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a b s t r a c t

This paper presents a review of the research of the optimal power dynamic dispatch problem. The dynamic
dispatch problem differs from the static economic dispatch problem by incorporating generator ramp rate
constraints. There are two different formulations of this problem in the literature. The first formulation
is the optimal control dynamic dispatch (OCDD) where the power system generation has been modeled
eywords:
ynamic economic dispatching
ower generation

as a control system and optimization is done in the optimal control setting with respect to the ramp rates
as input variables. The second one is a later formulation known as the dynamic economic dispatch (DED)
where optimization is done with respect to the dispatchable powers of the committed generation units.
In this paper we first outline the two formulations, then present an overview on the mathematical opti-
mization methods, Artificial Intelligence (AI) techniques and hybrid methods used to solve the problem
incorporating extended and complex objective functions or constraints. The DED problem in deregulated

repo
electricity markets is also

. Introduction

The problem of allocating the customers’ load demands among
he available thermal power generating units in an economic,
ecure and reliable way has received considerable attention since
920 or even earlier (see the reviews in [1,2]). The problem has been
ormulated as a minimization problem of the fuel cost under load
emand constraint and various other constraints at a certain time
f interest. It has been frequently known as the static economic
ispatch (SED) problem. SED can handle only a single load level at
particular time instant. However, SED may fail to deal with the

arge variations of the load demand due to the ramp rate limits of
he generators, moreover, it does not have the look-ahead capabil-
ty [3,4]. Owing to the large variation of the customers load demand
nd the dynamic nature of the power systems, it necessitated the
nvestigation of optimal dynamic dispatch (ODD) problem. ODD is
n extension of SED to determine the generation schedule of the
ommitted units so as to meet the predicted load demand over a
ime horizon at minimum operating cost under ramp rate and other
onstraints. ODD has a look-ahead capability which is necessary to

chedule the load beforehand so that the system can anticipate sud-
en changes in demand in the near future. The ramp rate constraint

s a dynamic constraint which is important to maintain the life of
he generators [5]. Some coupling constraints, especially ramp rate
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constraints, make the solution of the ODD problem more difficult
than that of SED.

The first paper in the area of dynamic dispatching by Bechert
and Kwatny [6] appeared in 1972 and was followed by [7–10].
In these papers the ODD problem was formulated as an optimal
control problem. The optimal control dynamic dispatch (OCDD) for-
mulation models the power system generation by means of state
equations where the state variables are the electrical power outputs
of the generators and the control inputs are the ramp rates of the
generators. In OCDD the optimization is done with respect to the
ramp rates and the solution produces an optimal output generator
trajectory for a given initial generation.

Since the 1980s the ODD problem has been formulated as a min-
imization problem of the total cost over the dispatch period under
some constraints and has been known as the dynamic economic
dispatch (DED) problem [3–5,11–65]. The DED problem is normally
solved by discretization of the entire dispatch period into a number
of small time intervals, over which the load demand is assumed to
be constant and the system is considered to be in a temporal steady
state. Over each time interval a SED problem is solved under static
constraints and the ramp rate constraints are enforced between the
consecutive intervals [12]. In the DED problem the optimization is
done with respect to the dispatchable powers of the units. Some
researchers have considered the ramp rate constraints by solving
SED problem interval by interval and enforcing the ramp rate con-

straints from one interval to the next. However, this approach can
lead to suboptimal solutions [13]; moreover, it does not have the
look-ahead capability.

In the ODD literature the OCDD and DED formulations have
been regarded as the similar. Recently it has been shown in [66]

http://www.sciencedirect.com/science/journal/03787796
http://www.elsevier.com/locate/epsr
mailto:xxia@postino.up.ac.za
mailto:a_m_elaiw@yahoo.com
dx.doi.org/10.1016/j.epsr.2009.12.012
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hat the two formulations are actually different. The similarities
nd deficiencies of the OCDD and DED formulations have also been
ddressed in [66].

The first step in the ODD formulation is to select an appropriate
bjective function. The following objectives have been consid-
red: (1) minimization of the total cost (fuel cost, ramping cost,
tc.) [10,14,15]; (2) minimization of the emissions (the gaseous
mission such as SO2, NOx, CO and CO2 produced by thermal
ower plants) [16–18]; (3) maximization of the profit [19,20].
he first objective is the main objective in the ODD. The second
bjective may be considered as a constraint and the problem is
eferred to as emission constrained dynamic economic dispatch
21], or may be considered as another objective where both emis-
ion and cost are minimized simultaneously and the problem
s referred to as dynamic economic emission dispatch [16–18].
he third objective is used after deregulation of the electricity
arkets [19,20]. In the deregulated environment the generation

ompany (GENCO) finds the optimum schedules of its energy and
eserve to be sold in the market by running the DED problem
ith its aim to maximize its own profit (revenue minus gener-

tion cost) [19]. Sometimes, large customers are also allowed to
articipate in the market. In this case the independent system
perator (ISO) runs the DED problem where the objective is to max-
mize the social profit (customer benefit minus the generation cost)
20].

The second step in the ODD problem is to determine under
hat constraints the problem will be solved. The following con-

traints have been considered in the ODD problem: load demand
alance, ramp rate limits, generation capacity, spinning reserve
equirement, security constraints, emission constraints, prohibited
perating zone constraints, etc. Broadly, these constraints can be
lassified into three kinds: equality constraints, inequality con-
traints, and dynamic constraints. Some of these constraints such as
oad demand balance, and spinning reserve constraints can be mod-
fied when the DED problem is solved in the deregulated market
nvironment.

The third step in the ODD problem is to choose a suitable
ptimization method which gives a global or near global opti-
al solution within acceptable computation time. This is actually
hat the majority of the ODD (especially DED) literature is
evoted to. The choice of the optimization method depends on
any factors, such as the type of objective function (nonlin-

ar/linear, smooth/nonsmooth, convex/nonconvex, etc.) as well as
he constraints. For smooth and convex cost functions, the ODD
roblem can be solved using mathematical programming-based
ptimization techniques. When taking into account valve-point
ffects or prohibited operating zones constraints, the resulting
ost function is nonsmooth or nonconvex. In this case most of
he mathematical optimization techniques are not suitable for
olving the ODD problem. More recent works have focused on
rtificial intelligence (AI) methods, on par with the development
f AI optimization theories. Many of AI techniques have proven
heir effectiveness in solving the DED problems without any or
ew restrictions on the shape of the cost function curves as well
s constraints.

