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Dynamics of Discrete-Time Sliding-Mode-Control
Uncertain Systems With a Disturbance Compensator

Shaocheng Qu, Member, IEEE, Xiaohua Xia, Fellow, IEEE, and Jiangfeng Zhang

Abstract—In this paper, dynamical behaviors of the discrete-
time sliding-mode-control (DSMC) uncertain systems are studied.
First, a discrete reaching law with a disturbance compensator
is presented, and a sliding-mode controller is designed by using
the proposed reaching law. Second, the time steps for the system
trajectories to converge to the switching manifold are found. Then,
a quasi-sliding-mode domain (QSMD) of the DSMC uncertain sys-
tems is obtained, and the system dynamics of the DSMC systems
in QSMD are described. Finally, numerical simulations are given
to demonstrate the effectiveness of the proposed strategies.

Index Terms—Discrete-time uncertain systems, disturbance
compensator (DSMC), dynamics, reaching law, sliding-mode
control (SMC).

I. INTRODUCTION

A S a general design approach for robust control sys-
tems, sliding-mode-control (SMC) strategies have re-

ceived wide attention, and the relevant results can be found
in various publications [1]–[4], [22], [29]–[31]. The need for
research in discrete-time SMC (DSMC) systems is evident. A
primary reason is that most controllers nowadays are imple-
mented in discrete time. Usually, there are two types of DSMC
systems: one associated with the SMC of discrete-time systems
[5]–[7], [9]–[15] and the other resulting from discretization of
the SMC of continuous-time systems [16]–[25].

DSMC systems cannot be directly transformed from their
continuous counterparts by means of simple equivalence [9].
Recently, some intrinsic dynamic properties within the dis-
cretized SMC systems have been found, such as periodic orbits
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[16]–[21] and delta modulation effects in the sliding direction
[18]. The SMC of discrete-time systems is important, particu-
larly when the implementation of the controller is realized by
using computers with relatively low sampling frequencies [5]–
[7], [9]–[15].

Some of the work on the DSMC systems focuses on the
reaching conditions of the DSMC systems. There are normally
two types of reaching conditions: the inequality conditions [5]–
[7] and the equality conditions [8]–[12], [14]. Gao and Hung [8]
propose a reaching law which is based on the equality type of
the reaching conditions; then, an SMC controller is designed
by using the reaching law. Gao et al. [9] further develop a
discrete reaching law, which can steer the switching function
to converge to the switching manifold in finite time and, then,
to undergo a zigzag motion in the vicinity of the switching
manifold. A notion of the quasi-sliding mode (QSM) in the
vicinity of the switching manifold is developed in [9].

Usually, the system trajectories of the DSMC systems cannot
reach the origin but only tend to reach a chattering surrounding
the origin [9], [10]. There are some methods developed to alle-
viate the chattering. A reaching law is developed to overcome
the chattering in [11]. A strategy combining the reaching law
and the fast-output-sampling method with output feedback is
developed in [12]. A two-scale reaching law with Euler velocity
estimation is proposed in [14]. A no-switching type of DSMC
is discussed, and an o(T 2) boundary layer in the vicinity of
the switching manifold is found in [15]; however, such a layer
is inevitable for any sampled-data systems by nature of the
zero-order-holder (ZOH) sampling method. By redefining a
multivalued sign function, a chattering-free digital SMC with
state observer and disturbance rejection is presented in [23]–
[25]. There have been other efforts to reduce the chattering,
such as state observers, disturbance compensators, and adaptive
techniques [13], [14].

The objectives of this paper are to develop a discrete reach-
ing law with a disturbance compensator and to describe the
dynamics of the DSMC uncertain systems designed by using
the proposed reaching law. First, a measure of the uncertain
parameters and external disturbances is established by the
deviations between the switching function and the reaching law,
and a discrete reaching law with a disturbance compensator is
presented. Second, the time steps for the system trajectories
to converge to the switching manifold are found, and a QSM
domain (QSMD) of the closed-loop SMC system is obtained.
Third, the system dynamics of the closed-loop system in the
vicinity of the switching manifold are described. Finally, simu-
lation examples are given to verify the theoretical results.
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II. SYSTEM DESCRIPTION

Consider a general description of an uncertain single-input
system

ẋ = Ax+Bu+Df (1)

where x ∈ Rn is the state, u ∈ R1 is the control, the general-
ized uncertainty f ∈ Rl includes the variations of system pa-
rameters, control uncertainties, and external disturbances, and
A, B, and D are constant matrices of appropriate dimensions.
The following assumptions are needed throughout this paper.

