shows the results of the same household in case 1
with w1 ¼ w2 ¼ w3 ¼ 0, where the consumer does not place value
on any of the sub-functions. In Fig. 7, the battery charges between
07:00–10:00 and significant discharge of the battery is noticed at
18:00 and a slight discharge late at 23:00. This demonstrates the
effectiveness of the optimizer where most contribution from the
battery is needed during peak times. The power discharge from
the battery is shown by �Pb.

Simulation results in Fig. 8 are given at w1 ¼ 0;w2 ¼ 0 and
w3 ¼ 1, that is, the case of an environmentally sensitive consumer
places high importance on carbon emissions. Both figures show
that for different preferences, the consumption profile is different,
hence the costs also vary accordingly.

The effect of different combinations of the weighting factors on
costs, considering extreme cases, is summarized in Table 5. It is
demonstrated that the consumer’s preferences on the cost sub-
functions of energy, inconvenience and carbon emissions affects
the consumption pattern. These results are important for both
the consumer’s cost and environmental impact reduction and the
electricity suppliers’ main interest of achieving both power usage
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Fig. 7. Simulation results for h3 with w1 ¼ w2 ¼ w3 ¼ 0.
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Fig. 8. Simulation results for h3 with w1 ¼ w2 ¼ 0 and w3 ¼ 1.
reduction and mitigation of environmental impact, as they illus-
trate the optimal decisions considered in a case of multiple sub-
objectives.

In Table 5, five cases of preferences are presented, of which four
are extreme and for comparison, an additional non-extreme sce-
nario is included. In the first scenario, the consumer does not place
any priority on any of the cost sub-functions. In the second scenar-
io, the consumer’s priority is the energy cost and he does not care
about the other two. The results concur with practical expectation
in that; where the consumer places more value, the respective cost
will be minimal. High value on energy cost, scenario 2, gives the
lowest cost of R18.60, while high value on inconvenience, scenario
3, gives the lowest inconvenience cost of R4.89 and high value on
carbon emissions cost gives the lowest value of R3.40. Scenario 5 is
a typical non-extreme preference with in-between values.

The simulation results for the aggregated households h1 to hH

show carbon emissions saving under the weighting factors that
are assumed to be same for all households. The baseline aggregated
carbon emissions is 203.44 kg while the optimal solution gives a
less carbon emission of 174.67 kg, 14.14% savings. Carbon costs
are respectively R26.91 and R23.11. This shows that carbon emis-
sions could give customers an environmental motivation to shift or
reduce loads during peak hours, as it would enable co-optimization
of electricity consumption, inconvenience and carbon emissions
costs reductions. This could also be used to motivate consumers
to opt for more usage of renewable resources.
Economic analysis

Since the problem modeled in this work entails combined DSM
strategies, It is assumed that the consumer does not bear the cost
of demand response which is usually covered by the utility, there-
fore, this economical analyses is performed on the usage of PV and
battery system on such a strategy.

There are different methods used to perform economic analysis
of systems in the literature. These methods include but not limited
Table 6
Approximate cost of components.

Component Approximate cost (R)

Solar modules 59550.00
Deep cycle battery 11559.00
Inverter and accessories 7172
Energy controllers 9557
Installation cost 5430
Sub total 93,268

Operation and maintenance cost (@2.5% fixed annual) 2331.70
TOTAL 95600.00

Table 7
Energy cost saving due to PV-battery system for h3.

AEO (kW h/yr) AEC (kW h/yr) %S AES (R)

2086 7080 0.2946 28 582



Table 8
Payback period.

Years 0 1 2 3 4 5 6

Capital cost (93 268.00)
O&M (@2.5% capital cost) (2331.70) (2331.70) (2331.70) (2331.70) (2331.70) (2331.70)
Optimal benefit 28 582 28 582 3 28 582 28 582 28 582 28 582

(93 268.00) 26 250.3 26 250.3 26 250.3 26 250.3 26 250.3 26 250.3
Discount factor @5.75% 1 0.95 0.89 0.85 0.80 0.576 0.72
Discounted cash flows (93 268.00) 24 822.98 23 473.27 22 196.94 20 990.02 19 848.71 18 769.47

Discounted PBP Years D-cashflows C-cashflows

0 (93 268.00) (93 268.00)
1 24 822.98 (68 445.02)
2 23 473.27 (44 971.76)
3 22 196.94 (22 774.81)
4 20 990.02 (1 784.80)
5 19 848.71 18 063.92
6 18 769.47 36 833.39

Payback period 4.09 years
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to net present value (NPV), pay back period (PB) and discounted
present value (DPV) [48,49,11,7,50–52]. In this paper we adopt
the DPVmethod provided in14 which is also presented in [48] to cal-
culate the length of time to recoup an investment on usage of PV and
battery system based on the investment’s discounted cash flows. By
discounting each individual cash flow, the discounted payback per-
iod takes into consideration the time value of money because the
approach first determines the present value of the future cash flows
for the given investment and then uses these discounted values to
determine the payback period.

