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a b s t r a c t

In this paper, a game theory demand response program is incorporated into two problems; the dynamic
economic emission dispatch problem and the price based dynamic economic emission dispatch problem.
The game theory demand response program is an incentive based program which provides monetary
incentives for willing customers who agree to curtail their demand, with the incentive greater than or
equals to the their cost of curtailment. Both mathematical problems are multi-objective optimization
problems and for the first model, the objectives are to minimize fuel costs and emissions and determine
the optimal incentive and load curtailment for customers. The second model seeks to minimize emis-
sions, maximize profits and also determine the optimal incentive and load curtailment for customers.
Model predictive control, which is known as a closed loop approach from a control perspective is
deployed to solve both proposed mathematical models and a comparison is provided with solutions
obtained via an open loop approach. Obtained results validate the superiority of the closed loop approach
over the open loop controller. For instance the closed loop approach yields 4.36 MWh and 11.35 MWh
higher customer energy curtailments than the open loop approach for the first and second models
respectively. Furthermore, obtained results also prove that the closed loop control approach shows better
robustness against uncertainties and disturbance.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The DEED problem is a multi-objective mathematical optimi-
zation problem with two conflicting objectives of minimizing fuel
cost and emissions of thermal generators. The aim is to determine
the optimal output of thermal generators under several practical
constraints [1]. Some of the often considered constraints include:
power balance constraints [2], ramp rate constraints, generator
output limit constraints [3], line flow limit constraints, spinning
reserve constraints [4], etc. The problem has received considerable
interest by engineers and scientists alike due to increasing envi-
ronmental consciousness and the need to curtail harmful emissions
from thermal generators. In recent years, as many nations of the
world have shifted from a regulated power system and embraced
deregulation, this has given rise to the development of a new
: þ27 12 420 5000.
, agbaye2000@gmail.com
variant of the DEED problem. In this new variant, maximizing profit
has replaced the former objective of minimizing cost. This has given
birth to the PBDEED problem with the dual objectives of maxi-
mizing profit and minimizing emissions of thermal generators
under the same or similar constraints as the DEED problem [5]. The
DEED or PBDEED problem is solved depending on if it is in a
regulated or deregulated climate. Another feature of modern power
system operations is the drive or push to encourage a more
responsible use of electrical power and minimization of electric
power consumption. This has given rise to demand response pro-
grams. These programs are classified into two kinds: price based
programs or incentive based programs.

In this work, we integrate a GTDR programwhich is an incentive
based demand response program into the DEED and PBDEED
problem. The resulting models determines the optimal output of
thermal generator, optimal load to be curtailed by participating
customers and the incentive to be paid to them. The resulting
models are known as GTDR-DEED and GTDR-PBDEED. It has been
shown in Ref. [6] that integrating DEED/PBDEED and demand
response programs and solving the resultant integrated model
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Nomenclature

Sets and indices:
I time
T generators
J customers

Variables:
Pi;t power generated from generator i at time t
xj;t amount of power curtailed by a customer j at time t
yj;t incentive of a participating customer j at time t

Parameters:
Ci fuel cost of generator i
Ei emissions for generator i
Dt total system demand at time t
losst total system losses at time t
Pi;min and Pi;max minimum and maximum capacity of generator i
DRi and URi maximum ramp down and up rates of generator i
ai, bi and ci fuel cost coefficients of generator i
ei, fi and gi emission coefficients of generator i
Bi;k ikth element of the loss coefficient square matrix of

size I
EPt forecast energy price at time t
K1;jand K2;j cost function coefficients of customer j
UB utilitys total budget
CMj daily limit of interruptible energy for customer j
lj;t value of power interruptibility of customer j at time t.
qj customer type
m switching interval of the MPC controller
w1, w2 and w3 objective function weights

List of abbreviations:
GTDR game theory based demand response

SED static economic dispatch
DED dynamic economic dispatch
DEED dynamic economic emission dispatch
PBDEED price based dynamic economic emission dispatch
MPC model predictive control
PBDR price based demand response
IBDR incentive based demand response
TOU time of use rates
RTP real time pricing
CPP critical peak pricing
EDP extreme day pricing
EDCPP extreme day critical peak pricing
DLC direct load control
IS interruptible services
EDRP emergency demand response programs
CMP capacity market programs
DB demand bidding/buyback programs
AMS ancillary market services
ISO independent system operator
PJM Pennsylvania-New JerseyeMaryland
AIMMS advanced interactive multidimensional modelling

system
MADM multi attribute decision making
MINLP mixed integer non linear programming
CHP combined heat and power
CSA Cuckoo search algorithm
TLBO teaching learning based optimization
BSA backtracking search algorithm
CSADHS chaotic self adaptive differential harmony search
NSGAII nondominated sorting genetic algorithm II
FFA hybrid fire fly algorithm
HS harmony search
RE renewable energy
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yields better results than independent consideration of either
DEED/PBDEED or DR [7] as it introduces optimality at both the
supply and demand side of the power system [8]. However, solving
the GTDR-DEED and GTDR-PBDEED problem only determines open
loop control solutions when viewed from a control systems
perspective. The disadvantage of this is that the model cannot
compensate for inaccuracies and disturbances arising from
modelling uncertainties. This is due to the fact that there is no way
for the inaccurate system solutions to be fed back to the system and
updated to obtain accurate solutions.

Closed-loop systems on the other hand are inherently able to
give feedback to the optimization model [5] and update solutions
[9]. Due to the superiority of closed-loop systems over open loop
systems, MPC which is a prominent closed-loop approach is used
in this work. MPC has found wide applications in a number of
engineering applications and has recently been used in power
system applications like in Ref. [10] where MPC was applied to
generator maintenance scheduling [5], where MPC was applied to
economic dispatch problems [11], where MPC was applied to a
solar, wind, diesel battery hybrid power system. A complete
introduction to MPC is provided in Ref. [12].

