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a  b  s  t  r  a  c  t

The  maintenance  schedule  of generators  in  power  plants  needs  to match  the  electricity  demand  and
ensure  the  reliability  of  the  power  plants  at a minimum  cost  of  operation.  In  this  article,  a reliability
criterion  modified  generator  maintenance  scheduling  (MGMS)  model  is  formulated  with additions  and
modifications  made  to  the  classic  generator  maintenance  scheduling  (GMS)  model.  The  MGMS  model
includes  modified  maintenance  window  constraints  with  some  newly  added  constraints.  A comparison
is  then  made  between  the  MGMS  model  and  the  classic  GMS  model  when  both  models  are  applied  to
a  21-unit  test  system.  The  results  show  that the  MGMS  model  gives  more  reliable  solutions  than  the
GMS model.  Due  to the  reliable  results  of  the reliability  criterion  MGMS  model,  a  robust  model  using
economic  cost  objective  function  is  formulated.  To  illustrate  the robustness  of  the  formulated  MGMS
model,  the  maintenance  of  the  Arnot  Power  Plant  in  South  Africa  is  scheduled  with  open  loop  and  closed
loop  controllers.  Both  controllers  satisfy  all the  constraints  but  the  closed  loop  results  are  better  than  the
open loop  results.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The problem that the generator maintenance scheduling (GMS)
model faces is generating a time line for a preventive maintenance
schedule for a given set of units over a certain period such that
all the operating constraints are satisfied and the objective crite-
rion is met  [1–6]. GMS  problems are based on either economic cost
criterion [5,7,8] or reliability criterion [5,9].

The reliability GMS  problem is solved by minimising the sum of
squares of the reserve (SSR) over the entire operational planning
period [3–6,10–12].  The maintenance window and crew con-
straints in [9] are not formulated in the manner that describes the
problem explicitly.

The economic objective function is used in [7,13,14] to minimise
the production cost over the planning horizon. The models fail to
include the generator maintenance limit which could prove prob-
lematic for the energy planner when considering unit commitment
or economic dispatch. The generator maintenance limit is consid-
ered in [15] but the ramp rate constraint is not added. The ramp
rate constraint is used in economic dispatch problems to ensure
the generator ramps up and down in at a desired rate [16,17].  The
association of the start up to maintenance variable is formulated in
[7] but the relation between the start up and generated output is
not considered.
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A variety of mathematical and heuristic techniques have been
employed to solve the GMS  problem. The techniques include
dynamic programming [6],  the branch and bound technique [18],
and implicit enumeration [19]. The other techniques include
benders’ decomposition [7,15],  fuzzy logic [20], tabu search [5],
simulated annealing [14], genetic algorithm [21], differential
evolutionary technique [13], ant colony [12], particle swarm opti-
misation (PSO) [8].

The GMS  models discussed in existing literature above treat
the variables as independent to each other, but variables in GMS
problems are sometimes dependent. Certain constraints need to
be modified or added to the GMS  problem and as such the need for
a new GMS  model. All the techniques mentioned above only have
open loop GMS  solutions, there has been no mention of closed loop
solutions.

Model predictive control (MPC) is a closed loop control tech-
nique that uses the explicit model of the plant to predict the future
responses of the plant over a finite horizon [22]. This technique has
been used successfully in resource allocation [22] and economic
dispatch [23]. The advantages of MPC  include its convergence and
easy interpretation; robustness and simplified model; and attenu-
ability against external disturbance.