Assumption I: The pair (A,B) is completely controllable.
Assumption II: The generalized uncertainty is smooth and

bounded.
Assumption III: The generalized uncertainty satisfies the

matching condition [1], i.e.,

rank[B,D] = rank[B]. (2)

To alleviate chattering, a discrete-time approach which takes
the sample-hold effects into account is necessary. By applying
control through a ZOH sampling, i.e., u(t) = u(k) for time t ∈
[kT, (k + 1)T ], where T is the sampling period, the discrete-
time representation of the system (1) with the ZOH is written as

xk+1 = Φxk + Γuk + dk (3)

where xk = x(kT ), uk = u(kT ), dk = d(kT ), Φ = eAT ,
Γ =

∫ T

0 eAτdτB, and dk =
∫ T

0 eAτDf((k + 1)T − τ)dτ .
It should be pointed out that dk in (3) is obtained under

the assumption that Df in (1) is considered constant over the
sampling period, i.e., the matched condition after discretization
only holds in the sense of approximation.

The switching function is defined as

sk = Cxk (4)

where the vector C ∈ R1×n is to be designed such that the
system will achieve the desired dynamics when traveling along
the switching manifold

S = {xk|Cxk = 0}. (5)

Similar to the case of continuous-time systems, once system
(3) reaches the switching manifold (5) and is maintained on
it, the order of the closed-loop system (3) will be reduced to
(n− 1). The desired dynamics of the sliding mode, governed
by this (n− 1) order system, can be designed by an appropriate
choice of vector C. Furthermore, CΓ �= 0 is assumed.

The control objective is to steer the system trajectories to
converge toward the switching manifold S defined in (5) and
also to travel to the origin along the switching manifold S.

Now, let us specify how the QSM and the reaching condition
are understood in this paper.

Definition 1: System (3) is said to be in a QSM in the Δ
vicinity of the switching manifold (5) if a motion of the system
(3) satisfies {xk||Cxk| ≤ Δ} for all k ≥ k∗ (k∗ is a constant
integer). The specified space domain where the QSM occurs

is called the QSMD, and the positive constant Δ is called the
width of the QSMD.

Definition 2: System (3) is said to satisfy the reaching condi-
tion of the QSM in the Δ vicinity of the switching manifold (5)
if the following conditions hold: When sk > Δ, then −Δ ≤
sk+1 < sk; when sk < −Δ, then sk < sk+1 ≤ Δ; and when
|sk| ≤ Δ, then |sk+1| ≤ Δ.

The following result is needed in the proof of Lemma 2.
Lemma 1 [18], [28]: For a 1-D delta-modulated feedback

system in the form of a discrete-time dynamics, x+ = f(x)
Δ
=

ax−Δsgn(ax), where x+ denotes the system state at the next
discrete-time step, a is a real number, and sgn(x) is defined as

sgn(x) =

{
1, if x ≥ 0
−1, if x < 0.

The following results are valid.

1) If |a| = 1, then Ω = [−Δ,Δ] is a global attractor on
(−∞,∞).

2) If |a| < 1, then the global attractor Ω is a set of two
points: {−Δ/(1 + |a|),Δ/(1 + |a|)}.

3) If 0 ≤ a < 1, then two points {−Δ/(1 + |a|),Δ/(1 +
|a|)} are two-periodic points; if −1 < a < 0, then two
points {−Δ/(1 + |a|),Δ/(1 + |a|)} are (one-periodic)
fixed points.

III. DESIGN OF THE DSMC SYSTEMS WITH THE

PROPOSED REACHING LAW

The design of the DSMC systems includes the following two
steps.