In view of the successful application of the MPC strategy in
power system applications and its ability to handle disturbances
and uncertainties, MPC is used in this work to also solve the GTDR-
DEED and GTDR-PBDEED mathematical problems. MPC is utilized
because in practical applications of GTDR-DEED and GTDR-PBDEED,
theremight be variations in systemparameters like load demand or
the price of energy. This can introduce a whole lot of uncertainty or
disturbance in the system. MPC overcomes the aforementioned
problems. The proposed MPC approach is shown to handle un-
certainties and disturbance well and exhibit convergence and
robustness which further makes it extremely suitable for real time
and practical applications.

This paper is an extension of [8] where the GTDR-DEED model
was presented. One of the additions in this work is the develop-
ment of a GTDR-PBDEEDmodel. The GTDR-PBDEED problem shows
a practical framework for the integration of an incentive based
demand response program with economic dispatch in a deregu-
lated environment where one of the objectives is to maximize
profit. Another addition is the application of the MPC strategy in
solving both GTDR-DEED and GTDR-PBDEED. It is shown that the
MPC strategy handles uncertainty and disturbance better than
open loop approaches.

The rest of this paper is organized as follows: Section 2 presents
a literature review of DEED, PBDEED, DR and MPC. Section 3 gives
the DEED and PBDEED formulations. Section 4 introduces the Game
Theory based Demand Response Program formulation. Section 5
details both the GTDR-DEED and GTDR-PBDEED mathematical
models and the proposed MPC formulations applied to both
models. Section 6 focuses on numerical simulations using the
developedmathematical models and presents obtained results. The
paper is concluded in Section 7.
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2. Literature review

The DEED problem is a problem that has been prevalent in the
literature and has had many evolving variants over the years. It's
initial variant was known as the SED problem [4]. The SED problem
is concerned with minimizing fuel costs and determining the
optimal output of thermal generators to satisfy a particular load
demand at a specific time instant. The SED later metamorphosed
into the DED. The DED problem is concerned with determining the
optimal output of the committed thermal generators to satisfy a
particular load demand over a pre-determined time horizon with
minimal operating costs amongst other constraints. Typically, the
DED problem is solved by dividing the total time horizon into
smaller time intervals (usually 1 h), solving the SED problem at the
smaller time intervals and enforcing ramp rate constraints between
consecutive intervals. As general environmental awareness
increased, researchers became interested in ways of reducing
emission and environmental effects in energy modelling. This led
to the development of various environmentally conscious energy
modelling approaches like in Ref. [13] which employs a fuzzy based
approach, [14] which employs a MADM approach, [17] which em-
ploys mathematical modelling approaches to reduce harmful
emissions [15] and greenhouse gases [16]. Zeroing in on the DED
problem, increasing environmental awareness led researchers to
consider the problem of emission dispatching [4] and this led to the
further evolvement of the DED problem into the DEED problem.
The DEED problem seeks to minimize fuel costs and emissions of
thermal generators subject to load demand constraints, ramp rate
constraints, maximum and minimum capacity constraints amongst
others. This is essentially a multi-objective optimization problem
with the dual objectives of minimizing both fuel costs and emis-
sions. The optimization problem is either solved by transforming it
into a single objective optimization problem by the goal attainment
method [8] or by multi-objective optimization techniques.

Recently the DEED problem has evolved due to the advent of
deregulation and liberalization of the power industry. This has
expanded the objective of the generator operators from fuel cost
and emissions minimization to include profit maximization. This
new set up is known as PBDEED. Typically, the DEED/PBDEED
problem is solved either by conventional mathematical optimiza-
tion techniques or by artificial intelligence/meta-heuristic optimi-
zation techniques. Both approaches have their respective
advantages and disadvantages. Conventional mathematical tech-
niques have the advantage of being able to guarantee optimal so-
lutions, don't have the need to define domain specific parameters
and have short computational times [4]. Their main disadvantage is
that they often are unable to handle non-convex cost function [8].
Meta-heuristic techniques on the other hand, can handle non
convex cost functions effectively but have the disadvantage of the
need for a definition of a large number of domain specific param-
eters. Examples of the use of conventional mathematical tech-
niques is in Ref. [28] where MINLP was used to obtain the optimal
dispatch schedule for a CHP plant and in Ref. [27] where linear,
mixed integer and non-linear programming methods were inves-
tigated for energy dispatch modelling. In recent years, various
meta-heuristic techniques have been applied to the DED/DEED/
PBDEED problem. Examples of such techniques include CSA [26],
TLBO [25], BSA [24], CSADHS [18], NSGA-II [19], FFA [20], HS [22]
amongst others.

There have been three major research thrusts in the literature
concerning DEED/PBDEED. The first is the development of novel
meta-heuristic techniques as shownwith the examples given above
and the second is the integration of RE sources into the DEED for-
mulations like in Ref. [21]. Both of these research directions are
essentially concerned with introducing optimality at the supply
end of the power system. The third research direction concerns
integrating DR programs into the DEED problem.

In Ref. [32] demand response is defined as a change in electric
usage by end-use customers from their normal consumption pat-
terns in response to changes in the price of electricity over time, or
to incentive payments designed to induce lower electricity use at
times of high wholesale market prices or when system reliability is
jeopardized. Generally, demand response programs are broadly
classified into two: PB-DR [34] and IB-DR [35]. In PB-DR, the elec-
tricity tariffs vary with time, i.e., different electricity tariffs for
various peak times. The aim is to encourage consumers to curtail
their energy use to take advantage of favourable prices. Examples of
PB-DR include TOU, RTP, CPP, EDP, and ED-CPP. In IB-DR, incentives
are simply offered to consumers to reduce or curtail their electricity
use when the power system is stressed. The incentives can be in
form of rebates or lower electricity tariffs [36]. It should be noted
that unlike PB-DR, consumers can be penalized if their load is not
curtailed when the system is stressed. Examples of IB-DR include
DLC (direct load control), IS, EDRP, CMP, DB and AMS.

