
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

Electric Power Systems Research 103 (2013) 192– 200

Contents lists available at SciVerse ScienceDirect

Electric  Power  Systems  Research

jou rn al hom epage: www.elsev ier .com/ locate /epsr

Hybrid  DE-SQP  and  hybrid  PSO-SQP  methods  for  solving  dynamic
economic  emission  dispatch  problem  with  valve-point  effects

A.M.  Elaiwa,c,∗, X.  Xiab,  A.M.  Shehatac

a Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
b Centre of New Energy Systems, Department of Electrical, Electronic and Computer Engineering, University of Pretoria, South Africa
c Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut, Egypt

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 13 June 2012
Received in revised form 2 May  2013
Accepted 25 May  2013

Keywords:
Dynamic economic emission dispatch
Multi-objective optimization
Differential evolution
Particleswarm optimization

a  b  s  t  r  a  c  t

The  dynamic  economic  emission  dispatch  (DEED)  problem  taking  into  consideration  valve-point  effects  is
a complicated  non-linear  constrained  multi-objective  optimization  problem  with  non-smooth  and  non-
convex  characteristics.  DEED  determines  the  optimal  generation  schedule  of  committed  generating  units
by minimizing  both  fuel  cost  and  emission  simultaneously  under  a set  of constraints.  This  paper  presents
two  hybrid  optimization  methods  to  solve  the  DEED  problem.  The  first  method  combines  differential
evolution  (DE)  and  sequential  quadratic  programming  (SQP).  The  second  one  is  hybrid  particle  swarm
optimization  (PSO)  and  SQP. DE  or PSO  is  used  as a global  optimizer  and SQP  is used  as  fine tuning to
determine  the  final  optimal  solution.  Two  test  systems  consisting  of  five  and  ten  generating  units  with
non-smooth  fuel cost  functions  have  been  used  to illustrate  the  effectiveness  of the  proposed  methods
compared  with  other  methods.  The  second  purpose  of  this  paper  is  to  extend  the  DEED problem  in such
a  way  that  its optimal  solution  can  be  periodically  implemented.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Dynamic economic dispatch (DED) is a real-time power system
problem that is used to schedule the committed generating units’
outputs so as to meet the load demand over a dispatch period at
minimum operating cost while satisfying ramp rate constraints and
other constraints (see the review paper [1]). DED is a more com-
plicated problem than the static economic dispatch (SED) problem
where the ramp rate constraint is neglected. The ramp rate con-
straint is a dynamic constraint, which is important to maintain the
life of the generators [2]. In the literature, several optimization tech-
niques have been used to solve the DED problem with complex
objective functions or constraints [1]. Mathematical programming
based or heuristically based methods have been used to solve the
DED problem, such as, gradient projection method [3], Lagrange
relaxation [4], linear programming [5], nonlinear programming [2],
dynamic programming [6,7] and interior point method [8]. These
methods can be used for solving the DED problem with smooth
and convex cost functions. However, in reality, the input–output
characteristics of generating units are non-smooth and non-convex
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owing to steam valves in large steam turbines. Neglecting such
valve-point effects often introduces inaccuracy into the resulting
dispatch. A DED problem with valve point effects is a non-smooth
and non-convex optimization problem with multiple local optimal
points, which makes finding the global optimal challenging. Most of
the above-mentioned optimization methods may  fail to solve such
problems, as they are sensitive to initial estimates and converge
into a local optimal solution and computational complexity [1]. In
[9], Maclaurin series based Lagrangian method (MSL) has been used
to solve the DED problem with valve-point effects. Over the past few
years, in order to solve this problem, many computational intelli-
gence methods have been developed, such as simulated annealing
(SA) [10], genetic algorithms (GA) [11], differential evolution (DE)
[12], particle swarm optimization (PSO) [13,14], artificial immune
system (AIS) [15,16], artificial bee colony (ABC) algorithm [17]
and harmony search (HS) algorithm [18]. Many of these methods
have proven their effectiveness in solving DED problems with-
out any restriction or fewer restrictions on the shape of the cost
function curves. Hybrid methods that combine two  or more opti-
mization methods such as EP-SQP [19,20], PSO-SQP [21], hybrid
bee colony optimization and sequential quadratic programming
(BCO-SQP) [22] and hybrid Hopfield neural network and quadratic
programming (HNN-QP) [23] have been successfully applied to DED
problems with valve point effects.

The DED problem plays an important role in power system
operation. However, the traditional DED strategies are designed in
such a way that the fuel cost is minimized, neglecting emission
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constraints. The emission of gaseous pollutants including SO2,
NOx, CO and CO2 from fossil fuel fired thermal plants affects
human health directly or indirectly. Therefore, electric utilities are
requested to reduce emission from their plants. Emission dispatch-
ing is one of the preferred options to reduce emissions [24].

The emission can be taken into the static/dynamic economic
dispatch formulation following three main approaches [25]. The
first approach is to minimize the fuel cost and treat the emission
as a constraint with a permissible limit (see e.g. [26–29]). This for-
mulation, however, presents severe difficulty in establishing the
trade-off relations between cost and emission [25]. The second
approach handles both fuel cost and emission simultaneously as
competing objectives [30–32]. The third approach treats the emis-
sion as another objective in addition to the fuel cost objective.
However, the multi-objective optimization problem is converted to
a single-objective optimization problem by a linear combination of
both objectives [26,33–35]. This approach yields meaningful results
to the decision maker when solved many times for different values
of the weighting factor. This paper focuses on the third approach. In
the second and third approaches, the dynamic dispatch problem is
referred to as dynamic economic emission dispatch (DEED), which
is a multi-objective optimization problem that minimizes both fuel
cost and emission simultaneously under the ramp rate constraint
and other constraints.

In some of the pioneering works on the topic of economic dis-
patch with emission considerations (see e.g. [26,32,36,37]), both
generation costs and pollution levels are modeled as analytical,
usually quadratic functions of the power unit output. Some other
works have taken into account non-smooth and non-convex cost
functions due to valve-point effects and a highly nonlinear emission
function (see e.g. [30,31,33–35]). The traditional gradient based
optimization methods may  not converge to feasible solutions for
such complex problems where the objective functions are not
continuously differentiable and/or are discontinuous in nature.
Alternatively, many computational intelligence methods have been
proposed for solving such problems. In [34], by assuming that the
decision maker has goals for each of the two objective functions,
the multi-objective optimization problem is transformed into a
single-objective optimization by the goal-attainment method and
is solved by the PSO method. In [30], it was assumed that the deci-
sion maker had a fuzzy goal for each of the objective functions.
The optimal non-inferior generation schedule is determined by the
EP-based fuzzy satisfying method. In [31], the multi-objective opti-
mization problem is solved by the non-dominated sorting genetic
algorithm-II (NSGA-II). In [33,35], an improved pattern search (PS)
based algorithm and an improved bacterial foraging algorithm
(IBFA) are, respectively, used to solve the DEED problem, where the
multi-objective optimization problem is converted into a single-
objective optimization.