Although the development of ODD is still going on it has reached
certain level of maturity in terms of academic thought. While

here are excellent surveys on SED, there is no review of the
esearch of ODD to the best knowledge of the authors. We have
tructured our review as follows: (1) outlining both DED and
CDD formulations (in Section 2); (2) presenting an overview of
he mathematical optimization methods, AI methods and hybrid
ethods that have been used for solving the ODD problem (in

ection 3); (3) presenting an overview of the DED problem under
mission limitations as well as DED under deregulated markets
in Section 4).
ms Research 80 (2010) 975–986

2. ODD formulation

In this section we introduce the OCDD and DED formulations.
In both DED and OCDD problems, the forecast load demand
is assumed to be available over the entire dispatch period
[0, NT] and it is given at discrete-time intervals [kT, (k + 1)T],
k = 0, 1, . . . , N − 1, where T is the sampling period, N is the num-
ber of sampling periods. Most of the DED works have considered
a fixed sampling period and only few papers such as [22,23] have
employed a varying sampling period. In this paper we consider
only a fixed sampling period. Assume that n is the number of
committed generation units, L is the number of transmission lines
in the network, Pt

i
is the generation of unit i during the t th time

interval [(t − 1)T, tT); Ci(Pt
i
) is the generation cost for unit i to

produce Pt
i
; Dt is the demand at time t (i.e. the t th time interval);

the control variable ut
i

is the ramp rate of the unit i at time t;
URi and DRi are the maximum ramp up/down rates for unit i;
Pmin

i
and Pmax

i
are the minimum and maximum capacity of unit

i, respectively; St
i

is the spinning reserve contribution of unit i
during the time interval t; SRt is the system spinning reserve
requirement for interval t; Ft

l
is the active power flow through

transmission line l during the interval t; Fmax
l

is the upper limit on
the active power flow along line l. Let us define P = (P1

1 , P1
2 , . . . ,

P1
n , P2

1 , P2
2 , . . . , P2

n , . . . , PN
1 , PN

2 , . . . , PN
n ), P0 = (P0

1 , P0
2 , . . . , P0

n ),
u = (u0

1, u0
2, . . . , u0

n, u1
1, u1

2, . . . , u1
n, . . . , uN−1

1 , uN−1
2 , . . . , uN−1

n ),
u0 = (u0

1, u0
2, . . . , u0

n) and D = (D1, D2, . . . , DN).

2.1. DED formulation

The objective of DED is to determine the generation levels for
the committed units which minimize the total operating cost over
a dispatch period, while satisfying a set of constraints (see e.g.
[3–5,11,24,25]). The DED problem is given by

min C(P) =
N∑

t=1

n∑
i=1

Ci(P
t
i ) (1)

subject to
Load-generation balance:

n∑
i=1

Pt
i = Dt + Losst , t = 1, 2, . . . , N (2)

Ramp rate limits:

−DRi · T ≤ Pt+1
i

− Pt
i ≤ URi · T, t = 1, 2, . . . , N − 1,

i = 1, 2, . . . , n (3)

Maximum capacity:

Pt
i + St

i ≤ Pmax
i , t = 1, 2, . . . , N, i = 1, 2, . . . , n (4)

Minimum capacity:

Pmin
i ≤ Pt

i , t = 1, 2, . . . , N, i = 1, 2, . . . , n (5)

Maximum-ramp spinning reserve contribution:

0 ≤ St
i ≤ URi · T, t = 1, 2, . . . , N, i = 1, 2, . . . , n (6)

System spinning reserve requirement:

n∑
t t
i=1

Si ≥ SR , t = 1, 2, . . . , N (7)

Line flow limits:

−Fmax
l ≤ Ft

l ≤ Fmax
l , l = 1, 2, . . . , L (8)
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The DED problem is usually called on the minimization of the
ost function (1) under the constraints (2)–(5). To maintain system
eliability and security, spinning reserve constraints (6) and (7) and
ecurity constraints (8) must be added to the DED problem. There
re many ways to determine the system spinning reserve require-
ent. One can calculate the required spinning reserve over a time

eriod as the size of the largest unit in operation or as a percent-
ge of forecast load demand. Others calculate the spinning reserve
equirement as a function of the probability of not having sufficient
eneration to meet the load [67]. Also, the system spinning reserve
equirement for interval t can sometimes be given by the following
quation [4,5]:

Rt = ˛dDt + ˛g · max(Pmax
i scheduled at time t, i = 1, 2, . . . , N)

here ˛d and ˛g are constants which depend on the system
equired reliability level [4]. Besides the determination of the
ystem spinning reserve requirement, the issue of allocation the
pinning reserve among the committed units is very important (see
68] for SED and [19] for DED); however, it has received very little
ttention in the DED literature. The transmission line losses and the
ine flow can be expressed in terms of the unit outputs:

Losst =
n∑

j=1

n∑
i=1

Pt
i BijP

t
j +

n∑
i=1

Bi0Pt
i + B00

Ft
l

=
n∑

i=1

�l,iP
t
i

here Bij is the ij th element of the loss coefficient square matrix, Bi0
s the ith element of the loss coefficient vector, B00 is the loss coef-
cient constant [67], �l,i is the generalized generation distribution

actors [69].
Other constraints can be added to the DED problem, when the

hermal units prohibit operating zones due to the steam valve oper-
tion or vibrations in a shaft bearing [70]. The prohibited operating
one constraints can be formulated as inequality constraints as
ollows [26,27]:

Pmin
i

≤ Pt
i

≤ Pl
i,1

Pu
i,j−1 ≤ Pt

i
≤ Pl

i,j

Pu
i,ni

≤ Pt
i

≤ Pmax
i

, i ∈ �, j = 2, 3, . . . , ni, t = 1, 2, . . . , N

here ni is the number of the prohibited zones in unit i, � is the set
f units that have prohibited zones, Pl

i,j
, Pu

i,j
are the lower and upper

ounds of the jth prohibited zone.
The fuel cost functions Ci(·) is derived from the fuel consumption

unction that can be measured. The DED problem has been solved
ith many different forms of the cost function, such as the smooth

uadratic cost function (see e.g. [4,28,12,23,29])

i(P
t
i ) = ai + biP

t
i + ci(P

t
i )

2
(9)

r the nonsmooth cost function due to the valve-point effects (see
.g. [15,30–32])

i(P
t
i ) = ai + biP

t
i + ci(P

t
i )

2 + |ei sin(fi(P
min
i − Pt

i ))| (10)

here ai, bi and ci are positive constants, and ei and fi are the coef-
cients of generator i reflecting valve-point effects. Also, a linear
ost function [33,5] and piecewise linear cost function [34–36] have

een employed. For smooth cost function it is usually assumed that

ts incremental cost function, i.e. dCi/dPt
i
, is strictly increasing. In

ome power systems combined cycle units (CC) are used to supply
he base load. For these units the cost function can be given as linear,
iecewise or quadratic with decreasing incremental cost function
ms Research 80 (2010) 975–986 977

[34,35]. For units with prohibited zones, the fuel cost function is
discontinuous and nonconvex.

2.2. OCDD formulation

Optimal dynamic dispatch (ODD) was posed as an optimal con-
trol dynamic problem (OCDD) in [6–10]. In these papers the power
system generation is modeled by means of a continuous-time
control system [6–8] or as a discrete-time control system [9,10]
where the state variables are the electrical outputs of the genera-
tors and the control inputs are the ramp rates of the generators.
Without loss of generality, we shall consider a simple form of
the OCDD problem involving three types of constraints, the load
demand balance in terms of equality constraints, ramp rates in
terms of dynamic constraints and generation capacity in terms of
inequality constraints. The discrete-time control system is given by
[9,10]:

Pt+1
i

= Pt
i + Tut

i , t = 0, 1, . . . , N − 1, i = 1, 2, . . . , n (11)

where ut
i

is the ramping action of unit i at time t. The
equations in (11) actually define a coordinate transforma-
tion between the variables Pt

i
and the variables uj

i
. It is

obvious that the inverse coordinate transformation is given
by

Pt
i = P0

i +
t−1∑
j=0

Tuj
i
, t = 1, 2, . . . , N (12)

The OCDD problem is formulated as follows: given a set of gen-
erators, load demand D and initial generation P0, find a control
action u to minimize the total generation cost and to meet the load
demand of a power system over the dispatch period:

min C(P0, u) =
N∑

t=1

n∑
i=1

Ci

⎛
⎝P0

i +
t−1∑
j=0

Tuj
i

⎞
⎠ (13)

subject to the constraints

n∑
i=1

⎛
⎝P0

i +
t−1∑
j=0

Tuj
i

⎞
⎠ = Dt, t = 1, 2, . . . , N (14)

−DRi ≤ ut
i ≤ URi, t = 0, 1, 2, . . . , N − 1, i = 1, 2, . . . , n (15)

Pmin
i ≤ P0

i +
t−1∑
j=0

Tuj
i
≤ Pmax

i , t = 1, 2, . . . , N, i = 1, 2, . . . , n

(16)

When the OCDD problem is solvable, it gives an open-loop
optimal controller denoted by ū = (ū0

1, ū0
2, . . . , ū0

n, ū1
1, ū1

2, . . . ,

ū1
n, . . . , ūN−1

1 , ūN−1
2 , . . . , ūN−1

n ) and the corresponding opti-
mal generation is given by P̄ = (P̄1

1 , P̄1
2 , . . . , P̄1

n , P̄2
1 , P̄2

2 , . . . ,

P̄2
n , . . . , P̄N

1 , P̄N
2 , . . . , P̄N

n ), where P̄t
i

= P0
i

+
∑t−1

j=0 Tūj
i
, t = 1, 2, . . . , N.