Demand response can be implemented in either regulated and
deregulated set-ups. In both set-ups, demand response programs
can lead to reduction in harmful emissions and operational costs
which brings about environmental and power system benefits
[33,37]. Demand response programs also reduce wholesale market
prices [41]. In IB-DR, the incentive can either be monetary or in the
form of reduced electricity tariffs [38] and in order to ensure that
customers participate, the incentive offered to consumers should
be greater than or equal to the customer outage cost [39]. In
Ref. [40], voluntary incentive game theory based demand response
contracts are defined as: an agreement between utility and
customerwherein the customer agrees towillingly shed load and in
return receive monetary compensation.

Unlike the other two research thrusts of DEED that are solely
concerned with the supply end of the power system, integrating DR
into the DEED problem introduces optimality at the supply and
demand side of the power system. Examples of such works include
[7] where the optimal dispatch strategy for renewable energy
sources in a micro grid was presented. Another similar work is [6]
where the dispatch strategy for renewable energy sources was
presented, this time using GA. In both works, the customers cost of
interruptions were not factored in, neither was there a consider-
ation of incentives to be offered to the customers to entice them to
participate in DR programs. To this end, in Ref. [8], the mathe-
matical formulations of game theory based demand response
contracts are modified and extended over multiple time intervals
and integrated into the DEEDmathematical problem. The extended
mathematical formulation includes the modification of the indi-
vidual rationality constraint and the incentive compatibility
constraint. Both constraints are structured over the total optimi-
zation horizon (a day) instead of a single time interval (every hour).
Other realistic and practical constraints like budgetary and
maximum power constraints were also incorporated into the
model. For a full description of the modified GTDR program and
DEED model, the reader is referred to [8]. The DR program is
structured in such a manner that the customers do not operate at a
loss (in other words, the program is attractive) and integrating it
into the DEED problem enables us to obtain optimal solutions at
both the supply side and demand side.

This paper extends the work in Ref. [8]. The GTDR-DEED model
presented in Ref. [8] was under a regulated environment. In this
work, we present a GTDR-PBDEED model which is under a
deregulated environment. From a control system perspective
solving the DED, DEED, PBDEED, GTDR-DEED or GTDR-PBDEED
problems through either conventional mathematical techniques
or meta-heuristic techniques only provides open loop solutions.
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Open loop systems despite their merits are unable to compensate
for inaccuracies and disturbances arising from modelling un-
certainties. This is due to the fact that open loop systems have no
feed back mechanisms for inaccurate system solutions (in the
presence or disturbances and inaccuracies) to be fed back to the
system and updated in order to obtain accurate solutions [12].

Closed-loop systems are able to give feedback and update
inaccurate solutions [5]. In GTDR-DEED and GTDR-PBDEED, there
might be variations in system parameters like load demand or the
price of energy, thus MPC [9] a closed-loop control mechanism is
used to solve both GTDR-DEED and GTDR-PBDEED models. The
proposed MPC approach is shown to handle uncertainties and
disturbance well and exhibit convergence and robustness which
further makes it extremely suitable for solving the developed
models.
3. DEED and PBDEED model formulations

3.1. The dynamic economic emission dispatch model

The DEED problem is concerned with minimizing the fuel costs
and emission of thermal generators and determining their optimal
power output. The mathematical formulation is presented
below [5]:

min
XT
t¼1

XI
i¼1

Ci
�
Pi;t

�
; (1)

min
XT
t¼1

XI
i¼1

Ei
�
Pi;t

�
; (2)

with

Ci
�
Pi;t

� ¼ ai þ biPi;t þ ciP
2
i;t ; (3)

Ei
�
Pi;t

� ¼ di þ eiPi;t þ fiP
2
i;t ; (4)

subject to the following network constraints:

XI
i¼1

�
Pi;t

� ¼ Dt þ losst ; (5)

Pi;min � Pi;t � Pi;max; (6)

�DRi � Pi;tþ1 � Pi;t � URi; (7)

where

losst ¼
XI
i¼1

XK
k¼1

Pi;tBi;kPk;t ; (8)

Pi;t is the power generated from generator i at time t;
Ci is the fuel cost of generator i;
Ei is the emissions for generator i;
Dt is the total system demand at time t;
losst is the total system losses at time t;
Pi;min and Pi;max are the minimum and maximum capacity of

generator i respectively;
DRi and URi are the maximum ramp down and up rates of

generator i respectively;
ai, bi and ci are the fuel cost coefficients of generator i

respectively;
ei, fi and gi are the emission coefficients of generator i

respectively;
Bi;k is the ik th element of the loss coefficient square matrix of
size I;

I and T are the number of generators and the dispatch interval
respectively.

Equation (3) gives the fuel cost function of the thermal gener-
ators. This cost function is typically obtained from heat run tests
[19]. In these tests, the thermal generator unit is varied through it's
normal operating limits and measurements of output power and
fuel consumption costs are obtained. The fuel cost function thus
give the fuel costs in $/h of the thermal generator unit as a function
of its output power. This tests also enables the fuel cost coefficients
of individual generator units to be calculated from the measured
data. There are number of different fuel cost functions like the
linear cost function [30], piecewise linear cost function [31],
quadratic cost function [8], valve point effect cost function [19].
However, the quadratic cost is the most prevalent cost function in
the literature [4] and is used in this paper.

Similarly, equation (4) gives the emission function for the
thermal generator units. These emissions can be modelled through
functions that associate emissions with real power production for
each unit. These functions are also obtained through measured
tests like the heat run tests [19]. These tests enable the emission
coefficients to be calculated. The emission functions gives the total
emissions in lb/h of a thermal generator unit as a function of its
output power [4]. In this paper, the quadratic emissions function is
used to represent this relationship [8].

