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a b s t r a c t

This paper presents a near optimal hoist scheduling and control program for rock winders found in South
African deep level mines in the context of demand side management and time-of-use (TOU) tariffs. The
objective is to achieve a set hoist target at minimum energy cost within various system constraints.
The development of a discrete dynamic and constrained mixed integer linear programming model for a
vailable online 15 January 2011

eywords:
oad scheduling
emand side management
ixed integer linear programming

twin rock winder system is presented on which a half-hourly model predictive control (MPC) algorithm
containing an adapted branch and bound methodology is applied for near optimal scheduling. Simula-
tion results illustrate the effectiveness of the control program by minimising the energy costs through
scheduling according to the TOU tariff and controlling output and ore levels within their boundaries even
in the case of significant random delays in the system. Scheduling according to the TOU tariff shows a
possible 30.8% reduction in energy cost while approximately 6 h of delays in the system resulted in a

rgy c
odel predictive control mere 14% increase in ene

. Introduction

In order to meet the projected global electricity demand increase
f 45% between 2006 and 2030,1 supply capacity needs to be
ncreased and the rate of demand increase needs to be reduced
hrough the effective demand side management (DSM) of the elec-
ricity market. The need for additional future generation capacity
an however be reduced through a reduction of demand [1,2].
n light of the aforementioned Africa’s largest electricity supplier,
skom, has made DSM a priority with respect to the efficient use of
lectricity and reducing peak demand by 3000 MW between April
007 and April 2011 and a further 5000 MW by March 2026.2

Industry in South Africa consumes approximately 65% of all elec-
rical energy of which the mining sector is the largest representing
pproximately 24% of industry consumption and 16% of total elec-

rical energy consumption in South Africa.3 DSM projects that have
uccessfully been implemented in deep level gold mines are pri-
arily on the underground pumping, cooling and lighting systems

3]. Another potential system identified for DSM in deep level mines

∗ Corresponding author. Tel.: +27 12 420 2587; fax: +27 12 362 5000.
E-mail address: werner.badenhorst@eng.up.ac.za (W. Badenhorst).

1 IEA, IEA World Energy Outlook 2008 Executive Summary, <http://www.
orldenergyoutlook.org>.
2 Eskom, Eskom Energy Efficiency and Demand Side Management Programme
verview, 2008.
3 DME, Department Minerals and Energy, Republic of South Africa, Digest of South
frican Energy Statistics, 2006.

378-7796/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.epsr.2010.12.011
ost.
© 2010 Elsevier B.V. All rights reserved.

is the rock winders, which are responsible for hoisting ore and rock
from underground to the surface where the gold is then extracted.

The primary objective of the problem presented in this paper
is the development of a near optimal half hourly hoist control
scheduling program for a deep level mine twin rock winder sys-
tem in order to achieve a set hoist target at minimum energy cost
based on a time-of-use (TOU) tariff while operating within various
physical and operational constraints.

The paper first presents a brief summary in Section 2 of rele-
vant literature applied in achieving the primary objective. Section
3 formulates the problem through the development of a physi-
cally based, discrete dynamic and constrained mixed integer linear
programming (MILP) model of the rock winder system. Section
4 presents a model predictive control (MPC) framework with a
receding horizon method ensuring that future scheduled hoists are
updated in the event of delays and other system changes affecting
system constraints and conditions. Section 5 describes the closed
loop MPC algorithm in which measured system states and delays
are used as feedback every 30 min. The algorithm also incorporates
an adapted branch and bound methodology to obtain a near opti-
mal mixed integer hoist schedule solution. Finally in Section 6 the
program simulates and plots hoist schedules for the winders indi-
cating the number of hoists and predicted system state levels for

each half hour period over a set number of periods. The effective-
ness of the MPC algorithm is illustrated by comparing the impact of
using a TOU versus flat rate tariff as well as the inclusion delays into
the winder system. The results presented focuses on the near opti-
mality of the integer solution and the ability of the MPC algorithm

dx.doi.org/10.1016/j.epsr.2010.12.011
http://www.sciencedirect.com/science/journal/03787796
http://www.elsevier.com/locate/epsr
mailto:werner.badenhorst@eng.up.ac.za
http://www.worldenergyoutlook.org/
dx.doi.org/10.1016/j.epsr.2010.12.011
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duration and time of occurrences of these delays which can occur
at any time and averaged at 152 and 206 min per day for the sur-
face and underground winder respectively during this study. If the
W. Badenhorst et al. / Electric Powe

o absorb the primary dynamic factor in the system, namely the
ncertainty of duration and time of occurrence of system delays.