The DE algorithm which was proposed by Storn and Price [38],
is a population-based stochastic parallel search technique. DE uses
a rather greedy and less stochastic approach to problem solving
compared to other evolutionary algorithms. DE has the ability
to handle optimization problems with non-smooth/non-convex
objective functions [38]. Moreover, it has a simple structure and
good convergence property, and it requires only a few robust con-
trol parameters [38]. DE has been successfully applied to the DED
problem with non-smooth and non-convex cost functions (see
[12,39]).

PSO, which was proposed by Kennedy and Eberhart [40], is
one of the forms of computational intelligence that can be used
for solving optimization problems with non-smooth and non-
convex characteristics without requiring derivative information.
The PSO shares many similarities with evolutionary computation
techniques such as DE and GA techniques. The system is initial-
ized with a population of random solutions and searches for optima

by updating generations. However, unlike DE and GA,  PSO has no
evolution operators such as crossover and mutation. So the PSO
algorithm is simple and easy to implement, since its working mech-
anism only involves two fundamental updating rules. PSO has fewer
operators to adjust in the implementation, and it can be flexibly
combined with other optimization techniques to build a hybrid
algorithm. PSO has been applied to the DED problem in [13]. In [41],
quantum-inspired particle swarm optimization (QPSO) has been
successfully used for solving the SED problem with valve-point
effects.

Although both DE and PSO seem to be good methods to solve
the DED problem with non-smooth and non-convex cost func-
tions, solutions obtained are just near global optimum with long
computation time. Therefore, hybrid methods such as DE-SQP and
PSO-SQP can be effective in solving the DED and DEED problems
with valve-point effects.

The main contributions of the paper are: (1) A multi-objective
optimization problem is formulated using the DEED approach. The
multi-objective optimization problem is converted into a single-
objective optimization one using the weighting method. (2) Two
hybrid methods, DE-SQP and PSO-SQP, are proposed and validated
for solving the DEED problem with valve-point effects. DE or PSO
is used as a base level search for global exploration and SQP is used
as a local search to fine-tune the solution obtained from DE or PSO.
(3) The effectiveness of the proposed methods is shown for two test
systems consisting of five and ten units with non-smooth cost func-
tions. (4) The results of the hybrid DE-SQP and PSO-SQP methods
are compared with other methods given in the literature. (5) The
DEED problem is extended in such a way that its optimal solution
can be periodically implemented.

2. Formulation of the DEED problem

The objective of the DEED problem is to determine the gen-
eration levels for the committed units, which simultaneously
minimize the total fuel cost and pollutants emission over a dispatch
period, while satisfying a set of constraints. The following objec-
tives and constraints are taken into account in the formulation of
DEED problem.

2.1. Objective functions

(i) Cost: Traditionally, the cost function curve of a thermal unit
is approximated by a quadratic function [36,37]. Power plants
commonly have multiple valves, which are used to control the
power output of the unit. When steam admission valves in
thermal units are first opened, a sudden increase in losses is
registered, which results in ripples in the cost function [10].
This phenomenon is called valve-point effects. The generator
with valve-point effects has a very different input–output curve
compared with the smooth cost function. Taking the valve-
point effects into consideration, the fuel cost is expressed as the
sum of quadratic and sinusoidal functions [19,31,41]. Therefore,
the total fuel cost over the dispatch period [0, N] is given by:

C =
N∑

t=1

n∑
i=1

Ci(Pt
i
) =

N∑
t=1

n∑
i=1

ai + biP
t
i
+ ci(Pt

i
)2 + |ei sin(fi(Pmin

i
− Pt

i
))|, (1)

where ai, bi and ci are positive constants, and ei and fi are the
coefficients of unit i reflecting valve-point effects; n is the num-
ber of committed units; N is the number of intervals in the time
horizon; Pt

i
is the generation of unit i during the tth time inter-

val [t − 1, t); Pmin
i

is the minimum capacity of unit i; Ci(Pt
i
) is the

generation cost for unit i to produce Pt
i
.

(ii) Emission: The most important emissions considered in the
power generation industry, because of their effects on the
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environment, are SO2, CO2 and NOx. These emissions can
be modeled through functions that associate emissions with
power production for each unit. The emissions of both SO2 and
CO2 can be modeled as quadratic polynomial functions [32].
NOx emissions are more difficult to model since they come from
different sources and their production is associated with sev-
eral factors, such as boiler temperature and air content. One
approach to represent NOx emissions is using a combination of
polynomial and exponential terms [42]. The emission of SO2,
CO2 and NOx can be modeled separately. However, for compar-
ison purposes, the total pollutants emission over the dispatch
period [0, N] can be expressed as [31,43]:

E =
N∑

t=1

n∑
i=1

Ei(P
t
i ) =

N∑
t=1

n∑
i=1

˛i + ˇiP
t
i + �i(P

t
i )

2 + �i exp(ıiP
t
i ),

(2)

where constants ˛i, ˇi, � i, �i and ıi are the coefficient of the
ith unit emission characteristics and Ei(Pt

i
) is the amount of

emission from unit i from producing power Pt
i
.

2.2. Constraints

Three kinds of constraints are considered in the DEED problem,
i.e., the generation capacity of each generator, power balance, and
ramp rate limits.

(i) Power balance constraint
n∑

i=1

Pt
i = Dt + Losst, t = 1, . . . , N (3)

where Dt and Losst are the demand and transmission line loss
at time t (i.e., the tth time interval), respectively. Losst is cal-
culated by using B-coefficients, which can be expressed as a
quadratic function of the unit’s power outputs as:

Losst =
n∑

i=1

n∑
j=1

Pt
i BijP

t
j , t = 1, . . . , N (4)

where Bij is the ijth element of the loss coefficient square matrix
of size n.

(ii) Generation limits

Pmin
i ≤ Pt

i ≤ Pmax
i , i = 1, . . . , n, t = 1, . . . , N (5)

where Pmin
i

and Pmax
i

are the minimum and maximum capacity
of unit i, respectively.

(iii) Generating unit ramp rate limits

−DRi ≤ Pt
i − Pt−1

i
≤ URi, i = 1, . . . , n, t = 2, . . . , N (6)

where URi and DRi are the maximum ramp up/down rates for
unit i.

