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a b s t r a c t

Measurement and verification (M&V) function has been adopted in many energy efficiency (EE) pro-
grammes to quantify energy savings, identify new energy efficiency opportunities, improve EE pro-
gramme design, and reduce EE programme performance risks. Budgetary constraints in EE programmes
necessitate careful planning to minimise M&V cost whilst maintaining M&V accuracy. For this purpose,
this study presents an M&V cost minimisation model to handle M&V sampling and modelling un-
certainties cost-effectively. In the proposed model, the objective function is the total M&V project cost,
which consists of M&V sampling cost, modelling cost, and overhead cost. The required M&V accuracy in
terms of the 90/10 criterion is formulated as the constraints of this optimisation problem. Optimal so-
lutions to the proposed model specify the required baseline model accuracy and sample sizes to achieve
the desired M&V accuracy. The proposed model is applied to design an optimal M&V sampling and
modelling plan for a traffic light retrofit project. Results show that the optimal M&V plan reduces the
sampling cost by 42% and the total M&V cost by 11% against the solutions obtained by partial
optimisation.

© 2017 Published by Elsevier Ltd.
1. Introduction

Measurement and Verification (M&V) provides an impartial and
replicable process to quantify energy and demand savings in energy
efficiency (EE) and demand side management (DSM) projects [16]
in more than 15 countries in Europe [36], North America [36],
and Asia [30]. Popular M&V guidelines are provided in the inter-
national performance measurement and verification protocol
(IPMVP), which gives common practice recommendations and
principles for quantifying energy and water savings [16]. Four M&V
options are presented in the IPMVP that can be flexibly applied to
determine energy savings from various M&V projects [16]. Similar
and widely referenced M&V guidelines are given by the American
society of heating, refrigeration and air-conditioning engineers
(ASHRAE) Guideline 14 [3] and the Federal energy management
program (FEMP) [41]. These three guidelines form the basis of other
M&V guidelines such as but not limited to the South African M&V
guideline for the national energy efficiency and demand side
management (EEDSM) program [15], the Australian M&V best
practice guideline [4], and the state guidelines in California [37] and
Texas [44] of the USA, and Australia [28]. The international stan-
dards organisation (ISO) has also released a standard for M&V,
which establishes general principles and guidelines for the M&V
process [21].

Reporting energy savings by the M&V process always includes
some degree of uncertainty [41], including both quantifiable and
unquantifiable uncertainties. Unquantifiable uncertainties arise
from poor meter placement, inaccurate estimates in the IPMVP
Option A or mis-estimation of interactive effects in the IPMVP
Options A or B [16]. There are three types of quantifiable M&V
uncertainties; namely measurement, sampling, and modelling
uncertainty. Achieving a higher level of M&V accuracy by reducing
M&V uncertainties usually implies greater cost [3]. However, M&V
budgets tend to be limited. The IPMVP [16] and FEMP [41] M&V
guidelines recommend that the M&V cost does not exceed 10% of
the average annual savings being assessed. Other M&V guidelines
such as the M&V handbook [2] and the California evaluation
framework [37] give cost limits based on the IPMVP M&V Options
being used. These cost limits range from a minimum of 1% of the
annual measured savings for the IPMVP Option A to a maximum of
10% for the IPMVP Option D. Therefore, researchers, M&V practi-
tioners, and energy efficiency project participants are always eager
to find cost-effective solutions to handle the M&V uncertainties. To
achieve this target, relationship betweenM&V cost and uncertainty
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Nomenclature

Variables
l0 the search starting point to solve the optimisation

model
A2n the quantity of 2-aspect fittings at a traffic intersection
A3n the quantity of 3-aspect fittings at a traffic intersection
A4n the quantity of 4-aspect fittings at a traffic intersection
A4rn the quantity of 4-aspect fittings with turning arrows at

a traffic intersection
ai the procurement price per meter in the ith group
bi the installation cost per meter in the ith group
C0 the overhead cost
Cm the M&V modelling cost per model
Cs the metering and sampling cost per M&V project
CVi the coefficient of variation of the ith group
CVm the CV(RMSE) of an M&V baseline model
CVm�

i the optimal CV(RMSE) of an M&V baseline model
Ei the daily energy consumption per traffic intersection of

the ith stratum
Gn the quantity of green signal lamps at a traffic

intersection
HRk the hourly rate of M&V professionals
i the counter of sampling strata
I the total number of sampling strata
j the counter of baseline models
J the total number of baseline models
k the professional level of M&V practitioners
n the number of observations
ni the sample size of the ith stratum
n�i the optimal sample size of the ith stratum
Ni the population size of the ith stratum

p the relative precision
R2 the coefficient of determination
Rn the quantity of red signal lamps at a traffic intersection
Tk the time spent on energy modelling
U the total M&V uncertainty
Um the total modelling uncertainty
Us the total sampling uncertainty
w the number of independent parameters in the baseline

model
Yn the quantity of yellow signal lamps at a traffic

intersection
Y the mean of observationsbY the value of Y predicted by regression model
Yi the sample mean in the ith stratum
z the z-value

Abbreviations
ASHRAE American society of heating, refrigeration and air-

conditioning engineers
CDM clean development mechanism
CFL compact fluorescent lamp
CV coefficient of variation
ECM energy conservation measure
EEDSM energy efficiency and demand side management
IPMVP international performance measurement and

verification protocol
ISO international standards organisation
LED light emitting diode
M&V measurement and verification
R South African Rand
RMSE root mean square error
SANS South African National Standard
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needs to be identified. Existing studies have made positive contri-
bution in M&V uncertainty and M&V cost analysis.