. Literature research

The first significant contribution towards DSM in deep level
ines was made in [4] in which an integrated electricity end-use

lanning methodology in deep level mines is proposed. It is shown
n [4] that rock winders represent approximately 15% of the energy
onsumption on a deep level goldmine making this focussed study
ery relevant and applicable within large mining industry in South
frica.

The modelling of the rock winder system in this paper is pri-
arily based on the physically based models such as presented in

5] for scheduling load for a flour mill to minimise electricity costs;
roviding an optimal load management strategy for an air condi-
ioning plant utilising load shifting [6]; for peak-load management
n steel plants [7] and for an optimal control model for load shifting
f a colliery conveyer transport system [8].

Closed loop control is achieved through the application of MPC.
PC’s ability to handle constraints and simple models along with its

obustness and closed-loop stability has made MPC one of the most
idely used multivariable control algorithms in many industry

pplications [9–11] including power systems. Amongst other MPC
s applied in [12] for load shifting of a water pumping scheme using
inary integer programming optimisation taking into account both
OU and maximum demand charges. Another example includes
n MPC approach to the dynamic economic dispatch problem of
enerators with ramp rate constraints in [13]. A number of appli-
ations combine MPC with minimisation or optimisation problems
f which a few include variable-air-volume boxes [14], fluidised
urnace reactors [15], boiler start-ups [16] and in the design and
peration of distributed energy resources [17].

In contrast to existing studies, the rock winder problem pre-
ented in this paper applies the above mentioned techniques in
mining environment with the added requirement of an integer

olution to the optimised scheduling problem. The formulation of
he rock winder problem into a constrained integer linear program-

ing model along with a solution methodology using an adapted
ranch and Bound methodology without feedback control was first

ntroduced in [18]. The reformulation of the problem in [18] for
pplication in a MPC algorithm has been presented in [19]. These
wo papers provide preliminary results for the complete and con-
ise formulation of the study presented in this paper in which the
dapted Branch and Bound methodology is incorporated within a
PC algorithm to obtain a near optimal hoist schedule for a twin

ock winder system.

. Problem formulation

.1. Nomenclature

For better comprehension of the problem formulation to follow
nomenclature is provided first.

C cost vector for model horizon N
ck energy cost per kWh during period k
D the number of days within the control horizon H

Ex energy consumption per hoist for winder x

ffx friction factor accounting for the friction load for winder x

such that 0 ≤ ff < 0.3
g gravitational acceleration as 9.81 m/s2

H the control horizon and the number of periods therein cal-
culated as H = 48D
ms Research 81 (2011) 1088–1095 1089

hx vertical winding depth or hoist height for winder x in
meters

J energy cost and linear objective function
Mblast one day’s target production or ore bearing rock in tons to

be blasted in the reefs
Mmin daily minimum required tons to be hoisted to surface

mk
1, mk

2 tons stored at the start of period k in respectively the
change-over and orepass system.

mk
in

feed in rate of tons of rock from the reefs into the orepass
system during period k.

N model horizon
�x winder efficiency of winder x measured as the ratio of shaft

output power required over total electrical input power
required

P prediction horizon
Rx set skip payload per hoist for winder x in tons

Tmx number of half hourly periods to complete the maintenance
or test period of winder x

Tsx starting time at either top or bottom of the hour for the
maintenance or test period of winder x

u vector containing the number of scheduled hoists for all
rock winders for each period in H

uk
x number of hoists for winder x during period k.