2.3. The optimization problem

Aggregating the objectives and constraints, the DEED prob-
lem can be mathematically formulated as a nonlinear constrained
multi-objective optimization problem, which can be converted into
a single-objective optimization using the weighting method as:

min  F = wC + (1 − w)E (7)

subject to constraints (3)–(6)

where w ∈ [0,  1] is a weighting factor. It will be noted that, when
w = 1, the problem (7) determines the optimal amount of the gen-
erated power by minimizing the cost regardless of emission and the

DEED problem leads to the DED problem. If w = 0, then the DEED
problem determines the optimal amount of the generated power by
minimizing the emission regardless of cost and the DEED problem
leads to pure dynamic emission dispatch (PDED) [31].

3. Differential evolution method

DE is a simple yet powerful heuristic method for solving non-
linear, non-convex and non-smooth optimization problems. The DE
algorithm is a population based algorithm using three operators,
mutation, crossover and selection, to evolve from the randomly
generated initial population to the final individual solution [38].
In the initialization a population of NP target vectors (parents)
Xi =

{
x1i, x2i, . . . , xDi

}
, i = 1, 2, . . .,  NP is randomly generated within

user-defined bounds, where D is the dimension of the optimization
problem. Let XG

i
=
{

xG
1i

, xG
2i

, . . . , xG
Di

}
be the individual i at the cur-

rent generation G. A mutant vector VG+1
i

= (vG+1
1i

, vG+1
2i

, . . . , vG+1
Di

) is
generated according to

VG+1
i

= XG
r1

+ F × (XG
r2

− XG
r3

), r1 /= r2 /= r3 /= i, i = 1, 2, . . . , NP

(8)

with randomly chosen integer indexes r1, r2, r3 ∈ {1, 2, . . .,  NP}. Here
F is the mutation factor.

According to the target vector XG
i

and the mutant vector VG+1
i

, a

new trial vector (offspring) UG+1
i

=
{

uG+1
1i

, uG+1
2i

, . . . , uG+1
Di

}
is cre-

ated with

uG+1
ji

=
{

vG+1
ji

if (rand(j) ≤ CR) or j = rnb(i)

xG
ji

otherwise
, (9)

where j = 1, 2, . . .,  D, i = 1, 2, . . .,  NP and rand(j) is the jth evaluation of
a uniform random number between [0, 1]. CR ∈ [0, 1] is the crossover
constant that has to be determined by the user. rnb(i) is a randomly
chosen index from 1, 2, . . .,  D which ensures that UG+1

i
gets at least

one parameter from VG+1
i

[38].
The selection process determines which of the vectors will be

chosen for the next generation by implementing one-to-one com-
petition between the offsprings and their corresponding parents. If
f denotes the function to be minimized, then

XG+1
i

=
{

UG+1
i

if f (UG+1
i

) ≤ f (XG
i

)

XG
i

otherwise
,  (10)

where i = 1, 2, . . .,  NP. The value of f of each trial vector UG+1
i

is
compared with that of its parent target vector XG

i
. The above iter-

ation process of reproduction and selection will continue until a
user-specified stopping criterion is met.

4. Particle swarm optimization method

Particle swarm optimization (PSO) is one of the evolutionary
computations, which can be used for solving optimization prob-
lems with non-smooth and non-convex objective functions [40].
The PSO algorithm searches in parallel using a swarm of particles.
Considering the ith particle in the swarm, its position and veloc-
ity at iteration G are denoted by XG

i
=
{

xG
1i

, xG
2i

, . . . , xG
Di

}
and VG

i
={

vG
1i

, vG
2i

, . . . , vG
Di

}
, respectively. The particle updates its position

and velocity repeatedly by the following equations:

vG+1
ji

= ωvG
ji + c1r1(PbestG

ji − xG
ji ) + c2r2(GbestG

j − xG
ji ),

j = 1, 2, . . . , D, i = 1, 2, . . . , NP, (11)

xG+1
ji

= xG
ji + KvG+1

ji , j = 1, 2, . . . , D, i = 1, 2, . . . , NP, (12)
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until the stopping criterion is reached. Here, PbestG
i =

(PbestG
1i, PbestG

2i, . . . , PbestG
Di) is the best known position of

the particle i until the current iteration G and GbestG =
(GbestG

1 , GbestG
2 , . . . , GbestG

D) is the best particle in the swarm
at iteration G; r1 and r2 are uniform random numbers in [0, 1];
c1 and c2 are acceleration factors; ω and K are the inertial and
constriction factors that have been defined in [44,45], respectively,
as:

ω = ωmax − (ωmax − ωmin)G
Gmax

, K = 2∣∣∣2 − ϕ −
√

ϕ2 − 4ϕ
∣∣∣ , (13)

where ωmax and ωmin are initial and final weights, Gmax is the
maximum iteration number, and ϕ = c1 + c2 ≥ 4. The fitness of each
particle can be evaluated according to the objective function to be
minimized.

In this paper, we define the evaluation function for evaluat-
ing the fitness of each individual in the population in DE and PSO
algorithms as follows:

f = F + �

N∑
t=1

(
n∑

i=1

Pt
i − (Dt + Losst)

)2

, (14)

where � is a penalty value. Then the objective is to find fmin, the
minimum evaluation value of all the individuals in all iterations.
The penalty term reflects the violation of the equality constraint.
Once the minimum of f is reached, the equality constraint is satis-
fied. Also, the generation power output of each unit at time t should
be adjusted to satisfy the following constraints, which combine
constraints (5) and (6) as:

Pt
i =

⎧⎪⎪⎨⎪⎪⎩
Pt,min

i
if Pt

i
< Pt,min

i
,

Pt
i

if Pt,min
i

≤ Pt
i

≤ Pt,max
i

,

Pt,max
i

if Pt
i

> Pt,max
i

,

(15)

Pt,min
i

=
{

Pmin
i

if t = 1,

max(Pmin
i

, Pt−1
i

− DRi) others,
,

Pt,max
i

=
{

Pmax
i

if t = 1,

min(Pmax
i

, Pt−1
i

+ URi) others.
(16)

5. Sequential quadratic programming method

The SQP method can be considered as one of the best nonlin-
ear programming methods for constrained optimization problems
[46]. It outperforms every other nonlinear programming method in
terms of efficiency, accuracy and percentage of successful solutions
over a large number of test problems. The method closely resem-
bles Newton’s method for constrained optimization, just as is done
for unconstrained optimization. At each iteration, an approxima-
tion is made of the Hessian of the Lagrangian function using the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton updat-
ing method. The result of the approximation is then used to
generate a quadratic programming (QP) sub-problem whose solu-
tion is used to form a search direction for a line search procedure.