The measurement uncertainty in the M&V process results from
instrumentation error due to poor measurement equipment cali-
bration, data tracking errors, and human errors in data capturing
[23]. Measurement uncertainty is unavoidable, although it can be
mitigated with proper data handling protocols and the use of high-
accuracy, calibrated metering equipment such as Class 1, Class 2,
and Class 3 m with specified error bands of ±1.5%, ±2.5%, and ±4%,
respectively as given in Part 21 [19] and Part 23 [20] of the Inter-
national Standard 62053 of static meters for reactive energy.

Practically, there are projects with large quantities of EE devices
spread over large geographical areas, such as large scale lighting
retrofit [47], solar water heater mass roll out [17], and residential
rebate programs [24]. Due to budgetary constraints not all devices
can be metered, and so sampling is used, which introduces the
sampling uncertainties into the reported energy savings [22]. The
sampling uncertainty is avoidable for a small population project
where meters are applied to the whole population of the involved
EE units. The sampling uncertainty can be mitigated through use of
sufficient sample sizes [1] and appropriate sampling approaches
such as simple random sampling, stratified random sampling, and
cluster sampling, to name a few [39]. For instance, to satisfy the 90/
10 criterion for clean developmentmechanism (CDM) projects with
the minimal M&V cost, an optimal sampling plan is developed in
Ref. [47] that balances sampling uncertainties across different
lighting groups with different levels of sampling uncertainties. In
addition, longitudinal CDM sampling designs for lighting retrofit
projects are proposed in Ref. [48] when considering a linear lamp
population decay pattern, and improved longitudinal CDM sam-
pling designs are developed in Ref. [9] by incorporating nonlinear
lamp population decay characteristics. In order to obtain the best
metering and sampling plan for M&V of large-scale lighting pro-
jects, three M&V metering cost minimisation approaches are pro-
vided in Ref. [46] by using spatial optimisation, longitudinal
optimisation, and combined spatial and longitudinal optimisation
strategies. These studies achieve cost savings for M&V projects by
applying optimal sample sizes to handle the sampling uncertainty.

Calculating energy savings includes comparing actual energy
consumption to the baseline energy consumption at the post-
implementation phase of an energy efficiency project. But the en-
ergy consumption in the business-as-usual scenario at the post-
implementation phase is never measurable as highlighted in
Ref. [45]. A baseline model is thus needed to predict the energy that
would have been consumed had the energy conservation measures
not been installed [16]. The energy baseline modelling process thus
introduces the modelling uncertainties to the M&V process.
Various modelling techniques are used to characterise the rela-
tionship between energy consumption and typical energy driving
factors such as temperature, production, and facility occupancy
rate, etc. These modelling techniques are but not limited to linear
regression [10], support vector machines [12], Gaussian process
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modelling [7], cross-validation [18], and artificial neural networks
[5]. The modelling uncertainty is unavoidable when the baseline
model is applied for baseline adjustments. Indeed, modelling un-
certainty can be properly handled by ensuring that the right
function form is used for modelling and key parameters are
included in the models [16].

A number of existing M&V research articles typically focus on
baseline model development. In Ref. [10], linear regression
modelling is used to develop a baseline model for a conveyor belt
retrofit project. The model accuracy is judged using the mean bias
error and the coefficient of variation of the root-mean-square error
(CV(RMSE)). In the same manner, baseline modelling for building
energy consumption is carried out using the whole facility M&V
approach employ multivariate linear regression with the key en-
ergy governing factors, such as the outdoor dry bulb temperatures
as shown in Ref. [13]. And regression analysis techniques are also
applied tomodel separate building energy systems such as lighting,
cooling, heating, and general appliances in buildings [14]. Baseline
modelling has also been done using the IPMVP option D: calibrated
simulation approach by software ‘eQuest’ to model and simulate
the entire building energy consumption [25].

Linear regression is extended in Ref. [43] using cross-validation
so that the uncertainty in the baseline model can be better esti-
mated. The approach is also advantageous in deciding how much
data is needed for baseline estimation. Cross-validation is also used
in Ref. [18] for the whole building M&V baseline, which argues that
the normalised root-mean-square-error and median absolute
relative total error are critical to the consideration of modelling
uncertainty in determining energy savings.

The support vectormachines approach has been used to forecast
building energy consumption in a tropical region [12] and the or-
dinary least squares approach is used in Ref. [26] to evaluate the
suitability of empirically-based models for predicting energy per-
formance of centrifugal water chillers with variable chilled water
flow. Unlike prevailing modelling approaches that focus on the
uncertainties in the baseline model [32], proposes that baseline
models be evaluated in terms of the ratio of expected uncertainty in
the savings against the total savings.

Input data uncertainty has been tackled in Ref. [7], where the
Gaussian process modelling and a Monte Carlo expectation max-
imisation framework is used to develop baseline energy models
that take the input data uncertainty into account. These models
have the benefit of reducing M&V cost by reducing the amount of
M&V data [7]. Additionally, general guidelines for evaluating un-
certainty in measured data are provided in Ref. [23], which de-
scribes a measurement model in the form of a functional
relationship between input and output quantities such as current,
voltage, and resistance [34].