There have been research on improving the solution methodol-
ogy of GMS  problems such as using the genetic algorithm [21], the
ant colony algorithm [12] and the multiple-swarms modified dis-
crete PSO [24] which provide efficient computational algorithms
for given GMS  models. The purpose of this paper is two  folded. On
the one hand existing GMS  models are improved by adding new
constraints, on the other hand a model predictive control (MPC)
approach to solve the GMS  problem is introduced. New constraints,
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such as the crew availability description and the dependent rela-
tions between maintenance, generation and start up, are added.
These constraints, if ignored, would possibly result in inaccurate
scheduling results. The proposed MPC  approach for the GMS  prob-
lem is an iterative approach which brings real time system changes
into consideration at each iteration. Therefore, the solutions from
the MPC  approach are robust in the sense that disturbances, e.g.
system changes, can be fed back as initial conditions of the GMS
problem in each iteration loop and a more feasible optimal solution
will be obtained. Since this MPC  approach solves the GMS  problem,
an optimization problem, at each loop, PSO is chosen for these GMS
optimization problems. In fact, any other optimization algorithm,
which is applicable to nonlinear mixed integer programming, can
be applied here.

The outline of this paper is as follows. In Section 2 a modified
GMS  model is formulated for the reliability and the economic cost
criteria and a comparison of the MGMS  model is made to the classic
GMS  model. The solution technique based on the penalty function
mixed integer PSO algorithm is found in Section 3. Section 4 dis-
cusses the simulation results of two case studies. The first case study
is used to compare the MGMS  and GMS  models, the second case
study is used to compare the open and closed loop solutions of the
economic cost criterion MGMS  model of Section 2. Section 5 is the
conclusion. For the reader’s convenience, the following frequently
used acronyms are listed:
GMS: Generator maintenance scheduling
MGMS: Modified generator maintenance scheduling
SSR: Sum of squares of reserve
TWM:  Total available manpower-weeks
PSO: Particle swarm optimisation

2. Mathematical formulation of the modified GMS  problem

2.1. Reliability criterion modified GMS  model

Consider the classic GMS  model using the reliability objective
function. The aim of the reliability objective function is to minimise
the sum of squares of reserve (SSR) in the power plant. As explained
in [10], the lower the value of the SSR, the more uniformly dis-
tributed the reserve margin is and the higher the reliability of the
power plant. The GMS  models in [6,10,11] are used with additions
and modifications made to some of the constraints. The additions
are made to enhance the accuracy of the model, provide more accu-
rate mathematical description and further depict real life scenarios
of generator maintenance problems in power plants.

The following notations are used to formulate the optimisation
model:

t: Index of time periods, t = 1, . . . , T;
T: Total number of planned horizons;
i  Index of the number of generators i = 1, . . . , I;
I:  Total number of generators;
gmax

i
: Maximum output power for each generator [MW],  these values are

assumed constant;
gi,t : Generated output power for each generator [MW];
It : The set of indices of generators in maintenance at time t;
Ni: Duration of maintenance on each generator i;
xi,t : Variable for the start of maintenance for each generator i at time t, if

generator i is on maintenance xi,t = 1, otherwise xi,t = 0;
Dt : Demand per time period;
Mq

i
: Number of crew needed for the qth stage of maintenance of each

generator, q = 1, . . . , Ni;
At : Available number of crew at every time t.
gmin

i
: Minimum output power for each generator [MW],  these values are

assumed constant;
LR: Maximum down ramp rate per time period [MW/h];
UR:  Maximum up ramp rate per time period [MW/h].

The classic GMS  model in [6,10,11] is transformed into the mod-
ified GMS  (MGMS) model below.

Min{
T∑

t=1

(
I∑

i=1

gmax
i,t −

∑
i∈It

Ni∑
t=q

xi,tgi,t − Dt)
2}, (1)

subject to maintenance window:

T∑
t=1

xi,t = Ni, 1 ≤ i ≤ I, (2)

T−Ni+1∑
t=1

xi,txi,t+1 . . . xi,t+Ni−1 = 1, 1 ≤ i ≤ I, (3)

crew constraint:
I∑

i=1

(1 − xi,t−1)xi,t . . . xi,t+q−1Mq
i

≤ At+q−1,

1 ≤ q ≤ Ni, 2 ≤ t ≤ T − Ni + 1,

(4)

load constraint:

I∑
i=1

gi,t −
∑
i∈It

Ni∑
t=q

xi,tgi,t ≥ Dt, 1 ≤ t ≤ T, (5)

generator limit:

gmin
i

(1 − xi,t) ≤ gi,t ≤ gmax
i

(1 − xi,t),

1 ≤ t ≤ T, 1 ≤ i ≤ I,
(6)

ramp rate:

−LR ≤ gi,t+1 − gi,t ≤ UR, 1 ≤ t ≤ T, 1 ≤ i ≤ I. (7)

The objective function is to minimise the sum of squares of reserve
(SSR) for a given set of generators at a given time horizon.

