
lable at ScienceDirect

Energy 95 (2016) 580e592
Contents lists avai
Energy

journal homepage: www.elsevier .com/locate/energy
Optimal metering plan for measurement and verification on a lighting
case study

Xianming Ye*, Xiaohua Xia
Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria 0002, South Africa
a r t i c l e i n f o

Article history:
Received 25 November 2014
Received in revised form
1 November 2015
Accepted 25 November 2015
Available online xxx

Keywords:
Energy efficiency
Lighting
M&V
Sampling
* Corresponding author. Tel.: þ27 (0)12 420 4353;
E-mail address: xianming.ye@up.ac.za (X. Ye).

http://dx.doi.org/10.1016/j.energy.2015.11.077
0360-5442/© 2015 Elsevier Ltd. All rights reserved.
a b s t r a c t

M&V (Measurement and Verification) has become an indispensable process in various incentive EEDSM
(energy efficiency and demand side management) programmes to accurately and reliably measure and
verify the project performance in terms of energy and/or cost savings. Due to the uncertain nature of the
unmeasurable savings, there is an inherent trade-off between the M&V accuracy and M&V cost. In order
to achieve the required M&V accuracy cost-effectively, we propose a combined spatial and longitudinal
MCM (metering cost minimisation) model to assist the design of optimal M&V metering plans, which
minimises the metering cost whilst satisfying the required measurement and sampling accuracy of M&V.
The objective function of the proposed MCM model is the M&V metering cost that covers the pro-
curement, installation and maintenance of the metering system whereas the M&V accuracy re-
quirements are formulated as the constraints. Optimal solutions to the proposed MCM model offer useful
information in designing the optimal M&V metering plan. The advantages of the proposed MCM model
are demonstrated by a case study of an EE lighting retrofit project and the model is widely applicable to
other M&V lighting projects with different population sizes and sampling accuracy requirements.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

M&V (Measurement and Verification) is the process of using
measurement to accurately and reliably determine the savings
delivered by an ECM (energy conservation measure) [11]. The M&V
process is introduced in detail in various M&V guidelines, such as
the IPMVP [11], the ASHRAE Guideline 14 [1], the California energy
efficiency evaluation protocol [25], and the localisedM&V guideline
in South Africa [10]. The best practice and experience of M&V
usually offer valuable feedbacks of the project performance, i.e.,
energy or cost savings to the project developers for EE (energy ef-
ficiency) technology deployment and project design. M&V has thus
become an indispensable process in various incentive EE pro-
grammes such as CDM (clean development mechanism) [20], TWC
(tradable white certificate) scheme [2], DSM (demand side man-
agement) programmes [10], and performance contracting [30].
According to [11], the most crucial part of the entire M&V process is
the design of an M&V plan, in which baseline modelling and sav-
ings determination methodologies are proposed with a proper
fax: þ27 (0)12 362 5000.
metering plan for the measurement of the relevant M&V data. The
M&V savings are inherently uncertain as they are naturally inexist
and not directly measurable [19]. As summarised in Refs. [1,11], the
quantifiable savings uncertainties are comprised of the measure-
ment uncertainty, sampling uncertainty, and modelling uncer-
tainty. A number of existing M&V studies have proposed various
baseline modelling techniques to deal with the modelling un-
certainties that arise from the improper mathematical function
form, inclusion of the irrelevant variables or exclusion of relevant
variables. For example [15], has proposed a normative energy
model based on Bayesian calibration, which is able to model the
energy consumption patterns in large sets of buildings efficiently
with quantifiable uncertainties associated with model parameters.
In Refs. [4], anM&V approach is proposed to compare actual energy
performance of a building with its theoretical performance using
calibrated thermal modelling. Different accuracy indicators such as
the normalised RMSE (root mean squared error), relative bias, and
median of the absolute relative total error are adopted in Ref. [13] to
estimate the accuracy performance of five statistical baseline
models for M&V applications. Regression models have been
adopted in the following studies to develop baseline models for
M&V purposes with detailedmodel identification and validation by
the uncertainty indicators of coefficient of determination (R2), and
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Nomenclature

Variables
a a ¼ e�L, where L is the rated average life span of a

certain type of lamp
cðKÞ the random variable denoting the cumulative sample

mean across all lighting groups up to the Kth crediting
year

ciðKÞ the cumulative sample mean of the ith lighting group
up to the Kth crediting year

x the sample mean
XðkÞ the random variable denoting sample mean of the

daily energy consumption per lamp across all lighting
groups in the kth year

xðkÞ the sample mean of the daily energy consumption per
lamp across all lighting groups in the kth year

XiðkÞ the random variable denoting the sample mean of the
daily energy consumption per lamp of the ith lighting
group in the kth year

xiðkÞ the sample mean of the daily energy consumption per
lamp of the ith lighting group in the kth year

b the coefficient related to the slope of the lamp decay
d the dth year, 1 � d � K
g the coefficient related to the initial percentage lamp

survival at t ¼ 0
G(K) the random variable denoting the cumulative standard

deviation across all lighting groups up to the Kth
crediting year

Gi(K) the random variable denoting the cumulative standard
deviation of the ith lighting group up to the Kth
crediting yearcJ the set of post-implementation energy governing
factors

l the design variable l ¼ (l(0),…,l(k),…,l(K)), where
l(k) ¼ (z1(k),…,zI(k),p1(k),…,pI(k))

l* the optimal solution
l0 the search starting point to solve the optimisation

model
m the true mean
m(k) the true mean of the daily energy consumption per

lamp across all lighting groups in the kth year
mi(k) the true mean of the daily energy consumption per

lamp of the ith lighting group in the kth year
J the set of baseline energy governing factors
s the standard deviation
s(k) the true standard deviation of the daily energy

consumption per lamp across all lighting groups in the
kth year

si(k) the true standard deviation of the daily energy
consumption per lamp of the ith lighting group in the
kth year, and siðkÞ ¼ xiðkÞCViðkÞ

t the time after a lamp installation
q(K) the random variable denoting the cumulative true

mean across all lighting groups up to the Kth crediting
year

qi(K) the random variable denoting the cumulative true
mean of the ith lighting group up to the Kth crediting
yeareb the coefficient in the discrete lamp population decay
modeleg the coefficient in the discrete lamp population decay
model

ai the individual meter device cost in the ith lighting
group

bi the installation cost per meter in the ith lighting group
Bi(k) the backup meters of the ith lighting group in the kth

year, Bi(0) ¼ 0
ci the monthly maintenance cost per meter in the ith

lighting group
CV the coefficient of variation
CVi(k) the estimated CV value of the ith lighting group in the

kth year
Ei(t) the daily energy consumption per lamp of the ith

lighting group at time t
F(J) the baseline energy model
G(J) the post-implementation energy model
I the total lighting groups
i the counter of lighting groups
K the total project crediting years
k the counter of project crediting years, where k ¼ 0

denotes the baseline period
lb the lower bound of the design variable
N the lighting population
n the sample size after population adjustment
N(k) the total survived lamp population in the kth year
n0 the initial sample size before population adjustment
Ni(k) the lighting population of the ith lighting group in the

kth year
ni(k) the sample size of the ith lighting group in the kth year
Ni(t) the lamp population of the ith lighting group at time t
Oi(t) the lamp daily burning hours of the ith lighting group

at time t
p the relative precision
P(d) the cumulative precision level across all lighting

groups up to the dth crediting year
p(k) the combined relative precision across all lighting

groups in the kth year
Pi(d) the cumulative precision level of the ith lighting group

up to the dth crediting year
pi(k) the relative precision of the ith lighting group in the

kth year
Pi(t) the lamp rated power of the ith lighting group at time t
S(t2) the reported energy savings
s(t) the percentage of survived lamps at time t
Si(k) the mathematical sign of Bi(k) of the ith lighting group

in the kth year
t the project duration including both baseline and post-

implementation periods
t1 the project baseline period
t2 the project post-implementation period
TolCon the tolerance on the constraint
TolFun the tolerance on the function value
TolX the tolerance on the design variable
ub the upper bound of the design variable
X(k) the random variable denoting the daily energy

consumption per lamp across all lighting groups in the
kth year

Xi(k) the random variable denoting the daily energy
consumption per lamp of the ith lighting group in the
kth year

z the abscissas of the normal distribution curve that cut
off an area at the tails to give desired confidence level,
also known as z-score