3.2. Ore transport and rock winder system overview

The schematic layout in Fig. 1 is of a typical deep level ore
transport system of which the most critical component is the
rock winder. The blasted rock from the reefs is transported to
the shaft area via orepasses, crushers and conveyor belts feeding
flasks that weigh off a set payload to be loaded into the skips in
which the rock is hoisted to surface by the rock winder.4 The ore
is then stored on surface in stockpiles or silos awaiting transport
to the gold plant where the gold is extracted from the ore-bearing
rock.

The twin rock winder system used in this study consists of an
underground and a surface winder as indicated in the diagram of
Fig. 2. Each day’s blasted rock is transported from the reefs and
stored in the underground orepass system. From the orepass sys-
tem the rock is conveyed into a flask where the rock is weighed to
Rg = 13.5 tons, before being emptied into the underground winder’s
skip. The loaded skip is then hoisted by the underground winder
in the sub-shaft and emptied into a change-over. From the change-
over the rock is conveyed into a flask where the rock is now weighed
to Rs = 23.5 tons, before being emptied into the surface winder’s
skip. The loaded skip is then hoisted to surface where it is in turn
emptied onto a conveyance transporting the rock to a surface stock-
pile with a capacity that will for the purposes of this study be
assumed to be infinite.

There are two primary uncertainties or dynamic factors within
the rock winder system. The first and least significant is the feed-
in rate of ore from the reefs into the orepass system that differs
from day to day. The feed-in rate can however be averaged over
1 h periods within a 24 h period based on historical records and the
24 h cyclic operation schedule of a mine with a high level of cer-
tainty. The second factor having by far the biggest impact on the
operational hours of the rock winder system is that of unscheduled
or unplanned system delays. This is because of the uncertainty in
MPC algorithm can therefore absorb the effects of such delays, the

4 AngloGold Ashanti, AngloGold Ashanti Virtual Mine Tour, <http://www.
anglogold.co.za>.

http://www.anglogold.co.za/
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hoist constraint is applicable to each period k over H and can be
k k
Fig. 1. Schematic layout of a typical deep level ore transport system.

lgorithm will easily be able to absorb other minor disturbances
ithin the system.

.3. Objective function

As the primary objective is to minimise the energy cost of the
inders, the objective function will take the form of an energy

ost function similar to that developed in [5–8]. The first part of
he objective function entails the energy consumption per hoist
alculated using Eq. (1):

x = (1 + ffx)Rx × g × hx

�x × 3600
[kWh] (1)

The payload, hoist height and efficiency of each winder can
afely be assumed to be constant meaning that the energy con-
umption per hoist can also be assumed constant. Therefore the
nergy consumption of a winder during period k can be calculated

s the product of the number of hoists during that period and the
nergy consumption per hoist. For the surface winder this energy
onsumption during period k can be written as uk

s Es and for the
nderground winder uk

gEg .
In accounting for the cost component of the objective function

t was noted that the mine operated on a time-of-use (TOU) tariff
system  

Fig. 2. Process flow diagram of a twin rock winder system.

package known as Megaflex5 of which the time intervals and energy
costs are stated in Table 1. Although the shortest time interval in
Table 1 is 1 h, the demand costs are calculated over half hourly
integration periods. Therefore the minimisation of the energy cost
through near optimal hoist scheduling will also be done in half
hourly periods thereby inherently minimising the network demand
charge applicable during standard and peak periods. A cost vector
is hence defined as C = [c0 c1 c2 . . . cH − 1]T over a control horizon H
such that the elements in C correspond to the values in Table 1 as
indicated in Table 2 for the case of D = 1 day or H = 48.

The energy cost in period k for the surface and underground
winder therefore equates to ckuk

s Es and ckuk
gEg respectively. The

summation of these two terms over the whole of H results in the
energy cost and linear objective function in (2) that is to be min-
imised:

min J = min

[
H−1∑
k=0

ck(uk
s Es + uk

gEg)

]
(2)

3.4. System constraints

The objective function in (2) is subject to four constraints sim-
ilar to the storage, production and process constraints found in
[5–8]. The first constraint puts a limitation on the number of hoists
that can be achieved by each winder during a 30-min period. The
stated as 0 ≤ us ≤ 11 for the surface winder and 0 ≤ ug ≤ 17 for the
underground winder.