The following is a brief description of the constraints:

� The first constraint (5) is the power balance constraint and en-
sures that at any time t, the total power generated equals the
demand and the transmission losses. The transmission losses
occur because the power stations are typically sited away from
where the power is needed and there are losses in the course of
the power being transmitted. The most common and widely
accepted method for calculating these losses is by the B-coeffi-
cient method which is a method where the network losses are
represented as a quadratic function of the generators output [1]
and is given in equation (8). As stated before, Bi;k is the ik th
element of the loss coefficient square matrix B of size I. Pi;t and
Pj;t are the output power of generator i and j respectively. This
method has been used in Ref. [8]. The B - coefficient method has
also been used in Ref. [5]. Another work it has been used in is [9]
amongst others.

� The second constraint is the generation limits constraint (6) and
ensures that the generator limits are not exceeded; and

� The final constraint (7) is the generator ramp rate limits con-
straints and ensures that the generator ramp rate limits are not
violated.

The multi-objective optimization can be transformed into
a single objective function using a weighting factorw subject to the
same constraints (5)e(7):

min

"
w
XT
t¼1

XI

i¼1

Ci
�
Pi;t

�þ ð1�wÞ
XT
t¼1

XI
i¼1

Ei
�
Pi;t

�#
: (9)

where w and 1�w are two non-negative weighting factors. When
converting multi-objective optimization problems into single
objective functions, it is required that weighting factors satisfy the
following condition [9]:

w1 þw2 ¼ 1: (10)

Typically, the choice of weighting factors determines which
objective is given preference. If the aim is to solely minimize costs
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then w ¼ 1, whilst if the aim is to solely minimize emissions, then
w ¼ 0. In this work, since the aim is to simultaneously minimize
fuel costs and emissions [22], equal values are given to the
weighting factors [18].
3.2. Profit based dynamic economic emission dispatch model

In a deregulated market environment, the objective is to
maximize profit and minimize emissions. Let us assume that the
forecast energy price at time t is given by EPt, the revenue is given

by
PT

t¼1
PI

i¼1EPt�Pi;t [5] and the cost by
PT

t¼1
PI

i¼1CiðPi;tÞ. Thus, the
profit is given by:

XT
t¼1

XI
i¼1

EPt�Pi;t �
XT
t¼1

XI
i¼1

Ci
�
Pi;t

�
; (11)

The final optimization problem is given by:

max
XT
t¼1

XI
i¼1

EPt�Pi;t �
XT
t¼1

XI
i¼1

Ci
�
Pi;t

�
; (12)

min
XT
t¼1

XI
i¼1

Ei
�
Pi;t

�
; (13)

with

Ci
�
Pi;t

� ¼ ai þ biPi;t þ ciP
2
i;t ; (14)

Ei
�
Pi;t

� ¼ di þ eiPi;t þ fiP
2
i;t ; (15)

subject to the following network constraints:

XI
i¼1

�
Pi;t

� � Dt þ losst ; (16)

Pi;min � Pi;t � Pi;max; (17)

�DRi � Pi;tþ1 � Pi;t � URi: (18)

It is observed that the constraints for both DEED and PBDEED
are quite similar, the only difference being the power balance
constraint. In DEED, the generated power must equal total de-
mand, while in PBDEED, the generated power can be less than the
total demand as the aim is to maximize total profit. Again, it is
instructive to mention that just like in the DEED formulations, the
fuel cost and emissions are both assumed to be quadratic functions
of the generators active power output and other transmission and
distribution line constraints are ignored. The multi-objective
optimization can be transformed into a single objective function
using a weighting factor w subject to the same constraints
(16)e(18):

min

"
w

"XT
t¼1

XI

i¼1

Ci
�
Pi;t

�� EPt�Pi;t
#
þ ð1�wÞ

XT
t¼1

XI

i¼1

Ei
�
Pi;t

�#
:

(19)
4. Game theory based demand response formulations

The objective of the GTDR formulations is to maximize the
utility benefit [8]:
maxx;y
XT XJ h

lj;txj;t � yj;t
i

(20)

t¼1 j¼1

s.t.

XT
t¼1

h
yj;t �

�
K1;jx

2
j;t þK2;jxj;t �K2;txj;tqj

�i
� 0; for j¼ 1;…; J; (21)

PT
t¼1

h
yj;t �

�
K1;jx

2
j;t þK2;jxj;t �K2;txj;tqj

�i
�

PT
t¼1

h
yj�1;t �

�
K1;j�1x

2
j�1;t þK2;j�1xj�1;t �K2;j�1xj�1;tqj�1

�i
;

for j¼ 2;…; J;

(22)

XT
t¼1

XJ
j¼1

yj;t � UB; (23)

XT
t¼1

xj;t � CMj; (24)

The customer outage cost function is assumed to be quadratic
and is given by:

�
K1;jx

2
j;t þ K2;jxj;t � K2;txj;tqj

�
: (25)

Where
K1;j and K2;j are the cost function coefficients of customer j;
xj;t is the amount of power curtailed by a customer j at time t;
yj;t is the incentive of a participating customer j at time t;
UB is the utility's total budget;
CMj is the daily limit of interruptible energy for customer j;
J and T are the total number of customers and the total time

interval respectively;
lj;t is the value of power interruptibility of participating

customer j at time t. This parameter gives the cost of the electric
utility not delivering electric power to a particular location on the
grid. lj;t can be calculated from OPF routines;

qj is the customer type [38]. q is normalized in the interval
0 � q � 1 and categorizes the different kinds of customers based on
their willingness or readiness to shed power, with q ¼ 0 being the
least willing and q ¼ 1 the most willing customer.

The following is a concise description of the constraints:

� Constraint (21) is the modified Individual rationality constraint
and seeks to make the contract attractive to customers, by
making sure that the total daily incentive received by a customer
equals or exceeds the daily cost of interruption.