In the literature, existing studies tend to consider M&V
modelling, sampling, and measurement uncertainties separately.
And little efforts have been conducted in revealing the accurate
relationship between M&V modelling cost and uncertainty. Prac-
tically, an accurate and reliable M&V function has become an
indispensable guarantee for various energy efficiency programmes
such as carbon trading [42], tradable white certificate scheme [6],
EEDSM programmes, and performance contracting. In order to
handle M&V uncertainties cost-effectively, this study aims to
examine sampling and modelling uncertainties together to mini-
mise M&V cost by developing an M&V cost minimisation model.
Optimal solutions to the proposed M&V cost optimisation model
specify the required baseline model accuracy and sample sizes to
achieve the desired M&V accuracy. In addition, the model also
provides flexibility in designing optimal and easily implementable
M&V plans, which can either apply more accurate baseline models
and fewer sample sizes, or less accurate baseline models and
greater sample sizes to achieve the same level of M&V accuracy.
This study pays less attention to the measurement uncertainty as it
has been noted that measurement uncertainty makes a negligible
contribution to the overall uncertainty for electricity metering
cases where population variance is not unusually low [8]. However,
efforts on dealing with sampling and modelling uncertainties are
believed to be the most significant contributors to the entire M&V
cost, especially when both the modelling and sampling techniques
are used during the M&V process.

To develop the M&V cost minimisation model, the total M&V
cost consisting of the M&V sampling cost, the baseline modelling
cost, and the overhead cost is formulated as the objective function.
In the objective function, theM&V baselinemodel modelling cost is
formulated as a function of model accuracy by regression analysis.
The sampling cost includes the meter procurement and installation
cost, which is directly correlated to the sample size. The required
M&V accuracy in terms of the 90/10 criterion is formulated as the
constraints of this optimisation problem. Optimal M&V modelling
and sampling strategies are designed for a traffic light retrofit
project as a case study to illustrate the effectiveness of the proposed
model. Comparisons between the optimal and non-optimal solu-
tions to the case study show advantageous cost saving performance
of the proposed model. More precisely, the optimal solutions
reduce the sampling cost by 42% and the total M&V cost by 11%
against the solutions obtained by optimal modelling but non-
optimal sampling solutions. In addition, flexibilities in designing
easily implementable M&V modelling and sampling plans of the
proposed model are also revealed by two simulations. The simu-
lation results show that the proposed model is able to offer flexible
trade-offs between the modelling and sampling uncertainties;
namely, using more accurate baseline models and fewer sample
sizes or less accurate baseline models but greater sample sizes to
achieve the same level of M&V accuracy. Major contributions of this
study are as follows: 1) the M&V baseline model cost is formulated
as a function of its model accuracy, which enables quantitative
analysis between the M&V baseline modelling accuracy and cost;
and 2) anM&V cost minimisationmodel is proposed to handle both
the M&V modelling and sampling uncertainties cost-effectively.
The effectiveness and flexibility of this model are demonstrated
by a case study and the simulation results.

The rest of this paper is organised as follows: in Section 2, a
M&V cost minimisation model is developed with a detailed anal-
ysis of the combined sampling and modelling uncertainties, and
the M&V cost analysis and modelling. Section 3 presents a case
study to illustrate the effectiveness of the proposed M&V cost
minimisation model. A sensitivity analysis on the proposed model
is carried out in Section 4 followed by a discussion. Conclusions are
summarised in Section 5.
2. Problem formulation

In this section, anM&V cost minimisationmodel is developed to
design optimal M&V plans to handle the M&V modelling and
sampling uncertainties cost-effectively. For this purpose, typical
M&V cost factors are reviewed and a model is developed to char-
acterise the relationship between the M&V modelling cost and
model accuracy. In addition, the formulation of combined M&V
uncertainties including both the modelling and sampling un-
certainties is introduced under different practical scenarios. Based
on the M&V cost and modelling analysis, an M&V cost mini-
misation model is developed. Objective function of the model in-
cludes the M&V sampling, modelling, and overhead costs, and the
M&V accuracy requirements are formulated as the constraints of
the optimisation model.



Z. Olinga et al. / Energy 141 (2017) 1600e1609 1603
2.1. M&V cost analysis

In many energy efficiency programmes [11], M&V is an indis-
pensable process to quantify energy savings achieved by the
implemented energy conservation measures. In practice, there are
cost implications of the M&V service, including energy audit,
metering, sampling, data analysis, and energy savings reporting,
etc. From the engineering perspective, numerous factors are
affecting the M&V cost while the major ones are:

� amount and complexity of measurement equipment;
� sample sizes used to sample representative items;
� amount of engineering required to develop the M&V plan;
� number and complexity of independent variables that are
accounted for in baseline models;

� miscellaneous M&V related activities such as travelling for site
visit, communication, reporting, documentation, and manage-
ment; and

� M&V accuracy requirements.