5 Eskom, Eskom Retail Tariff Restructuring Plan, Non-local-authority Tariffs
2008/9, <http://www.eskom.co.za>.

http://www.eskom.co.za/
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Table 1
Megaflex energy costs in c/kWh for 2008.

Season/period Peak cp Standard cs Off-peak co

Jan–MaySept–Dec 20.52 12.77 9.10
Jun–Aug 72.05 19.04 10.38
Time of day: t ∈ [7, 10) ∪ [18, 20) [6, 7) ∪ [10, 18) ∪ [20, 22) [0, 6) ∪ [22, 24)

Table 2
Assigned values for the discrete cost function C.
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ck c0, . . ., c11 = co c12, c13 = cs c14, . . ., c19 = cp c

The second constraint is with respect to the upper (maximum)
nd lower (minimum) boundaries for the change-over and orepass
ystem ore levels as indicated in Fig. 2. The level inequality con-
traints can be formulated as m1 min ≤ mk

1 ≤ m1 max and m2 min ≤
k
2 ≤ m2 max.

A third constraint puts a lower boundary on the tons to be
oisted over the control horizon and is formulated in (3) as a hori-
on target constraint.

8D−1∑
k=0

uk
s Rs ≥ D × Mmin for k = 0, 1, 2, . . . , H − 1 (3)

Finally the fourth constraint takes into account mandatory rou-
ine daily winder maintenance or tests to be carried out on all
inders during which time no hoisting of rock is allowed. For the

urface winder it can be formulated as u48d+j
s = 0 for j = Tss, Tss + 1,

. ., Tss + Tms − 1 and d = 0, 1, . . ., D. An equivalent formulation can
e written for the underground winder in terms of ug, Tsg and Tmg.

.5. Discrete dynamic equation

Underlying the winder system model is a discrete time dynamic
ystem based on the basic dynamic programming model defined in
20]. This dynamic model is applied to the winder system’s two
tate variables, m1 and m2, of which the result is formulated in the
wo discrete dynamic equations in (4).

mk+1
1 = mk

1 + Rguk
g − Rsuk

s

mk+1
2 = mk

2 − Rguk
g + mk

in

for k = 0, 1, 2, . . . , H − 1 (4)

. Linear integer MPC formulation

The above minimisation problem can be solved using linear pro-
ramming after formulating the problem as a linear programming
odel (LPM). This formulation will require the objective function,

ost vector and constraints to be explicitly stated at the beginning
f each sampling instant k within H. As presented in [8] the problem
an be written in the form of formulations (5a) through (5d).

in
u

f T · u (5a)

b ≤ u ≤ ub (5b)

· u ≤ b (5c)

eq · u = beq (5d)

The product of the coefficient vector f and the optimal real solu-
ion vector u forms the objective energy cost function in (2) that is

o be minimised. The two vectors lb and ub respectively represents
he lower and upper hoist constraint boundaries for u·A and Aeq
re matrices representing respectively the inequality and equality
onstraint coefficients along with vectors b and beq containing real
alues thus forming the ore level and target constraints.
) [18,20) [20,22) [22,24)

, c35 = cs c36, . . ., c39 = cp c40, . . ., c43 = cs c44, . . ., c47 = co

The linear programming formulation of (5) is combined with
the MPC methodology presented in [21,22] referred to as dynamic
matrix control. The objective of the MPC control calculations over
H is to determine a sequence of manipulated inputs u, {u(k + j − 1),
j = 1, 2, . . ., H}, such that a set of predicted outputs over P, {ŷ(k +
j), j = 1, 2, . . . , P}, reaches a target in an optimal manner [22]. The
nature of this particular problem requires P to equal H. Control cal-
culations are based on multiple j-step ahead predictions of future
outputs ŷ(k + j), current measurements including actual outputs y,
and on optimizing the objective function within a constant model
horizon of 2H ≤ N ≤ 3H. The model horizon includes the effect of
past, current and future control and uncontrolled actions [22].
Defining the problem in terms of the MPC methodology in [21,22]
results in the following reformulations.

