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a  b  s  t  r  a  c  t

Reducing  emission  from  fossil-fueled  electric  power  generating  plants  has  received  considerable  atten-
tion in  recent  years  in both  regulated  and  deregulated  power  markets.  Under  regulated  power  systems,
utilities  solve  the  dynamic  economic  dispatch  problem  to determine  the  optimal  scheduling  of the  com-
mitted  unit’s  output  at minimum  fuel  cost  while  satisfying  a set  of  constraints.  In this  paper,  we  introduce
the  following  problems  where  the  emission  effects  are  included  in  the  mathematical  model:  (1)  dynamic
economic  emission  dispatch  and (2)  emission  constrained  dynamic  economic  dispatch.  Under  deregu-
lated markets,  the  generation  company  can  determine  the optimal  amounts  of  energy  to  be  sold  in  the
market by  running  profit-based  dynamic  economic  dispatch  problem  to maximize  its  own  profit.  To  take
ptimization
odel predictive control

into account  the  emission  limitations  we  introduced  two problems:  (1)  profit-based  dynamic  economic
emission  dispatch  problem  and  (2)  profit-based  emission  constrained  dynamic  economic  dispatch  prob-
lem.  In  this  paper  we  applied  the  model  predictive  control  (MPC)  approach  proposed  recently to  the
dynamic  dispatch  problems  in both  regulated  and  deregulated  systems.  The  convergence  and  robustness
of the  MPC  algorithms  are  demonstrated  through  the  application  of  MPC  to  these  problems  with  a  six-unit
system.
. Introduction

The problem of optimal dynamic dispatch (ODD) of electric
ower generation has received considerable attention in both reg-
lated and deregulated power markets. In the vertically integrated
onopolistic and regulated environment, the problem is known as

ynamic economic dispatch (DED) problem which is formulated
o determine the optimal scheduling of the committed generat-
ng unit’s output so as to meet the load demand over a dispatch
eriod at minimum operating cost while satisfying ramp rate con-
traints and other constraints (see e.g. [3–15] and the review paper
22]). In this environment, utilities are obliged to serve all cus-
omers and meeting all demands. Recently many countries have
one through deregulation and restructuring of the electrical power

ystems with the aim of improving economic efficiency. Under
eregulation, the DED has evolved from a minimum-cost policy
o a maximum-profit policy, giving rise to the new profit-based
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dynamic economic dispatch (PBDED) problem [16]. The objective
function of the PBDED is formulated to maximize the genera-
tion company’s (GENCO’s) own  profit from selling energy into
the market. Therefore, the GENCO can choose to sell energy less
than the predicted values if a higher profit is realized. The PBDED
problem can also be used to create the decision criteria for the
GENCO.

The emission of gaseous pollutants including SO2, NOx, CO and
CO2 from fossil fuel fired thermal plants affects the human health
directly or indirectly. Therefore, electric utilities or GENCOs are
requested to reduce emission from their plants. As a result of public
awareness of environmental protection, diverse compliance strate-
gies have emerged. These strategies include installation of pollutant
cleaning, switching to low emission fuels, replacement of the aged
fuel burners with cleaner ones, as well as emission dispatching
[23]. The last strategy is usually preferred to the existing systems
because it is easy to implement and requires less additional cost. In
the literature an overwhelming number of reported works incorpo-
rate the emission with the static economic dispatch (SED) problem
(see e.g. [23]), but only few works address the DED problem with

emission limitations [17–21].  In contrast to DED, the SED does not
have the look-ahead capability and it does not incorporate the ramp
rate constraint which is important to maintain the life of the gen-
erators [5].

dx.doi.org/10.1016/j.epsr.2011.09.024
http://www.sciencedirect.com/science/journal/03787796
http://www.elsevier.com/locate/epsr
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The emission can be taken into the DED formulation in several
ays. One approach is similar to the DED problem with the objec-

ive to be minimized being emission instead of fuel cost, and the
roblem is referred to as pure dynamic emission dispatch (PDED)
19]. The second approach combines both DED and PDED in one
roblem to minimize both fuel cost and emission simultaneously
nder load demand constraint, ramp rate constraint and other con-
traints, resulting in a multi-objective optimization problem. This
roblem is referred to as dynamic economic emission dispatch
DEED) [17–19,21].  Another approach is to minimize the fuel cost
hile treating the emission as a constraint with a pre-specified

imit [20], and the problem is referred to as emission constrained
ynamic economic dispatch (ECDED) [20].

To the best of the knowledge of the authors the emission has
ever been considered in the PBDED formulation which represents
ne of the new contributions of the present paper. The emission
an be taken into the PBDED problem by formulating profit-based
ynamic economic emission dispatch (PBDEED) problem with the
bjective of maximizing the profit and minimizing emission simul-
aneously under ramp rate constraint and other constraints. The
mission can also be taken into the PBDED problem by formulat-
ng profit-based emission constrained dynamic economic dispatch
PBECDED) problem with the objective to maximize the profit
nder emission constraint and other constraints.

A great majority of works have been devoted to solve the
DD problem using various optimization techniques and proce-
ures incorporating extended and complex objective functions or
onstraints (see the review paper [22]). The early research activi-
ies were either mathematical programming based or heuristically
ased, such as the lambda iterative method [6],  gradient pro-

ection method [7],  Lagrange relaxation [8],  linear programming
9], dynamic programming [1,2] and interior point method [10,5].

ore recent works have centered around artificial intelligence (AI)
ethods, on par with the development of AI optimization theo-

ies, such as simulated annealing [11], hybrid genetic algorithms
12], differential evolution [13], particle swarm optimization [4,14],
volutionary programming with sequential quadratic program-
ing [3],  particle swarm optimization with sequential quadratic

rogramming [15]. Many of these techniques have proven their
ffectiveness in solving the DED problems without any or fewer
estrictions on the shape of the cost function curves.