The OCDD and DED formulations have many similarities. For
example, both of them are subject to similar sets of constraints,
and the solutions are to be implemented repeatedly and periodi-
cally due to the cyclic consumption behavior and seasonal changes

of the demand. Exactly due to this periodic implementation, both
formulations have the same technical deficiencies as illustrated in
[66]. Furthermore, it is shown in [66] that the two formulations
are actually different. The differences between OCDD and DED are
listed below:
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1) The OCDD formulation produces an optimal solution for a given
initial value P0 and the optimal solution also depends on P0

while the DED problem does not consider the initial generation
P0 and is totally independent of P0.

2) The OCDD formulation has the ramp limit for u0, that is, the
differences between P1

i
and P0

i
must satisfy the ramp con-

straints; however, the DED formulation considers the ramp
rate constraints only for P2

i
− P1

i
, P3

i
− P2

i
, . . . , PN

i
− PN−1

i
and

has ignored the ramp limit for P1
i

− P0
i

, where i = 1, . . . , n.

The OCDD problem was originally described in [6,7]. In these
apers, necessary conditions for the optimal controller are obtained
or an arbitrary number of generators. The optimal feedback con-
roller was synthesized only for the special case of two generators
haring load owing to computational problems. Bechert and Chen
8] proposed a multi-pass dynamic programming approach to solve
he OCDD problem and obtained the optimal generator output tra-
ectories for up to five generators. The proposed algorithm finds
nly a local optimum schedule and the computer memory and
alculation time requirements increase exponentially with the
umber of generators. The main drawback of the approaches pro-
osed in [6–8] has been dimensionality limitation.

In 1980 Ross and Kim [9] proposed a successive approxima-
ion approach with dynamic programming for solving the OCDD
roblem without limitation of the number of units. The valve-point
ffects is considered. The large problem with ramping constraints is
roken down into smaller subproblems. Each subproblem pairs one
nit with an artificial unit and is solved via dynamic programming
y discretizing the generation outputs. The feasibility of the prob-

em has been demonstrated on a problem involving 15 units and
6 intervals. However, execution time and problem size increase
lmost exponentially with the number of units.

In 1998 the OCDD problem was revisited again by Travers and
aye [10]. They applied constructive dynamic programming to
olve the OCDD problem. Both the generation cost and the ramp-
ng cost are included in the objective function as piecewise linear
unctions. The proposed method provides optimal trajectories for
ll system states from all times without the need to discretize gen-
rator output. However, the dynamic programming method suffers
rom the “curse of dimensionality”.

The open-loop nature of the optimal solution of the ODD
roblem would not allow to compensate for inaccuracies orig-

nating from modeling uncertainties, external disturbances and
nexpected reactions of some of the power system components.
herefore a closed-loop optimal solution is needed. The approaches
iven in [6–10] can generate closed-loop solutions but it suffers
rom the above mentioned drawbacks. In [66], a feedback controller
s designed by means of model predictive control (MPC) method
ased upon the OCDD framework. It is shown theoretically that the
losed-loop MPC solutions asymptotically approach the optimal
olution of an extended version of the DED problem. The robustness
f the MPC algorithm is also shown.

. Literature review on DED

Since the dynamic dispatch problem was formulated as a DED
roblem, the thrust of research has focused on various opti-
ization techniques and procedures incorporating extended and

omplex constraints. These optimization techniques can be classi-
ed into three main categories. The first category is mathematical

rogramming-based or heuristically-based, such as the lambda

terative method [3], gradient projection method [23], Lagrange
elaxation [37], linear programming [4], nonlinear programming
14], interior point methods [11,36,5], dynamic programming [38],
tc. The advantages of these methods including: optimality is
ms Research 80 (2010) 975–986

mathematically proven in some algorithms [71]; they can be
applied to large-scale problems [71]; they have no problem-specific
parameters to specify [72]; moreover, some of these methods are
computationally fast. However, these methods can converge to a
local optimum and are sensitive to the initial starting points [39,73].
Many of these techniques are not applicable to a certain class
of cost functions; for example lambda-iterative, Lagrange relax-
ation and gradient technique methods, etc. when used to solve
DED with nonsmooth or nonconvex cost functions, can fail to get
global optimal solutions [31]. For non-monotonically increasing
incremental cost functions, the lambda iterative method may not
result in the optimal solution [35]. Linear programming usually
faces poor computation efficiency [40]. Dynamic programming can
solve DED problems with nonsmooth cost functions [38]; however,
it suffers from the “curse of dimensionality” and local optimality
[12,73].

The second category is the methods based on artificial intel-
ligence, such as artificial neural networks [28,40] and stochastic
optimization methods such as genetic algorithm (GA) [33], sim-
ulated annealing (SA) [41], evolutionary programming (EP) [42],
differential evolution (DE) [43,44], particle swarm optimization
(PSO) [26,39,45] and Hopfield neural network (HNN) that have
been successfully used for solving the DED problem. Artificial neu-
ral networks such as HNN have been found to generate a high
quality solution for the DED problems with smooth cost functions
[40,28]. Stochastic optimization methods can solve DED without
any or fewer restrictions on the shape of the cost function curves
due to their ability to seek the global optimal solution. More-
over, these algorithms do not depend on the first and second
differentials of the objective function. However, the AI techniques
suffer from the drawbacks of the long computation time [74]
and the large number of arbitrary or problem-specific parameters
[72].

The third category is the hybrid methods, which combine two or
more techniques previously mentioned in order to get best features
in each algorithm. These methods such as evolutionary pro-
gramming with sequential quadratic programming (EP-SQP) [15],
particle swarm optimization with sequential quadratic program-
ming (PSO-SQP) [30,31], Hopfield neural network with quadratic
programming (HNN-QP), [46], EP-PSO-SQP [27] have proven their
effectiveness in solving the DED problems.

In this section, we concentrate our review on the works that
deal with the DED problem where the optimization is performed
over the whole dispatch period (e.g. 24 h) under the ramp rate
constraints and other constraints mentioned in the previous sec-
tion. However, there are several works that solve the SED problem
over a single interval while taking into account the ramp rate
between the current interval and previous one (see, for exam-
ple, from the literature we mention here but a few [72,73,75–78]).
This approach can be implemented interval-by-interval within the
dispatch period; however, it may produce suboptimal solutions
[13].