The maintenance window of Eq. (2) shows that for every genera-
tor i, maintenance will take a duration of Ni periods, this constraint
is obtained from [13]. Eq. (3) gives the duration, from start to fin-
ish, of maintenance without interruptions for all the generators.
The second maintenance window constraint as described by Eq.
(3) ensures that the maintenance window operates at an optimised
level, doing without it means that the maintenance window is an
approximation. Given the importance of generator maintenance,
having an approximation instead of an exact duration renders the
maintenance window less effective than could be, hence the intro-
duction of Eq. (3) into the MGMS  model.

A modification to the existing crew constraint in [13,21,25] is
given in (4).  In the existing literature a precise description and
formulation of the crew constraint is not given, this affects the accu-
racy of the results obtained for the GMS  problem. Since the crew
constraint is one of the important constraints needed in the GMS
problem it is necessary to formulate a crew constraint that will pro-
vide a step by step description of the crew needed at every stage of
maintenance for each generator, thereby always checking that the
crew needed does not exceed the available crew at every interval.
This is done in (4).

The generator limit constraint of (6) is a safety margin for the
generator to preserve the generator life and is usually used in eco-
nomic dispatch problems. This constraint is added to this model to
further depict real life cases of maintenance problem.

The inequalities of (7) gives the ramp rate for generator i as
the generated output changes from time t to t + 1. The ramp rate
constraint is not a new constraint in power systems it is used
in unit commitment and economic dispatch [16,17]. The con-
straint is added to aid the energy planner when considering unit
commitment.
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2.2. Economic cost criterion modified GMS  model

As will be seen in Section 4.1.1, the modified constraints in the
MGMS  model of Section 2.1 enhanced the ability of MGMS  model to
produce more reliable solutions for the test system than the classic
GMS  model. Thus formulating an economic cost objective func-
tion MGMS problem, incorporating the modified constraints and
adding some new constraints to show the robustness of the MGMS
model is carried out in this subsection. The economic cost objective
function is chosen for the formulation of the MGMS  model because
of its ability to incorporate the system’s reliability into the model
[4]. The relationship among variables has not been mentioned in
many papers and as such the need to show that the variables are
not independent of each other but rather all have a connection
to one another in some way is important, hence the relationship
constraints.

The objective function J in (8) contains three variables, the main-
tenance state xi,t, startup state yi,t, and generated output gi,t, for
which i = 1, . . .,  I, t = 1, . . .,  T, ci, fi and ki are the cost of maintenance,
start up and generation respectively. When generator i is started
at time t then, yi,t = 1, otherwise yi,t = 0. The addition of the start
up variable to the objective function is to emulate real life cases
where there is an amount of money reserved for the start up of any
generator in the power plant.

Min  J =
I∑

i=1

T∑
t=1

cixi,t +
I∑

i=1

T∑
t=1

(fiyi,t + kigi,t), (8)

subject to, the maintenance-start up relationship (9),  maintenance-
generation relationship (10), start up-generation relationship (11),
maintenance window ((2), (3) and (12)), crew (4),  demand (13),
reserve (14), generator limit (6),  and ramp rate (7) constraints.

xi,t + yi,t ≤ 1, 1 ≤ t ≤ T, (9)

(1 − xi,t)gi,t = 0, 1 ≤ i ≤ I, 1 ≤ t ≤ T, (10)

yi,tsgn(gi,t )[1 − sgn(gi,t−1)] + [1 − yi,t ][1 − sgn(gi,t )][1 − sgn(gi,t−1)]

+[1 − yi,t ][1 − sgn(gi,t )]sgn(gi,t−1) + [1 − yi,t ]sgn(gi,t )sgn(gi,t−1) = 1,

2  ≤ t ≤ T,

(11)

where sgn(gi,t) is the sign value of the generated output of generator
i at time t. If sgn(gi,t) = 1 then there is a generated output from
generator i, otherwise sgn(gi,t) = 0.