All the above mentioned ODD formulations and their opti-
ization algorithms suffer from the deficiency of not allowing to

ompensate for inaccuracies originating from modeling uncertain-
ies, external disturbances, and unexpected reactions of some of
he power system components. In the terminology of control the-
ry, these formulations are in fact open-loop systems and there is
o way to feedback the inaccuracy information to the systems so
hat the solutions can be compensated. In other words, these for-

ulations are not closed-loop systems. A possible solution to this
roblem is to apply the model predictive control (MPC) method.
his method obtains a feedback control by solving a finite horizon
ptimal control problem at each sampling instant using the current
tate of the plant as the initial state for the optimization and apply-
ng only “the first part” of the optimal control [24]. MPC  method has
merged and been successfully applied particularly in the process
ontrol industry since 1970s. Theoretical properties such as stabil-
ty and robustness of the MPC  have been studied by many authors
see the review paper [24]). Up to present, MPC  has become one of
he most widely used multivariable control algorithms in various
ndustries including chemical engineering, food processing, auto-

otive, aerospace applications [25], and recently in power systems

26–28]. This is due to its facility of handling constraints, being
ble to use simple models, and its closed-loop stability and inher-
nt robustness. Moreover, MPC  solves optimal control problem
n-line for the current state of the plant which is a mathematical
tems Research 84 (2012) 31– 44

programming problem and is much more simpler than determining
the feedback solution by dynamic programming [24].

MPC  has been proposed for the periodic implementations
of the optimal solutions of the DED problem and the optimal
dynamic resource allocation problem in [27,26],  respectively. In
these papers, the convergence and robustness of the MPC  algorithm
are proved. In [27], emission is not included in the DED  formulation.
In the present paper we  first introduce the DEED, ECDED, PBDEED
and PBECDED problems and then apply the MPC  approach proposed
in [27,26] to these problems.

The remainder of this paper is organized as follows: in Section
2, we  introduce the ODD problems under regulated markets. The
ODD problems under deregulated markets are outlined in Section
3. In Section 4, we outline the MPC  approach for the DED problem
and summarize the main results obtained in [27]. The simulation
results for the application of MPC  to the DEED, ECDED, PBDEED and
PBECDED problems are given in Section 5. The last section is the
conclusions.

Throughout the paper, the following notations and definitions
will be used. For a sampling period T , the dynamic dispatch
problem is considered over dispatch intervals, [iT, (i + N)T))
where the optimization is considered, for i ≥ 0, N is a fixed pos-
itive integer, and NT is the dispatch period. For simplicity, we
make the convention throughout the paper that [i, j) denotes
the time interval [iT, jT). Assume that n is the number of com-
mitted units, Pt

i
is the generation of unit i during the tth time

interval [t − 1, t); Ci(Pt
i
) and Ei(Pt

i
) are the generation cost and

the amount of emission respectively for unit i to produce Pt
i
;

Dt , SPt are the demand and energy price at time t (i.e., the tth
time interval); the control variable ut

i
is the ramp rate of the

unit i at time t; URi and DRi are the maximum ramp up/down
rates for unit i; Pmin

i
and Pmax

i
are the minimum and maximum

capacity of unit i respectively. For any m ≥ 0, k ≥ 1 define Pm =
(P1+m

1 , P1+m
2 , . . . , P1+m

n , P2+m
1 , P2+m

2 , . . . , P2+m
n , . . . , PN+m

1 , PN+m
2 ,

. . . , PN+m
n ), and Pk = (Pk

1, Pk
2, . . . , Pk

n)′. Define U = (u1
1,

u1
2, . . .,  u1

n, u2
1, u2

2, . . . , u2
n, . . . , uN−1

1 , uN−1
2 , . . . , uN−1

n ) and
D = (D1, D2, . . . , DN)′. The total fuel cost and emission from
all units and over the dispatch period [m, m + N) are denoted by
C(Pm) and E(Pm), respectively. The demand Dt and the energy
price SPt are assumed to be periodic with period N. This periodic
assumption is made to reflect the cyclic consumption behavior
and seasonal changes over the dispatch interval.

2. Optimal dynamic dispatch under regulated markets

In this section we  introduce the ODD problems under regulated
markets taking into account the emission limitations.

2.1. Dynamic economic emission dispatch

It is well known that the fuel cost and the amount of emission
conflict with each other. Minimization of fuel cost maximizes the
amount of emission and vice versa. Therefore it is necessary to find
out an operating point that strikes a balance between fuel cost and
emission. This can be done by formulating DEED problem which is
a multi-objective optimization problem with two conflicting objec-
tives, the fuel cost and emission. The total fuel cost and pollutants
emission over the dispatch period [0,  N] are given, respectively by:

C(P0) =
N∑

t=1

n∑
i=1

Ci(P
t
i ), (1)
E(P0) =
N∑

t=1

n∑
i=1

Ei(P
t
i ). (2)
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he objective of the DEED problem is to determine the generation
evels for the committed units which simultaneously minimize the
otal fuel cost and pollutants emission over the dispatch period
0,  N], while satisfying a set of constraints. The DEED can be math-
matically stated as follows:

min
P0

(C(P0), E(P0))

subject to Pt
i

∈ �DEED(P0), i = 1, 2, . . . , n, t = 1, 2, . . . , N.
(3)

here the feasible domain �DEED is defined to be the set of (Pt
i

: i =
, 2, . . . , n, t = 1, 2, . . . , N) satisfying the following constraints:

(i) Power balance constraint

n∑
i=1

Pt
i = Dt, t = 1, 2, . . . , N (4)

(ii) Generation limits

Pmin
i ≤ Pt

i ≤ Pmax
i , i = 1, 2, . . . , n, t = 1, 2, . . . , N (5)

iii) Generating unit ramp rate limits

−DRi · T ≤ Pt+1
i

− Pt
i ≤ URi · T, i = 1, 2, . . . , n,

t = 1, 2, . . . , N − 1, (6)

−DRi · T ≤ P1
i − PN

i ≤ URi · T, i = 1, 2, . . . , n. (7)

In this paper we assume, for simplicity, that the cost and emis-
ion functions are quadratic functions as:

i(P
t
i ) = ai + biP

t
i + ci(P

t
i )2, (8)

i(P
t
i ) = ˛i + ˇiP

t
i + �i(P

t
i )2, (9)

here ai, bi and ci are the fuel cost coefficients of generator i and
hey are constants. The parameters ˛i, ˇi and �i are the coefficient
f ith generator emission characteristics [20].