Z(d) the cumulative z-score across all lighting groups up to
the dth crediting year
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z(k) the combined z-score across all lighting groups in the
kth year

Zi(d) the cumulative z-score of the ith lighting group up to
the dth crediting year

zi(k) the z-score of the ith lighting group in the kth year

Abbreviations
R2 coefficient of determination
ASHRAE American society of heating, refrigerating, and air-

conditioning engineers
CDM clean development mechanism
CFL compact florescent lamp
CV coefficient of variation
DLC direct load control
ECM energy conservation measure
EEDSM energy efficiency and demand side management
EVO efficiency valuation organization
HDL halogen downlighter

HERO home energy rebate offer
ICL incandescent lamp
IPMVP international performance measurement and

verification protocol
kW h kilowatt-hour
LED light-emitting diode
M&V measurement and verification
MCM metering cost minimisation
n/a not applicable
PD project developer
R South African currency Rand
RMSE root mean squared error
TWC tradable white certificate
UNFCCC United Nations framework convention on climate

change
USD United States dollar
W Watt
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CVRMSE (coefficient of variation of the RMSE). Statistical criteria to
assess goodness-of-fit of baseline models in terms of the R2 and
CVRMSE are discussed in Ref. [23]. And Ref. [16] develops a
regression model to characterise the relationship between daily
energy consumption and energy governing factors such as degree
days, humidity, and fuel prices to assess the energy saving perfor-
mance of the Louisiana HERO (Home Energy Rebate Offer) pro-
gramme. In order to quantify the industrial energy savings [17],
uses multi-variable piece-wise regression models to develop en-
ergy baselines, which can be adjusted by weather and production
data over the post-retrofit period. In Ref. [9], a primary multiple
regression model is derived as a baseline model by incorporating
three weather parameters, namely, outdoor temperature, relative
humidity, and global solar radiation. Linear regression models are
constructed in [8] for baseline calibration in order to quantify the
energy and demand savings due to installation of motor sequencing
controller on the conveyor belt. In addition [31], introduces a cross-
validation method to compute the baseline model uncertainty.
Besides the modelling uncertainties of M&V, the measurement
uncertainties usually come from inappropriate calibration of the
metering equipment, inexact measurement procedure, or improper
meter selection, installation or operation; and the sampling un-
certainties result from inappropriate sampling approaches or
insufficient sample sizes [1].

Although M&V metering plans can be designed to handle the
measurement uncertainties by applying sophisticated measure-
ment instruments while reducing the sampling uncertainties by
taking sufficient sample sizes, M&V practitioners cannot enjoy such
a luxury due to limited budgets for the projected savings verifica-
tion, given that [11] clearly states that the annual M&V cost should
be less than 10% of the annual savings realised by the EE projects.
Hence M&V practitioners and project developers have great inter-
est in designing the optimal M&Vmetering plan that helps to verify
the savings accurately and cost-effectively. An M&V metering plan
obtained by professional judgements of M&V practitioners may be
far from optimal, especially when there are particular requirements
on the M&V accuracy and M&V cost. In order to minimise the
metering cost, and thus to maximise the project developers’ profit,
this study aims to design a cost-effective metering plan to satisfy
M&V accuracy requirements.

An obvious observation is that the metering cost is lower
whenever fewer samples aremeasured. However, the samples to be
measured in some existing M&V case studies do not seem to have
been determined optimally. In Ref. [18], instantaneous demand
meters and run-time loggers are installed to monitor 10% of the
lighting fixtures’ energy consumption. Ref. [14] proposes to quan-
tify the load reduction from a residential electric water heater load
control programme by a “notch” test on substation level in order to
reduce the metering and sampling cost of M&V. However, sub-
stations are not easily accessible for common M&V practice. In Ref.
[22], a “deemed savings estimates” M&V approach is proposed by
modelling historical data, which are sampled from 288 end users of
the regional DLC (direct load control) programmes.

The general mathematical description of the optimal M&V
metering plan problem has been proposed in Ref. [33]. However,
with the guidance of [33], the optimal M&V metering plan for
various M&V projects needs to be redeveloped with the consider-
ation of project specific budget plans, technologies, measurement
complexities, accuracy requirements, and population sizes. Among
these projects, the optimal metering plan for lighting retrofit pro-
jects has attracted considerable research. The major reason is that
sub-metering of the entire lighting population implies prohibitive
measurement and sampling cost. The design of cost-effective
metering plans to achieve the required sampling accuracy crite-
rion with proper sample size becomes more difficult when the
lamp population is large and decentralised. Ref. [35] has proposed a
spatial MCM (metering cost minimisation) model to balance the
sampling uncertainties across lighting groups. The idea in Ref. [35]
is to minimise the sample sizes and metering cost for CDM lighting
EE projects by assigning optimal confidence and precision levels to
the lighting groups with different energy consumption un-
certainties. The model in Ref. [35] is applicable and useful in opti-
mising the M&V metering plan, but lacks of considerations on
lighting population decay dynamics over the projects' life cycle. In
practice, the lamp population will decay due to the lamp breakage,
theft or other unpredicted damages. Sampling theory [26] indicates
that the sample size can be reduced when the sampled population
size becomes smaller. Several studies have proposed longitudinal
MCMmodels to balance the sampling uncertainties across adjacent
reporting years. The idea is to reduce the M&V metering cost for
lighting EE projects by optimally deciding the required confidence
and precision levels in different reporting years over the projects’
crediting period. For instance, studies [34,36] present a longitudinal
MCMmodel by incorporating a liner lamp population decay model
that is widely used in CDM lighting projects. The longitudinal MCM
model provided in Refs. [34,36] is further improved in Ref. [5],
which provides more detailed discussions on the lamp population
decaymodels, weightedmeasurement impacts, and price inflations



1 For the 90/10 criterion, precision is an assessment of the error margin of the
final estimate and confidence is the likelihood that the sampling result of an esti-
mate lies within a certain range of the true values. Following the notation of the 90/
10 criterion, x/y denotes x% confidence and y% precision in this study.
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of the metering devices. The longitudinal MCM models in Refs.
[5,34,36], are applicable to lighting projects with homogeneous
lighting population that shares the same energy usage patterns and
population decay dynamics.