In a general form the optimization problem (7) with constraints
(3)–(6) can be rewritten as

min
x

F(x), (17)

gi(x) = 0, i = 1, 2, . . . , me (18)

gi(x) ≤ 0, i = me + 1, 2, . . . , m (19)

where x = (P1
1 , P1

2 , . . . , P1
n , P2

1 , P2
2 , . . . , P2

n , . . . , PN
1 , PN

2 , . . . , PN
n )

T
,

g(x) represents the constraints from (3)–(6), me is the number of
equality constraints and m is the number of constraints.

The formulation of the SQP subroutine is taken from [19,22].
For each iteration, a QP is solved to obtain the search direction for
updating the control variables. The QP problem can be described as
follows:

Minimize the following

∇F(xk)T dk + 1
2

dT
k Hkdk (20)

subject to

gi(xk) + [∇gi(xk)]T dk = 0, i = 1, 2, . . . , me (21)

gi(xk) + [∇gi(xk)]T dk ≤ 0, i = me + 1, . . . , m (22)

where dk is the basis for a search direction at iteration k, and Hk is
the Hessian matrix of the Lagrangian function defined by:

L(x, �) = F(x) + �T g(x) at x = xk,

where � is the vector of the Lagrangian multiplier.
At each iteration, Hk is approximated by Bk and calculated using

the BFGS quasi-Newton method as:

Bk+1 = Bk + qkqT
k

qT
k
Sk

− (BkSk)(BkSk)T

ST
k

BkSk

, (23)

where Sk = xk+1 − xk and qk = ∇ L(xk+1, �k+1) − ∇ L(xk, �k+1) .
At each iteration k, a search direction dk is calculated by solving

the QP sub-problem (20)–(22). The calculated dk is used to form a
new iteration

xk+1 = xk + ˛kdk. (24)

The step length value ˛k is determined to produce a considerable
reduction in an augmented Lagrangian merit function, which is
given by:

L(x, �, �) = F(x) −
m∑

i=1

�i(gi(x) − si) + 1
2

m∑
i=1

�i(gi(x) − si)
2, (25)

where �i is a non-negative penalty parameter and si is slack variable
with si = 0 for i = 1, 2, . . .,  me and si ≥ 0 for i = me + 1, . . .,  m. The pro-
cedure is repeated until the value of xk has reached some tolerance
value.

Since the objective function of the DEED problem is non-convex
and non-smooth, SQP ensures a local minimum for an initial solu-
tion. SQP has been combined with computational intelligence
methods to constitute hybrid methods for solving the DED prob-
lem with non-smooth cost functions (see [19,20]). In this paper,
DE or PSO is used as a global search and finally the best solution
obtained from DE or PSO is given as initial condition for the SQP
method as a local search to fine tune the solution.

6. Simulation results

In this section we  show the effectiveness of the two proposed
hybrid methods DE-SQP and PSO-SQP for solving the DEED prob-
lem. The optimal solutions of this problem are performed over 24 h
(N = 24) . For comparison purposes, we shall solve the DEED prob-
lem with w = 1 and w = 0.5. Two  test systems consisting of five
units and ten units with valve point effects are used to investi-
gate the effectiveness of the proposed techniques in solving these
problems. The technical data of the units, as well as the demand
for the five and ten units systems, are taken from [34,31], respec-
tively. In the DE-SQP algorithm, the control parameters of the DE
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Table  1
Hourly generation (MW)  schedule obtained from DEED (w = 1) for 5-unit system.

H DE-SQP PSO-SQP

P1 P2 P3 P4 P5 Loss P1 P2 P3 P4 P5 Loss

1 19.6671 99.3285 30.0002 125.0290 139.7957 3.8205 11.4332 24.5937 112.6649 124.8255 139.9578 3.4751
2  10.0000 98.1460 66.5553 124.8249 139.6003 4.1266 10.0000 54.5848 110.6628 124.8145 138.8630 3.9251
3  10.0000 98.5929 106.5553 124.7446 139.8895 4.7823 16.2577 84.5848 113.3256 125.2555 140.2897 4.7135
4  10.0403 98.5493 112.5986 124.9357 189.8537 5.9775 10.0000 98.1664 112.5099 125.2409 190.0600 5.9772
5  10.0000 92.6878 108.5367 124.1238 229.3590 6.7073 10.0000 89.1455 111.6724 124.9280 228.9414 6.6874
6  39.9759 98.9154 113.2218 134.1017 229.6400 7.8548 39.9997 99.0995 113.0730 134.0337 229.6498 7.8558
7  10.0000 98.3087 112.7789 183.6985 229.6611 8.4472 10.0000 98.2029 112.8499 183.9454 229.4484 8.4467
8  12.9827 98.3039 112.7953 209.5425 229.6303 9.2548 13.1107 98.4023 112.6127 209.5222 229.6075 9.2553
9  42.9827 104.9387 112.5785 210.0177 229.6819 10.1996 43.1107 102.2953 114.2371 210.7439 229.7988 10.1858

10  64.5563 98.3868 112.4795 209.7516 229.3849 10.5592 64.9041 98.3302 112.4586 209.6534 229.2119 10.5583
11  75.0000 102.8000 113.2107 210.4401 229.5899 11.0407 75.0000 101.8810 114.4250 209.8585 229.8665 11.0311
12  75.0000 98.6214 138.0875 210.0776 229.7356 11.5223 75.0000 124.3129 112.4607 210.2713 229.6763 11.7213
13  64.0106 98.5220 112.7331 209.9040 229.3893 10.5591 64.4200 98.2824 112.3974 209.8474 229.6131 10.5603
14  49.3375 98.4142 112.8479 209.9967 229.5720 10.1682 49.8501 98.8815 112.1553 209.8009 229.4835 10.1713
15  52.7524 98.4470 112.5436 209.6813 189.6658 9.0900 36.0767 98.4420 112.8759 185.9252 229.8031 9.1230
16  25.8887 99.0026 112.7026 209.7523 139.8940 7.2402 10.0000 98.5938 112.7123 135.9252 230.0032 7.2346
17  10.0000 94.9531 110.2569 209.8458 139.7151 6.7708 10.0000 88.7826 112.1244 124.8638 228.9142 6.6851
18  10.0000 98.6774 112.6931 209.9107 184.7110 7.9922 40.0000 105.2586 114.9867 125.4454 230.1804 7.8711
19  13.0402 98.2030 112.5940 209.9028 229.5160 9.2561 67.5146 98.4770 112.6392 154.8824 229.5365 9.0497
20  43.0402 109.8703 121.8582 210.0922 229.7166 10.5777 68.9177 98.7513 112.6800 204.8824 229.3120 10.5435
21  38.7787 98.9611 112.6070 210.0195 229.5387 9.9050 38.9725 99.0798 112.5816 209.8709 229.3994 9.9043
22  10.0000 98.5891 112.3623 162.3947 229.5263 7.8724 10.0493 99.0665 112.7445 209.8076 181.2464 7.9143
23  10.0000 98.6173 112.3728 125.0027 186.9141 5.9070 10.0000 98.6181 112.7340 171.8330 139.7544 5.9395
24  10.0000 97.7303 95.5132 124.6522 139.6716 4.5673 10.0000 81.1715 112.0820 124.3974 139.8392 4.4901