� Constraint (22) is the modified Incentive compatibility
constraint and seeks to ensure that consumers are compensated
commensurate to their level of power curtailed. Thus, the
greater the daily power curbed, the greater the customer
benefit.

� Constraint (23) ensures that the total incentive paid by the
utility is less than the utilitys budget.

� Constraint (24) ensures that the total daily power curtailed
by each customer is less than its daily limit of interruptible
power. In the next section, the combined DEED/PBDEED
and game theory based demand response models are
detailed.
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5. Mathematical model of DEED/PBDEED combined with
game theory based demand response formulations

5.1. GTDR-DEED

The weighted single objective GTDR-DEED mathematical
formulation is:

min w1

"XT
t¼1

XI
i¼1

Ci
�
Pi;t

�#þw2

"XT
t¼1

XI

i¼1

Ei
�
Pi;t

�#

þw3

2
4
2
4XT

t¼1

XJ
j¼1

2
4yj;t � lj;txj;t

3
5
3
5 (26)

subject to the following network constraints:

XI
i¼1

Pi;t ¼ Dt þ losst �
XJ
j¼1

xj;t ; (27)

Pi;min � Pi;t � Pi;max; (28)

�DRi � Pi;tþ1 � Pi;t � URi; (29)

XT
t¼1

h
yj;t �

�
K1;jx

2
j;t þ K2;jxj;t � K2;txj;tqj

�i
� 0; for j ¼ 1;…; J;

(30)

PT
t¼1

h
yj;t �

�
K1;jx

2
j;t þ K2;jxj;t � K2;txj;tqj

�i
�

PT
t¼1

h
yj�1;t �

�
K1;j�1x

2
j�1;t þ K2;j�1xj�1;t � K2;j�1xj�1;tqj�1

�i
for j ¼ 2;…; J;

;

(31)

XT
t¼1

XJ
j¼1

yj;t � UB; (32)

XT
t¼1

xj;t � CMj; (33)

losst ¼
XI
i¼1

XK
k¼1

Pi;tBi;kPk;t ; (34)

wherew1,w2 andw3 are theweights and the following condition is
required to be satisfied when choosing weights:

w1 þw2 þw3 ¼ 1: (35)

The variables to be determined by the optimization model are
xj;t , yj;t and Pi;t .
5.2. GTDR-PBDEED

For the GTDR-PBDEED, we assume that the utility or the Inde-
pendent System Operator (ISO) wants to maximize its profit and
benefit and minimize emissions as it is operating in a deregulated
environment. This can be given as:
min w1

2
4XT

t¼1

XI

i¼1

�
Ci
�
Pi;t

�� EPt�Pi;t
�þXT

t¼1

XJ
j¼1

h
yj;t � lj;txj;t

i35
þw2

XT
t¼1

XI
i¼1

Ei
�
Pi;t

�
(36)

subject to the following network constraints:

XI
i¼1

Pi;t � Dt þ losst �
XJ
j¼1

xj;t ; (37)

Pi;min � Pi;t � Pi;max; (38)

�DRi � Pi;tþ1 � Pi;t � URi; (39)

XT
t¼1

h
yj;t �

�
K1;jx

2
j;t þ K2;jxj;t � K2;txj;tqj

�i
� 0; for j ¼ 1;…; J;

(40)

PT
t¼1

yj;t �
�
K1;jx

2
j;t þ K2;jxj;t � K2;txj;tqj

�
�

PT
t¼1

h
yj�1;t �

�
K1;j�1x

2
j�1;t þ K2;j�1xj�1;t � K2;j�1xj�1;tqj�1

�i
for j ¼ 2;…; J;

;

(41)

XT
t¼1

XJ
j¼1

yj;t � UB; (42)

XT
t¼1

xj;t � CMj; (43)

losst ¼
XI

i¼1

XK
k¼1

Pi;tBi;kPk;t ; (44)

where w1 and w2 are the weights and the following condition is
required to be satisfied when choosing weights:

w1 þw2 ¼ 1: (45)

The variables to be determined by the optimization model are
xj;t , yj;t and Pi;t .
5.3. Model predictive control

The open loop GTDR-DEED model and GTDR-PBDEED model are
defined over the time interval T with optimization variables x1;t ,
y1;t , P1;t…:, x1;T , y1;T , P1;T (i ¼ 1;2;…:; I and j ¼ 1;2;…:; J). When the
same problem is considered over a time interval (mþ 1mþ T), the
variables are x1;mþ1, y1;mþ1, P1;mþ1, …:, x1;mþT , y1;mþT , P1;mþT .

Therefore the closed-loop (MPC) GTDR-DEED problem is given
below:



Table 2
Total initial hourly demand.

Time(h) Total demand (MW)

1 955
2 942
3 935
4 930
5 935
6 963
7 989
8 1023
9 1126
10 1150
11 1201
12 1235
13 1190
14 1251
15 1263
16 1250
17 1221
18 1202
19 1159
20 1092
21 1023
22 984
23 975
24 960

Table 3
Hourly values of power interruptibility.