On summary of existing M&V studies, the optimal M&V
metering plans can be designed 1) without optimisation but by
professional judgements; 2) by applying the spatial MCM model
for project with no population decay; 3) by using the longitudinal
MCM model to projects with homogeneous lighting population
and similar population decay dynamics. However in practice,
solely using the spatial or longitudinal MCM model is insufficient
to accommodate lighting projects that have multiple homoge-
neous lighting groups but with different energy consumption
patterns and population decay dynamics across groups. In this
study, a combined spatial and longitudinal MCM model is pro-
posed to further reduce the lighting project metering cost by
balancing the sampling uncertainties both spatially across homo-
geneous lighting groups and longitudinally across adjacent
reporting years. In this model, the design variables are the required
annual confidence and precision levels for each lighting group. The
objective function is a cost function that covers the procurement,
installation and maintenance of the metering system for M&V. The
sampling accuracy requirements are formulated as the constraints.
In order to demonstrate the advantages of the proposed MCM
model, an optimal metering plan is designed for a lighting retrofit
project with two homogeneous lighting groups as a case study.
Optimal solutions for the case study are obtained by the proposed
combined spatial and longitudinal MCM model with the consid-
eration of the project specific characteristics. The optimal solutions
provide useful and sufficient M&Vmetering plan information such
as the required lighting samples to be measured in each lighting
groups, the achieved sampling accuracy in terms of confidence and
precision levels as well as the annual and total M&V metering cost
for the studied lighting project. In addition, the metering solutions
obtained without optimization, with solely the spatial or the lon-
gitudinal MCM models are also calculated and compared. The
comparisons among these solutions highlight the advantageous
performance of the proposed spatial and longitudinal MCMmodel
in designing cost-effective M&V metering plan whilst satisfying
the M&V accuracy requirements. This combined optimisation
model will be widely applicable to design the optimal metering
plan for various M&V lighting projects with different population
sizes and sampling accuracy requirements.

The rest of this paper is organised as follows: Section 2 provides
the mathematical formulation of the optimal M&V metering plan
problem. In Section 3, an optimal metering plan is designed for a
hospital lighting retrofit project as a case study to demonstrate the
advantages of the proposed model. The applicability of the pro-
posed model is discussed in Section 4 while the conclusion comes
in the last section.

2. Formulation of the optimal M&V metering plan problem

In this section, general metering plans for lighting retrofit pro-
jects are discussed. With the application of classic sampling ap-
proaches, sample size determination methodologies, and lamp
population decay models, the optimal M&Vmetering plan problem
is formulated as a combined spatial and longitudinal MCM model
under necessary modelling assumptions.

2.1. The metering plan for lighting retrofit projects

Without loss of generality, the methodology to design the
optimal M&V metering plans is discussed under the scope of
lighting retrofit projects in this study. Given a lighting retrofit
project with an initial lamp population of N, the lamp population
can be classified into I homogeneous lighting groups when the
same technical specifications, similar energy consumption un-
certainties, and population decay dynamics of the lamps are
identified in the ith lighting group, where i is the counter of the
lighting groups. For lighting retrofit projects, various EE lighting
technologies, i.e., CFLs (compact florescent lamps), LEDs (light-
emitting diodes) or solar-powered lamps are employed to replace
existing less EE lamps such as HDLs (halogen downlighters) and
ICLs (incandescent lamps). The retrofit interventions do not
change the existing lighting control configurations and illumina-
tion levels.

Let a lighting retrofit project have a three-months’ baseline
measurement period and K years of the project crediting period
with its savings performance being measured, verified and re-
ported; k¼ 1,2,…,K denotes the counter of the crediting years and
k¼ 0 denotes the baseline year. F(J) and GðcJÞ denote the energy
models, where notations J and cJ represent a set of energy gov-
erning factors that determines the lighting energy consumption in
the baseline and post-retrofit periods, respectively. For the lighting
technology, F(J) and GðcJÞ should at least include the following
energy governing variables, i.e., the lamp population Ni(t), rated
power Pi(t), and daily operating hours Oi(t). In order to simplify the
measurement and sampling uncertainty analysis, Pi(t) and Oi(t) can
be determined in combination as the daily energy consumption
Ei(t). Then the project baseline can be denoted by F(Ni(t1),Ei(t1)) and
similarly the post-retrofit is denoted by G(Ni(t2),Ei(t2), where t1
refers to the baseline period, t2 refers to the post-retrofit period,
and t refers to both periods. To ensure a fair comparison, the pro-
jected energy savings S(t2) under the post-retrofit condition are
calculated by Eq. (1)

Sðt2Þ ¼ eFðNiðt2Þ; Eiðt1ÞÞ � GðNiðt2Þ; Eiðt2ÞÞ; (1)

where eFð,Þ is the adjusted baseline when the lamp population
decays in the post-retrofit period.

In order to accurately report the savings S(t2) in Eq. (1), the
modelling uncertainties, measurement uncertainties, and sampling
uncertainties must be handled properly. The modelling uncertainty
is not applicable to lighting retrofit projects when the lighting
energy usage is directly measured in isolation. The measurement
uncertainties are usually negligible when suitable and high accu-
racy metering equipment is applied for measurement. For lighting
projects with large and decentralised population, sampling uncer-
tainty is the major contributor to the savings uncertainty. The
sampling uncertainties can be reduced by taking sufficient sample
sizes with suitably selected sampling techniques such as simple
random sampling, stratified sampling, systematic sampling, cluster
sampling, and multi-stage sampling [7]. In order to report the M&V
savings accurately in this study, the sample sizes for the lighting
projects are optimally decided to satisfy the 90/10 criterion.1

According to the previous discussions, the metering plans for
the EE lighting projects can be summarised as follows:

1) The two energy governing variables namely the survived lamp
population Ni(t) and daily energy consumption per lamp Ei(t) in
the ith lighting group need to be continuously sampled and
metered. More precisely, Ni(t) needs to be sampled regularly and
Ei(t) will be monitored by long-term metering over the projects'
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baseline and crediting period. Each monitored and sampled
variable must satisfy the 90/10 criterion.

2) The meters will be purchased and installed during the baseline
period. The baseline lighting system will be measured for 3
calendar months.

3) The decay dynamics of Ni(t) will be discussed in Subsecection
2.3. The required sample sizes for metering Ei(t) will be
decided by the proposed combined spatial and longitudinal
MCM model.

4) Meters will be installed to monitor the sampled lamp appliance
individually. Meters with different functionalities and prices
will be applied in different lighting groups. Calibration and
maintenance of the metering systems will be performed
regularly.
2.2. The sampling approach and sample size determination

According to [7], the simple random sampling approach is
applicablewhen the sampled units are homogeneous. However, the
stratified random sampling is most applicable for a lighting retrofit
project with multiple lighting groups, when characteristics of the
lighting units are more similar within groups than across groups. In
this study, the lighting population are firstly stratified into I ho-
mogenous strata and then the simple random sampling is per-
formed within each stratumwhere each lighting unit has the same
probability of being sampled and metered. The sampling un-
certainties in different lighting groups are characterised by CV
(coefficient of variation), which is defined as the standard deviation
of the metering records divided by the mean. CV is a positive value
and a greater CV value corresponds to a higher sampling
uncertainty.

As provided in standard statistics text books [26], the initial
sample size n0 to achieve certain confidence and precision level of
homogeneous population is calculated by

n0 ¼ z2CV2

p2
; (2)

where z denotes the abscissas of the normal distribution curve that
cut off an area at the tails to give desired confidence level, also
known as the z-score, and p is the relative precision. For the 90/10
criterion, z ¼ 1.645 for 90% confidence and p ¼ 10% as the allowed
margin of error. The values of z at various confidence levels are
tabulated in many statistics books [7]. z can be calculated by the Z-
transformation formula

z ¼ x� m

s
� ffiffiffi

n
p ; (3)

where x is the sample mean; m is the true meanwhile s denotes the
true standard deviation of the sampled population.