are chosen as: Np = 60, F = 0.423 and CR = 0.885. The maximum
number of iterations of the DE are selected as 20,000. In the PSO-
SQP algorithm, we have chosen the following parameters: Np = 60,
Vmax = 0.5 ∗ Pmax, Vmin =−0.5 ∗ Pmin ; ωmax = 0.9, ωmin = 0.4, c1 = 2.25,
c2 = 2.25 and Gmax = 20,000. The results represent the average of 30
runs of the two proposed methods. All computations were carried
out using the MATLAB program.

1 – Five-unit test system: This example presents an application
of the DE-SQP and PSO-SQP methods to the DEED problem consist-
ing of five units. The best solutions of the DEED problem with w = 1
and w = 0.5 using the DE-SQP and PSO-SQP methods are given in
Tables 1 and 2, respectively. The best cost and emission obtained

by the DE-SQP and PSO-SQP methods are given in Table 7. Compar-
isons between our proposed methods (DE-SQP and PSO-SQP) and
other methods are given in Table 7.

2 – Ten-unit test system: This example presents an appli-
cation of DE-SQP and PSO-SQP to the DEED problem consisting
of ten units. The best solutions of the DEED problem with
w = 1 and w = 0.5 are given, respectively, in Tables 3 and 4
for the DE-SQP method. Tables 5 and 6 present the best solu-
tions of the DEED problem with w = 1 and w = 0.5 using the
PSO-SQP method. Comparisons between our proposed meth-
ods (DE-SQP and PSO-SQP) and other methods are given in
Table 7.

Table 2
Hourly generation (MW)  schedule obtained from DEED (w = 0.5) for 5-unit system.

H DE-SQP PSO-SQP

P1 P2 P3 P4 P5 Loss P1 P2 P3 P4 P5 Loss

1 14.8268 20.0315 113.2445 125.1900 140.1782 3.4710 15.6625 20.0919 112.9755 125.0083 139.7310 3.4692
2  11.3400 50.0072 112.6916 125.3360 139.5412 3.9160 11.3322 50.0154 112.7441 125.1023 139.7219 3.9159
3  29.6429 73.0206 112.7897 124.7228 139.4841 4.6601 29.8746 72.7001 112.6780 124.8987 139.5081 4.6594
4  59.6429 98.0413 112.8276 125.4323 139.8899 5.8341 59.8746 98.6802 112.8091 124.9241 139.5476 5.8355
5  74.4937 98.1315 112.5976 139.5185 139.7374 6.4788 74.4171 98.5776 112.6890 139.3872 139.4086 6.4795
6  74.7550 98.4822 112.8156 189.5185 140.2139 7.7854 75.0000 98.7700 112.9609 189.3872 139.6673 7.7854
7  73.7378 98.5901 112.6739 209.8052 139.5098 8.3169 74.2444 98.2495 112.5627 209.6976 139.5617 8.3159
8  75.0000 102.2437 122.3423 209.7080 153.7361 9.0302 75.0000 100.0961 122.8983 209.9946 155.0342 9.0231
9  75.0000 98.2743 113.0444 210.0436 203.7361 10.0985 74.9938 98.5553 112.5349 209.5036 204.5135 10.1011

10  72.5317 97.7322 112.4313 209.5599 222.2837 10.5388 65.9680 98.1380 112.4105 209.2977 228.7411 10.5554
11  75.0000 99.1655 117.5165 209.8143 229.5115 11.0078 75.0000 99.1912 117.3544 209.9258 229.5377 11.0091
12  75.0000 99.1177 137.7685 210.0998 229.5383 11.5243 75.0000 98.8629 138.0187 210.1676 229.4735 11.5228
13  70.7405 97.7635 112.4161 209.7667 223.8564 10.5432 73.5830 98.5391 112.4882 209.8168 220.1095 10.5366
14  75.0000 98.6271 126.2220 210.0466 190.1296 10.0253 75.0000 98.7871 126.4764 209.9777 189.7829 10.0242
15  75.0000 99.1669 138.8852 209.7932 140.1322 8.9776 74.9911 98.4001 139.6294 209.9255 140.0282 8.9742
16  75.0000 98.8458 112.9378 160.4643 139.7791 7.0270 44.9911 95.9191 112.1534 194.5233 139.5422 7.1292
17  74.5398 97.9513 112.8684 139.2430 139.8750 6.4776 15.0730 88.7350 112.2965 208.9761 139.6424 6.7230
18  75.0000 98.6407 112.7645 189.2430 140.1369 7.7852 45.0730 99.4790 121.3833 209.8743 140.0477 7.8574
19  75.0000 98.5272 139.9118 209.8308 139.7040 8.9738 75.0000 104.6133 133.2673 210.1777 139.9514 9.0097
20  75.0000 114.1831 175.0000 210.4904 139.6863 10.3597 75.0000 98.4747 141.1332 210.2208 189.5471 10.3759
21  75.0000 111.4441 153.0303 210.2858 139.9392 9.6994 75.0000 98.7589 166.2569 209.8422 139.7809 9.6388
22  70.0320 98.2309 113.0303 191.6325 139.7893 7.7150 74.9999 98.5569 126.2569 173.0516 139.7644 7.6297
23  40.0338 98.4037 113.1673 141.6325 139.5617 5.7990 56.7019 98.6673 112.6278 124.9395 139.8345 5.7710
24  10.0338 80.6922 112.3798 124.8631 139.5199 4.4887 26.7021 98.4645 112.7146 124.6583 104.9598 4.4992
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Table  3
Hourly generation (MW)  schedule obtained from DEED (w = 1) using DE-SQP for 10-unit system.