1) Determine a sliding-mode controller uk and a switching
function (4) such that the closed-loop system (3) satisfies
the reaching condition in Definition 2. It shows that the
closed-loop system will be forced to the QSMD defined in
Definition 1. Furthermore, once entering into the QSMD,
the system trajectories of the closed-loop system will stay
within QSMD and never escape it.

2) Further design a switching function (4) such that the
closed-loop system (3) restricted to the switching man-
ifold (5) is asymptotically stable.

Gao et al. developed a discrete reaching law in [9]. On the
one hand, a sliding-mode controller can be synthesized by this
reaching law. On the other hand, it not only can guarantee that
the closed-loop system satisfies the reaching condition but also
can be directly used to dictate the dynamics of the switching
function of the closed-loop SMC system.

A. New Reaching Law With a Disturbance Compensator

The following new reaching law with a disturbance compen-
sator is proposed:

sk+1 = (1− qT )sk − εT sgn(sk) + Cdk

−
k∑

i=2

{si − [(1− qT )si−1 − εT sgn(si−1)]} (6)
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where T is the sampling period, ε > 0 is a switching param-
eter, q > 0 is a converging parameter, and 0 < 1− qT < 1 is
required. It is assumed that the change rate of the generalized
uncertainty dk is bounded as follows:

δk
Δ
=C(dk − dk−1) (7)

|δk| ≤ δ ≤ εT, k = 0, 1, 2, . . . . (8)

It implies that the uncertainties are assumed to be slowly time
varying.

It follows from (6) that

sk = (1− qT )sk−1 − εT sgn(sk−1) + Cdk−1

−
k−1∑
i=2

{si − [(1− qT )si−1 − εT sgn(si−1)]} (9)

k∑
i=2

{si − [(1− qT )si−1 − εT sgn(si−1)]

= sk − [(1− qT )sk−1 − εT sgn(sk−1)]

+

k−1∑
i=2

{si − [(1− qT )si−1 − εT sgn(si−1)]} . (10)

Substituting (9) into (10) yields

k∑
i=2

{si − [(1− qT )si−1 − εT sgn(si−1)] = Cdk−1. (11)

Equation (11) shows that the accumulated deviations be-
tween the switching function si and (1− qT )si − εT sgn(si)
reveal the generalized uncertainty at the k − 1 steps. Su et al.
[15] and Morgan and Özgüner [26] predict and replace dk−1

by xk − Φxk−1 − Γuk−1 in (11), and it is successfully imple-
mented for robotics manipulators in [27].

Substituting (11) into (6), we obtain an explicit expression of
the proposed reaching law (6)

sk+1 = (1− qT )sk − εT sgn(sk) + C(dk − dk−1) (12)

which will be discussed later.

B. Design of a Sliding-Mode Controller

In the following, a sliding-mode controller for DSMC un-
certain systems is designed by using the proposed reaching
law (6).

Substituting the system dynamics (3) into the switching
function (4) yields

sk+1 =Cxk+1

=CΦxk + CΓuk + Cdk. (13)

Comparing (13) to the improved reaching law (6) gives

sk+1 =(1− qT )sk − εT sgn(sk) + Cdk

−
k∑

i=2

[si − (1− qT )si−1 + εT sgn(si−1)]

=CΦxk + CΓuk + Cdk.

Note that CΓ �= 0; the controller uk can be solved from the
previous equation

uk = −(CΓ)−1

{
CΦxk − (1− qT )sk + εT sgn(sk)

+

k∑
i=2

[si − (1− qT )si−1 + εT sgn(si−1)]

}

(14)

which is the sliding-mode controller designed by using the
proposed reaching law (6). Note that the controller (14) does
not depend on the uncertainties and therefore can be directly
implemented.