This multi-objective optimization problem can be converted
nto a single objective optimization as:

in
P0

H(P0) = ˛

N∑
t=1

n∑
i=1

Ci(P
t
i ) + (1 − ˛)

N∑
t=1

n∑
i=1

Ei(P
t
i ) (10)

ubject to Pt
i ∈ �DEED(P0), i = 1, 2, . . . , n, t = 1, 2, . . . , N

(11)

here  ̨ ∈ [0,  1] is a weighting factor. It will be noted that, when
 = 1, the problem (10) and (11) determines the optimal amount
f the generated power by minimizing the cost regardless of emis-
ion and the DEED problem leads to the DED problem [27]. If  ̨ = 0
hen, the DEED problem determine the optimal amount of the gen-
rated power by minimizing the emission regardless of cost and the
EED problem leads to the pure dynamic emission dispatch (PDED)

19]. This optimization problem (10) and (11) can be solved by e.g.,
uadratic programming since H is a quadratic function.

The constraints (4)–(6) are usually used in the conventional
EED problem [17–19]. Since the demand and constraints are
eriodic, one may  obtain the solution of the conventional DEED
roblem (3)–(6) over e.g. 24 h (N = 24 and T = 1) then this solu-
ion is implemented not only for the first day, but also for all the
ther week days. Sometimes such an optimal solution is not able to
e practically implemented, or in other words, the solution is not

ractically feasible. The ramp rate constraint may  be violated when
he generators are moved from the 24th hour of a day to the first
our of the next day. This problem can be resolved by including the
amp limit on the difference between P24

i
and P25

i
= P1

i
. This can
tems Research 84 (2012) 31– 44 33

be achieved by adding the constraint (7) to the conventional DEED
problem [27].

Here we have considered a simple form of DEED problem involv-
ing three types of constraints, equality, dynamic and inequality
constraints. There are roughly three main types of constraints in the
DEED problem: the load demand balance in terms of equality con-
straints, ramp rates in terms of dynamic constraints and generation
capacity in terms of inequality constraints. So the consideration
of simple form of the DEED problem is without loss of generality,
because it contains all three types of constraints. Some other con-
straints such as spinning reserve, security constraints, etc., can be
taken into consideration in exactly the same fashion in both for-
mulations of the dynamic dispatch problem but they all boil down
mathematically to the afore-mentioned three types of constraints.
The application of MPC  to the DEED with transmission line losses,
general constraints and objectives including non-smooth and/or
non-convex functions will be left to our future research.

We  note that the above DEED problem can be solved over the
dispatch period [m, m + N] for any m ≥ 0 and it can be formulated
as:

min
Pm

H(Pm)

subject to Pt
i

∈ �DEED(Pm), i = 1, 2, . . . , n, t = m + 1, m + 2, . . . , m + N.

Since the demand is periodic and Pmin
i

, Pmax
i

, URi, DRi, ˛, and T ,
do not change over time, then Pm+1 = Pm+N+1, and �DEED satisfies

�DEED(Pm+1) = �DEED(Pm+2, . . . , Pm+N, Pm+N+1)
= �DEED(Pm+2, . . . , Pm+N, Pm+1) = �DEED(Pm)

then �DEED is shift-invariant (see [26]). The shift-invariant property
of �DEED is needed for the application of the MPC  approach to the
DEED problem.

2.2. Emission constrained dynamic economic dispatch

The main objective of this problem is to minimize the total fuel
cost under power balance constraint, ramp rate constraint, and gen-
eration capacity constraints. In addition the total emission from all
units and over the dispatch period need to be below the allowable
emission limit Emax. The ECDED problem can be formulated as:

min
P0

C(P0) =
N∑

t=1

n∑
i=1

Ci(P
t
i )

subject to Pt
i

∈ �ECDED(P0), i = 1, 2, . . . , n, t = 1, 2, . . . , N

where the feasible domain �ECDED is defined to be the set of (Pt
i

: i =
1, 2, . . . , n, t = 1, 2, . . . , N) satisfying the constraints (4)–(7) and

N∑
t=1

n∑
i=1

Ei(P
t
i ) ≤ Emax. (12)

3. Optimal dynamic dispatch under deregulated markets

After deregulation of the electrical power systems, competitive
electricity markets have been created. Deregulation means con-
sumers will have their choice of electricity generation suppliers.
In this environment, suppliers and sometimes customers can par-
ticipate in the energy market and all the transactions are made
based on the price rather than cost. The Independent System Oper-
ator (ISO) has been created to coordinate, control and monitor the
operations of the electrical power systems. In some markets the
ODD problem is the responsibility of the GENCO for scheduling and

operating its power plants. In this case the GENCO solve the PBDED
problem not for minimizing the production cost as in the regu-
lated system but for maximizing its own profit. Therefore, GENCO
can produce power less than the forecasted demand if this will
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aximize its own profit. The system-wide balance of supply and
emand is managed by ISO. In a day-ahead energy market, suppli-
rs submit monotonically increasing bid curves (a pair of quantity
nd price) to the ISO. The ISO aggregates the bid curves into an
ggregated supply curve for each hour to determine the market
learing price for that hour on the basis of the forecast load.

Due to increasing concern over the environmental considera-
ions, GENCOs are requested to minimize the level of pollution from
heir plants. The emission limitations has recently been included in
he profit-based unit commitment problem in [30], but not in the
BDED problem. Therefore, the objective of this section is to take
nto account the emission limitations in the PBDED by formulating
he PBDEED and PBECDED problems.

.1. Profit-based dynamic economic emission dispatch

Now we introduce the PBDEED formulation with the aim to
roduce electricity with minimum operating cost and sell it with
aximum profits and environmental protection by limiting the

mission of greenhouse gases into the atmosphere.
The total profit over the dispatch period [0,  N] is given by:

F(P0) =
N∑

t=1

n∑
i=1

SPt · Pt
i︸  ︷︷  ︸

revenue

−
N∑

t=1

n∑
i=1

Ci(P
t
i )

︸  ︷︷  ︸
cost

here SPt is the forecasted energy price at time t. Let us define
 function G(.) = −PF(.) which measures the profit attained by the
onversion of the energy available in fossil fuels into electric energy.