H P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Loss

1 150.0000 135.0000 73.0000 70.3333 222.9974 155.1682 99.2918 120.0000 20.0000 10.0000 19.7912
2  150.0000 135.0000 101.9485 120.3333 222.6154 123.7029 129.2918 90.0000 48.7980 10.7150 22.4058
3  150.0000 135.0000 181.9485 170.3333 174.2621 130.9190 129.6896 120.0000 53.5785 40.7150 28.4468
4  150.0000 135.0000 183.1516 218.2899 223.5485 160.0000 129.3947 120.0000 80.0000 42.0564 35.4415
5  150.0000 135.0000 258.8414 249.7412 224.0147 160.0000 128.5373 120.0000 80.0000 13.2136 39.3484
6  150.0000 135.0000 315.1962 299.7412 243.0000 160.0000 129.8624 120.0000 80.0000 43.2136 48.0136
7  150.0000 176.9470 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 52.9470
8  178.2448 228.3049 340.0000 300.0000 243.0000 160.0000 129.9436 120.0000 80.0000 54.9118 58.4054
9  258.2448 308.3049 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 70.5500

10  289.0490 384.5331 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 79.5821
11  368.7363 397.1230 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 87.8595
12  374.8564 439.5807 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 92.4378
13  342.1737 386.2429 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 84.4166
14  262.1737 306.2429 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 53.1527 70.5693
15  182.1737 226.2429 340.0000 299.9639 243.0000 160.0000 130.0000 120.0000 80.0000 53.0342 58.4148
16  150.0000 146.2429 294.7660 249.9639 223.6700 160.0000 129.6353 120.0000 80.0000 43.3613 43.6398
17  150.0000 135.0000 258.1720 249.5279 223.9121 160.0000 128.8682 120.0000 80.0000 13.8650 39.3459
18  150.0000 151.6366 298.4749 299.5279 243.0000 160.0000 129.7933 120.0000 80.0000 43.6183 48.0511
19  227.2425 231.6366 299.3393 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 43.5728 58.7914
20  307.2425 311.6366 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 74.8793
21  265.4293 301.1183 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 70.5476
22  185.4293 221.1183 263.3759 250.0000 225.8767 160.0000 129.8685 120.0000 80.0000 41.1109 48.7801
23  150.0000 141.1183 183.3759 200.0000 223.4887 155.9437 128.7427 120.0000 50.0000 11.1109 31.7806
24  150.0000 135.0000 173.1056 180.5739 173.7249 118.1382 128.6826 120.0000 20.0000 10.0000 25.2260

The results of the five-unit and ten-unit test systems for the
DEED problem show that our proposed methods are efficient, yield-
ing a cheaper cost and a lower amount of emission than the other
methods.

6.1. Periodic implementation of the optimal solution of the DEED
problem

In this section we show a technical deficiency that may  arise
when the optimal solutions for the DEED problem are implemented
repeatedly and periodically in response to periodic demand. Then
we show how to overcome this deficiency. The periodicity assump-
tion comes from the fact that the demand is periodic due to cyclic
consumption behavior and seasonal changes [47]. Note that the
DEED problem is formulated over the dispatch interval [0, N) and
does not consider the periodic implementations of the optimal

solution over the period [N, 2N), [2N, 3N), . . ..  Sometimes such
an optimal solution cannot be implemented practically, in other
words, the solution is not practically feasible. The solution has
not taken into consideration the consistency of the unit ramp rate
constraints for all the units. Our results for the DEED problem
show that the optimal solutions can be only implemented over
the interval [0, 24]. These solutions cannot be implemented for
the following 24 h by a simple repetition, since the ramp rate con-
straint is violated when the generating units are moved from the
24th hour of a day to the first hour of the next day. If we look
at the optimal solution of the DEED problem (w = 1) obtained
using DE-SQP for the five-unit system given in Table 1, we can
see that the optimal solution of unit 3 is given by P1

3 = 30.0002
and P24

3 = 95.5132. This solution cannot be implemented repeat-
edly every 24 h because P1

3 − P24
3 = −65.513 < −DR3 = −40. Also,

for the DEED problem (w = 0.5) we  can see from Table 2 that,

Table 4
Hourly generation (MW)  schedule obtained from DEED (w = 0.5) using DE-SQP for 10-unit system.

H P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Loss

1 150.0000 135.0000 73.0000 120.3833 171.9264 121.8871 99.0894 120.0000 51.9715 12.3269 19.5848
2  150.0000 135.0000 83.7433 120.6711 171.2469 128.1038 129.0894 120.0000 52.2245 42.3269 22.4065
3  150.0000 135.0000 162.5193 169.0630 174.6565 120.9375 129.5651 120.0000 80.0000 44.7980 28.5399
4  150.0000 135.0000 207.1277 191.7171 224.6565 160.0000 128.7881 120.0000 80.0000 44.1712 35.4606
5  150.0000 135.0000 215.5927 240.7025 243.0000 160.0000 129.9008 120.0000 80.0000 45.1414 39.3376
6  150.0000 157.4427 295.4659 285.1625 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 48.0732
7  150.0000 221.0206 296.1557 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 53.1764
8  178.9906 227.5589 339.8541 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 58.4036
9  258.9906 307.5589 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 70.5495

10  301.9478 371.5987 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 79.5467
11  369.6977 396.1633 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 87.8611
12  395.4459 419.0055 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 92.4515
13  345.4506 382.9677 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 84.4183
14  265.4506 302.9677 338.1488 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 70.5671
15  185.4506 222.9677 337.9894 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 58.4078
16  150.0000 142.9677 278.5398 250.0000 243.0000 160.0000 129.1928 120.0000 80.0000 43.8688 43.5692
17  150.0000 135.0000 216.0680 241.8310 243.0000 160.0000 129.7597 120.0000 80.0000 43.6770 39.3358
18  150.0000 151.7799 294.9569 291.3094 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 48.0463
19  227.0990 231.7799 288.8850 299.0316 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 58.7956
20  307.0990 311.7799 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 74.8790
21  266.1429 300.4048 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 70.5478
22  186.1429 220.4048 262.2225 250.0000 223.7053 160.0000 130.0000 120.0000 80.0000 44.3094 48.7850
23  150.0000 140.4048 184.0217 200.0000 222.3715 124.9570 129.4908 90.0000 80.0000 42.7995 32.0455
24  150.0000 135.0000 161.9013 150.0000 174.5532 123.0137 129.1198 120.0000 52.8354 12.7995 25.2231
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Table  5
Hourly generation (MW)  schedule obtained from DEED (w = 1) using PSO-SQP for 10-unit system.