lj,t ($)

j¼1 j¼2 j¼3 j¼4 j¼5

t ¼ 1 27.61 28.30 28.79 26.93 27.60
t ¼ 2 29.41 30.07 30.53 28.79 29.44
t ¼ 3 28.24 28.87 29.28 27.66 28.32
t ¼ 4 26.69 28.76 29.14 27.74 28.24
t ¼ 5 29.01 32.24 32.64 31.20 31.66
t ¼ 6 33.96 36.67 37.15 35.38 35.99
t ¼ 7 83.97 89.46 90.65 85.71 87.70
t ¼ 8 81.10 82.88 83.79 79.06 81.06
t ¼ 9 110.60 112.93 114.11 107.72 110.44
t ¼ 10 74.12 75.43 76.09 72.40 73.95
t ¼ 11 78.95 80.19 80.65 77.29 78.93
t ¼ 12 66.85 67.55 67.76 65.75 66.67
t ¼ 13 47.98 48.58 48.63 47.10 47.93
t ¼ 14 66.82 67.74 68.07 65.55 66.74
t ¼ 15 48.50 49.35 49.69 47.41 48.47
t ¼ 16 49.21 50.28 50.87 47.94 49.19
t ¼ 17 66.65 69.36 70.29 66.05 67.71
t ¼ 18 61.49 66.57 67.19 59.69 66.24
t ¼ 19 56.19 57.67 58.25 54.48 56.53
t ¼ 20 57.92 59.38 59.98 55.58 57.98
t ¼ 21 49.16 49.86 50.36 48.31 48.96
t ¼ 22 54.00 54.38 54.84 53.46 53.63
t ¼ 23 34.37 34.67 34.96 33.98 34.21
t ¼ 24 30.30 30.71 31.00 29.89 30.20
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min w1

" XT
t¼mþ1

XI

i¼1

Ci
�
Pi;t

�#þw2

" XT
t¼mþ1

XI
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Ei
�
Pi;t

�#

þw3

2
4 XT

t¼mþ1

XJ
j¼1

h
yj;t � lj;txj;t

i35;
(46)

where m is the switching interval of the MPC controller. The con-
straints of the closed-loop system are the same as that of the open
loop solution and at each iteration, the constraints of the closed-
loop model are updated. The optimal solution is utilized only in
the first sample interval (mþ 1;mþ 2) and this solution is applied
as the input over the second sample interval (mþ 2;mþ 3). This
provides a closed feed back scheme. A full description of the MPC
algorithm is provided in Ref. [12]. Similarly, the closed-loop (MPC)
GTDR-PBDEED problem is given as:

min w1

2
4 XT

t¼mþ1

XI

i¼1

�
Ci
�
Pi;t

�� EPt�Pi;t
�þ XT

t¼mþ1

XJ
j¼1

h
yj;t � lj;txj;t

i35
þw2

" XT
t¼mþ1

XI

i¼1

Ei
�
Pi;t

�#
:

(47)

6. Numerical simulations, obtained results and discussions

To verify the proposed GTDR-DEED and GTDR-PBDEED math-
ematical formulations, a case study of six generator units and five
industrial customers is used. This case study has hitherto been
used in Ref. [8]. The data for the generator units has also been used
in Ref. [5] and was originally obtained from Ref. [29]. Table 1
shows the fuel cost coefficients and the emission coefficients [5].
The system consists of six thermal units, twenty six buses, and
forty six transmission lines [29]. The maximum load demand is
1263 MW. Table 2 gives the initial hourly demand [29], which has
one mid-day peak synonymous with industrial customers. Table 3
gives the hourly values of power interruptibility (lj;t) obtained
from the PJM Market [42] LMP prices on the 30th of April 2014. For
PBDEED, the energy price (EPt) is assumed to be the highest LMP
price. Table 4 details the cost function coefficients, customer type
and daily customer energy limit [8]. The assumption is that the
utility knows the customers daily limit of interruptible energy
(CMj) which it then uses to rank the customers in order of
increasing willingness to curb electric power. Furthermore, the
utility knows the outage cost function coefficients of participating
customers (K1;j and K2;j). The customer cost function coefficients,
customer type and daily energy limit were originally obtained and
modified from Ref. [38] which contains practical data from a US
case study. The transmission loss formula coefficients for the six
unit test system [29] are given by equation (48) and the utility
daily budget (UB) is $ 50000.

The decision variables for both GTDR-DEED and GTDR-PBDEED
are the optimal customer power to be curtailed (xj;t), optimal
incentive to be paid to customers (yj;t) and power generated from
Table 1
Data of the six-unit system.

i ai bi ci ei fi

1 240 7 0.007 13.8593 0.3276
2 200 10 0.0095 13.8593 0.3276
3 220 8.5 0.009 40.2669 �0.5455
4 200 11 0.009 40.2669 �0.5455
5 220 10.5 0.008 42.8955 �0.5111
6 190 12 0.0075 42.8955 �0.5111
all generators (Pi;t). The entire dispatch period is 24 h (T ¼ 24) [8]
and the sampling period is 1 h [29] as has always been used in
the literature [4]. The Advanced Interactive Multidimensional
Modelling System (AIMMS) [43] is utilized to build and solve both
gi Pi;min Pi;max DRi URi

7 0.00419 100 500 120 80
7 0.00419 50 200 90 50
1 0.00683 80 300 100 65
1 0.00683 50 150 90 50
6 0.00461 50 200 90 50
6 0.00461 50 150 90 50



Table 4
Customer cost function coefficients, customer type and daily customer energy limit.

j K1;j K2;j qj CMjðMWhÞ
1 1.847 11.64 0 200
2 1.378 11.63 0.1734 280
3 1.079 11.32 0.4828 410
4 0.9124 11.5 0.7208 500
5 0.8794 11.21 1 700
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GTDR-DEED and GTDR-PBDEED models using the CONOPT solver
on a computer with Intel (R) core processor and 4 GB of RAM.

B ¼ 10�4

�

2
6666664

0:420 0:051 0:045 0:057 0:078 0:066
0:051 0:180 0:039 0:048 0:045 0:060
0:045 0:039 0:195 0:051 0:072 0:057
0:057 0:048 0:051 0:213 0:090 0:075
0:078 0:045 0:072 0:090 0:207 0:096
0:066 0:060 0:057 0:075 0:096 0:255

3
7777775
perMW

(48)

6.1. Simulation results without disturbance

The MPC strategy is implemented on both the GTDR-DEED and
the GTDR-PBDEED problem. As stated before, for multi-objective
problems in order to solve the problem with minimal computa-
tional complexity, it is often necessary to use the goal attainment
method or weighted sum approach and convert the objectives into
a single objective [5]. Thus, for GTDR-DEED, w1 ¼ w2 ¼ w3 ¼ 1

3
while for GTDR-PBDEED,w1 ¼ w2 ¼ 0:5. The values for the weights
Fig. 1. GTDR-DEED closed-loop r
are chosen so that equal preference is given to all the objectives and
in both cases, the sum of the weights equals 1.