3.1. DED with mathematical programming-based techniques

The previous OCDD and DED formulations with the three basic
constraints, load demand balance, ramp rate and generation capac-
ity constraints can be put into the following general form:

min f (x)
subject to gi(x) = 0, i = 1, 2, . . . N

hj(x) ≤ 0, j = 1, 2, . . . M

(17)

where M is the number of inequality constraints and x is vector of
size nN.
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The above optimization problem can be solved by several
pproaches depending on the shape of the objective function. Some
pproaches are based on transforming the constrained problem
o a parameterized sequence of unconstrained problems by using
penalty function for the constraints. Using an iterative process,

he solution of the unconstrained problem converges to the con-
trained one [74]. Other approaches such as SQP and interior point
IP) methods are based on the solution of the Karush–Kuhn–Tuker
KKT) equations by forming a Lagrange function as [74,67]:

(x, �, �) = f (x) +
N∑

i=1

�igi(x) +
M∑

j=1

�jhj(x) (18)

here �i, and �j are the Lagrange multipliers. By computing the
erivative of the Lagrange function with respect to the variables
, �i, and �j , the resulting KKT necessary conditions for (18) are
iven by

∂L

∂xi
= 0, i = 1, 2, . . . , N

∂L

∂�i
= gi(x) = 0, i = 1, 2, . . . , N

∂L

∂�j
= hj(x) ≤ 0, j = 1, 2, . . . , M

(19)

jhj(x) = 0 and �j ≥ 0, j = 1, 2, . . . , M (20)

If f, g, and h are convex functions, then the KKT equations are
oth necessary and sufficient for a global optimal solution.

Inequality constraints can also be converted into equality con-
traints by adding slack variables as follows:

j(x) + s2
j = 0, j = 1, 2, . . . , M

nd then the Lagrange function will depend on the variables x, �i, sj

nd �j . The KKT conditions are obtained by computing the deriva-
ive of the Lagrange function with respect to the variables x, �i, sj

nd �j .
The Lagrange relaxation method for the constrained optimiza-

ion problem is based on appending the complicated constraints to
he objective function after multiplying them by Lagrange multipli-
rs. Assume that there are some inequality constraints that make
he problem relatively easy to solve if it is removed, then prob-
em (17) can be rewritten by splitting the inequality constraints as
ollows:

in
x

f (x) (21)

i(x) = 0, i = 1, 2, . . . , N (22)

j(x) ≤ 0, j = 1, 2, . . . , M∗ (23)

j(x) ≤ 0, j = M∗ + 1, . . . , M (24)

here constraints (24) represent the complicated constraints in the
roblem. The Lagrange function can be written as

(x, �) = f (x) +
M∑

j=M∗+1

�jhj(x)

Then the dual function is defined by

D(�) = min
x

L(x, �)
gi(x) = 0, i = 1, 2, . . . , N

hj(x) ≤ 0, j = 1, 2, . . . , M∗

It is clear that the dual function constitutes a lower bound on the
alue of the objective function f (x). The dual problem is formulated
ms Research 80 (2010) 975–986 979

as

max�D(�) = max�(min
x

L(x, �)) (25)

The dual problem (25) is solved by an iterative process, e.g. by
the subgradient method to update the multipliers � and at the final
the optimal solution is obtained. For convex optimization problems,
the solution obtained by the dual problem (25) and the primal prob-
lem (17) are the same. While for nonconvex optimization problems
there is a duality gap between the solutions obtained by (25) and
(17).

Some early works propose a heuristic technique for solving the
DED problem. This technique works by dividing the DED problem
into SED problems that are solved backward in time [3,47]. At each
time interval, the SED problem is solved and the unit operating
limits have to be updated. Here, the ramp rate limits are included in
the unit operating limits. Wood [3] considered the spinning reserve
constraints as well as the transmission losses while Isoda [47] did
not. The difference between the algorithms used by Wood and Isoda
is in the way Isoda determined the unit operating limits in each SED
problem. If the load demand balance was not satisfied in the first
interval, Isoda proposed to move forward in time while adjusting
the operating limits interval after interval until the load balance is
satisfied in all intervals. The proposed heuristic technique in [3,47]
produces suboptimal solution.

Since the ramp rate constraints couple the time intervals, the
DED problem is a difficult optimization problem. If the ramp rate
constraints are relaxed, the DED problem can be reduced to a set
of uncoupled SED problems that can easily be solved. This can be
done by adding a penalty function derived from the ramp rate con-
straints to the objective function [24]. In this case, the DED problem
is transformed into a SED problem. In [24] a gradient projection
method with conjugate search directions is proposed to solve the
resulting SED problem. Wang and Shahidehpour [48] included in
the objective function a term representing the reduction in the life
of the turbine caused by excessive ramp rates. The DED problem
was solved by linear programming.

Muki et al. [49] formulated a dual optimization problem by
appending the load balance constraints to the objective function
after multiplying them by Lagrange multipliers. Then the problem
is decomposed into subproblems, each of which concerns one gen-
erator and it is solved under the remaining constraints. The dual
problem is solved iteratively to update the Lagrange multipliers
and obtain the optimal solution.

The feasibility and optimality of the solution of the DED prob-
lem are only realized in more recent studies [14,79]. Han et al. [14]
examined the factors that affect the feasibility and optimality of
the solutions to the DED problem. According to the idea of cou-
pling, two methods are proposed. The first is guaranteed to find a
feasible solution and the second is an efficient technique for finding
the optimal solution.

For system security, line flow limits must be considered in
the DED problem to prevent transmission lines from being over-
loaded. The security constrained DED problem has been solved by
several techniques. Some are based on the constrained-relaxation
[13,37,50], interior point (IP) methods [11,36,5], redispatch tech-
nique [4], gradient projection method [23], and other algorithms
[25,51,22].

Based on the constrained-relaxation technique, Irving and Ster-
ling [50] employed a dual revised simplex algorithm for solving
the DED problem with security and spinning reserve constraints.

Hindi and Ghani [13] developed the formulation given in [50] and
proposed a solution algorithm based on a Dantzig-Wolfe decom-
position, which yielded a capacitated transshipment subproblem
(without security and spinning reserve constraints) along with a
master problem solved by the revised simplex method.
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The Lagrange relaxation method has been used to solve the DED
roblem with security and spinning reserve constraints in [37].
he coupling constraints are relaxed and the resulting problem is
ecomposed into a number of subproblems corresponding to the

ntervals in the dispatch period. The subproblems are solved by a
riority list technique. Lagrange multipliers are updated by sub-
radient optimization. If a solution is not deemed sufficiently close
o the optimal, a Dantzig-Wolfe decomposition is invoked to find a
olution to the primal problem.

IP methods are a certain class of algorithms to solve linear and
onlinear convex optimization problems. Contrary to the simplex
ethod, IP reaches an optimal solution by traversing the interior

f the feasible region. Several variants of the IP method with its
pplication in power systems have been reported in [80]. For the
ecurity-constrained DED problem, IP methods such as quadratic
P [11], homogeneous IP [36] and linear IP [5] have been employed.
n [11,36] the DED problem is converted into a single optimization
roblem by moving all the constraints to the objective function
fter adding slack variables to the inequality constraints. In [11]
logarithmic barrier function to the objective function is added.

pinning reserve constraints are incorporated in the DED problem
n [11] while the transmission line losses are considered in [36]. Han
nd Gooi [5] used the linear IP method and look-ahead decoupling
ethod to solve the DED problem. Dual affine scaling algorithm

s applied. Transmission line losses, spinning reserve and security
onstraints are all incorporated.

In [51,22] the security-constrained DED problem was solved
y a modified version of the Han-Powell algorithm given in [81]
hich involves in a “compact reduced model” formulation. Further,
sparseness technique is used in the construction and updating

he Hessian matrix of the Lagrangian function. In [22] both operat-
ng cost and ramp rate cost are included in the objective function.
ranelli et al. [23], considered the DED problem formulated by [22]
nd presented a fast and efficient gradient projection algorithm for
olving the problem.