I∑
i=1

xi,t ≤ 1, 1 ≤ t ≤ T. (12)

I∑
i=1

gi,t = Dt, forall 1 ≤ t ≤ T, (13)

I∑
i=1

gmax
i,t ≥ Dt + St, forall 1 ≤ t ≤ T, (14)

where St is the reserve per time period.
The constraint (9) shows that during maintenance of generator

i, the generator cannot be started until maintenance is completed.
The equality of (10) shows that generator i cannot generate electric-
ity while it undergoes maintenance. The equality (11) shows that
if the generator is producing electricity then it cannot be started at
the same time. Eqs. (10) and (11) are new constraints that are added
to the show the relationship among the variables of the GMS  prob-
lem. The inequality constraint of (12) used in [4] means that at most
only one generator can be maintained for a given time period. Eq.
(13) gives the demand constraint. This constraint is used in [3,20].

The inequalities of (14) give the reserve constraint, this constraint
is explained in [25].

2.3. Model predictive control

The model predictive control (MPC) is a closed loop technique
that adapts to changes, detect disturbances and make corrections
automatically and is easily implemented [22,23].  The main reason
for using the MPC  approach is to obtain a closed loop solution for
the MGMS  model that is stable against any external disturbance
and as such improving the robustness of the MGMS  model. The
MPC  approach is used to solve the economic cost criterion MGMS
problem to obtain closed loop solutions.

The open loop MGMS  problem is defined over the time period
T with the optimisation variables xi,1, yi,1, gi,1, . . .,  xi,T, yi,T, gi,T,
i = 1, 2, . . .,  I. When the same MGMS  problem is considered over
a time interval (m + 1, m + T) then the optimisation variables are
changed into xi,m+1, yi,m+1, gi,m+1, . . .,  xi,m+T, yi,m+T, gi,m+T. In an MPC
approach, a finite horizon control problem is repeatedly solved and
applied to the system based on the obtained optimal open loop
solution.

The MPC  approach is defined with the same state model as the
open loop model in (8).  Thus, the open loop MGMS  problem is
transformed to the model as below. Given I, T, DR,  UR,  Dt, Rt, let
xi,t : = xi,m+t, yi,t : = yi,m+t, gi,t : = gi,m+t, Dt = Dm+t, t ≥ 1,

Min  J =
I∑

i=1

m+T∑
t=m+1

cixi,t +
I∑

i=1

m+T∑
t=m+1

(fiyi,t + kigi,t), (15)

where m = 1, 2, . . .,  M is the switching interval for the MPC  con-
troller. The constraints for closed loop are the same as those of the
open loop MGMS  solution, the only difference is that the constraints
of the closed loop MGMS  solution are updated after each iteration is
implemented. The optimal solution is applied only in the first sam-
pling period (m, m + 1) and this solution is executed as the input
over the time period (m + 1, m + 2), thus a closed loop feedback is
obtained. The demonstration of how MPC  controllers are imple-
mented is explicitly explained in [22]. The simulation results of the
economic cost objective function open loop and closed loop MGMS
solutions are compared Section 4.2.

3. Solution methodology

The particle swarm optimisation (PSO) is a population based
search algorithm which simulates the social behaviour of birds
within a flock. Optimisation problems with mixed integer vari-
ables in Section 2 can be simplified as min  f(x) subject to gu(x) ≤ 0,
hp(x) = 0, where f(x) is the objective function, x the mixed integer
variables that contain the binary xb

i
and continuous xc

i
variables,

gu(x) and hp(x) are the inequality and equality behavioural con-
straints.