In general, most of the above-mentioned M&V cost factors are
directly related to the accuracy of M&V reporting. TheM&V accuracy
is usually expressed as quantifiable uncertainties of final M&V out-
comes, such as energy/demand savings or cost savings. The quanti-
fiable M&V uncertainties refer to the M&V measurement, sampling,
and modelling uncertainties as categorised in Ref. [16]. In line with
this, the M&V cost can be generally classified into metering cost,
sampling cost, modelling cost, and overhead cost. The metering cost
normally includes the meter procurement, installation, commis-
sioning, and calibration cost. The amount of metering budget is
decided by the required meter device specifications and service cost
for installation and calibration [29]. Sampling cost is directly related
to the sample size to achieve a better sampling accuracy where a
greater sample size usually implies a higher sampling cost. The
modelling cost is generally more difficult to decide but it is linked to
the level ofM&V professionals appointed, and the time that theM&V
professionals spend on data processing, model construction,
parameter identification, and model validation to achieve an
acceptable level of model accuracy. The overhead cost is usually basic
charge for M&V that includes travelling, reporting, communication,
documentation, and management.

The M&V metering and sampling cost analysis is given as fol-
lows. Let ai denote the procurement cost1 and bi represent the
installation, calibration, and commission cost for the ith type of
metering device to be used for M&V. ni denotes the number of
metering devices used, also known as the sample size for mea-
surement.2 Then the metering and sampling cost Cs is calculated by
Equation (1),

Cs ¼
XI
i¼1

ðai þ biÞni: (1)

2.2. Cost analysis for M&V baseline modelling

As discussed, the M&V modelling cost has several determinants
such as the level of expertise from M&V professionals, the com-
plexities on model construction and parameter identification, and
1 Cost analysis in this study uses South African currency, Rand, and R is short for
the Rand.

2 i is used as a counter of types of metering instruments, which is also used later
in this study to denote the counter of stratum for stratified sampling, since we
assume one type of metering device to be used in one stratum due to the homo-
geneity property in each stratum.
required modelling accuracy. As no previous studies have
addressed the cost analysis for M&V baseline modelling, this study
attempts to develop a data-driven model by regression analysis to
characterise the relationship between the M&V modelling cost and
model accuracy.

As suggested from both the theoretical aspects [31] and the
practical aspects [33] for the baseline modelling methodology,
developing a data-driven model for M&V baseline comprises of
following main stages, namely 1) data collection; 2) regression
analysis to different mathematic forms with model parameter
identification; and 3) to choose the best-fit model according to
model R2 and CV(RMSE). As introduced in Ref. [13],

R2 ¼
Pn

j¼1

�bY j � Y
�

Pn
j¼1

�
Yj � Y

� ; (2)

CVðRMSEÞ ¼ RMSE

Y
; (3)

and

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1

�
Yj � bY j

�2
n�w

vuut
; (4)

where Y is the mean of observations Yj; bY is the value of Ypredicted
by regression model; n is the number of observations; and w is the
number of independent parameters in the baseline model. Ac-
cording to the suggestions from both the theoretical aspects [31]
and the practical aspects [33] for the baseline modelling method-
ology, the best-fit model is chosen by the criteria: 1) the highest R2

and lowest CV(RMSE); 2) if the R2 are at similar range, then the
CV(RMSE) to be given more consideration. Note that the CV(RMSE)
is positive and normalised against themean of all data observations
in this study, which enables comparison between dataset or models
with different units and scales.

In this study, the data used for the M&V modelling cost are
obtained from a SANAS Accredited M&V inspection body, who has
provided professional M&V services to over 300 energy efficiency
projects in the national EEDSM programme and tax incentive
scheme [27]. As informed by the M&V inspection body, the M&V
modelling cost is decided by accounting the time spent on theM&V
modelling by different levels of M&V professionals. More precisely,
the M&V professionals in the company are rated and ranked into
four levels, namely M&V Team Leader, Senior M&V Engineer, M&V
Engineer, and M&V Technician according to their qualification and
experiences in energy, engineering, and the M&V industry. Hourly
rate of the M&V professionals are denoted by HRk, k ¼ 1, 2, 3, and 4
for the M&V Team Leader, Senior M&V Engineer, M&V Engineer,
and M&V Technician, respectively. For each M&V project, the time
spent on the baseline modelling and uncertainty analysis from
differentM&V professionals are recorded as Tk. TheM&Vmodelling
cost C for each project is calculated by

C ¼
X4
k¼1

HRkTk: (5)

To protect its business, the M&V company does not provide
detailed M&V quotations for investigation. Instead, the M&V
company provides a guideline on costing for M&V modelling,
which is summarised in Table 1.

As seen in Table 1, the M&V company has different prices for the
baseline models with different accuracy levels, which are quanti-
fied by CV(RMSE). The modelling cost summarised in Table 1 are



Table 1
M&V modelling cost vs CV(RMSE).