Somuah and Khunaizi [4] proposed a redispatch technique for
olving the DED problem with security and spinning reserve con-
traints as well as transmission line losses. In this technique, the
amp rate constraints are relaxed and the resulting SED problem is
olved by quadratic programming. Then both the cost function and
he constraints are linearized about the optimum points obtained
rom the SED problem and a new optimization problem (in terms
f the output change) arises at each time interval. These optimiza-
ion problems are combined in a single optimization problem after
ncorporating the ramp rate constraints which is solved by linear
rogramming.

Barcelo and Rastgoufard [25] proposed an algorithm for solv-
ng the DED problem with network security and regulated margin
onstraints. The proposed algorithm is formulated by adding reg-
lating margin and ramp rate constraints to the extended security
onstrained economic dispatch algorithm given in [82].

.2. DED with artificial intelligence techniques

In the mathematical programming-based methods, the cost
unction is assumed to be smooth and convex. Hence these conven-
ional methods are not suitable for determining the global optimal
olution of the DED problem with valve-point effects or prohib-
ted operating zones. In order to make the numerical methods

ore convenient in solving the DED problem with nonconvex,

onsmooth and nonmonotonically increasing incremental cost

unctions, artificial intelligence techniques such as artificial neural
etworks, stochastic optimization methods and hybrid methods
hat have been used to solve the DED problem. This is due to its
bility to find a global or near global optimal solution.
ms Research 80 (2010) 975–986

Over the last decades, AI optimization algorithms have been
applied to solve both SED and DED problems under various con-
straints. The question of how the constraints can be handled
by these algorithms has been studied by several researchers
(see the review in [83]). There are several methods of handling
constraints, such as methods that preserve the feasibility, penalty-
based methods, methods that clearly distinguish between feasible
and infeasible solutions and hybrid methods [83]. The penalty-
based methods are commonly used in solving the DED problem
by AI techniques.

3.2.1. Neural network techniques
Artificial neural network (ANN) is an emulation of biological

neural system and the brain. A neural network consists of many
neurons connected in a parallel manner. ANN can be classified into
several types according to the data type of inputs and training pro-
cedures. Hopfield neural network (HNN) is one of the ANN which is
a single layer recursive neural network where all neurons are both
input and output and they are connected with equal weights [84].
The energy function of the HNN model is defined in such a way
that its time derivative is negative [40]. Therefore, the solution of
the HNN is obtained when the energy converges to its minimum.
In applying the HNN to the DED problem, the minimization of the
cost function is equivalent to the search for a minimum energy
function in the HNN model, and the decision variables in the opti-
mization problem are represented by the output of the neurons.
Then the task is to constitute a suitable energy function having
the basic form of the energy function of HNN. Fukuyama and Ueki
[28] applied neural network techniques in an attempt to solve
the DED problem with security constraints. To suppress the local
convergence, a probabilistic noise was added to the HNN model.
The method was implemented using parallel processors. Liang [40]
employed a redispatch technique for solving the spinning reserve
constrained DED problem. Similar to the technique used in [4], the
ramp rate constraints are relaxed and the SED problem is solved
by the lambda-iterative method to produce the base solution. Then
the problem with ramp rate constraints is linearized in accordance
with this base solution and it is solved by gradient-type HNN. The
main advantages of the HNN is its ability of parallel computing and
obtaining good quality solutions [40]. The main drawback of the
HNN is that, it converges slowly and normally takes a large num-
bers of iterations; the unsuitable sigmoid function may increase
the computational time [70]. HNN has been used to solve the DED
problem only with smooth cost functions.

3.2.2. Simulated annealing algorithm
The idea of the SA algorithm is devised from the annealing pro-

cess of metals. Annealing refers to the process of heating up a
metal to a high temperature followed by slow cooling achieved
by decreasing the temperature in steps. At each step, the tempera-
ture is fixed for a period of time until the system reaches thermal
equilibrium. Finally the system reaches its minimum energy crys-
talline structure [85]. SA technique is a random search technique
for optimization developed by Kirkpatrick et al. [86] which sim-
ulates the physical annealing process. In SA the objective function
corresponds to the energy of the metal and the number of iterations
is equivalent to the temperature level in the annealing process. The
temperature plays the role of control parameter for the optimiza-
tion problem. The SA strategy starts with a high temperature and
initial feasible solution which is assigned as the current solution.
SA consists of a number of iterations, and each iteration contains a

number of trials. In each trial a new feasible solution is generated
by adding random perturbation to the current solution. The new
solution is accepted if the objective function of the new solution is
less than that of the current solution. Otherwise the new solution
will be accepted with a certain probability. The accepted solution
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ill be used to generate another solution. The procedure of gen-
rating a new solution and testing its acceptance is repeated for a
pecific number of trials. The last accepted solution will be used
s the current solution of the next iteration. In the next iteration
he temperature level will be reduced. The solution procedure con-
inues until the maximum allowable number of iterations has been
eached or there is no significant improvement in the solution after
pre-specified number of iterations [41].

SA has the ability to avoid getting local solutions; then it can
enerate global or near global optimal solutions for optimization
roblems without any restriction on the shape of the objective
unctions [41]. SA is not memory intensive [85]. However, the set-
ing of control parameters of the SA algorithm is a difficult task and
he computation time is high [15]. The computational burden can
e reduced by means of parallel processing [41]. Panigrahi et al.
41] presented an SA technique for solving the spinning reserve
onstrained DED problem of units with valve-point effects and
ransmission line losses.

.2.3. Genetic algorithm
Genetic algorithm (GA) is a search technique which is concep-

ually based on the mechanism of natural genetics and evolution
87]. GA uses genetic-like operators for searching the global opti-

um. GA starts with a population of candidate solutions chosen
andomly within the feasible range, encoded in a binary string
hat forms chromosomes. Each member of the population is then
ecoded to pass through an evaluation process. The evaluation is
ased on a fitness function that basically depends on the objec-
ive function of the optimization problem. The initial population
ndergoes three main genetic operations, selection, crossover and
utation. Selection is an operation to choose parent solutions.

rossover operation is applied with a certain probability which
ombines two parent chromosomes to form two new offspring
hromosomes having characteristics from both parents. After a new
opulation has been generated by selection and crossover opera-
ions, a mutation is applied with small probability. Mutation is used
o introduce new information to the population which does not
xist in the parents. This process continues until the convergence
riterion is met.

GA is a global and parallel search technique that can han-
le optimization problems with nonsmooth/nonconvex objective
unctions. Li et al. [33] employed GA to solve the DED problem
ith transmission line losses. The capability of GA in handling the

onstraints is explained. It is demonstrated that the ramping rate
onstraint does not put any additional burden on the genetic search
ut also helps in finding a better strategy to operate power sys-
ems. Ongsakul and Tippayachai [35] proposed a parallel micro
enetic algorithm based on merit order loading solutions to solve
ED problems for combined cycle units with linear decreasing
nd decreasing staircase incremental cost functions. The trans-
ission line losses were taken into consideration. The proposed

lgorithm was implemented on eight processors. The main draw-
acks of GA are the long computation time and the premature
onvergence.