The dynamic state formulation in (5) is reformulated in (6):

m̂k+j
1 = m1

k +
j∑

i=1

(Rgug
k+j−i − Rsus

k+j−i)

m̂k+j
2 = mk

2 −
j∑

i=1

Rguk+j−i
g +

j∑
i=1

mk+j−i
in

for j = 1, 2, 3, . . . , P (6)

The objective function in (2) separated into the vectors f and u
in (5a) is formulated in Eqs. (7) and (8) respectively:

f T =
[

ck′+j−1Es ck′+j−1Eg ck′+jEs ck′+jEg

ck′+j+1Es ck′+j+1Eg . . . ck′+j+H−1Es ck′+j+H−1Eg

]
for j = 1, 2, 3, . . . , P (7)

u = [ u1 u2 u3 u4 u5 u5 · · · u(2H−1) u2H ]

= [ uk
s uk

g uk+1
s uk+1

g uk+2
s uk+2

g uk+H−1
s uk+H−1

g ]
(8)

where k′ = k − 48
⌊

k
48

⌋
= k − 48ktr for k = 0, 1, 2, . . . and � 	 denotes

rounding down to the nearest integer.
Eq. (7) requires the cost vector C to be reformulated to allow N

to move the required (H − 1) elements into the future. The refor-
mulation of C is given in (9) based on the values and notation of
Tables 1 and 2.

C = [ c′
1 c′

2 c′
3 · · · c′

2D ]T

c′
n = [ c0 c1 c2 · · · c47 ]T

(9)

The first constraint, the hoist limits, can be written in the form of
inequality (5b) such that ub is defined as in (10) and that lb contains
2H zero elements.

ub = [ ub1 ub2 ub3 ub4 · · · ub(2H−1) ub2H ]T
= [ ubs ubg ubs ubg · · · ubs ubg ]T

= [ 11 17 11 17 · · · 11 17 ]T

(10)

The second constraint, the level inequality boundaries, can be
formulated as in inequality (5c), which when written in the form



1 r Syste

p
t

f
i

h
t
d
b
t
c
i
o

u
t

∑

∑

i

5

a
a
s

092 W. Badenhorst et al. / Electric Powe

resented in [22] results in the four inequalities given in (11) for
he change over and orepass system levels.

j∑
i=1

(Rguk+j−i
g − Rsu

k+j−i
s ) ≤ (m1 max − mk

1)

j∑
i=1

(−Rguk+j−i
g + Rsu

k+j−i
s ) ≤ (−m1 min + mk

1)

j∑
i=1

(−Rguk+j−i
g ) ≤

(
m2 max − mk

2 −
j∑

i=1

mk+j−i
in

)

j∑
i=1

Rguk+j−i
g ≤

(
−m2 min + mk

2 +
j∑

i=1

mk+j−i
in

)
(11)

for j = 1, 2, 3, . . . , P (11)

Writing the horizon target constraint in inequality (3) in the
orm presented in [22] over a model horizon of N periods results
n:

−
j∑

i=1

Rsus
k+j−i ≤

⎛
⎝ N∑

i=j+1

Rsus
k+j−i − N

48
Mmin

⎞
⎠

for j = 1, 2, 3, . . . , P (12)

The formulation in (12) can be read as follows: “The tons to be
oisted during the next j period(s) must be equal to or greater than
he difference between the actual tons already hoisted to surface
uring the past (N–j) periods and the product between the num-
er of days within N, (N/48), and Mmin.” From the summation on
he right of the inequality in (12) it is clear that N–1 known past
ontrol actions are required. For simulation purposes (12) has to be
mplemented in phases until k ≥ N − 1 in order to create this history
f known past control actions.

Finally the mandatory maintenance equality constraints for the
nderground winder can be written in the form of (5d) in (13a)
hrough (13c) as follows:

D−1

d=0

⎛
⎝Tsg+Tmg−1∑

i=Tsg

ui+48(d+ktr )
g

⎞
⎠ = 0 for 0 ≤ k′ < Tsg (13a)

D−1∑
d=0

⎛
⎝Tsg+Tmg−1∑

i=k′
ui+48(d+ktr )

g +
k′−1∑
i=Tsg

ui+48(d+ktr+1)
g

⎞
⎠

= 0 for Tsg ≤ k′ < Tsg + Tmg (13b)

D−1

d=0

⎛
⎝Tsg+Tmg−1∑

i=Tsg

ui+48(d+ktr+1)
g

⎞
⎠ = 0 for Tsg + Tmg ≤ k < 48 (13c)

An equivalent formulation can be written for the surface winder
n terms of us, Tss and Tms.