The original PSO algorithm which solves continuous vari-
able non constraint problems [26] is revised in [27] to consider
discrete variables and constraints using the penalty function
approach. The full version the mixed integer penalty function
PSO algorithm is found in [27], this section is included to
make this article concise. The binary variables are transformed
to continuous variables using the penalty function � given as:
�(x1, x2, . . . , xn) = ∑n

i=1(1/2){sin 2�(xi − 0.25) + 1}, where x1, x2,
. . .,  xn are the binary variables and n is the number of binary
variables. The mixed integer constrained problem f(x) is trans-
formed into the minimization of augmented problem which is:
F(x) = f (x) + s�(x) + r

∑ncon
u=1 max [0, gu(x)] + r

∑con
p=1|hp(x)|, subject

to, LB ≤ xc
i

≤ UB, 1 ≤ i ≤ m, where F is the augmented objective
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Table  1
Data for the 21-unit test system.

Unit Capacity (MW)/gmax
i

gmin
i

Allowed period It Maintenance duration
Ni (weeks)

Manpower (Mq
i

or Mi,k) required
for each week

1 555 462 1–26 7 10 + 10 + 5 +5 + 5 +5 + 3
2 180  150 1–26 2 15 + 15
3  180 150 1–26 1 20
4 640  533 1–26 3 15 + 15 + 15
5  640 533 1–26 3 15 + 15 + 15
6  276 230 1–26 10 3 + 2 +2 + 2 +2 + 2 +2 + 2 +2 + 3
7  140 117 1–26 4 10 + 10 + 5 +5
8 90 75 1–26 1 20
9  76 63 1–26 2 15 + 15
10 94  78 1–26 4 10 + 10 + 10 + 10
11  39 32 1–26 2 15 + 15
12  188 152 1–26 2 15 + 15
13  52 43 1–26 3 10 + 10 + 10
14 555  462 27–52 5 10 + 10 + 10 + 5 +5
15 640  533 27–52 5 10 + 10 + 10 + 10 + 10
16  555 462 27–52 6 10 + 10 + 10 + 5 +5 + 5
17 76 63 27–52 3 10 + 15 + 15
18  58 48 27–52 1 20
19 48  40 27–52 2 15 + 15
20  137 114 27–52 1 15
21  469 392 27–52 4 10 + 10 + 10 + 10
Total  capacity/week 5688 4739

function of variable x, s is the penalty parameter, r is the penalty
parameter for the behaviour constraints, u is index of the num-
ber of inequality constraints, ncon is the total number of inequality
constraints, p is index of the number of equality constraints, con
is the number of equality constraints, LB and UB are the lower and
upper limit on the continuous variables xc

i
respectively. The penalty

parameter s(k) is determined as:

s(k + 1) =
{

s(k)e[1+�(Pg (k))] , if Cc > ε,

s(1) , if Cc ≤ ε,

where k is the iteration indicator, Pg(k) is the best solution for
the kth iteration, s(1) is the initial penalty parameter, Cc is the
convergence equation, Cc = (|F(Pg(k)) − f(Pg(k))|)/|F(Pg(k))|, ε is small
positive number. The initial position of particle d is chosen ran-
domly, the penalty parameter is calculated for every particle and
the initial penalty parameter is determined as: s(1) : = min  {s1, s2,
. . .,  sD}. sd = 1 + �(xd), 1 ≤ d ≤ D, where sd is penalty parameter for
the dth particle, s(1) is the initial penalty parameter, F(Pg(k)) is the
best solution for the augmented objective function, f(Pg(k)) is the
best solution for the objective function, Pd(k) is the best solution
p-best achieved by the particle d till the kth iteration, and Pg(k) is
the best position g-best among Pd(k).