The objective of the PBDEED is to simultaneously minimize the
mission and maximize the profit and satisfying a set of constraints.
he PBDEED can be mathematically stated as follows:

min
P0

(G(P0), E(P0))

subject to Pt
i

∈ �PBDEED(P0), i = 1, 2, . . . , n, t = 1, 2, . . . , N,

here the feasible domain �PBDEED is defined to be the set of (Pt
i

:
 = 1, 2, . . . , n, t = 1, 2, . . . , N) satisfying the following constraints:

n

i=1

Pt
i ≤ Dt, t = 1, 2, . . . , N (13)

min
i ≤ Pt

i ≤ Pmax
i , i = 1, 2, . . . , n, t = 1, 2, . . . , N, (14)

DRi · T ≤ Pt+1
i

− Pt
i ≤ URi · T, i = 1, 2, . . . , n,

t = 1, 2, . . . , N − 1, (15)

DRi · T ≤ P1
i − PN

i ≤ URi · T, i = 1, 2, . . . , n. (16)

This multi-objective optimization problem can be converted
nto a single objective optimization as follows:

in
P0

H(P0) = ˛

[
N∑

t=1

n∑
i=1

Ci(P
t
i ) − SPt · Pt

i

]
+ (1 − ˛)

N∑
t=1

n∑
i=1

Ei(P
t
i ),

(17)

ubject to Pt
i ∈ �PBDEED(P0), i = 1, 2, . . . , n, t = 1, 2, . . . , N,
(18)

here  ̨ ∈ [0,  1] is a weighting factor. It will be noted that, when  ̨ =
, the problem (17) and (18) determines the optimal amount of the
tems Research 84 (2012) 31– 44

generated power by maximizing the profit regardless of emission
and the PBDEED problem leads to the PBDED problem [16]. If  ̨ = 0
then, the PBDEED problem determine the optimal amount of the
generated power by minimizing the emission regardless of profit
[30]. Of course the later case is not useful for GENCOs.

Constraint (13) means that under the deregulated environment,
GENCO is not obliged to meet all demand, but may  sell its energy
at less than the system’s forecasted demand equilibrium.

Now we can make a comparison between the DEED and PBDEED.

1. The DEED objective is to simultaneously minimize the emission
and the generation cost while the PBDEED objective is to simul-
taneously minimize emission and maximize the GENCO’s profit
on the basis of the forecast energy prices.

2. In DEED, demand forecast advises the power system operator of
the amount of power to be generated. But in PBDEED, bilateral
and forward contracts will make a part of the total demand and
the remaining part will be forecast as in DEED.

3. In DEED, the total generation must equal the total demand. In
contrast, the GENCO has the option to consider a PBDEED sched-
ule that produces less than the predicted power demand, with
its aim to maximize its own profit.

3.2. Profit-based emission constrained dynamic economic
dispatch

The main objective of this problem is to maximize the profit
under constraints (13)–(16). In addition the total emission from all
units and over the dispatch period need to be below the allowable
emission limit Emax. The PBECDED problem can be formulated as:

min
P0

G(P0) =
N∑

t=1

n∑
i=1

Ci(P
t
i ) − SPt · Pt

i

subject to Pt
i

∈ �PBECDED(P0), i = 1, 2, . . . , n, t = 1, 2, . . . , N,

where the feasible domain �PBECDED is defined to be the set
of (Pt

i
: i = 1, 2, . . . , n, t = 1, 2, . . . , N) satisfying the constraints

(13)–(16) and (12).
From a control theoretical point of view, the ODD formulations

introduced in Sections 2 and 3 provide only open-loop optimal
solutions to the generation dispatch problem, that is, the optimal
solutions are predetermined before actual execution, and there is
no measurement on the system states which is fed back to the
optimization model. Therefore, we want to introduce a closed-loop
control by the MPC  method in the next section so that the measure-
ment of states can be fed back to the optimization model, and the
optimal solution is updated according to the feedback information
at each time step.

4. MPC  approach to DED

In this section, we  first outline the MPC  approach proposed in
[27] for the DED problem and then show that the MPC  can be
applied to the others ODD problems formulated in Sections 2 and
3. The DED formulation is obtained by letting  ̨ = 1 in the DEED
problem, i.e.

min
P0

C(P0)

subject to Pt
i

∈ �DED(P0), i = 1, 2, . . . , n, t = 1, 2, . . . , N.

where C(P0) is given by (1) and �DED = �DEED.

We  introduce the control variables ut

i
as [1,2]:

ut
i = Pt+1

i
− Pt

i

T
, i = 1, 2, . . . , n, t = 1, 2, . . . , N − 1, (19)
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here ut
i

is the ramping action of unit i at time t. This equation
ctually defines coordinate transformation between the vari-
bles {Pt

i
: i = 1, 2, . . . , n, t = 1, 2, . . . , N} and the variables {ut

i
: i =

, 2, . . . , n, t = 1, 2, . . . , N − 1}. It is obvious that the inverse coor-
inate transformation is given by

t
i = P1

i +
t−1∑
j=1

Tuj
i
, t = 2, 3, . . . , N. (20)

he optimal solution of the DED problem is implemented
epeatedly at instants which equal to multiples of N. To
ntroduce the MPC  approach, let us consider the DED prob-
em starting at an arbitrary instant t = m and over a dis-
atch interval [m, m + N). Then the optimization variables
re changed into

{
Pm+1

i
, Pm+2

i
, . . . , Pm+N

i
, i = 1, 2, . . . , n

}
. By

he transformation defined in (20), the optimization vari-
bles

{
Pm+1

i
, Pm+2

i
, . . . , Pm+N

i
, i = 1, 2, . . . , n

}
are transformed

nto
{

Pm+1
i

, um+1
i

, . . . , um+N−1
i

, i = 1, 2, . . . , n
}

.
In an MPC  approach, a finite-horizon optimal control problem

s repeatedly solved and the input is applied to the system based
n the obtained optimal open-loop control. In our case, the hori-
on is chosen to be N. Instead of solving the DED problem with
N number of variables

{
Pm+1

i
, um+1

i
, . . . , um+N−1

i
, i = 1, 2, . . . , n

}
,

he MPC  algorithm solves the following problem which has only
(N − 1) number of variables

{
um+1

i
, . . . , um+N−1

i
, i = 1, 2, . . . , n

}
:

Problem MPCDEDPm+1 (u, [m, m + N)) given
, N, DRi, URi, Pmin

i
, Pmax

i
, i = 1, 2, . . . , n, D, Pm+1, let

1
i := Pm+1

i
, uj

i
:= um+j

i
, Dt := Dm+t , i = 1, 2, . . . , n,

t = 1, 2, . . . , N, j = 1, 2, . . . , N − 1, (21)

nd solve the following minimization problem

min
U

N∑
t=1

n∑
i=1

Ci

⎛
⎝P1

i +
t−1∑
j=1

Tuj
i

⎞
⎠

subject to uj
i
∈ �D(P1, U), i = 1, 2, . . . , n, j = 1, 2, . . . , N − 1

here the feasible domain �D(P1, U) is defined to be the set of
P1

i
, ut

i
: i = 1, 2, . . . , n, t = 1, 2, . . . , N − 1} satisfying

n∑
i=1

⎛
⎝P1

i +
t−1∑
j=1

Tuj
i

⎞
⎠ = Dt, t = 1, 2, . . . , N,

Pmin
i

≤ P1
i

+
t−1∑
j=1

Tuj
i
≤ Pmax

i , i = 1, 2, . . . , n, t = 1, 2, . . . , N,

−DRi ≤ uj
i
≤ URi, i = 1, 2, . . . , n, t = 1, 2, . . . , N − 1.

he notation MPCDEDPm+1 (u, [m,  m + N)) denotes the optimization

roblem is solved over the interval [m,  m + N) with variables uj
i
and

or known inputs Pm+1
i

, i = 1, 2, . . . , n, j = m + 1, . . . , m + N − 1.
In order to make the MPCDED problem solvable, the following

ypothesis is needed as in [5,27].
Feasibility Hypothesis. After the change of variables in (21) over

ny dispatch interval [m,  m + N) with m ≥ 0, the set �D(P1, U) is
ot empty.

This hypothesis ensures the solvability of the problem
PCDEDPm+1 (u, [m, m + N)). Denote the optimal solution of

PCDED for given initial generation P
m+1

by um(P
m+1

) =
um+j

i
(P

m+1
), i = 1, 2, . . . , n, j = 1, 2, . . . , N − 1

}
. In the model
redictive control method the optimal solution um is applied only

n the first sampling period [m,  m + 1) that is, um+1
i (P

m+1
) is applied

o the state P
m+1
i . Since the um(P

m+1
) depends on the current state
tems Research 84 (2012) 31– 44 35

P
m+1

, in this way  a feedback can be obtained. We define the MPC

feedback controller by vm
i

:= um+1
i . The closed-loop solution P

m+2
i

given by P
m+2
i = P

m+1
i + Tvm

i (P
m+1

) is actually executed over the
time period [m + 1, m + 2).

The idea of the MPC  can be formulated into the following MPC
algorithm.

MPC  algorithm Initialization: Input the initial status P
1
�P1 =

(P1
1 , P1

2 , . . . , P1
n ) and let m = 0.

(1) Compute the open-loop optimal solution um to the problem
MPCDED

P
m+1 (u, [m, m + N)).

(2) The (closed-loop) MPC controller vm
i

is applied to the plant in
the sampling interval [m, m + 1) to obtain the closed-loop MPC
solution

P
m+2
i = P

m+1
i + Tvm

i (P
m+1

) (22)

over the period [m + 1, m + 2).
(3) Let m := m + 1 and go to step (1).

Theorem 1. [27] Suppose Feasibility Hypothesis holds, P∗ is the glob-
ally optimal solution of the DED problem, and the initial power output
P1 at time t = 1 satisfies P1

i
∈ �DED, then MPC  algorithm converges to

P∗.

This theorem tells that the solutions of the MPC  algorithm con-
verge to the optimal solution of the DED problem.

Now we consider the inherent robustness properties of the MPC
algorithm. The uncertainties in energy demand, price, and reserve
demand for the PBDED problem are discussed by fuzzy optimiza-
tion in [16]. However, no theoretical result is given. For simplicity,
we suppose that disturbance happens only in the execution of the
controller. That is, the disturbance happens only in Step (2) of MPC
algorithm so that when the control vm

i
is applied to the plant in the

sampling interval [m, m + 1), the system actually execute

P
m+2
i = P

m+1
i + Tvm

i (P
m+1

) + Twm+1
i (23)

over the period [m + 1, m + 2), where wm+1
i

is the disturbance. We
assume that, the disturbances satisfy the following bound

||wm+1
i

|| < e, e > 0, i = 1, 2, . . . , n, m ≥ 0. (24)

Theorem 2. [27] Suppose Feasibility Hypothesis holds, P∗ is the glob-
ally optimal solution of the DED problem, the norm of the gradient of
the fuel cost function of DED problem has the upper bound L on �DED, �
is a small enough positive constant, c is a positive constant which is less
than �, (23) is executed in Step (2) of MPC algorithm instead of (22),
the constant disturbance wk

i
satisfies (24) where e is small enough so

that e < min{c/L, (� − c)/L}, then there exists an integer N0 such that

for any k > N0, the optimal MPC solution P
k+1

of the kth loop in MPC
algorithm belongs to the domain � := {P : ||P − P∗|| < c}.

Theorems 1 and 2 are based on the assumption that the objective
function C of the DED problem is strictly convex and differen-
tiable over the set �DED which is bounded. Since both the fuel cost
and emission functions are assumed to be quadratic, then all the
objective functions of the DEED, ECDED, PBDEED and PBECDED
problems are strictly convex and differentiable over their fea-
sible constraint sets. Also since the demand and energy price
and all constraints are assumed to be periodic then all feasible
constraint sets, �DEED, �ECDED, �PBDEED and �PBECDED are shift
invariant. Therefore, Theorems 1 and 2 are valid for the mentioned
problems.
4.1. Advantages of the MPC

The advantages of the MPC  algorithm are listed below.
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Table 1
Data of the six-unit system.

i ai ($/h) bi ($/MWh) ci ($/MW2h) ˛i (lb/h) ˇi (lb/MWh) �i (lb/MW2h) Pmax
i

(MW)  Pmin
i

(MW) URi (MW/h) DRi (MW/h)

1 240 7.0 0.0070 13.8593 0.32767 0.00419 500 100 80 120
2 200 10.0  0.0095 13.8593 0.32767 0.00419 200 50 50 90
3 220  8.0 0.0090 40.2669 −0.54551 0.00683 300 80 65 100
4  200 11.0 0.0090 40.2669 −0.54551 0.00683 150 50 50 90
5  220 10.5 0.0080 42.8955 −0.51116 0.00461 200 50 50 90
6  190 12.0 0.0075 42.8955 −0.51116 0.00461 120 50 50 90

Table 2
Load demand (MW)  of the six-unit system for 24 h.