Under the assumption

|C(dk − dk−1)| = 0 (15)

the proposed reaching law (6) is simplified to the following
reaching law [9, eq. (11)]:

sk+1 = (1− qT )sk − εT sgn(sk). (16)

Moreover, the sliding-mode controller (14) is reduced to the
following sliding-mode controller [9, eq. (20)]:

uk = −(CΓ)−1 [CΦxk − (1− qT )sk + εT sgn(sk)] . (17)

Remark 1: Comparing (6) and (16), it is noted that only
iterative terms are added in the proposed reaching law (6).
Furthermore, the iterative terms only consist of the historical in-
formation. It shows that all attributes of the reaching law in [9]
are preserved. Compared to (17), only accumulated deviations
are added in controller (14). This is very convenient when the
proposed controller (14) is implemented by microprocessors.

Remark 2: Some other novel techniques on the reaching law
can be incorporated into the proposed reaching law (6). For
example, the two-scale reaching law in [14] can be applied to
the proposed reaching law (6) by adding an adjusting parameter
to εT in (6) (see [14, eq. (22)]). Nevertheless, it should be
pointed out that the discrete dynamics (12) and (16) cannot
reach the origin in view of the traditional definition of the sgn
function in Lemma 1.

IV. SYSTEM DYNAMICS OF THE DSMC SYSTEM WITH

THE PROPOSED REACHING LAW

The DSMC systems designed by using the reaching law
are not asymptotically stable, i.e., the system trajectories do
not converge to zero asymptotically due to the switching with
a finite frequency and system uncertainties. It will be shown
hereinafter that, under certain conditions, system (3) with the
switching manifold (5) and controller (14) is stable and the
system trajectories are bounded.

If the generalized uncertainty dk satisfies (15), i.e., dk is zero
or constant, the following Lemma 2 can be obtained.

Lemma 2: Consider the system (3) with the assumption (15);
if the sliding-mode controller (14) is implemented, then the
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system trajectories of the closed-loop system (3) from any
initial state will converge to the QSMD defined by

sΔ1 =

{
xk||Cxk| ≤

εT

2− qT

}
(18)

and the following two points at the two ends of the QSMD{
−εT

2− qT
,

εT

2− qT

}
(19)

are a global two-periodic attractor.
Proof: If the controller (14) is implemented for the sys-

tem (3) with assumption (15), the dynamics of the switching
function (4) of the closed-loop system (3) will be completely
described by the reaching law (16). According to the aforemen-
tioned Lemma 1(b) and Lemma 1(c), and noting the assumption
0 < 1− qT < 1, the proof is straightforward.

Remark 3: If the sampling period T is sufficiently small,
then the QSMD (18) will be very close to the switching man-
ifold (5). Moreover, the system trajectories in steady state will
approach the origin. It should be indicated that the same con-
clusion (18) is found with a different method by Bartoszewicz
in [10].

In the following, we divide the discussions on the dynamics
of the DSMC uncertain system into two parts: One is how
many steps that the system trajectories need to converge to the
QSMD, and the other is system dynamics in the vicinity of the
switching manifold.

A. Convergence of System Trajectories Toward QSMD

Theorem 1: Consider system (3) with assumptions (7) and
(8); if the controller (14) is implemented, then the trajectories of
the switching function (4) from any initial state will first cross
the switching manifold (5) within k∗ + 1 steps at most, where
k∗ = �m∗

1st	

m∗
1st = log(1−qT )

(
εT − δ

εT − δ + qT |s0|

)
. (20)

s0 is an initial point of the switching function, and �m∗
1st	

denotes the floor operation, i.e., the maximal integer bounded
below the real number m∗

1st.
Proof: When the controller (14) is implemented for the

system (3) with assumptions (7) and (8), the dynamics of the
switching function of the closed-loop system will be described
by (12). From (12) and (7), it yields that

sk+1 = (1− qT )sk − εT sgn(sk) + δk. (21)

In the following, we prove the theorem by contradiction
according to (21).

Assume that there is an initial state, resulting in the ini-
tial point s0 of the switching function (4), such that s0, s1,
. . . , sk∗+1 do not change signs. There are two cases: s0 ≥ 0
and s0 < 0.