After all the above revision of the PSO algorithm, the for-
mulae to define the particle xk

d
and the updating rule of the

positions and velocities are given as xk+1
d

= xk
d

+ vk+1
d

and vk+1
d

=
wvk

d
+ c1r1(Pd(k) − xk

d
) + c2r2(Pg(k) − xk

d
) respectively for the PSO

algorithm, where c1, c2 are positive acceleration constants, r1 and
r2 are random numbers on the interval [0,1], w is the inertia term.

The penalty function PSO algorithm is chosen as a solution
technique because it can handle both the continuous and binary
variables of the MGMS  model. The algorithm also has provision to
handle the inequality and equality constraints.

4. Case studies, simulations and results

In this section two case studies are considered, the first is
the comparison between the reliability objective function MGMS
model to the classic GMS  model and the second is the application
of the economic cost objective function of the MGMS  model to the
Arnot Power Plant in South Africa. All the computations are carried
out by the Matlab program.

4.1. Case study for the reliability MGMS model

The case study is a test system with a total number of gener-
ators I = 21 over a planning period T of 52 weeks, this case study
is obtained from the data in [6,9] and [11]. During this period, all
21 generators need to undergo maintenance, see Table 1 for the
corresponding data.
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Fig. 1. Crew availability: (a) MGMS available crew and (b) GMS  available crew.
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Fig. 2. Reserve margin: (a) MGMS  reserve margin and (b) GMS  reserve margin.

Table  2
Maintenance schedules obtained by MGMS  and GMS  [11] for the case study.

Week no. Generator scheduled for maintenance Week no. Generator scheduled for maintenance

MGMS  GMS  [11] MGMS  GMS  [11]

1 1, 10 3, 10, 13 27 18 16
2 1,  10 6, 10, 13 28 14 16
3  1, 10 6, 10, 13 29 14 16
4 1,  6, 10 6, 10 30 14 16
5  1, 6 6, 8 31 14 16
6  1, 6 6, 12 32 14 16
7  1, 6 6, 12 33 16 14
8  2, 6, 9 6, 9 34 16 14
9 2,  6, 9 6, 9 35 16 14

10  6, 12, 13 6, 7 36 16, 17 14
11 6,  12 6, 7 37 16, 17 15
12  6, 13 2, 7 38 16, 17 17, 18
13  6, 13 2, 7 39 19 17
14 13 1 40 19 17, 21
15  7 1 41 21 21
16 7  1, 11 42 21 21
17  7, 11 1, 11 43 21 21
18  7, 11 1 44 21 20
19  4 1 45 – –
20  4 1 46 – 19
21 4 5 47 20 19
22  5 5 48 15 15
23 5  5 49 15 15
24  5 4 50 15 15
25  8 4 51 15 15
26  3 4 52 15 15

Each generator is allowed to start maintenance anywhere within
a 26 week period. As shown in Table 1, the number of generators
considered for maintenance It are generators 1–13 for weeks 1–26
and generators 14–21 for weeks 26–52. All generators are required
to complete their maintenance by week 52. The total generated
output for all the generators

∑I
i=1gmax

i,t
in each week is given to

be 5688MW/week. The maintenance outages for the generators in
Table 1 are scheduled to minimise the SSR and satisfy the following
constraints:

1 Maintenance window: each generator must be maintained
exactly once every 52 weeks without interruptions [11].

2 Crew: the available members of crew At is 20 for every
week [6,10,11]. A solution with a high reliability but requir-
ing some extra crew is acceptable in a power plant. The
flexibility for the crew constraint is given that 5% of total
available man-weeks (TMW)  which is 695 can be hired for
maintenance [11].

3 Load constraint: the system’s peak load Dt which is
4739 MW/week is used as the flat load for the test problem
[11].

4  The generator limit: The total minimum gmin
i

and maximum gmax
i

capacity for all the generators per week are fixed to be the peak
load and the capacity given in Table 1 respectively.

In this case study the unit commitment of the generators is not
considered, hence (7) is not used. It is assumed that no generator
is shut down due to unit commitment or a forced outage.