Time (h) 1 2 3 4 5 6 7 8 9 10 11 12

1

o
c
w
s
s
v
a

P
c
t
i

f
i
t
a

Demand (MW) 955 942 953 930 935
Time  (h) 13 14 15 16 17 

Demand (MW) 1190 1251 1263 1250 1221 

(1) Reduced dimensions:
The ODD problem for a six units system with a dispatch interval

f 1 day, and a sampling period of 1 h. Then T = 1 h, N = 24, and the
orresponding ODD problem must solve an optimization problem
ith 6 × 24 = 144 number of variables. However, in each iteration

tep of the MPC  algorithm, the algorithm starts with any Pm+1 and
olves an optimization problem with 6 × (24 − 1) = 138 number of
ariables which reduces 6 dimensions in the optimization problem
nd makes the computation easier.

(2) Convergence:
Theorem 1 shows that one can start the MPC  algorithm with any

1 satisfying P1
i

∈ �DED and the optimal solution at each step will
onverge to the optimal solution of the DED problem. This implies
hat the reduction of the number of variables in the MPC  approach
s both reasonable and feasible.

(3) Easy implementation:
Because of the MPC  convergence, restarting the MPC  algorithm
rom any time will give rise to the same convergence, which further
mplies that the MPC  algorithm can be executed at any sampling
ime point. Thus the MPC  algorithm is more favorable for practical
pplications than other open-loop algorithms [27].
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Fig. 1. Convergence of the closed-loop MPC  solutio
963 989 1023 1126 1150 1201 1235
18 19 20 21 22 23 24

202 1159 1092 1023 984 975 960

(4) Robustness:
Theorem 2 shows that the MPC  algorithm is robust against cer-

tain disturbances in the execution of the optimal controller. It
is shown in [27] that, the MPC  algorithm is also robust against
the disturbance or uncertainty in the demand which is usually
forecast.

4.2. Advantages and disadvantages of the previous works on ODD
problem

Since the formulation of the ODD problem, the thrust of
research has focused on various optimization techniques and pro-
cedures incorporating extended and complex objective functions
or constraints. Depending on the type of objective function (non-
linear/linear, smooth/nonsmooth, convex/nonconvex, etc.) as well
as the constraints, these optimization techniques can be classi-
fied into three main categories. The first category is mathematical

programming-based or heuristically-based, such as the lambda
iterative method [6],  gradient projection method [7],  Lagrange
relaxation [8],  linear programming [9],  dynamic programming [1,2]
and interior point method [10,5].  The advantages of these methods
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Fig. 2. Convergence of the closed-loop MPC  s

ncluding: optimality is mathematically proven in some algorithms
32]; they can be applied to large-scale problems [32]; they have no
roblem-specific parameters to specify; moreover, some of these
ethods are computationally fast. However, these methods can

ail to get global optimal solutions of the ODD with nonsmooth or
onconvex objective functions. Dynamic programming can solve

he ODD problems with nonsmooth cost functions; however, it
uffers from the “curse of dimensionality” and local optimal-
ty. The second category is the stochastic optimization methods
uch as simulated annealing [11], hybrid genetic algorithms [12],
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Fig. 3. The generation output of the six-unit
e (h)

ns to those of ECDED for the six-unit system.

differential evolution [13], particle swarm optimization [4,14]
which can get the global optimal solution of the ODD problem with-
out any or fewer restrictions on the shape of the objective function
curves. The drawbacks of these methods is the large number of
arbitrary or problem-specific parameters and the long computation
time [33]. The third category is the hybrid methods such as evolu-

tionary programming with sequential quadratic programming [3],
particle swarm optimization with sequential quadratic program-
ming [15], which combine two  or more techniques in order to get
best features in each algorithm. These methods have been used in
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Fig. 4. The generation output of the six

olving the ODD problem and have proven their effectiveness oven
ther methods.

The works presented in [3–21] focus on introducing efficient
ptimization methods for the ODD problem under various complex
onstraints or objectives. However, the obtained optimal solutions
ave the following drawbacks:

(i) Ramp rate violations in periodic implementation of the solu-

ions:

We note that the conventional ODD problems (i.e. constraints
7) are not included in the optimization problem) presented in
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Fig. 5. The generation output of the six-unit
e (h)

system under ECDED and IRP-MPC-(I).

[3–21] are formulated over the dispatch interval [0,  N) and does
not consider the periodic implementations of the optimal solu-
tions over the period [N, 2N), [2N, 3N), . . ..  There is a simple way
to periodically implement the optimal solutions: simply repeat the
optimal solutions over other periods. However, we have shown in
[27] by an example of 10 units that, this simple repetition will pos-
sibly cause the ramp rate violations. Also, if we look at the obtained

optimal solutions of the DEED problem for a five-unit system given

in [17], we can see that the optimal solution of unit 2 is given by P
1
2 =

35.1973, P
24
2 = 83.0073. This solution can not be implemented
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Fig. 6. The generation output of the six

epeatedly every 24 h because P
1
2 − P

24
2 = −47.81 < −DR2 = −30.

herefore, the obtained optimal solutions can be implemented over
he interval [0,  24], but it can not be implemented over the intervals
24, 48], [48, 72], etc.

(ii) Open-loop optimal solutions:
The ODD problem only provides an open-loop optimal solution

o the generation dispatch problem, that is, the optimal solution is
redetermined before actual execution, and there is no measure-

ent on the system states which is fed back to the optimization
odel.
The MPC  algorithm applied in this paper does not contradict

ith the existing ODD methods given in [3–21]. These existing

able 3
he results of PBDEED for the three price profiles and  ̨ = 1.