Figs. 1 and 2 show the results obtained from the MPC imple-
mentations on GTDR-DEED and the GTDR-PBDEED respectively.
Each figure shows the optimal power generated from all genera-
tors, the total demand profile, optimal power curtailed by the
customers and the optimal customer incentive. For comparison
purposes, we also show obtained results of the GTDR-DEED and
GTDR-PBDEED with open loop control in Figs. 3 and 4 respectively.
A careful comparison of the figures shows that both open loop and
closed-loop control yield similar results.

Table 5 provides a numerical results comparison between both
approaches. From the results it shows that the closed-loop returns
better results than the open loop approach. This is because
comparing GTDR-DEED under open loop and closed-loop, it is seen
that the closed-loop approach returns lower fuel costs ($ 290554.50
to the open loop's $ 291898.16). The closed-loop approach again
returns lower emissions (24,332.84 lb to open loop's 24,474.04 lb).
Even though both approaches yield the same amount of customer
incentive ($ 50000), the closed-loop approach to GTDR-DEED yields
better energy curtailment (1957.38 MWh to open loop's
1953.02MWh) and also lower energy loss (264MWh to open loop's
266 MWh). Going further to compare GTDR-PBDEED under the
closed-loop approach and the open loop approach, from Table 5 we
see that the closed-loop approach again yields lower total fuel
costs, emissions, energy generated and energy losses. The closed-
loop approach also yields a higher total customer incentive ($
32228.39 to the open loop's $ 31954.89) and higher total profits ($
1119751.99 to the open loop's $ 1095533.01). Furthermore results
from the closed-loop approach converge to that of the open loop
solution both under GTDR-DEED and GTDR-PBDEED as evidenced
by Figs. 5 and 6 respectively, thereby demonstrating the conver-
gence ability of the MPC algorithm.
esults with no disturbance.



Fig. 2. GTDR-PBDEED closed-loop results with no disturbance.

Fig. 3. GTDR-DEED open loop results with no disturbance.
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Fig. 4. GTDR-PBDEED open loop results with no disturbance.

N.I. Nwulu, X. Xia / Energy 91 (2015) 404e419 413
6.2. Simulation results with disturbance

To test the robustness of the MPC algorithm against un-
certainties and disturbance, we assume that for GTDR-DEED and
GTDR-PBDEED the demand randomly increases between 3.5% and
10% of the initial demand. Also the energy price is similarly
randomly varied between �5% and 5% of the initial energy price.
Similarly for GTDR-DEED, w1 ¼ w2 ¼ w3 ¼ 1

3 while for GTDR-
PBDEED, w1 ¼ w2 ¼ 0:5. Figs. 7 and 8 shows the results obtained
for GTDR-DEED and GTDR-PBDEED respectively. For comparison
purposes we also show results for GTDR-DEED and GTDR-PBDEED
under open loop control (See Figs. 9 and 10) respectively. Table 6
shows a numerical comparison between both open loop and
closed-loop control.

From the results it shows that the closed-loop returns better
results than the open loop approach and handles disturbances and
uncertainties better. This is because comparing GTDR-PBDEED
Table 5
Results of the open loop and closed-loop approach without disturbance.

Open loop

GTDR

DEED

Total fuel cost ($) 291898.16
Total emissions (lb) 24474.04
Total customer incentive ($) 50000
Total customer energy curtailed (MWh) 1953.02
Total energy generated (MWh) 24,266.59
Total energy loss (MWh) 266
Total profit ($)
under open loop and closed-loop, it is seen from Table 6 that the
closed-loop approach returns lower fuel costs ($ 316258.72 to the
open loop's $ 318937.26). The closed-loop approach again returns
lower emissions (27,865.93 lb to open loop's 28,204.86 lb). Again,
the closed-loop approach to GTDR-DEED yields better energy
curtailment (1508.77 MWh to open loop's 1504.47 MWh) and also
lower energy loss (307.11MWh to open loop's 311.41MWh). Finally,
the closed-loop approach also yields a higher total customer
incentive ($ 35889.02 to the open loop's $ 31533.21) and higher
total profits ($ 1214384.57 to the open loop's $ 1208383.41)
Comparing GTDR-DEED under the closed-loop approach and the
open loop approach, from Table 6 we see that the closed-loop
approach again yields lower total fuel costs, emissions, energy
generated and energy losses. Both approaches yield the same
amount of customer incentive ($50000). Figs. 11 and 12 shows the
performance of the open loop controller and the closed-loop
controller with disturbance.
Closed-loop

GTDR GTDR GTDR

PBDEED DEED PBDEED

294006.12 290554.50 293964.84
24,739.27 24,332.84 24,734.78
31954.89 50000 32228.39
1518.68 1957.38 1530.03
24,435.32 24,156.62 24,431.98
269 264 268.94
1095533.01 1119751.99



Fig. 5. Convergence of the closed-loop solutions to that of the open loop solutions for GTDR-DEED.
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6.3. Discussion of results

The results obtained can be discussed along two lines. Results
fromGTDR-DEEDandGTDR-PBDEEDwill bediscussed andanalysed.
Alsodiscussions canbedone comparing results obtainedunderopen
loop and closed-loop control strategies. The discussionwould focus
on the following economic andpower systemparameters: Total Fuel
Cost ($), Total Emissions (lb), Total Customer Incentive ($), Total
Fig. 6. Convergence of the closed-loop solutions to th
Customer Energy Curtailed (MWh), Total Energy Generated (MWh),
Total Energy Loss (MWh)andTotal Profit ($). In simulationsdone,we
gives equal preference to all the objectives and thus give them equal
weights (see equations (35) and (45)). We ignore investigating the
effect of varying the weights (and hence the objectives) as this and
the effect of using a larger power system has been done in Ref. [8].
As stated earlier, GTDR-PBDEED is for a deregulated environment,
whilst GTDR-DEED is for a regulated environment.
at of the open loop solutions for GTDR-PBDEED.