.2.4. Evolutionary programming
Evolutionary programming (EP) is a stochastic search technique

hich places emphasis on the behavioral linkage between parents
nd their offspring, rather than seeking to emulate specific genetic
perators as observed in GA [88,89]. EP starts with a population of
andomly generated candidate solutions (parents) and finds solu-

ion in parallel using an evaluation process. At the start of the
volution process an initial population of target vectors (parents)
s uniformly and randomly generated within the feasible range. A
ew population of solutions (offsprings) is created by mutation in
uch a way that an offspring is created from each parent by adding
ms Research 80 (2010) 975–986 981

Gaussian random variable. The best individuals from parents and
their offsprings having best fitness values are selected as new par-
ents for the next generation. Mutation, competition and selection
operations are repeated until the preset criterion is reached. EP has
a global and parallel search capability and it can handle optimiza-
tion problems with nonsmooth or nonconvex objective functions
[89]. Compared with GA, EP does not use the crossover operator
and the encoding and decoding schemes as does GA. Therefore,
EP is faster in speed than GA [15]. Also EP can obtain better qual-
ity solution than GA [26]. However, EP requires long computation
time and sometimes suffers from the convergence problem [15].
EP has been used to solve the DED problem with smooth [52] and
nonsmooth cost functions [42].

3.2.5. Differential evolution
Differential evolution (DE) was introduced by Storn and Price

[90] as a population-based stochastic parallel search technique.
DE uses a rather greedy and less stochastic approach to problem
solving compared to other evolutionary algorithms. It starts with
an initial population of feasible target vectors (parents) and new
solutions (offsprings) are generated (by mutation, crossover and
selection operations) until the optimal solution is reached. In the
mutation operation, three different vectors are selected randomly
from the population and a mutant vector is created by perturb-
ing one vector with the difference of the two other vectors. In
the crossover operation, a new trial vector (offspring) is created
by replacing certain parameters of the target vector by the cor-
responding parameters of the mutant vector on the bases of a
probability distribution. In DE the competition between the par-
ents and offspring is one to one. The individual with best fitness
will remain till the next generation. The iterative process continues
until a user-specific stoping criterion is met. DE has the ability to
handle optimization problems with nonsmooth/nonconvex objec-
tive functions [90]. Moreover, it has a simple structure and a good
convergence property, and it requires a few robust control parame-
ters [90]. However, DE takes long computation time to get optimal
solution.

Balamurugan and Subramanian [44] introduced DE algorithm
and a look-ahead technique to solve the DED problem with valve-
point effects. The same authors [43] developed an improved DE
method to solve the same problem in [44]. The convergence of the
DE algorithm is improved by introducing a heuristic crossover tech-
nique and a gene swap operator. Yuan et al. [53] used DE algorithm
to solve the DED problem with valve-point effects. The constraints
were handled by feasibility-based selection comparison techniques
and heuristic search rules.

3.2.6. Particle swarm optimization
Particle swarm optimization (PSO) is a population-based

stochastic search optimization technique first developed by
Kennedy and Eberhart [91]. PSO is inspired by social behavior of
bird flocking or fish schooling. PSO algorithm searches in parallel
using a swarm consisting of a number of particles to explore optimal
solutions. Each particle’s position represents a candidate solution to
the optimization problem. Each particle is initialized with a random
position and random velocity within the feasible range. A fitness
evaluation function is used to assign the fitness value of each par-
ticle. The best position among all particles is assigned and the best
position of each particle up to the current iteration is also assigned.
At each iteration, each particle updates its position based on its
own best position and best swarm overall position assigned at the

previous iteration and its previous velocity [92,93]. The procedure
is repeated until the convergence criterion is satisfied.

PSO can be applied to global optimization problems with non-
convex or nonsmooth objective functions. PSO is easy in its concept
and implementation and it has a few parameters to adjust [93].
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oreover, PSO can solve problems with high-quality solutions
ithin shorter calculation time and stable convergence charac-

eristics than other stochastic methods [70]. However, PSO, like
ll stochastic optimization techniques requires relatively a longer
omputation time than mathematical programming-based tech-
iques [94].

Gaing [26] proposed a PSO method for solving DED problem with
ransmission line losses, spinning reserve and security, as well as
rohibited operating zone constraints. In [45,39] a PSO technique

s proposed to solve the DED problem with valve-point effects and
ransmission line losses. In the later paper [39] spinning reserve
onstraints were added to the problem. In [54] the DED problem
ith valve-point effects and transmission line losses was solved by

SO. The inequality constraints were handled by feasibility-based
election comparison techniques and the equality constraints were
andled by heuristic strategies based on a priority list. Sriyanyong
55,56] presented an enhanced PSO for solving the DED problem
ith valve-point effects. The enhanced PSO consists of the standard

SO and a modified heuristic search approach which has the ability
f handling the constraints. In [56] the enhanced PSO was combined
ith Gaussian mutation.

.2.7. Hybrid techniques
Although the AI methods seem to be effective in solving the DED

roblem the obtained solutions are just near global optimum with
ong computation time [15,74]. Hybrid methods integrate two or

ore optimization techniques in order to combine their strengths
nd overcome one another’s weakness in solving the optimization
roblems. These hybrid methods are found to be effective in find-

ng global optimal solution for the DED with smooth/nonsmooth or
onvex/nonconvex cost functions. These hybrid methods include
A-SA [34], EP-SQP [15], PSO-SQP [30], EP-PSO-SQP [27], HNN-
P [46], etc. In these methods, initially one or more methods are
sed for the search purpose to find near optimal solutions; then
he other method is used to fine-tune that region to get the final
olution.

Abdelaziz et al. [46] introduced a hybrid approach of Hopfield
eural network and quadratic programming (HNN-QP) to solve the
ED problem with transmission line losses. The hybrid algorithm

s based on using the HNN as a base search procedure to find a near
ptimal for the problem without ramp rate constraints. Then the
roblem with ramp rate constraints is solved by QP.

Ongsakul and Ruangpayoongsak [34] proposed a combined
enetic and simulated annealing (GA-SA) algorithm to solve the
ED problem for generating units with non-monotonically and
onotonically increasing incremental cost functions. The trans-
ission line losses were incorporated. SA is used to provide a base

olution to the GA in order to reduce the search effort towards the
ptimal solution. It was shown that the proposed algorithm gives
etter solutions than GA and SA alone.

In [12,29] hybrid genetic algorithms are proposed to solve the
ED problem with transmission line losses. The proposed hybrid

cheme is developed in such a way that a genetic algorithm acts
s a base level search and a local search method (gradient-search
echnique) is next employed to do the fine-tuning.

In [34,12,29,46] the nonsmooth or nonconvex characteristics
f the cost function due to the valve-point effects or prohibited
perating zones are neglected. Attaviriyanupap et al. [15] pro-
osed a hybrid EP-SQP for solving the DED problem of units with
alve-point effects. The hybrid method EP-SQP incorporates the EP

lgorithm as the main optimizer and the SQP as the local optimizer
o fine-tune the EP search in finding the optimal solution. A 10-
nit system was used to illustrate the effectiveness of the proposed
ethod and comparisons are made with those obtained from EP

nd SQP alone.
ms Research 80 (2010) 975–986

Victoire and Jeyakumar [30] presented a hybrid approach by
integrating the PSO with the SQP for solving the DED problem of
units with valve-point effects. Transmission line losses were incor-
porated. In the proposed algorithm PSO is used as the base level
search procedure and SQP is used to fine-tune for improvement
in the solution obtained by using the PSO technique. The same
authors in [31] added new constraints to the problem formulation
given in [30] by introducing system spinning reserve and security
constraints and the problem was also solved by hybrid PSO-SQP
technique. In [32] a modified hybrid EP-SQP was presented for
solving the same problem given in [30]. The proposed algorithm is
implemented in such a way that the candidates of EP will explore
the solution space freely, and then the SQP will be invoked when
there is an improvement of solution in the EP run. The effectiveness
of the proposed methods presented in [30–32] is demonstrated on
a 10-unit system and compared with other methods.