Hour Price-I ($)
∑6

i=1
Pt

i
(MW)  Profit ($) Price-II ($)

∑6

i=

1 10.314 565.3 800.7918 11.46 747.6
2  10.888 627 12.00 883.9
3  11.556 753.4 12.84 935 

4  9.486 485.5 10.54 620.5
5  10.890 630.5 12.10 876.6
6 11.862  845 13.18 963 

7  12.42 989 13.80 989 

8  11.214 802.8 12.46 1020.9
9  13.248 1126 14.72 1126 

10  13.446 1150 14.94 1150 

11 13.374  1201 14.86 1201 

12  13.914 1235 15.46 1235 

13  11.736 814.5 13.04 1190 

14  12.420 1009 13.80 1251 

15  10.980 651.4 12.20 943.5
16  10.188 549.3 11.32 734.1
17  11.25 704.8 12.50 1012.4
18  12.258 906.1 13.62 1202 

19  9.792 545.6 10.88 696.2
20  11.034 661.1 12.26 952.2
21 11.196  692.8 12.44 1014.9
22 12.222  941 13.58 984 

23  11.43 740.4 12.70 975 

24 10.278  560.7 11.42 738 
system under ECDED and IRP-MPC-(II).

methods provide various optimization solution methods to find the
optimal dispatch over a fixed time horizon; while our MPC  algo-
rithm provides a periodic implementation framework and does
not specify any special optimization method to solve the dis-
patch problem MPCDED over a fixed time period. Furthermore,
the MPC  approach in MPC  algorithm is in fact a very general phi-
losophy: calculating an optimization problem over a fixed period,
implementing the solution only at the beginning part of this fixed
period, recalculating the optimization problem over a new time

horizon, and repeating these steps. Following this idea, it is pos-
sible to incorporate these existing solution methods for dynamic
economic and emission dispatch into this MPC  framework. That

1
Pt

i
(MW) Profit ($) Price-III ($)

∑6

i=1
Pt

i
(MW)  Profit ($)

 28,868 13.752 955 93,941
 14.40 942

15.408 935
 12.648 930
 14.52 935

15.816 963
16.56 989

 14.952 1023
17.664 1126
17.928 1150
17.832 1201
18.552 1235
15.648 1190
16.56 1251

 14.64 1263
 13.584 1250
 15.00 1221

16.344 1202
 13.056 1159
 14.712 1092
 14.928 1023

16.296 984
15.24 975
13.704 960
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Table 4
The results of PBDEED and PBECDED for price-II.

Hour PBDEED PBECDED

 ̨ = 0.5  ̨ = 0.7  ̨ = 1 Emax
1 Emax

2 Emax
3∑6

i=1
Pt

i

∑6

i=1
Pt

i

∑6

i=1
Pt

i

∑6

i=1
Pt

i

∑6

i=1
Pt

i

∑6

i=1
Pt

i

1 549.5 617.9 747.6 500.2 684.9 747.6
2  593.2 723.9 883.9 565.1 806.5 883.9
3  752.4 923.0 935 714.5 935 935
4 441.0  516.2 620.5 426.3 568.8 620.5
5 610.4  745.0 876.6 580.7 817.5 876.6
6 829.0  963 963 786.5 963 963
7  968.7 989 989 917.8 989 989
8  748.8 834.1 1020.9 700.8 929.5 1020.9
9  109.38 1126 1126 1045.8 1126 1126
10 1150 1150 1150 1142 1150 1150
11 1188.3  1201 1201 1128.2 1201 1201
12  1235 1235 1235 1224.3 1235 1235
13  797.4 984.8 1190 756.8 1102.5 1190
14 968.7  1203.6 1251 917.8 1251 1251
15  628.8 770.9 943.5 598 860 943.5
16  503.3 596.6 734.1 485 666.4 734.1
17  684.0 835.8 1012.4 649.9 930.4 1012.4
18  922.9 1088.8 1202 879.7 1187.9 1202
19 468.1  572.1 696.2 450.6 657.5 696.2
20  639.8 785.0 952.2 608.3 876 952.2
21 673.0  827.4 1014.9 639.5 924.2 1014.9
22  919.1 984 984 871.2 984 984
23  720.8 888.5 975 684.8 975 975
24  514.9 610.2 738 495.8 676.2 738

, 868

i
i
a
o
l
d

Profit  ($) 23, 427 27, 426 28

s, by adding constraints like (7) to avoid ramp rate violations
n existing ODD models given in [3–21], then it is possible to

pply the above-mentioned optimization methods at each loop
f the MPC  algorithm and thus the obtained results will not vio-
ate any ramp rate constraint and may  also be robust against
isturbances.
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Fig. 7. Convergence of the MPC  solution of the six-unit s
21, 866 28, 571 28, 868

5. Simulation results
In this section we present an example consisting of six units
for the application of MPC  to DEED, ECDED, PBDEED and PBECDED
problems. The coefficients of the cost function ai, bi and ci as well
as the demand are taken from [4],  and the emission coefficients ˛i,
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i and �i are taken from [31] and are given in Tables 1 and 2. The
oad demand as well as the energy price are assumed to be periodic
ver a dispatch period of 1 day and the sampling period is chosen
o be 1 h. The solution of the ODD problem as well as the optimal
ontrol sequence of the MPC  are computed by the fmincon code of
he MATLAB Optimization Toolbox.
.1. DEED and ECDED problems

Here we show that the solutions of the MPC  converge to the
ptimal solutions of the DEED and ECDED problems. The inherent
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Fig. 9. The generation output of the six-unit system un
e (h)

 to those of PBECDED for Emax = 16, 200 lb and price-II.

robustness properties of the model predictive control (IRP-MPC)
algorithm is also shown. The initial P1 of the MPC to be applied to
the DEED and ECDED problems are chosen, respectively, as P1 =
(340, 60,  170, 140, 195, 50) and P1 = (290, 70,  220, 140, 185, 50)
such that

∑6
i=1P1

i
= D1 = 955. The weighting factor and the allow-

able emission limit are chosen as  ̨ = 0.5 and Emax = 25,  900 lb. The
proposed MPC  strategy is implemented over 48 h. In Figs. 1 and 2 ,

we present the optimal outputs of units 2 and 3 for the DEED and
ECDED problems, respectively. It is observed that, the optimal out-
puts of these units is decreasing with time in the interval [0,  5), and
it increase to reach its maximum at t = 15 (corresponds to the pick
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der PBDEED for  ̨ = 0.7, price-II and IRP-MPC-(I).
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Fig. 10. The generation output of the six-unit system un

f the demand), then it sequentially decreasing during the interval
16, 24). We can see that, the MPC  closed-loop solutions starting
ith different initial P1 approach the optimal solution of the DEED

nd ECDED problems after 2 h.
To show the IRP-MPC, let (23) be executed, and the disturbance

m
i

is generated by

m = −ε + 2ε r(m), (25)
i i i

here the parameters r(m)’s are uniformly distributed random
umbers on [0,  1]. Denote ε = (ε1, ε2, . . . , ε6). We  choose different
anges of disturbances. For the DEED problem we have two  cases:
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Fig. 11. The generation output of the six-unit system un
e (h)

BECDED for Emax = 16, 200 lb, price-II and IRP-MPC-(I).