CV(RMSE) Modelling cost (Rand)

(0, 5%] R 223 750
(5%, 10%] R 155 500
(10%, 15%] R 130 500
(15%, 20%] R 103 000
(20%, 25%] R 92 000
(25%, 30%] R 74 750

Fig. 1. Regression analysis for M&V modelling cost.
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obtained from their historical records on the time spent for the
M&V modelling from M&V professionals in various M&V projects.
The M&V company follows [16] as their service standard, which
further requires that each baseline model must have a minimum R2

of 0.75, and a worst CV(RMSE) of 30%.
The data in Table 1 can be expressed as a piecewise function to

describe the relationship between the cost and accuracy of an M&V
baseline model. The piecewise function is sufficient to offer guid-
ance to develop M&V quotations. In order to identify more closer
relationship between the cost and accuracy of the M&V energy
modelling, this study aims to developed a data-driven model by
regression analysis of the data in Table 1. The regression analysis
can be conducted by Matlab or Microsoft Excel tools. During the
regression analysis, the maximum CV(RMSE) values are used for
each price category in Table 1. Based on these data, a number of
data-driven models with different mathematic forms are estab-
lished. And goodness-of-fit in terms of CV(RMSE) and R2 is calcu-
lated as well during the modelling process, which is provided in
Table 2. It is observed that the power model in the form of

Cm ¼ 601040CVm�0:591; (6)

has the lowest CV(RMSE) and highest R2 values among four other
mathematical forms namely linear regression, exponential regres-
sion, polynomial regression, and hyperbolic regression. In Eq. (6),
CVm denotes the CV(RMSE) of an M&V baseline model while Cm
denotes the M&V modelling cost for one baseline model. The
chosen power model during the regression analysis is also pre-
sented graphically in Fig. 1, in which the red markers represent the
data used for modelling.

Now the power model is selected to characterise the relation-
ship between M&V modelling cost and accuracy in this study.
Although the selected power model has a very low CV(RMSE) and
high R2, it has following practical limitations: 1) the data source is
obtained from a professional guideline on the costing of M&V
baseline energymodelling. It is believed that betterM&Vmodelling
cost function can be developed when more detailed data such as
original baseline modelling quotations, actual hourly rate of M&V
professionals, records of time spent on M&V modelling, etc. are
made available; 2) the selected power model does take consider-
ation of market influence such as inflation and price competition.
Despite of these disadvantages, the power model for M&V baseline
modelling cost formulation has its value in following aspects: 1) it
is the first model that enables quantification of the M&V baseline
Table 2
Regression models of M&V baseline cost.

Model Type Function CV(RMSE) R2

Linear y ¼ �5502:9xþ 226217 12.96% 0.9034
Exponential y ¼ 251937e�0:042x 8.11% 0.9749
Polynomial y ¼ 222:14x2 � 13278xþ 278050 5.61% 0.9819
Power y ¼ 601040x�0:591 4.83% 0.9833
Hyperbolic y ¼ 848441:1 1

x þ 60627:06 7.91% 0.9640
model cost and the model accuracy; 2) it is able to provide a
guidance on the analysis of M&V baseline modelling cost and ac-
curacy to M&V practitioners.
2.3. M&V uncertainty analysis

This study focuses on dealing with the modelling and sampling
uncertainties in the process of measuring and verifying energy
savings, as measurement uncertainties are negligible when so-
phisticated measurement equipment is adopted. As introduced in
the IPMVP, the three types of uncertainties in M&V can be com-
bined either in an additive or multiplicative way provided that they
are independent. Under this assumption, the IPMVP [16] also
quantifies the combined uncertainty U of the sampling and
modelling uncertainty as

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Um2 þ Us2

p
; (7)

where Um and Us denotes the modelling and sampling un-
certainties, respectively.

Practically, different combinations of uncertainties may exist in
an M&V project. As shown in Fig. 2, a project aims to replace all
lighting, water heating, and air-conditioning systems with more
energy efficient ones in a commercial building. For M&V purpose,
the M&V practitioners can either use the whole facility approach or
the retrofit isolation approach to measure the energy baseline for
energy savings determination [16]. When the whole facility
approach is adopted to measure the energy consumption of all the
lighting, water heating and air-conditioning systems for a whole
building baseline energy modelling, there is no sampling uncer-
tainty apply but must only consider the modelling uncertainty.
When applying the retrofit isolation approach, sampling tech-
niques will be required if not all devices are measured. In addition,
baseline energy models will then be developed for M&V purpose at
the appliance level. In this case, both the modelling and sampling
uncertainties must be considered. In the following, the M&V
sampling uncertainty and modelling uncertainty are analysed
separately and as a combination for the total M&V uncertainty
analysis.

1) Sampling uncertainty analysis. Given a large-scale lighting
retrofit project that includes both CFL and LED technologies as
shown in Fig. 2, the modelling uncertainty is negligible as the
lighting energy consumption is well characterised by the
product of lighting input wattage and usage time. However,
sampling uncertainty needs to be handled if not all lighting
population is measured. In the previous study [47], sampling



Fig. 2. Illustration of combined uncertainty analysis.

Table 3
Initial values for the case study.

Parameters Group I Group II

Meter unit price a1 ¼ R 500 a2 ¼ R 1500
Installation per meter b1 ¼ R 195 b2 ¼ R 320
CV values cv1 ¼ 0.20 cv2 ¼ 0.50
Estimated Yi Y1 ¼ 1.91 kWh Y2 ¼ 1.415 kWh
Population N1 ¼ 1320 N2 ¼ 880

Table 4
Solutions to the case study with optimal modelling only.