Yuan el al. [57] proposed a hybrid improved differential evolu-
tion (IDE) with the Shor’s r-algorithm for solving the DED problem
of units with valve-point effects. The IDE is applied as a base level
search which provides a near global solution region, and a local
search Shor’s r- algorithm is used as a fine-tuning to determine the
optimal solution at the final.

Zhang et al. [58] proposed a hybrid genetic algorithm with
quasi-simplex technique to solve DED problem with uncertain-
ties in the coefficients of the cost function. The uncertainties
were represented by fuzzy numbers. Zhang et al. [59] proposed
a hybrid real-coded genetic algorithm with quasi-simplex tech-
nique to solve DED with valve-point effects. In [58,59] the proposed
algorithms generate offsprings by using genetic algorithm and
quasi-simplex technique in parallel.

Titus and Jeyakumar [27] presented a hybrid technique by inte-
grating EP and PSO with SQP to the DED problem. Valve-point
effects, transmission line losses and prohibited operating zones
were all incorporated. Both EP and PSO are used as main optimizer
to find a near global solution, while SQP is used for fine-tuning.

3.3. DED under emission limitations

The emission of gaseous pollutants including SO2, NOx, CO and
CO2 from fossil-fueled thermal generator plants affects human
health directly or indirectly. Therefore, the controlling of pollution
in power plants has received considerable attention in recent years.
Emission can be reduced by various strategies such as installation
of pollutant cleaning; switching to low emission fuels; replacement
of the aged fuel burners with cleaner ones; emission dispatch [95].
The emission/economic dispatch approach is usually preferred to
the existing systems because it is easy to implement and requires
less additional cost.

The characteristics of emissions of various pollutants are differ-
ent and usually highly nonlinear, which add more complexities to
the economic dispatch problem. A summary of emission/economic
dispatch algorithms is given in [95]. There are two main research
directions to consider the emission in the DED problem. The first
direction is to minimize the fuel cost while treating the emission
as constraints. In this case, the amount of emission (E) of pollutants
such as SOx and NO2 can be controlled by adding the following
constraints to the original DED problem [95,96]:

E =
N∑ n∑

[˛i + ˇiP
t
i + �i(P

t
i )

2 + �i exp(ıiP
t
i )] ≤ Emax (26)
t=1 i=1

where Emax is the maximum allowable amount of pollutant during
the dispatch period, and ˛i, ˇi, �i, �i and ıi are the coefficient of the
ith generator emission characteristics.
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The second direction is to take the emission simultaneously as
nother objective to be minimized in addition to the fuel cost, i.e.

in[C, E]

ubject to system and operational constraints.
In the literature an overwhelming number of reported works

ncorporate the emission with the SED problem (see e.g. [96–99]
nd the review paper [95]) but only few works address the DED
roblem with emission [16–18,60]. Wang et al. [100] and Granelli et
l. [101] considered the emission in the dynamic dispatch problem
s a constraint but they did not consider the ramp rate constraints
n the problem. Song and Yu [21] added the emission and security
onstraints to the DED problem and used linear programming to
olve the problem.

Recently the dynamic emission economic dispatch (DEED) prob-
em has been formulated as a multi-objective optimization problem

here the emission and economic dispatch are treated as com-
eting and noncommensurable objectives [16–18]. In these papers
he fuel cost function is incorporated with valve-point effects. In
16], by assuming that the decision maker has goals for each of
he two objective functions, the multi-objective optimization prob-
em is transformed into a single-objective optimization by the
oal-attainment method that can be solved by PSO method. In
17] it was assumed that the decision maker has a fuzzy goal for
ach of the objective functions. The optimal noninferior genera-
ion schedule was determined by the EP-based fuzzy satisfying

ethod. The results obtained from the proposed method were com-
ared to those obtained by the fuzzy satisfying method based on
he SA technique. In [18] the multi-objective problem is solved by
ondominated sorting genetic algorithm-II. Shang et al. proposed
preference-based nondominated sorting genetic algorithm for

olving the DEED problem [60].

. DED in deregulated electricity markets

Recently many countries have gone through deregulation and
estructuring the electrical power systems with the aim of improv-
ng economic efficiency. Deregulation means consumers will have
heir choice of electricity generation suppliers. After deregulation,
he vertically integrated utilities were unbundled into generation
ompanies (GENCOs), transmission companies (TRANSCOs) and
istribution companies (TRANSCOs) [19]. A competitive electricity
arket has been created as a result of deregulation. In this environ-
ent, suppliers and sometimes customers can participate in the

nergy market as well as the reserve market. The independent sys-
em operator (ISO) is created to coordinate, control and monitor the
perations of the electrical power systems. Market structures differ
ccording to their participants and the amount of information that
articipants share with the ISO [102,103]. Under deregulated mar-
ets, all the transactions are made based on the price rather than
ost. Of course, the DED formulation after deregulation is different
rom that before deregulation in some points as we will show in
his section. The formulation of the DED problem will depend on
he market structures.

In some markets the DED problem is the responsibility of the
ENCO for scheduling and operating its power plants. In this case

he GENCO runs the DED problem not for minimizing the produc-
ion cost as in the regulated system but for maximizing its own
rofit. Here the profit is defined as the revenue minus generation
ost. We shall refer to this problem as price-based dynamic eco-

omic dispatch (PBDED). The PBDED strategy can be used to build
successful bidding curve for the GENCO [19] wishing to maxi-
ize its profit. In recent years, some research has been done in

uilding optimal bidding strategies for competitive suppliers. The
idding strategies problem was first introduced by David [104]
ms Research 80 (2010) 975–986 983

and has been subseuently developed by many researchers (see
e.g. [105–108] and the references therein). In a day-ahead energy
market, suppliers submit monotonically inceasing bid curves (a
pair of quantity and price) to the ISO. The ISO aggrerates the bid
curves into an aggregated supply curve for each hour to deter-
mine the market clearing price (MCP) for that hour on the basis
of the forecast load while maintaining system security and reliabil-
ity.

In some other markets, large customers are premitted to bid in
the market. Both supply-side and demand-side submit a daily bid
curve including constraints for each generator and customer. The
ISO utilizes DED problem to match bids so that the social profit is
maximized and the security and reliability are preserved. The social
profit is defined as the customer benefit minus generation cost
[20]. This problem is referred to as bid-based dynamic economic
dispatch (BBDED).