The MGMS  problem is solved using the penalty function PSO
algorithm explained in Section 3. A population size of 30 parti-
cles is chosen. The results obtained are compared to GMS  results
obtained in [11]. The MGMS  model is simulated using the PSO
algorithm with c1 = c2 = 2 and w is obtained using the formula
w = wmax − (k(wmax − wmin))/kmax, wmax and wmin are the maxi-
mum and minimum values of inertia term respectively and kmax

is the maximum number of iterations. From studies in [26,27] wmax

and wmin are chosen as 0.9 and 0.4 respectively.

4.1.1. Results of the comparison between the MGMS  model and
the GMS model

The optimal objective function value or SSR value of MGMS and
GMS  problems are 104.71 × 105 and 133.4 × 105 respectively. The
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Table  3
Data for Arnot power plant [28].

Gen gmin
i

gmax
i

ai(R/h) bi(R/MWh) ci(R/MW2h) LR (MW/h) UR (MW/h)

1 150 355 4655.7658 82.9456 0.034265 53 132
2 150 355 4655.7658 82.9456 0.034265 53 132
3 150 355 4655.7658 82.9456 0.034265 53 132
4  150 355 4655.7658 82.9456 0.034265 53 132
5  150 355 4655.7658 82.9456 0.034265 53 132
6  150 355 4655.7658 82.9456 0.034265 53 132

GMS  has a crew violation of 37 which is approximately 5% of the
TMW.  The MGMS has a crew violation of 10 which is approximately
1.4% of the TMW.  The SSR of the MGMS  is 104.71 × 105 which is
21.5% less than the SSR of the GMS  model. The trade off between
the crew violation and higher reliability in the MGMS  model is
much better than that of the GMS  model because the MGMS model
requires a hired crew that is 27% less than the crew needed in
the GMS  model. The results are illustrated in Fig. 1(a) and (b) of
Fig. 1 which are the crew of the maintenance for the MGMS  and
GMS  models respectively. Thus the MGMS  model provides a bet-
ter economic solution than the GMS  model. Fig. 2(a) and (b) of
Fig. 2 give the graphs of the reserve margins of the MGMS and GMS
model respectively. The graphs show that the MGMS  model have
a more uniform reserve margin than the GMS  model which from
[10] means the MGMS is more reliable. The reason for the better
solutions is due to the modification of the maintenance window
(3) and the crew (4) constraints. The addition of the generator lim-
its (5) ensures that the load constraint is never violated and thus
reduces the SSR. Fig. 3 illustrates the use of the generator limits
constraint. The generator maintenance schedule obtained for the
21-unit case study is presented in Table 2.

4.2. Comparison between the closed loop and open loop economic
cost objective function MGMS  solutions

For the simulation of the economic cost objective function
MGMS  problem in Section 2, maintenance scheduling is done on
the Anort power plant, South Africa [28]. The power plant station is
a thermal power plant with 6 generators of identical capacity rat-
ings. Table 3 gives a list of all the generator ratings, fuel cost and
ramp rates of the generators in the Arnot Power Plant. Since the
production cost of the generators is expressed on an hourly basis,
it is given as a quadratic function kigi,t = 168(ai + bigi,t + cig

2
i,t

).
Total planning period T is 52 weeks. Total number of generators

I is 6. Preventive maintenance must be done on each generator at
least once every 52 weeks without interruptions. The duration Ni of
any maintenance is 6 weeks. Available crew per week At is 15. The
system’s spinning reserve St is 6.5% of the peak generated power
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Fig. 3. MGMS  available generation.

Table 4
Results for operation cost and electricity generation over 52 weeks.