Parameters Group I Group II Overall

Optimal CV(RMSE) 5.356% 9.233% 4.710%
Non-optimal sample size 11 68 79
Sampling cost R 7645 R 123 760 R 131 405
Modelling cost R 222 920 R 161 580 R 384 500
Project cost R 230 565 R 285 340 R 515 905
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uncertainties can be cost-effectively handled by applying a
stratified sampling approach. The stratified random sampling is
a sampling approach to take simple random samples from sub-
populations when there are obvious grouping of population
elements whose characteristics are more similar within sub-
groups than across subgroups [40]. The sub-populations are
called strata. In Ref. [47], the lighting population is firstly
stratified into different strata by the coefficient of variation (CV)
of the energy usage of individual lamps. The optimal sample size
can then be assigned to each stratum for sampling. In this sce-
nario, sampling uncertainty at project level will be a combina-
tion of the sampling uncertainties across different lighting
strata. The sampling uncertainty in the ith lighting stratum is
described by the sample standard error and is defined as

Usi ¼
cviYiffiffiffiffiffi
ni

p ; (8)

where cvi and ni denotes the CV and required sample size in the ith
lighting stratum, respectively; and Yi denotes the sample mean.
The sampling uncertainty across each lighting stratum is expressed
as

Us ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXI
i¼1

�
Ni

N

�2
,

�
cviYi

�2
ni

vuut ; (9)

where I is the total number of the lighting strata; Ni is the popu-
lation size of the ith stratum; and N is the total population size.

2) Combined modelling uncertainty analysis. Given a small scale
energy conservation project that aims to improve the energy
efficiency of several water heaters and air conditioners, sam-
pling uncertainties do not exist when each device is measured
for M&V. However, energy baseline models need to be estab-
lished to adjust the baseline under post-retrofit condition for
the savings determination. For projects with both water heaters
and air conditioners involved, the baseline model can be
designed as a function to describe the relationship between the
total energy usage and heating or cooling degree days, or other
energy governing factors over the reporting period [13]. Alter-
natively, baseline energy models can be developed separately
for the water heaters and the air conditioners. When two or
more baseline energy models are applied in one M&V project,
the modelling uncertainty is quantified as a combination of each
baseline energymodel uncertainty. Given anM&V project with J
baseline energy models, uncertainty for each model is formu-
lated as

Umj ¼ CVmjYj; (10)

where Yj is the average baseline energy consumption and CVmj is
the CV(RMSE) of the jth baseline energy model. The combined
modelling uncertainty is given by

Um ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXJ
j¼1

�
Ni

N

�2

,Um2
j

vuut : (11)

where J is the total number of baseline energy models.

3) Combined modelling and sampling uncertainty analysis. At
the M&V project level, the total uncertainty is the combination
of the measurement, sampling, and modelling uncertainty.
Based on the assumption that measurement uncertainties are
negligible, the total project uncertainty including both the
sampling and modelling uncertainties are calculated by Eq. (7),
and Us and Um in Eq. (7) are obtained by Eq. (9) and Eq. (11),
respectively.
2.4. M&V cost minimisation model

In this subsection, an M&V cost minimisation model is devel-
oped to handle both the M&V sampling and modelling un-
certainties cost-effectively. The optimisation objective is to achieve
the desired M&V accuracy with minimal M&V cost. As introduced
in Subsection 2.1, the M&V cost includes metering and sampling
cost, modelling cost, and overhead cost. The M&V accuracy is
defined in terms of the combined modelling and sampling accu-
racy, which is set to meet the 90/10 criterion in this study. As
introduced in Ref. [16], the relationship between the 90/10 criterion
accuracy and the combined sampling and modelling uncertainty is
characterised by
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p ¼ z� U

Y
; (12)

where p is the relative precision and z is the z score related to a
confidence level [16].

Let an M&V project have I sampling strata and J models for the
baseline adjustment, it is expected to find the optimal sample size
n�i in each sampling stratum and the optimal accuracy level CVm�

i
for each baseline model that achieves the desired M&V accuracy
with the minimal M&V cost. This is an optimisation problem that
aims to find the optimal solutions l ¼ ðCVm�

1;…;CVm�
J ;n

�
1;…;n�I Þ,

which minimises the overall M&V cost f ðlÞ

f ðlÞ ¼
XJ
j¼1

601040CVm�0:591
j þ

XI
i¼1

ðai þ biÞni þ C0; (13)

where C0 denotes the overhead cost. The objective function is
subject to the constraints

p ¼ z� U

Y
� 10%; (14)

where U is the total uncertainty that is calculated by Eqs. (7)-(11).

3. Case study

In this section, a traffic light retrofit project that has been
implemented in South Africa is used to illustrate the effectiveness
of the proposedM&V costminimisationmodel in handling both the
M&V modelling and sampling uncertainties cost-effectively.

3.1. Project background

A traffic light retrofit project has been implemented in several
municipalities in South Africa that replaces 56 W incandescent
signal lamps with an equal number of 15 W LED signal lights. A
number of 2200 traffic intersections have been retrofitted by more
than 125 000 LED signal lamps. Due to different conditions of
existing traffic light systems, this project includes two types of
lighting retrofit activities, traffic light retrofits and traffic set ret-
rofits. In 1320 traffic intersections, the 56 W signal lamps, which
include red, amber, and green coloured ones, are replaced by the
new 15 W LED lights within a traffic light set. In the remaining 880
traffic intersections, the whole traffic light sets including 4-aspect,
3-aspect, and 2-aspect ones are replaced by new ones with LED
technologies. It is required by local government that the energy
savings of this project must be assessed by the M&V process.