CV can be estimated from spot measurements or derived from
previous metering experience. In some cases, it may be desirable to
initially conduct a small sample for the sole purpose of estimating a
CV value to assist in planning the sampling design. If CV is un-
known, 0.5 is historically recommended by Ref. [28] as the initial CV
since numerous projects have shown this to be reasonable guess for
most applications. After the first year of monitoring, the CV can be
projected from the results of the metering in the previous year,
which can be used as an updated initial CV value for the sample size
determination of the coming year. Usually more samples are
required to achieve a higher confidence level and a better precision
level for a given CV value. The initial sample size n0 can be adjusted
by Eq. (4) [26] when the population N is a finite number. As can be
observed in Eq. (4)

n ¼ n0N
n0 þ N

¼ CV2z2N
CV2z2 þ Np2

; (4)

whenN reduces fromþ∞ to 0, the sample size will become smaller.
2.3. Lamp population decay modelling

As discussed in Eqs. (1) and (4), the survived lamp population is
crucial for the M&V baseline adjustment, savings calculation, and
sample size determination. Without an accurate model to charac-
terise the lamp population decay dynamics, the survived lamp
population needs to be identified by conducting samples of ques-
tionnaires, telephone interviews, and onsite surveys for various
energy efficient lighting retrofit projects. The inspections on the
lamp population at different time intervals over the projects’
crediting period are helpful for the project performance evaluation,
M&V metering plan design, and necessary maintenance planning.
But the regular inspection approach is usually very costly and time-
consuming as such inspections have to be conducted repeatedly for
various lighting projects with different characteristics. In order to
alleviate the lamp population inspection burdens, the lamp popu-
lation decay dynamics are characterised by various models that
have been established from biological population dynamics study
or from reliability engineering experiments. For instance, previous
study [6] has performed an informative review on the existing lamp
population decay dynamics. In addition [5], has proposed a reliable
lamp population decay model that is improved from existing
models as given in both the Poland efficient lighting programme
evaluation report [21] and the technical report of South African
national CFL mass roll out programme [3]. The general form of the
model is provided in Eq. (5)

sðtÞ ¼ 1
gþ aebt

; (5)

where s(t) is the percentage of survived devices at time t for a
lighting project, t is counted from the beginning of lamp in-
stallations. a ¼ e�L and L is the rated average life span of a certain
type of lamps. Following CDM guidelines [27], the rated average life
span is declared by the manufacturer or responsible vendor as
being the expected time at which 50% of any large number of EE
devices reach the end of their individual lives. b is the slope of
decay, and g is initial percentage lamp survival at t¼ 0. Thus, values
for b and g can be obtained by solving the following system of
equations:�
sð0Þ ¼ 1;
sðLÞ ¼ 0:5: (6)

The discrete and dynamical form of model (5) is also given in
Refs. [5,6] as follows

sðkþ 1Þ ¼ ebegsðkÞ2 � ebsðkÞ þ sðkÞ; (7)

where s(k) is the survived percentage of the lighting project pop-
ulation at the kth sampling interval. Note that for different lighting
groups, the parameters eb and eg are different and they can be ob-
tained by the system identification approach proposed in Ref. [5].
Eq. (7) is further applied in the design of optimal maintenance
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plans for lighting retrofit project population by a control system
approach in Ref. [37].

2.4. Modelling and assumptions

According to the proposed metering plan, Ei(t) needs to be
monitored by long-term measurement over the baseline and post-
retrofit periods. The measurement uncertainties and sampling
uncertaintiesmust be properly handled to ensure the satisfaction of
the required 90/10 criterion. In order to reduce the measurement
uncertainties, the metering devices need to be carefully selected
with full consideration of their accuracy levels and cost implica-
tions. According to [29], the key components of the metering cost
include meters procurement, installation and maintenance cost. In
order to design a cost-effective metering plan, it is suggested to use
different metering devices with different procurement prices,
memory capacities, data transmission functions and accuracy levels
for lighting groups with different sampling uncertainties. Hence
the meters will be selected according to the estimated CV values in
various lighting groups in this study. Particularly, if CV< 0.25, then
less expensive meters with acceptable accuracy will be chosen.
Otherwise if CV� 0.25, then expensive and sophisticated meters
will be applied. In general, measurement uncertainties are ignor-
ablewhen the accuracy levels of the selectedM&Vmeters aremuch
better than the 90/10 criterion.

The sampling uncertainties are analysed and handled by a
combined spatial and longitudinal MCM model in this study. The
optimisation ideas of the modelling are illustrated by Fig. 1. In Fig. 1,
the curve (in red) with squared-markers (in green) and the curve
(in purple) with circled-markers (in orange) denote the lamps with
different population decay dynamics over time. On the spatial
domain at the kth year, the lighting project population is classified
into I homogeneous strata according to different sampling uncer-
tainty levels of the daily energy consumption of an individual lamp.
Let zi(k) and pi(k) denote the z score and the precision levels in the
ith group, z(k) and p(k) denote the combined z score and precision
levels across all subgroups, respectively; Ni(k) and ni(k) denote the
survived lamp population and the required sample size of the ith
lighting group in the kth year, respectively; N(k) denote the total
survived lamp population in the kth year. The spatial sampling
uncertainties across all lighting groups in the kth year can be
analysed as follows. Let Xi(k) be the random variable that denotes
the daily energy consumption of an individual lamp of the ith
lighting group in the kth year. From the well-known Central Limit
Theorem [12], it is assumed that Xi(k) follows normal distribution
Fig. 1. Illustrations for the metering cost minimisation modelling.
Xi(k)~N(mi(k),si(k)2) given the large lamp population in the ith
lighting group, where mi(k) is the true mean value, and si(k) is the
true standard deviation of the ith group in the kth year. If any ni(k)
samples are drawn from the ith lighting group, the sample mean
distribution satisfies a normal distribution
XiðkÞ � N ðmiðkÞ;siðkÞ2=niðkÞÞ [32]. Assume the XiðkÞ’s are inde-
pendent and the combined distribution for the XiðkÞ’s in all lighting
groups in the kth year is denoted by X(k)~N(m(k),s(k)2), where the
combined sample mean value xðkÞ for the total lighting population
in the kth year is calculated by

xðkÞ ¼
PI

i¼1 NiðkÞxiðkÞ
NðkÞ ; (8)

the true mean value m(k) for the total lighting population in the kth
year is calculated by

mðkÞ ¼
PI

i¼1 NiðkÞmiðkÞ
NðkÞ ; (9)

and the true standard deviation s(k) for the total lighting popula-
tion in the kth year is calculated by

sðkÞ2 ¼
XI
i¼1

ðsiðkÞNiðkÞÞ2
niðkÞNðkÞ2

: (10)

According to Eq. (3), the z transformation function in the ith
lighting group of the kth year is given by

xiðkÞ � miðkÞ ¼ ziðkÞ$
siðkÞffiffiffiffiffiffiffiffiffiffiffi
niðkÞ

p ; (11)

where xiðkÞ is the sample mean of the ith lighting group in the kth
year and siðkÞ ¼ xiðkÞCViðkÞ. Assume that the estimated daily en-
ergy consumptions and CV values of the ith lighting group will not
change over the credit period, then the standard deviation si(k) of
the ith lighting group in the kth year will also remain unchanged.