IRP-MPC-(I): ε = (5,  3, 2, 2, 3, 2),
IRP-MPC-(II): ε = (15, 9, 6, 6, 9, 6).
For the ECDED problem we have also two cases:
IRP-MPC-(I): ε = (5,  3, 2, 2, 3, 2),
IRP-MPC-(II): ε = (10, 6, 4, 4, 6, 4).
In these cases the initial P1
i

for the MPC  are chosen as the optimal

solution of the DEED and ECDED problems at t = 1, i.e., P1
i

= P
1
i .

From Figs. 3 and 4 , we can see that, the IRP-MPC-(I) can keep the
disturbed system around the optimal solutions of these problems.

25 30 35 40 45 48
e (h)

 

PBDEED
IRP−MP C−(II)

der PBDEED for  ̨ = 0.7, price-II and IRP-MPC-(II).



A.M. Elaiw et al. / Electric Power Systems Research 84 (2012) 31– 44 43

0 6 12 18 24 30 36 42 48
100

150

200

250

300

350

400

Time (h)

T
he

 o
ut

pu
t 

of
 u

ni
t−

1 
(M

W
)

 

 

PBECDED
IRP−MP C−(II)

der P

I
I
t
h
F
d

5

P
e
T
t
s
T
d
i
p
i

p
p
I
s
c
d
I
a
d
a

t
T
(
a
s
c

Fig. 12. The generation output of the six-unit system un

n Figs. 5 and 6, we use the disturbance bounds which are given in
RP-MPC-(II). We  can see that, although the disturbance increased,
he IRP-MPC-(II) still keep the disturbed system in the neighbor-
ood of the optimal solution of the DEED and ECDED problems.
rom these cases we observe that, the size of this neighborhood
epends on the bound of the disturbance.

.2. PBDEED and PBECDED problems

In this section we first present the optimal solutions of the
BDEED and PBECDED with different energy price profiles, differ-
nt weighting factor ˛, and different allowable emission limit Emax.
hen we show the convergence of the MPC  and IRP-MPC algorithm
hrough the problems PBDEED and PBECDED. The initial P1 is cho-
en as P1 = (100, 170, 240, 110, 100, 100) such that

∑n
i=1P1

i
≤ D1.

he result of the optimization is dependent on the energy price
ata. Indeed, minor changes in the energy price may  give a signif-

cant change in the power generation of the units as well as the
rofit. We  consider different energy price profiles which are given

n Table 3.
The effect of the energy price over the time horizon on the total

ower which produced by the committed units for the PBDEED
roblem for  ̨ = 1 is shown in Table 3. It is observed that, for price-

 and price-II, the total power is less than the demand except in
ome intervals which are shown by bold font. It means that, GENCO
hoose to supply power less than the demand in some hours of the
ay and equal to the demand in other hours of the day. For price-

II, the optimal solution of the PBDEED satisfy the demand over
ll intervals. In this case GENCO will supply power to satisfy the
emand over the whole day since this will maximize its profit. We
lso note that, the profit increases according to the energy prices.

The effect of the emission on the total amount of power and the
otal profit in case of price-II for the PBDEED problem is given in
able 4. It can be seen that, as the weighting factor  ̨ is increased

i.e. the importance of the emission is decreased), both the profit
nd the total power are increased. The effect of the allowable emis-
ion limit Emax on the total amount of power and the total profit in
ase of price-II for the PBECDED problem is also shown in Table 4.
BECDED for Emax = 16, 200 lb, price-II and IRP-MPC-(II).

We can see that, as Emax is increased both the profit and the total
power are increased. We  can also observe that, when Emax takes the
values Emax

1 = 16,  200 and Emax
2 = 27,  232, the emission constraint

(12) is active in the optimization problem and when Emax
3 = 30,  621,

the emission constraint (12) is not active and the solution of the
PBECDED is the same of that of the PBDEED for  ̨ = 1 which is given
in Table 3.

Figs. 7 and 8 present the optimal outputs of unit 1 for the PBDEED
and PBECDED problems as well as the MPC  closed-loop solutions. It
is seen that, the closed-loop MPC  solutions asymptotically converge
the optimal solutions of the PBDEED and PBECDED problems, in
case of price-II. We  note that, the MPC  closed-loop solutions start-
ing from the same initial P1

i
approach the optimal solutions of the

DEED and ECDED problems after 4 h and 2 h, respectively. To show
the IRP-MPC for the PBDEED and PBECDED problems, let the dis-
turbance wm

i
is generated by (25) and the disturbance bound ε is

chosen in two  cases:

IRP-MPC-(I): ε = (10, 5, 4, 2, 3, 2),
IRP-MPC-(II): ε = (40, 20,  16,  8, 12,  8).

In these cases the initial P1
i

for the MPC  is chosen as the optimal
solution of the PBDEED and PBECDED problems. From Figs. 9–12,
we can see that, both the IRP-MPC-(I) and IRP-MPC-(II) can keep
the disturbed system around the optimal solution of the PBDEED
and PBECDED problems.

6. Conclusions

This paper presents some ODD formulations before and after
the deregulation of the electric power market taking into consider-
ation the emission of gaseous pollutants from fossil-fueled plants.
Both the demand and energy price are assumed to be periodic. We

applied MPC  approach to the periodic implementation of the opti-
mal  solutions of these problems. The convergence and robustness
of the MPC  algorithms are demonstrated through the application
of MPC  to these with a six-unit system.
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