Case I: Assume that s0 ≥ 0, and the system trajectories from
the initial state do not cross the switching manifold in

k∗ + 1 number of steps, i.e., sm are nonnegative for all
m ≤ k∗ + 1. It follows from (21) and (8) that

s1 =(1− qT )s0 − (εT − δ0)

s2 =(1− qT )s1 − εT + δ1

=(1− qT )2s0 − (1− qT )(εT − δ0)− (εT − δ1)

...

sm =(1− qT )sm−1 − εT + δm−1

=(1− qT )ms0 − (1− qT )m−1(εT − δ0)− · · ·

− (1− qT )(εT − δm−2)− (1− qT )0(εT − δm−1)

= (1− qT )ms0 −
m−1∑
i=0

(1− qT )m−1−i(εT − δi)

≤ (1− qT )ms0 −
m−1∑
i=0

(1− qT )m−1−i(εT − δ)

= (1− qT )m|s0| − (εT − δ)
1− (1− qT )m

qT
.

Noting assumption (8) and that 0 < 1− qT < 1, it is
straightforward to verify that the real number m∗

1st in (20)
satisfies

(1− qT )m
∗
1st |s0| − (εT − δ)c

1− (1− qT )m
∗
1st

qT
= 0.

It follows from k∗ = �m∗
1st	 that

sk∗+1 ≤ (1− qT )k
∗+1|s0| − (εT − δ)

1− (1− qT )k
∗+1

qT

< (1− qT )m
∗
1st |s0| − (εT − δ)

1− (1− qT )m
∗
1st

qT

=0

which contradicts the assumption that sm ≥ 0 is nonnega-
tive for all m ≤ k∗ + 1.

Case II: Assume that s0 < 0, and sm is negative for all m ≤
k∗ + 1; similarly, it follows that

sm =(1− qT )ms0 +
m−1∑
i=0

(1− qT )m−1−i(εT + δi)

≥ (1− qT )ms0 +
m−1∑
i=0

(1− qT )m−1−i(εT − δ)

= −
[
(1− qT )m|s0| − (εT − δ)

1− (1− qT )m

qT

]
.

It can also be verified that the real number m∗
1st in (20)

satisfies

(1− qT )m
∗
1st |s0| − (εT − δ)

1− (1− qT )m
∗
1st

qT
= 0.
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It follows from k∗ = �m∗
1st	 that

sk∗+1 ≥ − (1− qT )k
∗+1|s0|+ (εT − δ)

1− (1− qT )k
∗+1

qT

> − (1− qT )m
∗
1st |s0|+ (εT − δ)

1− (1− qT )m
∗
1st

qT

=0

which is again a contradiction to the assumption that sm is all
negative for all m ≤ k∗ + 1.

The aforementioned two cases show that k∗ = �m∗
1st	 is the

smallest integer such that the system trajectories are guaranteed
to first cross the switching manifold (5) within k∗ + 1 steps.
The proof of Theorem 1 is completed.

If δ = 0, (20) is reduced to

m∗∗
1st = log(1−qT )

(
ε

ε+ q|s0|

)
(22)

which shows that the system trajectories in Lemma 2 will first
cross the switching manifold (5) in �m∗∗

1st	+ 1 number of steps
and eventually enter into the global two-periodic orbit (19)
within the QSMD defined by (18).

B. System Dynamics in the Vicinity of the Switching Manifold

According to Theorem 1, the system trajectories from any
initial state will cross the switching manifold in a finite number
of steps. The following results characterize the system dynam-
ics of the closed-loop system (3) in the vicinity of the switching
manifold.

Theorem 2: The following results hold for the system (3)
with assumptions (8) and controller (14).

1) The system trajectories from any initial state will enter
into a QSMD defined by

sΔ2 = {xk||Cxk| ≤ εT + δ} (23)

i.e., the QSMD is globally attractive for the switching
function of the closed-loop system.

2) Once the system trajectories enter into the QSMD, they
cannot escape it.

3) Any system trajectories in QSMD will cross the switch-
ing manifold repeatedly within each k∗∗ + 1 new steps,
where k∗∗ = �m∗

2	 and

m∗
2 = log(1−qT )

(
εT − δ

εT − δ + qT (εT + δ)

)
. (24)

Proof: In a similar way as in the proof of Theorem 1, we
can prove that the dynamics of the switching function of the
closed-loop system (3) are described by (12).