The combined annual z score z(k) and relative precision level
p(k) are calculated by

zðkÞ ¼ xðkÞ � mðkÞ
sðkÞ ; (12)

and

pðkÞ ¼ xðkÞ � mðkÞ
xðkÞ : (13)

On the longitudinal domain over the crediting period, the
project performance may need to be reported regularly at fixed
reporting intervals, i.e., in the years of d ¼ {2,4,…,K}, to the project
developers and relative stakeholders by M&V practitioners. For
both the baseline year and the reporting years d, the sampled pa-
rameters are required to satisfy a required accuracy level, i.e., the
90/10 criterion. It is clear that fewer samples are required to achieve
the 90/10 criterion when the project population decreases. For a
performance report covers the years k and (kþ 1), the possible
sample sizes over the two years might be 30 and 10, respectively to
achieve the 90/10 criterion. Then the initial investment must be
made available for 30 m in the kth year while the surplus 20 m
become unnecessary in the (kþ 1) th year. An optimal metering
plan may be designed to install 20 m for both the years k and
(kþ 1), such that a lower accuracy level, i.e., 85/15 is reached in the
year k but a higher accuracy level, i.e., 95/5 is obtained in the year



Table 1
Lighting project details.

Parameters Group I Group II

Meter unit price a1 ¼ R 876 a2 ¼ R 3146
Installation per meter b1 ¼ R 195 b2 ¼ R 320
Monthly maintenance c1 ¼ R 45 c2 ¼ R 98
CV values CV1(k) ¼ 0.19 CV2(k) ¼ 0.50
Baseline estimates x1ð0Þ ¼ 0:48 kWh x2ð0Þ ¼ 0:20 kWh
Post-retrofit estimates x1ðkÞ ¼ 0:096 kWh x2ðkÞ ¼ 0:024 kWh

Coefficient eb in Eq. (7) eb1 ¼ 1:1438 eb2 ¼ 1:0297

Coefficient eg in Eq. (7) eg1 ¼ 0:8553 eg2 ¼ 0:9201

2 Obviously, one can also let d ¼ {1,4,7,…,K} when other reporting intervals are
agreed by the project stakeholders.
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(kþ 1), while the combined accuracy level across the years k and
(kþ 1) satisfies the 90/10 criterion.

In order to quantify the sampling uncertainties on the longitu-
dinal domain, assume the installed metering system will not be
relocated over the K years and the same sampled lighting units will
be continuously measured. And the sampled lamps need to be
monitored to ensure immediate replacement on occurrence of a
lamp failure. Thus the metered data from the Years 1 to (k�1) will
also be analysed together with the metered data in the kth year.
Further assume that XðkÞ’s are independent, then the combined
distribution for the XðkÞ’s over the K years will follow a normal
distribution cðkÞ � N ðqðkÞ;GðkÞ2Þ, where

cðKÞ ¼
PK

k¼1 NðkÞxðkÞPK
k¼1 NðkÞ

; (14)

qðKÞ ¼
PK

k¼1 NðkÞmðkÞPK
k¼1 NðkÞ

; (15)

GðKÞ2 ¼
XK
k¼1

 
sðkÞNðkÞPK
k¼1NðkÞ

!2

: (16)

Let Z(d) and P(d) denote cumulative z score and cumulative
precision levels by end of the dth year, respectively, then

ZðdÞ ¼ cðdÞ � qðdÞ
GðdÞ ; (17)

PðdÞ ¼ cðdÞ � qðdÞ
cðdÞ ; (18)

where cðdÞ, q(d), and G(d) are calculated by Eqs. 14e16, respectively
by substituting d for the value K.

As the lamp population decays, the number of required meters
may also decease. If fewer meters are required in the kth year than
the available meters installed in the (k�1) th year, then the surplus
meters remain onsite for backup use. Let ai, bi and ci denote the
meter procurement, installation and monthly maintenance cost for
each metering device of the ith lighting group, respectively. Then
the combined spatial and longitudinal MCM model is formulated
under follow assumptions.1) The lighting populationwill not decay
during the baseline period. The time for the project implementa-
tion can be ignored. 2) During the credit period, maintenance will
only be performed to the active meters. 3) The inflation/deflation of
the metering cost will not be considered. 4) The uncertainty of the
lamp population decay model is neglectable.

Let the design variable be l ¼ (l(0),…,l(k),…,l(K)), where
l(k) ¼ (z1(k),…,zI(k),p1(k),…,pI(k)). The objective function is deno-
ted by

f ðlÞ ¼ PI
i¼1

ðai þ bi þ 3ciÞnið0Þ

þ PK
k¼1

PI
i¼1

½12ciniðkÞ þ BiðkÞSiðkÞðai þ biÞ�;
(19)

where ni(k) is calculated by Eq. (4); and Bi(k) denotes the surplus
meters in the kth year, which is calculated by

BiðkÞ ¼ maxðBiðk� 1Þ;0Þ þ niðk� 1Þ � niðkÞ;

where Bi(0) ¼ 0, and Si(k) is the mathematical sign of Bi(k), which is
defined as
SiðkÞ ¼ sgnðBiðkÞÞ ¼

8>>><>>>:
0; if BiðkÞ>0;

�1
2
; if BiðkÞ ¼ 0;

�1; if BiðkÞ<0;

where sgn(,) is the sign function. The constraints are summarised
as8>><>>:

zð0Þ � 1:645;
pð0Þ � 10%;
ZðdÞ � 1:645;
PðdÞ � 10%;

(20)

where d ¼ {2,4,…,K}2; z(0) and p(0) are the combined z score and
relative precision across all lighting groups during the baseline
period, while Z(d) and P(d) are the cumulative z score and relative
precision up to the dth year in the post-implementation period. The
combined spatial and longitudinal MCM model is denoted by
C((19),(20)).
3. Case study

In this section, an optimal M&V metering plan is designed for a
lighting retrofit project as a case study to illustrate the advantages
of the proposed combined spatial and longitudinal MCM model.
3.1. Background of the lighting project

A lighting retrofit project is going to be implemented to reduce
the lighting load in 45 provincial hospitals in South Africa. It is
planned to install 263 519 CFLs to replace existing inefficient ICLs. In
addition, 140 777 units of LEDs will be installed to replace the less
energy efficient HDLs. The 12 Watt (W) CFLs and 6 W LEDs will be
adopted to replace the 60 W ICLs and 50 W HDLs, respectively. The
ICLs are mainly installed in office rooms and burning during
8:00e16:00 everyday. The HDLs are installed in the corridors and
hallways where motion sensors are currently in use to control the
HDL lighting systems. The CFLs and LEDswill be directly installed to
replace the ICLs and HDLs without changing the existing lighting
control systems. The EE lamps have equivalent lumen to the
replaced old lamps. The CFLs have a rated life of 3 years while the
LEDs have a rated life of 6 years. According to the agreements be-
tween the project sponsors and project developers (PDs), the en-
ergy saving performance of this project must be verified and
reported in every 2 years' interval over the 10 years' crediting
period. PDs are responsible for theM&V cost that at least covers the
metering system procurement, installation and maintenance. The



Fig. 2. Survived lamp populations.
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energy consumption of the lighting system will be sampled and
measured over the 3 months’ baseline period and the entire cred-
iting period.