Closed loop Open loop

Operation cost (×106 Rand) 7817.30 94,981.00
Operation cost (×106 USD) 1070.88 13,011.09
Generated output (MW)  9,965,170 9,426,130
Reserve (MW) 3,487,809 3,380,154
Demand (MW)  4,940,000 4,940,000
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Fig. 4. Open loop available generation.

per week. A flat demand Dt 95,000 MW/week is considered for each
week t. For the purpose of this study the maintenance and start up
cost are assumed to be R 100,000 and R 4,000,000 respectively,
where R is the symbol for the South African Rand. One US Dollar
(USD) is approximately seven South African Rands (USD 1 = R 7.3, as
at March 2012). The open loop and closed loop results are compared
to verify that the proposed closed loop approach can be applied.

4.2.1. Results
In Table 4, it can be seen that the closed loop operation cost

results are less than the open loop results while generating more
electricity. Although the demand constraints are satisfied in both
approaches, the closed loop solution satisfies the constraint at less

0 5 10 15 20 25 30 35 40 45 50 55
0.5

1

1.5

2

2.5

3

x 105

Number of weeks

G
en

er
a
te

d
 o

u
tp

u
t 

(M
W

)

Demand Max. Gen. Open loop Closed loop

Fig. 5. Combined open loop and closed loop available generation.
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Fig. 6. Available generation with demand disturbance: (a) open loop available generation with demand disturbance and (b) closed loop available generation with demand
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Table  5
Maintenance schedule obtained for the closed loop and open loop solutions.

Generators Closed loop schedule Open loop schedule

1 Week 1 to week 6 Week 1 to week 6
2 Week  25 to week 30 Week 47 to week 52
3  Week 47 to week 52 Week 27 to week 32
4 Week  19 to week 24 Week 7 to week 12
5  Week 13 to week 18 Week 21 to week 26
6  Week 33 to week 38 Week 40 to week 45

cost. The MPC  technique minimises the operation cost of the power
system while satisfying all the constraints. The MGMS  model is
simulated with penalty function PSO to obtain the benchmark for
comparison with the closed loop MGMS  solution. The open loop
results of generated output for all the generators through out the
52 week period is given in Fig. 4. Fig. 5 gives a comparison of the
available generation for the closed and the open loop solutions and
it shows that the closed loop solution convergences to the open
loop model after week 6. The advantage of the closed loop solu-
tion is that it produces higher generated output than the open loop
model and yet still schedules optimal maintenance throughout the
52 weeks period.

Fig. 6(a) and (b) show the results of the open loop and closed loop
MGMS solutions with a positive random disturbance on the gen-
erated output. That is, Dt = 2r(n)Dt where r(n) is a random number
between 0 and 1. This means that the generated output is altered
with random disturbances. This disturbance is applied to the entire
52 weeks planned horizon. Fig. 6(a) and (b) show that the gen-
erated output gi,t does not exceed the generator limits and the
peak demand is met  for the open loop and closed loop solutions
respectively. This is important because in practical application the
electricity demand can change at any time. The MGMS  model is
robust in the sense that when a disturbance is introduced into the
system, the closed loop solution can still generate optimal sched-
ules for the maintenance of the generators in the power system.
Table 5 gives the maintenance schedule for the open loop and closed
loop MGMS  solutions for the Arnot Power Plant.

5. Conclusion

This paper investigates the missing constraints in GMS  prob-
lems and a comparison is made between the MGMS  and the GMS
model of [11]. New constraints such as the crew availability con-
straint in inequality (4) and the maintenance-generation, start
up-generation relationship constraints in equations (10) and (11),
are added to the GMS  model. These constraints are either not

explicitly formulated or ignored in existing literature which would
possibly result in non-optimal, inaccurate, or even unfeasible
scheduling results. The ramp rate and generator limit constraints,
which are normally used in unit commitment problems, are also
added to ensure that the generator’s life span is considered in the
maintenance scheduling. The MGMS  model is compared with the
classical GMS  model using the 21-unit test system and the results
show that the MGMS  produces better and more reliable results than
the GMS  model. The formulated economic cost objective function
MGMS  model is used to schedule maintenance for the Arnot Power
Plant, South Africa. The closed loop and open loop solutions of the
MGMS  model are compared through simulations and the simula-
tions show that the closed loop results are better than the open
loop results.
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