3.2. M&V approach for the case study

In order to reliably quantify the energy savings for this traffic
light retrofit project, the project boundary, metering and sampling
plan, baseline calculation and baseline adjustment approaches
need to be specifically designed.

As introduced in Subsection 3.1, the project boundary includes
all the 2200 traffic intersections and all the LED signal lamps. For
Table 5
Solutions to the case study with optimal sampling only.

Parameters Group I Group II Overall

Non-optimal CV(RMSE) 25% 25% 18.67%
Optimal sample size 37 28 65
Sampling cost R 25 715 R 50 960 R 76 675
Modelling cost R 89 685 R 89 685 R 179 370
Project cost R 115 400 R 140 645 R 256 045
the M&V purpose, it is applicable to measure the daily energy
consumption either in terms of the traffic intersections or indi-
vidual LED signal lamps. In order to reduce the sampling popu-
lation, which will consequently reduce the sample size and
sampling cost, it is decided that the energy consumption per
traffic intersection will be measured. Therefore, the IPMVP Option
C: the whole facility measurement approach is applied to this
M&V case study.

As introduced in Ref. [35], daily energy consumption of traffic
intersections varies in terms of different operation schedules and
lamp quantities. Given the two different traffic light retrofit activ-
ities, the energy consumptions are randomly sampled and recorded
for both types of retrofits at various traffic intersections over a short
period. Based on metered data gathered during test sampling, it is
found that the average energy consumption of the intersections
with individual signal lamp retrofits is 1.91 kWh with a standard
deviation of 0.382 kWh, while the average energy consumption of
intersections with traffic set retrofits is 1.415 kWh with a standard
deviation of 0.708 kWh. According to the test sampling, the sam-
pling CV of the daily energy consumption of the 1320 intersections
is less than 0.2 while the CV of the 880 traffic lamp set retrofit in-
tersections is taken as 0.5. The traffic intersections are classified
into two groups; namely, Groups I and II for stratified sampling
according to the different sampling CV values of each stratum.
Optimal sample sizes will be decided by the model (13)e(14). The
same sample size will be used at both the baseline and post-retrofit
periods. Given different uncertainty levels of the daily energy
consumption, meters with different functions and prices will be
installed at randomly selected intersections from each stratum. The
price for the meter procurement and installations can be obtained
from meter suppliers.

There are two traffic light baseline modelling approaches
introduced in Ref. [35] as shown in Equations (15)-(16). The daily
energy consumption per intersection can be formulated as the
quantity of each type of signal lamp in terms of different lamp
colours. For instance, the daily energy consumption per intersec-
tion E1 can be denoted by

E1 ¼ b0 þ b1Rn þ b2Yn þ b3Gn; (15)

where b0, b1, b2, and b3 are regression coefficients; Rn, Yn, and Gn

are the quantity of Red, Yellow, and Green signal lamps, respec-
tively. Alternatively, the energy consumption for the traffic set
retrofit is given as

E2 ¼ a0 þ a1A2n þ a2A3n þ a3A4n þ a4Arn; (16)

where a0, a1, a2, a3 and a4 are regression coefficients; A2n and A3n
denote the quantity of 2-aspect and 3-aspect traffic light sets,
respectively; A4n and Arn denotes the quantity of the 4-aspect fit-
tings with pedestrian signals, and 4-aspect fittings with turning
arrows, respectively.

The baseline energy consumption will be the aggregated energy
consumption of all the intersections in the project multiplied by the
number of days in the baseline measurement period. The two
Table 6
Optimal solutions to the case study.

Parameters Group I Group II Overall

Optimal CV(RMSE) 5.356% 9.233% 4.710%
Optimal sample size 37 28 65
Sampling cost R 25 715 R 50 960 R 76 675
Modelling cost R 222 920 R 161 580 R 384 500
Project cost R 248 635 R 212 540 R 461 175
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baseline models (15)e(16) will be applied for baseline adjustments
under the post-retrofit period.

3.3. Optimal M&V plan for the case study

In order to design a cost-effectively M&V plan for this case
study, M&V professionals need to solve the proposed optimisation
model (13)e(14) with the project specific information, which are
summarised in Table 3. To demonstrate the effectiveness of the
proposed optimisation approach, solutions without optimisation
are calculated as a benchmark for comparison. As mentioned in the
introduction section, there is no existing study that has a cost
analysis in dealing with M&V modelling uncertainties. In the
absence of a direct benchmark to the study, it is proposed that the
optimal solutions be compared with the partially optimised solu-
tions, in order to highlight the effectiveness of the proposed M&V
cost minimisation model. The partial optimal solutions (POS) are
obtained by,

POS1:Optimal modelling but non-optimal sampling
approach. In this approach, the optimal modelling accuracy
is assigned but the sample sizes are not optimised and
Fig. 4. Sample size when samp
calculated by the sample size determination formula as given
in Ref. [38],

n0 ¼ z2cv2

p2
:

POS2:Optimal sampling but non-optimal modelling
approach. In this approach, the optimal sample sizes are
designed but the model accuracy is not optimised. The ASHRAE
M&V guidelines 3 recommends that the IPMVP: Option C
baseline models should have a poorest CV(RMSE) of 25%. Thus
the CV(RMSE) of 25% is chosen in this approach to establish the
benchmark.