The involved lamps are naturally classified into two subgroups
according to their different daily energy consumption un-
certainties. Group I is the 263 519 ICLs and Group II is the 140 777
HDLs. The lighting classification remains unchanged after project
implementation. The energy consumption uncertainties can be
estimated by spot measurement during the on site project survey.
For instance, the estimated daily energy consumption per lamp in
Group I is 0.48± 0.09 kWh in the baseline period and 0.096± 0.018
kWh in the crediting period. CV value of the daily energy con-
sumption per lamp in Group I is around 0.19. The energy con-
sumption uncertainties in Group II are greater than those in Group I
as the lamps are controlled by the motion sensors. In this case, a CV
value as high as 0.5 is recommended by Ref. [28] for Group II over
both the baseline and crediting periods. The estimated daily energy
consumption per lamp in Group II is 0.20± 0.10 kWh in the baseline
period and 0.024± 0.012 kWh in the crediting period based on an
assumption that on average the lamps are burning 4 h per day with
low confidence. Since the energy consumption behaviours in Group
II change more frequently than those in Group I, the metering de-
vices to be installed in Group II should be more advanced, i.e., with
more intelligent control units, faster sampling frequency, and larger
memory capacity. The Group II meters are capable of capturing the
real time energy consumption in both lighting groups but Group I
meters are not applicable for the measurements in Group II. More
detailed project information is summarised in Table 1 from the on
site project survey.
Table 2
Optimisation settings.

Categories Options

Algorithm interior-point
TolFun 10�45

TolCon 10�45

TolX 10�45

Hessian ‘lbfgs’, 20
lb: (zi(k), pi(k)) (0, 0)
ub: (zi(k), pi(k)) (þ∞, 1)
l0: (zi(k), pi(k)) (0.2, 0.2)
Once the coefficients eb and eg in Eq. (7) are identified with the
given lamp life span, the lamp population decay dynamics are
determined for the studied project. In Fig. 2, the horizontal axis
denotes the count of years where Year k corresponds to the dura-
tion [k, kþ 1). For instance, Year 0 corresponds to the duration [0,1),
denoting the baseline period and Years 1e10 correspond to the
duration [1,11), denoting the crediting period. The vertical axis
denotes the survived lamp population. It shows that Group I has a
greater initial lamp population. However, as the CFLs have shorter
life spans than the LEDs, the lamp population in Group II becomes
greater than that in Group I from Years 5e10 of the lighting project.

The optimal metering plan can be obtained by solving themodel
C((19),(20)) with the application of the project specific information
as given in Table 1. Solutions are calculated using the software
program [24]. In particular, the optimal solutions are computed by
the “fmincon” code of the Matlab Optimisation Toolbox. The opti-
misation settings of the “fmincon” function are shown in Table 2,
where a search starting point l0 and the boundaries of the design
variable are also assigned.

From a mathematical perspective, the sample sizes, which are
integer numbers, must be solved through integer programming
algorithms. Since this study arises from the practical issues of
minimising the metering cost, real-valued sample sizes are used
during the optimisation. After the optimal solution l* is found, the
ceil function is applied to obtain the integer sample sizes. Mathe-
matically, the rounded sample sizes by the ceil function are only
sub-optimal solutions. Henceforth, the terms “optimal/optimise”
and “minimal/minimise” refer to the rounded sub-optimal
solutions.

The studied hospital lighting retrofit project includes different
lighting groups with different daily energy consumption un-
certainties. In addition, these lighting groups exhibit different lamp
life spans and population decay dynamics. The project character-
istics strongly indicate the applicability of the combined spatial and
longitudinal MCMmodel as discussed in Section 2. In order to fully
reveal the superiority of the proposed model C((19),(20)), the
optimal solutions obtained solely by the spatial MCMmodel in Ref.
[35] and the longitudinal MCM model in Ref. [36] are also given in
the following subsections for comparison purposes.
3.2. Benchmark and optimal solutions

In order to maximise the PDs’ profits, the proposed MCMmodel
C((19),(20)) will be applied to find the most suitable M&Vmetering
plan for the hospital lighting retrofit project. As to demonstrate the
advantages of the proposed combined spatial and longitudinal
MCM model, the metering plan without optimisation is calculated
as a benchmark for comparison purpose.
Table 3
Metering cost without optimisation.

Year Z(k) C(k) P(k) n1(k) n2(k) Cost (R)

0 1.9665 95.06% 9.90% 10 68 R 267 740
1 1.8500 93.57% 9.89% 10 68 R 85 368
2 2.6234 99.13% 9.89% 10 68 R 85 368
3 3.2122 99.87% 9.90% 10 68 R 85 368
4 3.6682 99.98% 9.90% 10 68 R 85 368
5 3.9677 99.99% 9.90% 10 68 R 85 368
6 4.1110 100% 9.90% 10 68 R 85 368
7 4.1617 100% 9.90% 10 68 R 85 368
8 4.1747 100% 9.90% 10 68 R 85 368
9 4.1767 100% 9.90% 9 68 R 85 368
10 4.1769 100% 9.90% 7 65 R 85 368
Total n/a n/a n/a 10 68 R 1 115 732



Fig. 3. Confidence levels (spatial optimal only).

Fig. 4. Sample sizes (spatial optimal only).
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For the hospital lighting retrofit project, a possible solution
without optimisation might be that the 90/10 criterion is applied to
the sampling target in both lighting Groups I and II, where
li(k) ¼ (1.6451(k),1.6452(k),0.11(k),0.12(k)). The corresponding z
Table 4
Metering cost with spatial optimisation.

Year Z(k) C(k) P(k) n1(k) n2(k) Cost (R)

0 1.6452 90.01% 9.58% 12 6 R 37 032
1 1.6448 90.00% 9.73% 12 3 R 10 008
2 2.3185 97.96% 9.59% 12 4 R 11 184
3 2.8278 99.53% 9.64% 12 4 R 11 184
4 3.2124 99.87% 9.64% 12 6 R 13 536
5 3.4659 99.95% 9.65% 12 9 R 27 462
6 3.5883 99.97% 9.66% 12 18 R 58 842
7 3.6331 99.97% 9.66% 10 33 R 96 198
8 3.6447 99.97% 9.66% 11 44 R 95 810
9 3.6464 99.97% 9.66% 12 44 R 58 224
10 3.6466 99.97% 9.66% 10 36 R 47 736
Total n/a n/a n/a 12 44 R 467 216
scores, precisions, sample sizes andmetering costs are calculated as
shown in Table 3. It shows that the precision levels are better than
10% while the lowest z score is greater than 1.645 for each moni-
toring report. The total metering cost over the baseline and cred-
iting period is R 1 115 732. In this scenario, the expected sampling
accuracy is better than the required 90/10 criterion, which is not
necessary.
3.2.1. Spatial optimisation
The spatial MCMmodel in Ref. [35] aims to balance the sampling

uncertainties across lighting groups by assigning optimal confi-
dence and precision levels to the lighting groups with different
energy consumption uncertainties. For this case study, the spatial
optimisation model is formulated as follows. The design variable is
l ¼ (l(0),…,l(k),…,l(K)), where l(k) ¼ (z1(k),z2(k),p1(k),p2(k)),
k¼ 0,1,…,K. The objective function is given in Eq. (19), which is
subject to the constraints

�
zðkÞ � 1:645;
pðkÞ � 10%: (21)

The spatial optimisation model is denoted by S((19),(21)). The
model S((19),(21)) is solved with the initial values given in Table 1
and the optimisation settings in Table 2. The obtained confidence
levels, precision levels, and optimal sample sizes are shown in
Figs. 3e4. In addition, the numerical optimal solutions and meter-
ing cost are summarised in Table 4.