DPV ¼ FV
ð1þ rÞn ; ð27Þ

where FV is the future amount of money that must be discounted, n
is the number of compounding periods between the present date
and the date where the sum is worth FV, and r is the discount or
interest rate given as 5.75% for the current month, July 2015 as
South African inflation rate.15 In order to make economical analysis
of the PV-battery system, certain assumptions are made.

The PV and battery costs entails capital cost, operational and
maintenance (O&M) costs as shown in Table 6. Since our study
horizon is one day we annualize our costs.

In [50,53–55], the O&M cost of a PV-battery has been estimated
to a specific annual value or some online sources estimate the
annual O&M cost to be around 2–2.5% of capital cost and in this
work we use less conservative value of 2.5%. Calculation of savings
brought by the optimal use of the PV-battery system is performed
as follows.

Although practically, daily energy consumptions are variable
depending on the behavior of the consumer in terms of the way
they commit their appliances, in this work, however, we estimate
an annualised energy from the PV-battery system utilized by the
consumer as the energy output to consumer (AEO) with the
assumption that all days are identical. This is computed using
equality (28);

AEO ¼
XT
t

�Pb;t � Dt � 365: ð28Þ

Then equality (29) is used to determine the percentage energy
saving that is brought by the use of PV-battery system;
14 Discounted present value calculator, <http://www.aqua-calc.com/page/dis-
counted-present-value-calculator>.
15 Current market rates, South African reserve bank, July 2015, <http://www.
resbank.co.za/Research/Rates/Pages/CurrentMarketRates.aspx>.
%S ¼ AEO
AEC

; ð29Þ

the percentage of the consumers electric bill that is covered by the
PV-battery system is %S; obtained from the system’s annualised
energy output, AEO and annualised energy consumption AEC. AEC
is obtained from the monthly electric bill from municipality which
coincides with the measured values determined from Fig. 4. The
annualised cost savings (AES) due to PV-battery system is deter-
mined from the product of the annual bill charge and %S.

AES ¼ %S � AEC � n: ð30Þ
Note that the monthly bill charge of R1:36/kW h for South Africa

is used as a flat electricity price prior to DR, otherwise n ¼ qt . The
energy cost saving for a typical household, say h3 is shown in
Table 7.

The results in Table 7 show that the use of PV-battery system
yields an annual energy cost saving of R28,582.00 to the consumer.
This is within reasonable values of 20–45% reported in most liter-
ature. Then this value of AES is used as the optimal benefit of using
PV-battery system in calculating the discounted present value.
Table 8 shows the revenue for h3 from solar energy sales and the
household’s benefit on cost savings emanating from the proposed
optimal control strategy.

As can be seen in Table 8, the assumptions made are that the
operation and maintenance costs and optimal benefits are constant
throughout the projected years into the future. This assumption
implies that exclusion of weighted sum of capital cost the pay back
period is reduced. It can be seen from the table that in this case, the
payback period of h3 is 4.09 years. It is however acknowledged that
this is an estimate based on the assumptions made. A more precise
results could be obtained from the actual sizing of the PV-battery
system and consideration of the weighted average cost of capital
(WACC) which cannot be reliably estimated at this point.

Conclusion

Optimal control strategy through optimal scheduling of
resources during a demand response program has been studied
in this paper. In this study, the first part, proposes an energy man-
agement system that combines DSM strategies with a view to min-
imize the consumer’s cost and reduce the power consumed from
the grid, thereby promoting power system stability. A combination
of appliance scheduling, dedicated PV and a storage system under
TOU tariff shows that power drawn from the distribution bus
reduces by 14% while cost savings are 15.21%. This strategy of DR

http://www.aqua-calc.com/page/discounted-present-value-calculator
http://www.aqua-calc.com/page/discounted-present-value-calculator
http://www.resbank.co.za/Research/Rates/Pages/CurrentMarketRates.aspx
http://www.resbank.co.za/Research/Rates/Pages/CurrentMarketRates.aspx
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combined with PV and battery shows that the aggregated strategy
can reduce the power demanded from a distribution system by a
significant amount and thus relieve the power system network
and afford some residential members significant collective savings.
The second part of this study shows that consumption habits may
require other incentives to change in addition to the proposed
energy and inconvenience cost. The results for the aggregated
households h1 to hH show carbon emissions reduction from
203.44 kg to 174.67 kg was achieved. This shows that carbon emis-
sions could give customers an environmental motivation to shift or
reduce loads during peak hours, as it would enable co-optimization
of electricity consumption, inconvenience and carbon emissions
costs reductions. Knowledge on carbon emissions can incentivize
investment in renewable energy at household level. It is also
demonstrated that the consumer’s preferences on the cost sub-
functions of energy, inconvenience and carbon emissions affects
the consumption pattern. These results are important for both
the consumer and the electricity suppliers, as they illustrate the
optimal decisions considered in the presence of trade-offs between
conflicting objectives. In the measured data, it was however dis-
covered that the level of flexibility on the ‘assumed’ controllable
appliances may vary between households. Economical analysis
on consideration of PV and battery system has also been studied
where it has been shown that the payback period 4.09 years has
been estimated based on the assumptions made.
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