H P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Loss

1 150.0000 135.0000 161.1311 116.0850 172.2860 72.4783 128.6751 90.0000 20.0000 10.0000 19.6561
2  150.0000 135.0000 155.6167 166.0850 124.1501 122.4783 128.8833 120.0000 20.0000 10.0000 22.2136
3  150.0000 135.0000 183.5401 174.5330 174.1501 160.0000 129.0625 120.0000 50.0000 10.0000 28.2862
4  150.0000 135.0000 242.6098 189.7078 224.1501 160.0000 130.0000 120.0000 80.0000 10.0000 35.4677
5  150.0000 135.0000 264.8208 239.7078 225.6501 160.0000 130.0000 120.0000 80.0000 14.1749 39.3542
6  150.0000 135.0000 324.1902 289.7078 243.0000 160.0000 129.9610 120.0000 80.0000 44.1749 48.0338
7  150.0000 176.9470 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 52.9470
8  178.2983 228.2515 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 54.8549 58.4049
9  258.2983 308.2515 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 70.5500

10  285.3452 388.2515 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 79.5967
11  305.6975 460.3508 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 88.0489
12  374.6758 439.7622 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 92.4380
13  340.6099 387.8061 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 84.4163
14  260.6099 307.8061 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 53.1538 70.5701
15  180.6099 227.8061 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 53.0003 58.4166
16  150.0000 147.8061 296.7007 250.0000 221.6825 160.0000 129.7722 120.0000 80.0000 41.6921 43.6541
17  150.0000 135.0000 257.3405 250.0000 225.3079 160.0000 130.0000 120.0000 80.0000 11.6921 39.3408
18  150.0000 149.6340 301.7197 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 41.6921 48.0461
19  229.2505 229.6340 298.7420 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 44.1686 58.7956
20  309.2505 309.6340 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 74.8849
21  264.4495 302.0980 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 70.5475
22  184.4495 222.0980 266.9432 250.0000 222.8129 160.0000 128.7893 120.0000 80.0000 41.7004 48.7935
23  150.0000 142.0980 186.9432 200.0000 222.9809 121.9721 130.0000 120.0000 50.0000 40.0000 31.9945
24  150.0000 135.0000 165.8788 177.3048 177.2730 124.8055 128.9304 120.0000 20.0000 10.0000 25.1962

P1
2 − P24

2 = 20.0315 − 80.6922 = −60.6607 < −DR2 = −30. A sim-
ilar observation can be seen for the optimal solutions of the DEED
problem given in Tables 1 and 2 using PSO-SQP.

From the results of the ten-unit system using the DE-SQP
technique, we also observe from Tables 3 and 4 that P1

3 − P24
3 =

73 − 173.1056 = −100.1056 < −DR3 = −80 and P1
3 − P24

3 = 73 −
161.9013 = −88.9013 < −DR3 = −80, respectively. This ramp rate
violation also happened for the DEED problem with w = 1 and
w = 0.5 using the PSO-SQP technique (see Tables 5 and 6).

To eliminate the violation of the unit ramp rate constraints
between the last hour in a day and the first hour of the next day, we
include the ramp limit on the difference between P24

i
and P25

i
= P1

i
.

This can be achieved by adding the next constraint to the conven-
tional DEED problem (see [47,26]).

−DRi ≤ P1
i − PN

i ≤ URi, i = 1, 2, . . . , n. (26)

The extended version of the DEED problem after adding constraints
(26) will be referred to as EDEED, respectively.

In the DE or PSO algorithm, the up and down limits of the gen-
erating unit i at time t should be modified to take into account
constraints (26) as:

Pt,min
i

=

⎧⎪⎨⎪⎩
Pmin

i
if t = 1

max(Pmin
i

, P1
i

− URi, PN−1
i

− DRi) if t = N

max(Pmin
i

, Pt−1
i

− DRi) others
,

Pt,max
i

=

⎧⎨⎩ Pmax
i

if t = 1
min(Pmax

i
, P1

i
+ DRi, PN−1

i
+ URi) if t = N

min(Pmax
i

, Pt−1
i

+ URi) others
.

Table 6
Hourly generation (MW)  schedule obtained from DEED (w = 0.5) using PSO-SQP for 10-unit system.

H P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Loss

1 150.0000 135.0000 73.0000 64.9607 171.6816 123.9156 128.8882 85.1571 80.0000 43.2457 19.8490
2  150.0000 135.0000 153.0000 114.9607 173.0230 123.1067 100.0000 90.0000 80.0000 13.2457 22.3362
3  150.0000 135.0000 183.1071 148.1744 173.3021 124.4116 130.0000 120.0000 80.0000 42.5649 28.5602
4  150.0000 135.0000 202.2424 198.1744 223.3021 160.0000 129.7374 120.0000 80.0000 42.9886 35.4449
5  150.0000 135.0000 220.9820 248.1744 231.2658 160.0000 129.7282 120.0000 80.0000 44.1826 39.3331
6  150.0000 138.8466 300.9820 298.1744 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 48.0031
7  150.0000 218.8466 298.3133 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 53.1600
8  177.8564 228.6940 339.8549 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 58.4053
9  257.8564 308.6940 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 70.5504

10  303.0647 370.4800 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 79.5448
11  369.2799 396.5805 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 87.8604
12  395.3086 419.1426 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 92.4512
13  345.3921 383.0261 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 84.4183
14  265.3921 303.0261 338.1488 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 70.5671
15  185.3921 223.0261 337.9895 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 58.4078
16  150.0000 143.0261 275.3372 250.0000 243.0000 160.0000 129.7236 120.0000 80.0000 46.4772 43.5641
17  150.0000 135.0000 217.1604 241.2473 243.0000 160.0000 130.0000 120.0000 80.0000 42.9256 39.3333
18  150.0000 199.6263 297.1604 241.6045 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 48.3912
19  226.5688 232.3088 296.3173 291.6045 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 58.7994
20  306.5688 312.3088 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 74.8776
21  265.5009 301.0467 340.0000 300.0000 243.0000 160.0000 130.0000 120.0000 80.0000 55.0000 70.5477
22  185.5009 221.0467 263.0794 250.0000 223.1614 160.0000 130.0000 120.0000 80.0000 43.9977 48.7862
23  150.0000 141.0467 185.0360 200.0000 182.6752 160.0000 128.5268 120.0000 53.5833 42.9194 31.7877
24  150.0000 135.0000 105.0360 177.9183 173.3264 123.0331 128.9683 120.0000 52.4596 43.5990 25.3409
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Table  7
Comparison results for 5-unit and 10-unit systems.