. MPC integer solution algorithm
The Branch and Bound (BnB) methodology described in [23] is
dapted and applied as explained partially in [18] within an MPC
lgorithm to obtain a near optimal mixed integer hoist schedule
olution to the LPM formulated in Section 4. Integer values are
ms Research 81 (2011) 1088–1095

required because the winders cannot be controlled to complete a
fraction of a hoist cycle within a 30-min period, but only complete
cycles. A summary of the complete MPC algorithm including the
adapted BnB methodology is provided below:

Step 1: Set k = 0 and define the constants and initial conditions
listed below where m0

x refers to the respective ore levels at the start
of the simulation period.

Es Eg Mblast m0
1 m1 max m1 min N Tss Tsg

Rs Rg Mmin m0
2 m2 max m2 min D Tms Tmg

Step 2: Define f and u as in (7) and (8) and construct lb, ub, A, b,
Aeq and beq for all j = 1, 2, 3, . . ., P.

Step 3: Minimise fT · u subject to lb ≤ u ≤ ub, A · u ≤ b and
Aeq · u = beq in order to obtain an optimal real solution for u of (8).

Step 4: Using the first two elements u1 and u2 from the feasi-
ble optimal solution obtained for u, branch into four sub problems
as illustrated in Fig. 3. Again � 	 denotes rounding down and 
 �
rounding up to the nearest integer.

For each sub problem create and add two equality constraints to
the Aeq matrix and beq vector Aeq · u = beq as defined in (14) using
sub problem c as an example:[

1 0
0 1

]
·
[

u1
u2

]
=
[

uk
s

uk
g

]
=
[

�u1	

u2�

]
(14)

Step 5: Re-minimise fT · u for each of the four sub problems
with their specific added equality constraints now included into
Aeq · u = beq.

Step 6: Select the values of uk
s and uk

g in the feasible sub problem
having the lowest objective value that is not less than the opti-
mal objective value obtained from the first minimisation in Step 3.
Implement only these two values in period k.

Step 7: At the end of period k, record the actual number of hoists
achieved by the surface winder ûk

s and the underground winder
ûk

g , as well as the actual feed-in rate m̂k
in

, during period k. As men-
tioned earlier the actual feed-in rate will be replaced by an historical
average estimation for the purposes of this study.

Step 8: From the recorded values, update the historical data vec-
tor for us required in (12) and calculate the new initial system state
values for period k + 1:

mk+1
1 = mk

1 + Rgûk
g − Rsûk

s

mk+1
2 = mk

2 − Rgûk
g + m̂k

in

Finally increment k and repeat from Step 2.
It should be noted that the above algorithm differs quite sub-

stantially from commercially available solvers. If for example the
control horizon is set for 2 days it results in 192 variables in H to
be solved at the beginning of each period. However, whereas the
conventional solvers would actually endeavour to obtain an integer
solution for each of the 192 variables, the algorithm presented only
branches on the first two variables in u irrespective of the magni-
tude of H as these will be the only two variables to be implemented
in accordance to the MPC algorithm. This adapted BnB algorithm
therefore drastically reduces the computational effort and time
required for the conventional BnB solvers by having to solve for
only 2 variables instead of 192 in the case of H being set to cover 2
days.

6. Simulation study and discussion
The study included various simulations investigating the impact
of various factors on the hoist scheduling of which only a few will
be summarised in this paper. By comparing the hoist schedules and
related energy costs, the results presented in this paper will point
out:
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Fig. 3. Branching of the optimal solution at period k into four subproblems.

Table 3
Initial state conditions and constraint values.