The initial values in Table 3 are used to calculate both the
optimal and partial optimal solutions. The results for POS1 and
POS2 are presented in Tables 4 and 5.

To obtain the optimal solutions, the M&V cost minimisation
model in Eqs. 13 and 14 is solved using the case study specific in-
formation given in Table 3. The optimisation problem in Eqs. 13 and
14 is a non-linear problem and it is solved using “MATLAB”
ling uncertainties change.
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simulation software, specifically the fmincon optimisation function.
The following settings are employed for the optimisation function:
the tolerance on the function value, tolfun, the tolerance on the
constraints, tolcon, and the termination tolerance on the design
variables, tolx are all set to 10�45. The optimal sample sizes are
integers which are obtained using integer programming algo-
rithms. Because this study deals with the practical problem of
minimising M&V project cost, real-valued sample sizes are used for
the optimisation. Once the optimal solution is found, the ceil
function is applied to the sample size to obtain the rounded integer
sample sizes. Mathematically, the rounded sample sizes are only
sub-optimal solutions. Henceforth, the terms optimal/optimise and
minimal/minimise refer to the rounded sub-optimal solutions. The
starting point of the optimisation is arbitrarily chosen as
l0 ¼ (35,100,50,50). With lower bounds lb ¼ (0,0,0,0) and upper
bounds ub ¼ (∞, ∞, ∞, ∞). The optimal solutions to the case study
are given in Table 6.

In Tables 4e6, the overall modelling CV(RMSE) is calculated by
the total modelling uncertainty Um over the weighted average daily
energy consumption Y . When comparing the results in Tables 4 and
6, the optimal solutions reduce the sampling cost by 42% and the
total M&V cost by 11% against the solutions obtained by the POS1.
The results given in Table 5 offers a lower M&V cost than the
optimal solution. However, as the model accuracy in Table 5 is
much lower than the optimal model accuracy, the solutions in
Table 5 cannot satisfy the required 90/10 criterion for the M&V
reporting.

4. Model analysis and discussion

The optimal solutions to the case study in Section 3 illustrate the
advantageous performance of the proposed M&V cost optimisation
model in designing an optimal M&V plan for a specific traffic light
retrofit M&V project. In order to test the applicability and flexibility
of the proposed model for the cost-effective design of similar traffic
light projects, simulations have been carried out to evaluate the
model performance when applying the model to M&V projects
with different characteristics. In addition, the simulations also aim
to demonstrate flexibility of the proposed optimisation model in
designing optimal M&V plan. For instance, some possible optimal
solutions may require very high modelling accuracy with relatively
low requirements on sampling accuracy, which are not easily
implementable. In this case, it is expected that more easily imple-
mentable optimal solutions, i.e., a lower modelling accuracy with
greater sample sizes will be found to satisfy the M&V accuracy.

In the case study, the estimated sampling uncertainty is
CVRef ¼ {0.2, 0.5}, which represents cv1 ¼ 0.2 and cv2 ¼ 0.5 in the
two traffic light strata. In order to investigate flexibility and the
model performance against different sampling uncertainties, the
first simulations are carried out as follows: the optimal solutions
obtained with CVRef ¼ {0.2, 0.5} are taken as a reference. Then CVRef
is changed by ±10%, ±20%, and ±50%. The settings for the optimi-
sation are kept the same as given in the case study.

In the first simulation, the sample sizes namely, n1 ¼ 37 and
n2 ¼ 28, are assigned to the two traffic light strata. When the
sampling uncertainties change, the optimal accuracy levels of the
baseline models are obtained and presented in Fig. 3. It shows that
when sampling uncertainty increases, more accurate models are
required if the sampling efforts are limited. In the second simula-
tion, the model accuracy namely, CVm1 ¼ 5.356% and
CVm2 ¼ 9.233% are assigned to the two traffic light strata. When the
sampling uncertainties change, the optimal sample sizes are ob-
tained and presented in Fig. 4. It shows that when sampling un-
certainty increases, more sample sizes are required if the modelling
efforts are limited.
From the simulation results, it is clear that a trade-off is possible
between the modelling accuracy and the sampling accuracy. The
proposed optimisation model is able to provide the M&V practi-
tioner the choices of having a more accurate baseline model with
fewer sample sizes, or a less accurate baseline model with greater
sample sizes to achieve the same M&V accuracy requirements.

5. Conclusion

A method to handle the major M&V uncertainties; namely, the
modelling and sampling uncertainties in M&V cost-effectively, has
been developed. The proposed model offers optimal suggestions in
allocating budget and efforts that need to be spent on handling the
M&V sampling and modelling uncertainties. This offers the M&V
practitioner an avenue to control the M&V cost during the project
planning phase. An optimal M&V plan that satisfies the desired
M&V accuracy is designed using the proposed M&V cost mini-
misation model for a traffic light retrofit project as a case study.
Results from the case study show that the optimal M&V plan re-
duces the sampling cost by 42% and the total M&V cost by 11%
against the solutions obtained by partial optimisation, which
demonstrates the effectiveness of the proposed model. The flexi-
bility of the proposed model is also tested and revealed by the
simulation results.
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