State w = 1 w = 0.5

Cost ($) Emission (lb) Cost ($) Emission (lb)

5-Unit system

SA [10] 47,356 – – –
APSO [14] 44,678 – – –
AIS [16] 44,385.43 – – –
GA [17] 44,862.42 – – –
PSO [17] 44,253.24 – – –
ABC [17] 44,045.83 – – –
MSL  [9] 49,216.81 – – –
HS [18] 44,376.23 – – –
DE [12] 45,800 – – –
PS  [33] 46,530 – 47,911 18,927
EP  [33] 46,777 – – –
PSO [34] 47,852 22,405 50,893 20,163
DE-SQP 43,161 23,080 44,450 19,616
PSO-SQP 43,263 23,180 44,542 19,772

10-Unit system {(cost ×106

$) and (emission ×105 lb)}

EP [15] 2.5854 – – –
PSO [15] 2.5722 – – –
AIS [15] 2.5197 – – –
NSGA-II [31] 2.5168 3.1740 – –
IBFA [35] 2.4817 3.2750 – –
DE-SQP 2.4659 3.2405 2.4688 3.1564
PSO-SQP 2.4668 3.3023 2.4701 3.1507

Table 8
Hourly generation (MW)  schedule obtained from EDEED (w = 0.5) for 5-unit system.

H DE-SQP PSO-SQP

P1 P2 P3 P4 P5 Loss P1 P2 P3 P4 P5 Loss

1 10.0000 98.8213 40.6007 125.0302 139.3378 3.7900 10.9359 98.4749 112.7579 124.9377 66.5260 3.6324
2  10.0000 98.1632 66.3751 124.9899 139.5992 4.1275 39.5616 98.5940 112.6301 124.9116 63.3138 4.0113
3  13.6958 95.4032 106.3750 124.7227 139.5644 4.7611 30.3783 98.4893 112.6479 124.8913 113.3138 4.7207
4  43.6958 98.7875 116.3219 137.2926 139.7517 5.8496 60.0625 98.4961 112.7098 124.9337 139.6331 5.8352
5  26.6251 98.5905 112.6699 187.2926 139.4540 6.6321 74.3294 98.4702 112.5516 139.3432 139.7851 6.4796
6  55.4754 98.5196 112.4171 209.8120 139.6443 7.8684 75.0000 98.7959 112.9160 189.3432 139.7304 7.7855
7  73.6738 98.5358 112.5937 209.6423 139.8705 8.3163 73.9414 98.5456 112.4844 209.7231 139.6226 8.3171
8  75.0000 99.0914 114.3621 210.2124 164.3883 9.0543 75.0000 98.8651 125.3535 209.7026 154.0893 9.0105
9  65.9592 98.2241 112.4256 209.8442 213.6665 10.1195 74.9946 98.5046 112.5892 209.9673 204.0457 10.1015

10  65.3037 98.3852 112.7004 209.6943 228.4718 10.5554 68.8070 98.5110 112.7020 209.4201 225.1058 10.5458
11  75.0000 98.8688 118.0133 209.6808 229.4413 11.0041 75.0000 98.5798 118.0216 209.7182 229.6845 11.0041
12  75.0000 98.5815 138.5759 209.9115 229.4503 11.5192 75.0000 98.5992 138.4204 209.7781 229.7224 11.5201
13  70.3789 98.4723 112.7987 209.7579 223.1338 10.5415 72.5169 98.5570 112.5674 209.6985 221.1984 10.5383
14  57.5706 98.5306 112.5466 209.6997 221.7940 10.1416 75.0000 98.6605 112.6534 209.7291 204.0577 10.1008
15  56.9918 98.8290 112.7356 209.9866 184.5381 9.0812 74.9962 98.5886 125.4948 209.8723 154.0580 9.0099
16  26.9918 98.2502 112.8616 209.5833 139.5466 7.2335 44.9962 86.7787 112.6130 203.1816 139.5659 7.1354
17  14.1106 88.9647 112.8414 209.2885 139.5216 6.7268 15.0154 89.8303 112.6326 207.6745 139.5669 6.7197
18  44.1106 98.5698 123.6061 209.8037 139.7595 7.8496 45.0154 98.8270 122.5759 209.7455 139.6878 7.8516
19  74.0673 98.3710 112.4661 209.7506 168.4051 9.0600 74.6821 98.5548 112.7098 209.8057 167.3068 9.0592
20  75.0000 98.6640 112.6066 209.8573 218.4051 10.5330 75.0000 98.9707 113.0863 210.1663 217.3068 10.5301
21  75.0000 98.6274 116.1478 210.1283 189.8792 9.7827 75.0000 98.5227 116.2610 209.9957 190.0021 9.7817
22  75.0000 98.6590 112.6880 186.4758 139.8792 7.7020 74.9889 98.4575 112.6807 186.5710 140.0037 7.7017
23  45.3623 98.1720 112.6845 136.4758 140.0919 5.7864 45.0671 98.5472 112.7545 136.5710 139.8480 5.7878
24  23.7076 98.8696 80.6007 124.6145 139.7819 4.5743 15.0741 98.4564 112.6903 124.7759 116.5260 4.5228

Because of lack of space we show only the solutions of the EDEED
problem (w = 0.5) using the DE-SQP and PSO-SQP for the five-unit
system, which are given in Table 8. It can be seen that, the unit ramp
rate constraint has not been violated. In other words, the units can
be operated after the 24th hour to the first hour in the next day
without the need to be concerned about the unit ramp rate limits
of the units. The best cost and emission for the EDEED problem
(w = 0.5) using DE-SQP are given by C = 43991, E = 14345 and using
PSO-SQP they are given by C = 44348, E = 13659.

7. Conclusion

In this paper we have proposed two hybrid approaches to solve
the DEED problem with valve-point effects. The first approach

integrates the DE with the SQP, while the second one integrates
the PSO with the SQP. In these approaches DE or PSO is used as
a base level search and SQP as a local level search. Hence DE or
PSO is first applied to the DEED problem to find the best solu-
tion. This best solution is given to SQP as an initial condition to
fine-tune the optimal solution in the end. The feasibility and effi-
ciency of the DE-SQP and PSO-SQP are illustrated by conducting
two study cases consisting of five and ten units with valve-point
effects. Our results have been compared with other methods. The
results demonstrate that for the DEED problem with valve-point
effects, the solution obtained by DE-SQP or PSO-SQP is better than
that obtained by other methods in terms of fuel cost and emission.
The periodic implementation of the optimal solutions of the DEED
problem has been discussed.
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