Es = 130.85 kWh Rs = 23.5 tons m1max = 5 ktons Tss = 7
Eg = 42.91 kWh Rg = 13.5 tons m1min = 500 ktons Tms = 8
N = 2H = 96D Mmin = 8013.5 tons m2max = 20 ktons Tsg = 8
D = 2 Mblast = 8200 tons m2min = 7 ktons Tmg = 4
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Fig. 5. Ore levels and transient response to obtain steady state values.

the near optimality of the adapted BnB method by applying and
not applying the adapted BnB methodology,
the response of the controller to a TOU versus a flat rate tariff,
the impact of introducing unplanned operational delays into the
winder system.

Table 3 contains the values for the various constraints and initial
onditions applied in the simulations below.

Fig. 4 shows the periodic percentage function for the feed-in
ate of rock from the reefs into the orepass system mk

in
discussed

n Section 3.1. The actual tons fed into the orepass system for each
our of the day is therefore estimated as the product of Mblast and
he percentage at that time according to Fig. 4.

.1. Obtaining steady state and historical hoist record values

Fig. 5 shows the results of an optimal solution obtained after
unning a single simulation for 50 days. This simulation was done

or two reasons. First to create the historical data record of N − 1
nown past control actions required in (12) and denoted as usm.
econdly to determine the initial steady state conditions for m0

1
nd m0

2 to be used in further simulations. The values for m0
1 and m0

2

Time [hour]

Fig. 6. An optimal hoist schedule with MPC applied and history taken into account.

were set to 1500 tons and 11 000 tons respectively at the start of
the 50 day simulation.

The top broken line in Fig. 5 represents the ore-pass system ore
level m2 and the bottom broken line the change-over ore level m1.
The solid line represents mN, which is defined as the average tons
hoisted per 24 h over all model horizon windows N within the sim-
ulated period in accordance with (12). This running average mN

is calculated at the end of each and every period using (15) and is
used as a measure as to how well the controller adheres to the hoist
target constraint.

mk
N = Rs

N/48

k∑
i=k−(N−1)

ui
s (15)

In steady state mN has an average of 8194 tons, which is notice-
ably closer to Mblast than Mmin. This is to be expected in view of the
fact that what is blasted underground needs to be hoisted to surface
to prevent the ore transport system from saturating. The steady
state values for m1 and m2 in Fig. 5 are 1168 tons and 9806 tons
respectively and taken as the initial values of m0

1 and m0
2 for future

simulations. Though the actual schedule of us is not shown in Fig. 5
to avoid a cluttered graph, the last N − 1 values were taken for
constructing the historical hoist record usm.

6.2. Near optimality of the adapted BnB method

Control is now continued in time for a further two days from
where Fig. 5 ended without introducing delays. Excluding the
adapted BnB methodology in Step 4, 5 and 6 in the algorithm of
Section 5 results in the optimal non-integer hoist schedule and ore
levels in Fig. 6. Including the adapted BnB methodology to the same
scenario results in the near optimal schedule in Fig. 7, which clearly
is very similar to that of the optimal solution in Fig. 6. The solid
line remaining constant at approximately 8200 tons indicates the
mN average as in Fig. 5. The top solid line without markers repre-
sents the underground winder schedule ug indicating the number
of hoists to complete for each half-hourly period. Similarly the solid
s

broken lines are those representing m1 and m2 as in Fig. 5.
From the two figures above it is evident that no hoisting was

scheduled during the expensive peak tariff periods. This happens
provided that the hoist target or delays are not too high. Also, lim-
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Table 4
Numerical results and comparison for optimal, near optimal integer, flat rate and delay impact schedules.

Solution: Optimal (Fig. 6) Near optimal (Fig. 7) Flat Rate (Fig. 8) Random delays (Fig. 9)

mN at the end of day 2 [tons] 8193.20 8212.70 8209.10 8013.50
Average 2-day energy cost R 10 664 R 10 727 R 15 504 R 12 254
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Fig. 7. A near optimal integer hoist schedule with the adapted BnB applied.
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well as the inclusion of random unplanned or unscheduled delays
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ig. 8. A near optimal hoist schedule based on a weighted average flat rate tariff.

ted hoisting was scheduled during standard periods and maximum
oisting during the low cost off peak periods.