In Figs. 3e4, the horizontal axes denote the counter of years. In
Fig. 3, optimal confidence and precision levels are presented, where
the dashed line (in blue) and the solid line (in red) denote the
confidence and precision levels for Groups I and II, respectively; the
dash-dotted line (in green) denotes the combined confidence and
precision levels across lighting groups over the kth year, while the
starred line (in black) denotes the cumulative confidence and
precision levels up to the kth year. As shown by the dash-dotted
lines (in green) in both sub-figures of Fig. 3, the constraints in Eq.
(21) are satisfied.

In Fig. 4, the sample sizes in Group I and Group II are denoted by
the dashed line (in blue) and the solid line (in red), respectively. The
total sample sizes are denoted by the starred solid line (in black). It
is observed that the sample sizes in Group I is greater than those in
Group II during the years [0, 5) but becomes smaller than those in
Group II during the years [6, 11). As discussed in Refs. [35], the
sample sizes change when population changes. To achieve a certain
level of sampling accuracy, greater number of samples are usually
required for a bigger sampling population. However, it is worthy
mentioning that in Year 5, N1(5)<N2(5) but n1(5)> n2(5) as shown
in Fig. 4. The reason is that the model S((19),(21)) attempts to use as
many as less expensive meters in Group I in order to minimise the
total metering cost.

In Table 4, Z(k) is translated into the confidence levels C(k). One
may be surprised to see that more samples are required when
population decays in Group II. This is because that Group II has a
relatively greater population and a higher CV than those in Group I
in the years [6, 10), which results in requiring greater sample sizes
to satisfy the desired sampling accuracy.
3.2.2. Longitudinal optimisation
The longitudinal MCM model proposed in Ref. [36], with its

improvements provided in Ref. [5], aims to balance the sampling
uncertainties across adjacent reporting years by designing optimal
confidence and precision levels in each reporting years. For this



Fig. 5. Confidence levels (longitudinal optimal only).

Fig. 6. Samples sizes (longitudinal optimal only).
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case study, the longitudinal optimisation model is formulated as
follows. The design variable is l¼ (l(0),…,l(k),…,l(K)), where
l(k)¼ (z1(k),z2(k),p1(k),p2(k)), k¼ 1,…,K. The objective function is
given in Eq. (19) that is subject to the constraints
Table 5
Metering cost with longitudinal optimisation.

Year Z(k) C(k) P(k) n1(k) n2(k) Cost (R)

0 1.9655 95.06% 9.90% 10 68 R 267 740
1 1.4179 84.38% 9.80% 6 35 R 44 400
2 1.8639 93.77% 9.48% 5 34 R 42 684
3 1.7629 92.21% 8.67% 2 11 R 14 016
4 1.9278 94.61% 9.41% 1 10 R 12 300
5 1.9577 94.97% 9.09% 1 6 R 7 596
6 2.0113 95.57% 9.06% 1 4 R 5 244
7 2.0192 95.65% 9.00% 1 2 R 2 892
8 2.0267 95.73% 9.01% 1 1 R 1 716
9 2.0268 95.73% 9.01% 1 1 R 1 716
10 2.0268 95.73% 9.01% 1 1 R 1 716
Total n/a n/a n/a 10 68 R 402 020
8>><>>:
zið0Þ � 1:645;
pið0Þ � 10%;
ZiðdÞ � 1:645;
PiðdÞ � 10%:

(22)

Assume XiðkÞ’s are independent over the years [0, K), then the
XiðkÞ’s over the Kyears of the ith lighting groupwill follow a normal
distribution ciðkÞ � N ðqiðkÞ;GiðkÞ2Þ, where

ciðKÞ ¼
PK

k¼1 NiðkÞxiðkÞPK
k¼1 NiðkÞ

; (23)

qiðKÞ ¼
PK

k¼1 NiðkÞmiðkÞPK
k¼1 NiðkÞ

; (24)

GiðKÞ2 ¼
XK
k¼1

 
siðkÞNiðkÞPK

k¼1NiðkÞ

!2

: (25)

Let Zi(d) and Pi(d) denote cumulative z score and the cumulative
precision levels by end of the dth year of the ith lighting group,
respectively, then

ZiðdÞ ¼
ciðdÞ � qiðdÞ

GiðdÞ
;

and

PiðdÞ ¼
ciðdÞ � qiðdÞ

ciðdÞ
;

where ciðdÞ, qi(d), and Gi(d) are calculated by Eqs. 23e25, respec-
tively by substituting d for the value K. The longitudinal optimisa-
tion model is denoted by L((19),(22)). The model L((19),(22)) is
solved with the initial values given in Table 1 and the optimisation
settings in Table 2. The obtained confidence levels, precision levels
and optimal sample sizes are shown in Figs. 5e6. In addition, the
numerical optimal solutions and metering cost are summarised in
Table 5.

Figs. 5e6 share the same presentation style as Figs. 3e4 in terms
of the horizontal and vertical axes. In Fig. 5, optimal confidence and
Fig. 7. Confidence and precision levels (combined optimisation).



Fig. 8. Sample sizes (combined optimisation).

Table 6
Metering cost with combined spatial and longitudinal optimisation.

Year Z(k) C(k) P(k) n1(k) n2(k) Cost (R)

0 1.6585 90.28% 9.65% 14 5 R 35 684
1 1.2148 77.55% 9.21% 7 2 R 6 132
2 1.6727 90.56% 9.28% 6 2 R 5 592
3 1.6680 90.47% 9.22% 2 1 R 2 256
4 1.7252 91.55% 8.96% 2 1 R 2 256
5 1.7276 91.59% 8.69% 1 1 R 1 716
6 1.7540 92.06% 8.64% 1 1 R 1 716
7 1.7529 92.04% 8.55% 1 1 R 1 716
8 1.7549 92.07% 8.54% 1 1 R 1 716
9 1.7550 92.07% 8.54% 1 1 R 1 716
10 1.7550 92.07% 8.54% 1 1 R 1 716
Total n/a n/a n/a 14 5 R 62 216
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precision levels are presented, where the dashed line (in blue) and
the solid line (in red) denote the confidence and precision levels for
Groups I and II, respectively; the starred line (in black) denotes the
cumulative confidence and precision levels up to the kth year; in
addition, the dotted line (in purple) and the circle line (in green)
denote the cumulative confidence and precision levels up to the kth
year in the ith lighting group. As shown by the dotted lines (in
purple) and the circle lines (in green) in both sub-figures of Fig. 5,
the constraints in Eq. (22) are satisfied.
Fig. 9. Sample size comparison in Group I.
In Fig. 6, the sample sizes in Group I and Group II are denoted by
the dashed line (in blue) and the solid line (in red), respectively. The
total sample sizes are denoted by the starred solid line (in black). In
Fig. 6, the samples required during the baseline period are deter-
mined without optimisation. During the reporting period, the
required sample sizes within every two years’ reporting interval are
very close. For instance, 35 and 34 samples are required in Years
1e2 while 11 and 10 samples are required in Years 3e4 in Group II.
Similar sample size commitment pattern is also observed in Group
I. The samples are optimally decided over the reporting period
within lighting groups with the application of the model
L((19),(22)). However, it is expected that the metering cost can be
further minimised when spatial optimisation ideas can also be
incorporated during both the baseline and reporting periods.
3.2.3. Combined spatial and longitudinal optimisation
In this subsection, the combined spatial and longitudinal MCM

model C((19),(20)) is solved with the initial values given in Table 1
and the optimisation settings in Table 2. The obtained confidence
levels, precision levels and optimal sample sizes are shown in
Figs. 7e8. In addition, the numerical optimal solutions and meter-
ing cost are summarised in Table 6.