Fig. 7. GTDR-DEED closed-loop results with disturbance.

Fig. 8. GTDR-PBDEED closed-loop results with disturbance.

N.I. Nwulu, X. Xia / Energy 91 (2015) 404e419 415



Fig. 9. GTDR-DEED open loop results with disturbance.

Fig. 10. GTDR-PBDEED open loop results with disturbance.
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Table 6
Results of the open loop and closed-loop approach with disturbance.

Open loop Closed-loop

GTDR GTDR GTDR GTDR

DEED PBDEED DEED PBDEED

Total fuel cost ($) 317149.16 318937.26 314454.33 316258.72
Total emissions (lb) 27,943.02 28204.86 27,546.48 27,865.93
Total customer incentive ($) 50000 31533.21 50000 35889.02
Total customer energy curtailed (MWh) 1954.18 1504.47 1954.05 1508.77
Total energy generated (MWh) 26,273.87 26,415.30 26,060.27 26,200.99
Total energy loss (MWh) 308.28 311.41 303.56 307.11
Total profit ($) 1208383.41 1214384.57
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From the obtained results in Tables 5 and 6, the GTDR-PBDEED
saves less power than GTDR-DEED, therefore more power is
generated by GTDR-PBDEED under both open and closed-loop
strategies. This means that the emission, cost and losses of GTDR-
PBDEED are greater than those of GTDR-DEED. It can also be seen
from both tables, that because the utility/ISO in GTDR-PBDEED
wants to maximize profit, the total incentive paid to customers
never equals the maximum utility budget, unlike in GTDR-DEED
where the maximum utility budget is always reached as maxi-
mizing profit is not an objective in this case.

In a nutshell, the results show that DR has benefits to the po-
wer system either under a regulated or deregulated environment.
The results also show the superiority of the closed-loop approach
(MPC) over the open loop approach. MPC returns better results
than open loop with and without disturbance. Furthermore the
convergence ability of the MPC algorithm to the open loop solu-
tion is also shown. Looking at Figs. 5 and 6 it shows that closed-
loop solutions converge to the open loop solutions. This happens
in the fifth hour for the GTDR-DEED and in the fourth hour for the
GTDR-PBDEED case. Both cases demonstrate the convergence
capability of the MPC algorithm. This means that the MPC algo-
rithm can be restarted at any time instant and would still converge
Fig. 11. Total generator output of GTDR-DEED using both
which guarantees optimality at all times which is very important
in practical purposes. Again considering Figs. 11 and 12, they show
that the total generator output of the closed-loop strategy is in the
neighbourhood of the open loop solutions for GTDR-DEED and
GTDR-PBDEED respectively. Table 6 shows that the closed-loop
approach handles disturbance better and gives better economic
and power system parameters. Comparing Table 6 with Table 5, it
shows that disturbances actually makes for a more inefficient and
expensive system. This is because with disturbances under both
open loop and closed-loop control schemes and for both GTDR-
DEED and GTDR-PBDEED, the disturbed system actually returns
higher fuel costs, emissions, losses and energy generated (see
Table 5). However the closed-loop controller still presents better
results than the open loop controller.

It is necessary to provide a comparative analysis of obtained
results with similar prior works in the literature [8]. The work in
Ref. [8] is essentially a GTDR-DEED 00open loop controller without
disturbance” problem and the results are in the second column in
Table 5. Comparing results with the closed-loop controller (fourth
column in Table 5), as has been shown before it is seen that the
closed-loop approach returns lower fuel costs ($ 290554.50 to the
open loop's $ 291898.16), lower emissions (24332.84 lb to open
open loop and closed-loop control with disturbance.



Fig. 12. Total generator output of GTDR-PBDEED using both open loop and closed-loop control with disturbance.
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loop's 24,474.04 lb) and lower energy loss (264MWh to open loop's
266 MWh) whilst the closed-loop approach to GTDR-DEED yields
better energy curtailment (1957.38 MWh to open loop's
1953.02 MWh).
7. Conclusion

In this paper, a game theory based demand response program is
integrated into two variants of the economic dispatch problem.
Both models determine the optimal generator output, customer
power curtailed and customer incentives. Model predictive control
which is a closed-loop technique has been applied to solve both
models. Obtained results indicate that the closed-loop model
generally yields better results using the defined solution parame-
ters than its open loop counterpart. The results are significant in
many respects.

Firstly they show that demand response programs when prop-
erly conceptualized and incorporating optimal incentives can bring
about much needed power system relief. In the two mathematical
models developed, demand response programs bought about sig-
nificant energy curtailment. The closed loop strategy also yields
higher optimal energy curtailment for the customers over the open
loop strategy ranging from 4.36 MW h to 11.35 MWh for the first
and second models respectively. Furthermore, the closed loop
strategy is also able to better handle uncertainties due to variations
in system data and parameters. The savings in fuel cost due to the
adoption of the closed loop strategy ranges from $ 41.28 to $
1343.66 for the no disturbance case and when disturbance is pre-
sent, fuel cost savings ranges from $ 2678.54 to $ 2694.83.

Across all simulations performed with disturbance present, the
closed loop strategy gave lower fuel costs, emissions, customer
incentive and system losses. This shows and validates the superi-
ority of the closed loop approach over the open loop approach.
Future work will thus consider the addition of combined heat and
power generators and the incorporation of renewable energy
sources into the model formulation.
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