The near optimality of the adapted BnB solution is also sup-
orted by a numerical comparison of the results obtained for
igs. 6 and 7 in Table 4. A negligible difference is noted between
he mN averages and the objectives or energy costs for the two
olutions. Note also that the energy cost of the near optimal integer
olution is slightly higher than the optimal solution.

.3. TOU versus flat rate tariff

The comparative study in this scenario shows what the energy
ost based on the TOU active energy cost in Table 1 would be if the
cheduling of both winders were done based on a flat rate tariff
hereby essentially ignoring the TOU tariff structure. The schedule
ased on a flat rate tariff in Fig. 8 shows that hoisting was scheduled
nd distributed almost evenly across all periods of the day except
uring the mandatory maintenance and testing times.

A comparison of the numerical results for Fig. 8 to that of Fig. 7
n Table 4 shows a mere 3.6 ton reduction in the mN average. How-
ver, applying the flat rate schedule on the TOU tariff resulted in
n average 2-day energy cost increase of 44.5% from R 10 727 to R
5 504. It can also be stated that scheduling the hoists according
o the TOU tariff results in an energy cost saving of (R 15 504–R
0 727)/R 15 504 = 30.8%.

.4. Delay impact
In order to illustrate the impact of delays on the winder con-
rol system, approximately 145 min delay per day were randomly
nforced on the surface winder and 190 min on the underground
inder. These delays were applied to the same conditions in Fig. 7,
Time [hour]

Fig. 9. A near optimal integer schedule with random delays enforced.

which resulted in the actual achieved hoisted schedule shown in
Fig. 9.

Four significant differences are noted when comparing Fig. 9
with Fig. 7. First to note are the surface winder hoists scheduled
during both evening and peak periods and the underground winder
hoists during the morning peak period of the first day. Second
to note is the increase in hoists scheduled on both days for both
winders during standard periods. Thirdly the orepass system level
is controlled at just below its upper limit of 20 ktons and finally
the mN average being controlled around the target of 8013.5 tons
instead of above it at approximately Mblast. Simulations over longer
periods showed that in time the change-over will also reach its
upper boundary at 5 ktons at which time the mN average will
increase again to approximately Mblast.

Though not visible in Fig. 9, the mN average does drop below
Mmin and m1 below m1min from time to time due to the unpre-
dictability of the delays. The controller however continues to
provide a sustainable hoist schedule by controlling the required
levels around the boundaries. Therefore rather than seeing the
boundaries as limits, they can be regarded as control set points.

The effectiveness of the MPC controller is revealed in the numer-
ical results of Table 4 in that the mN average is controlled very close
to Mmin while keeping the average 2-day energy cost increase to
just over R 1500 from the R 10 727 for Fig. 7 to the R 12 254 for
Fig. 9. This is quite significant in view of the fact that almost 3 h of
delay was enforced on each of the winders.

7. Conclusion

This paper showed the development of a constrained MILP
dynamic optimisation problem of a twin rock winder system in
order to obtain a near optimal hoist schedule by achieving a set
hoist target at the lowest possible energy cost under unstable
and unpredictable operating conditions. The problem was solved
through an MPC algorithm using an adapted BnB methodology to
find a near optimal mixed integer solution to the hoist scheduling
problem at the start of each control period. The near optimal integer
solutions were shown to be very close to the optimal non-integer
solutions. The effectiveness of the MPC algorithm was illustrated
by comparing the impact of using a TOU versus flat rate tariff as
into the winder system. Application of the MPC algorithm provided
a 30% reduction in energy costs when applied on a TOU tariff com-
pared to a flat rate tariff schedule. Despite almost 3 h of delays being
enforced on both winders, the MPC algorithm managed to control
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he tons hoisted around the daily target while keeping ore levels
ithin their boundaries at a mere 14% increase in energy cost. Most

mportantly, the MPC algorithm maintains the ore levels such as to
void the system from either running empty or saturating thereby
nsuring that maximum hoisting can be done during off-peak peri-
ds while minimal hoisting is scheduled during the more expensive
eriods. This not only bares a financial advantage to the mine, but
lso aids in the improvement of the utilities load factor as part of
ts DSM objectives.
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