In Fig. 7, optimal confidence and precision levels are presented,
where the dashed line (in blue) and the solid line (in red) denote
the confidence and precision levels for Groups I and II, respectively;
the starred line (in black) denotes the cumulative confidence and
precision levels up to the kth year. As shown by the starred lines (in
black) in both sub-figures of Fig. 7, the constraints in Eq. (20) are
satisfied.

In Fig. 8, the sample sizes in Group I and Group II are denoted by
the dashed line (in blue) and the solid line (in red), respectively. The
total sample sizes are denoted by the starred solid line (in black). As
can be seen in Fig. 8, the samples required during the baseline
period are determined solely by spatial optimisation. In addition, as
both the spatial and longitudinal MCM ideas are applied during the
reporting period, the required sample sizes are optimised whereas
the metering cost is significantly reduced.
4. Model performance comparison and discussion

In Section 3, four different M&V metering plans have been ob-
tained for the same lighting retrofit project by the no optimisation
approach, the spatial MCM approach, longitudinal MCM approach,
and the combined spatial and longitudinal MCM approach,
respectively. Detailed numeric solutions obtained from the four
approaches are provided in Tables 3e6 In order to compare the
performance among the four approaches, key information in terms
Fig. 10. Sample size comparison in Group II.



Fig. 11. Metering cost comparison.
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of the sample sizes and the M&V metering cost are also presented
graphically as shown in Figs. 9e11. In Figs. 9e10, the horizontal axis
denotes the counter of years where Year 0 denotes the baseline
period and Years 1e10 denote the crediting period. The vertical axis
denotes the sample sizes. And in Figs. 9e10, legend “Benchmark”
(in red) denotes the sample sizes obtained without optimisation;
legend “Spatial” (in green) denotes the sample sizes obtained by
the spatial MCM model; legend “Longitudinal” (in purple) denotes
the sample sizes obtained by the longitudinal MCM model; and
legend “Combined” (in blue) denotes the sample sizes obtained by
the combined spatial and longitudinal MCM model. Data labels are
given in Figs. 9e10 to denote the benchmark sample sizes. The
M&V metering cost obtained by the four approaches are shown in
Fig. 11. Fig. 11 has two vertical axes, in which the primary axis de-
notes the M&V metering cost (in Rand), and the secondary axis
denotes the percentage of cost savings against the benchmark,
which is calculated as

Cost saving ð%Þ ¼ Benchmark cost � Optimised cost
Benchmark cost

:

More precisely, comparing to the benchmark, the spatial MCM
model saves 58%, the longitudinal MCM model saves 64%, and
combined spatial and longitudinal MCM model saves 94% of the
metering cost that would have been spent without optimisation.
Thus themodel C((19),(20)) offers a minimal metering cost in terms
of total metering cost of the hospital lighting project without
violating the sampling accuracy requirements.

The presented case study suggests that three MCM models
C((19),(20)), S((19),(21)), and L((19),(22)) are all useful in designing
the optimal M&V metering plans for lighting retrofit projects.
Table 7
Metering costs for different accuracy criteria.

Criteria 85/5 95/5

Year n1(k) n2(k) Cost (R) n1(k) n

0 41 14 R 102 086 76 2
1 19 5 R 16 140 35 9
2 17 5 R 15 060 31 9
3 7 2 R 6 132 11 4
4 5 2 R 5 052 8 3
5 2 2 R 3 432 4 3
6 1 1 R 1 716 2 2
7 1 1 R 1 716 1 1
8 1 1 R 1 716 1 1
9 1 1 R 1 716 1 1
10 1 1 R 1 716 1 1
Total 41 14 R 156 482 76 2
When lighting projects have multiple homogeneous lighting
groups with different sampling uncertainties, the spatial MCM
model S((19),(21)) is most applicable when the lighting population
is properly maintained to avoid lamp population decay. If no
lighting maintenance activities are carried out, then the lamp
population will decay as time goes by. In such a case, the longitu-
dinal MCM model L((19),(22)) is most applicable to optimise the
sample sizes within reporting intervals for each homogeneous
lighting groups. Also learnt from the case study, the model
C((19),(20)) exhibits the best performance in terms ofmetering cost
minimisationwhilst satisfying the required 90/10 criterion for each
reporting interval.

In order to apply the model C((19),(20)) more flexibly, the lamp
population decay dynamics for different homogeneous lighting
groups need to be specifically identified by addressing the lamps’
life spans, usage patterns, and technologies. In addition, if the
lighting retrofit projects are sponsored under different EEDSM
programmes, then performance reporting schedule d in the model
C((19),(20)) may be altered, which will result in different optimal
sample size regimes. Moreover, it is likely that the M&V practi-
tioners may need to design optimal M&V metering plans under
different sampling accuracy requirements other than the 90/10
criterion. The optimal sample size regimes and relative metering
cost are also calculated and provided in Table 7. It is obvious that
better sampling accuracy requirement implies higher M&V
metering cost over the project crediting period. For instance,
requiring the 99/1 criterion for sampling implies higher metering
cost than the 90/10, 85/5, and 95/5 criteria.

5. Conclusion

In this study, a combined spatial and longitudinal MCMmodel is
proposed to assist the optimalM&Vmetering plan designs of the EE
lighting retrofit projects. The proposed model is capable of
designing optimal M&V metering plan for lighting projects that
have multiple homogeneous lighting groups but with different
lamp population decay dynamics across lighting groups. With the
application of this model, the M&V metering cost is minimised by
optimising the confidence and precision levels in different lighting
groups over the projects’ crediting period. As illustrated by the case
study, the combined spatial and longitudinal MCMmodel is able to
reduce 94% of the M&V metering cost that would have been spent
under the no optimisation scenario, which exhibits better perfor-
mance in terms of minimising the M&V metering cost under spe-
cific sampling accuracy requirements than both the spatial MCM
and longitudinal MCMmodels. The proposed combined spatial and
longitudinal MCM model can be flexibly applied to other similar
lighting retrofit projects with different technologies, different
99/1

2(k) Cost (R) n1(k) n2(k) Cost (R)

6 R 189 416 3 268 1 080 R 8 002 008
R 29 484 1 488 362 R 1 229 232
R 27 324 1 348 349 R 1 138 344
R 10 644 454 138 R 407 448
R 7 848 313 125 R 316 020
R 5 688 160 106 R 211 056
R 3 432 55 73 R 115 548
R 1 716 14 33 R 46 368
R 1 716 1 12 R 14 652
R 1 716 1 5 R 6 420
R 1 716 1 2 R 2 892

6 R 280 700 3 268 1 080 R 11 489 988
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project population variations, different reporting intervals, and
different sampling accuracy requirements.

However, besides the advantages of the combined spatial and
longitudinal MCM model, the proposed model has the following
limitations: 1) this model focuses on handling sampling un-
certainties cost-effectively in the M&V process, but pays less
attention to the modelling and measurement uncertainties; 2) ex-
tra efforts are required to characterise the population decay dy-
namics when applying this model to design optimal M&Vmetering
plans for other technologies.
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