4.1. Price-based DED

The objective of PBDED is to maximize the GENCO’s own profit
regardless of the social profit. In this problem the GENCO runs its
own PBDED based on the forecast energy and reserve demands and
prices, and the probability that reserves are called into the actual
operation. The solution of PBDED also depends on the way reserve
payments are made. In general there are two types of reserve
payment, payment for power delivered and payment for reserve
allocated [109,19]. In the first payment method, reserve power is
paid when only reserve is actually used. In the second payment
method GENCO receives the reserve price per unit of reserve power
even for the time period when the reserve is allocated and not used.
If the reserve is used, GENCO can receive the energy price for the
reserve that is generated. The objective function of the PBDED for
the first payment method has been expressed as [19]:

max PF =
N∑

t=1

n∑
i=1

SPt · Pt
i
+ r · RPt · St

i

︸ ︷︷ ︸
revenue

−
N∑

t=1

n∑
i=1

(1 − r) · Ci(Pt
i
) + r · Ci(Pt

i
+ St

i
)

︸ ︷︷ ︸
cost

where SPt and RPt are the forecast energy and reserve prices,
respectively, r is the forecast probability that the reserve is actually
called up. Under the deregulation environment, the GENCO is not
responsible for supplying the system energy and reserve demands
which are the ISO’s responsibility. Therefore, GENCO has the choice
to sell energy and reserve at less than the forecast level, with its
ultimate aim to maximize its own profit [19]. In this situation, the
constraints (2) and (4) of the DED problem will be replaced by

n∑
i=1

Pt
i ≤ Dt, t = 1, 2, . . . , N (27)

n∑
i=1

St
i ≤ SRt, t = 1, 2, . . . , N (28)

while other constraints may remain the same as in DED problem.
We note that the solution of the PBDED problem is more diffi-

cult than the convectional DED problem because in PBDED both the
power and reserve are decision variables of the optimization prob-
lem [19]. Attaviriyanupap et al. [19] proposed a fuzzy-optimization
approach to solve PBDED under uncertain power systems. The
uncertainty parameters are represented by fuzzy numbers and con-

sist of the energy demands, reserve demands, market prices and
probability that reserves are actually called upon. The proposed
algorithm determines the optimal amounts of power and reserve
to be sold into the energy and spinning reserve markets. Yamin
et al. [61] proposed an approach based on the Benders decomposi-
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ion and the predictor-corrector primal-dual IP to solve the security
onstrained PBDED. In [61] spinning reserve requirements were not
onsidered. Lee et al. [62] proposed a price-based ramp rate model
or the application to the price-based dynamic dispatch. In this

odel the impact of binding ramp rate limits is reflected by hourly
arginal ramp rate values of the generators and these marginal

rices can be achieved by a simple iteration algorithm.
Now we can make a comparison between PBDED and DED:

. The DED objective is to minimize the generation cost while
PBDED objective is to maximize the GENCO’s profit on the basis
of the forecast energy and reserve prices [19,103].

. In DED demand forecast advises the power system operator of
the amount of power to be generated. But in PBDED, bilateral
and forward contracts will make a part of the total demand and
the remaining part will be forecast [110,103] as in DED.

. In DED the total generation must equal the total demand; also,
the total spinning reserve must be greater than assigned reserve
requirements. In contrast the GENCO has the option to consider
a PBDED schedule that produces less than the predicted power
and reserve demands, with its aim to maximize its own profit
[19].

.2. Bid-based DED

In some deregulated markets, both suppliers and customers
ubmit their bids along with their corresponding constraints in the
our-ahead and day-ahead to the ISO. The ISO obtains information

rom transmission companies on the transmission line capability
nd availability. Generally, the suppliers’ and customers’ bids are
ncreasing and decreasing functions of the price, respectively. The
SO uses these bids submitted by supply-side and demand-side
o determine the MCP and the corresponding supply and demand
chedules of all generators and customers while maintaining sys-
em security. In this case the ISO runs a BBDED problem where the
bjective is to maximize the social profit with satisfaction of all
onstraints over the trading period. The problem of BBDED can be
odeled as follows [20]:

ax PF =
N∑

t=1

⎧⎨
⎩

nd∑
j=1

Bj(D
t
j ) −

ng∑
i=1

Ci(P
t
i )

⎫⎬
⎭ (29)

ubject to

ng∑
i=1

Pt
i =

nd∑
j=1

Dt
j + Losst , t = 1, 2, . . . , N

−DRi · T ≤ Pt+1
i

− Pt
i

≤ URi · T, t=1, 2, . . . , N − 1, i=1, 2, . . . , ng

Pt
i ≤ Pt

i
≤ P̄t

i
, t = 1, 2, . . . , N, i = 1, 2, . . . , ng

Dt
j ≤ Dt

j
≤ D̄t

j
, t = 1, 2, . . . , N, j = 1, 2, . . . , nd

(30)

here nd and ng are the number of customers, generators ; Bj and Ci

re the bid functions of customer j and generator i, respectively; Dt
j

nd D̄t
j

are the minimum and maximum bid quantities of customer

at time t, respectively; Pt
i and P̄t

i
are the minimum and maximum

id quantities of generator i at time t, respectively. Other con-
traints have been considered in BBDED problem such as security
nd emission constraints [20,63].
Lin and Chen [20] proposed a predicted-corrected interior point
uadratic programming algorithm to solve the BPDED problem.
hao et al. [63] solved the same problem proposed by [20] by using
SO algorithm. In [63,20] the bid functions for customers and gen-
rators are assumed to be concave and convex, respectively.
ms Research 80 (2010) 975–986

In some electricity markets, only suppliers are allowed to sub-
mit bids to the ISO. In this case the ISO runs the BBDED to supply
the load demand with maximum system-wide benefit, calculates
the MCP and maintains system security. Ferreo and Shahidehpour
[64] analyzed the effect of dynamic constraints on power transac-
tions in a deregulated environment. They calculated the transition
states using successive dynamic programming and employed New-
ton method to calculate optimal states within a utility for a given
set of transactions.

4.3. DED with transmission cost (wheeling)

Wheeling has been defined as the use of utility’s transmission
facilities to transmit power over transmission lines. In deregulated
markets, the owner’s transmission system can be considered as the
third party to provide wheeling for costumers and suppliers. Some
countries adopt the policy of Transmission Open Access, which
requires that each owner of transmission system allows the mar-
ket participants to use his transmission system to transport power
without discrimination [111]. The wheeling costs should be shared
with participants who use the transmission facilities. Therefore,
the economic dispatch problem must be modified to minimize not
only the generation cost but also the wheeling cost. The wheel-
ing cost has been taken into account in the economic dispatch
problem in some papers (see e.g. [111,112]). However, the DED
problem with wheeling cost has received less attention. Hosseini
and Kheradmandi [65] considered the wheeling cost in the DED
problem. Security constraints and transmission line losses were
incorporated. The problem was solved by using GA.

5. Conclusion

This paper presents important features and considerations of
the ODD problem. We first outlined two different formulations for
the ODD problem and then presented a review of the optimiza-
tion methods and techniques available for solving the problem.
These methods are classified into mathematical programming-
based methods, Artificial Intelligence (AI) techniques and hybrid
methods. The mathematical programming-based or heuristically-
based, such as the lambda iterative method, gradient projection
method, Lagrange relaxation, linear programming, nonlinear pro-
gramming, interior point methods and dynamic programming, etc.
have proven their effectiveness in solving the DED problem with
smooth, convex and strictly increasing incremental cost functions.
For nonsmooth or nonconvex cost functions, most of these meth-
ods fail to obtain a global optimal solution. Recently, AI techniques
such as GA, DE, EP, SA, and PSO have successfully been applied for
solving DED with nonsmooth or nonconvex cost function due to
their ability to seek the global optimal solution. However, it may
take much time to reach just near a global optimum. Hybrid meth-
ods which combine two or more optimization techniques are found
to be more effective in finding global optimal solution for the DED
with nonsmooth or nonconvex cost functions.

This paper also presents an overview of the DED problem taking
into account the emission of gaseous pollutants from thermal units.
The emission has been considered either as an additional constraint
to the DED problem or considered as another objective, where both
emission and cost are minimized simultaneously.

The DED problem in deregulated power markets has been
reviewed. Two forms of the problem have been presented. The first

is refereed as price-based DED with the objective of maximizing
the GENCO own’s profit (revenue minus generation cost). The other
problem is the bid-based DED with the aim of maximizing the social
profit (customer benefit minus generation cost). The DED problem
with transmission cost is also reported.
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