1) If sk > 0, it follows from (8) that

sk+1 =(1− qT )sk − εT + δk

<sk − εT + δk < sk

namely, the sequence {sk} is decreasing as long as
sk > 0. Similarly, it can be proved that the sequence {sk}

is increasing as long as sk < 0. According to Theorem 1,
the sequence {sk} will cross the switching manifold in a
finite number of steps. Assuming that the sequence {sk}
does not enter into the QSMD, then there are only two
situations, i.e., there exists a positive integer l such that
Case I: s0 > s1 > . . . > sl > 0, but sl+1 < −(εT + δ)

or
Case II: s0 < s1 < . . . < sl < 0, but sl+1 > (εT + δ).

In Case I, it follows that

sl+1 = (1− qT )sl − εT + δl

but

sl+1 < −εT − δ.

This is impossible, since sl > 0 and |δl| ≤ δ ≤ εT . Sim-
ilarly, Case II is also impossible. It follows that the
sequence {sk} will enter into the QSMD, i.e., the sys-
tem trajectories from any initial state will enter into the
QSMD defined by (23). The proof of Theorem 2(a) is
completed.

2) By Theorem 2(a), the system trajectories from any initial
state will enter into a QSMD. When 0≤sk≤εT+δ, then

sk+1 = (1− qT )sk − εT + δk ≥ −εT − δ

also

sk+1 =(1− qT )sk − εT + δk

≤ εT + δ − εT + δk ≤ εT + δ.

When −(εT + δ) ≤ sk < 0, then

sk+1 = (1− qT )sk + εT + δk ≤ εT + δ

also

sk+1 =(1− qT )sk + εT + δk

≥ −(εT + δ) + εT + δk ≥ −(εT + δ).

It can be concluded from the aforementioned two cases
that, once the system trajectories enter into the QSMD,
they never escape it.

3) According to Theorem 2(a) and Theorem 2(b), the system
trajectories will enter into the QSMD defined in (23)
and never escape it. Assuming the worst case when
s0 = ±(εT + δ) in (20), it is then straightforward to
obtain the conclusion (24).

This completes the proof of Theorem 2.
In the following, we consider a special case: once the system

trajectories have crossed the switching manifold, they will also
cross the switching manifold in each successive step. This
motion can adequately exhibit robust control of the DSMC
systems [9], [10]. It is interesting to further characterize this
behavior within the QSMD.
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The aforementioned description can be characterized as
follows:

sgn(sk+2) = −sgn(sk+1) = sgn(sk). (25)

It follows from (12) that

sk+2 =(1− qT )sk+1 − εT sgn(sk+1) + C(dk+1 − dk)

= (1− qT ) [(1− qT )sk − εT sgn(sk) + C(dk − dk−1)]

− εT sgn(sk+1) + C(dk+1 − dk)

= (1− qT )2sk + qTεT sgn(sk)

+ (1− qT )C(dk − dk−1) + C(dk+1 − dk). (26)

It can be concluded from (26) that the sk+2 and sk will have
the same signs if the following condition holds:

|(1− qT )C(dk − dk−1) + C(dk+1 − dk)| ≤ qTεT. (27)

Solving (27) yields

δ ≤ qTεT

2− qT
. (28)

Remark 4: Assume that the uncertainty boundary δ in (8)
satisfies (28), once sk has crossed the switching manifold
(5), then it also will cross the switching manifold (5) in all
successive steps within the QSMD defined by (23). If the
uncertainty boundary does not satisfy (28), it cannot maintain
to cross the switching manifold in all successive steps, but the
system trajectories still stay within QSMD defined by (23).

Finally, let us consider the system states of the closed-loop
system.

Theorem 3: If the vector C in (4) is chosen such that ‖M‖ <
1, where M = Φ− Γ(CΓ)−1CΦ, and the uncertainty dk is
bounded as ‖dk‖ ≤ ζ, then the system states of the SMC system
(3) with control (14) are bounded by

‖x∞‖ ≤ Ψ(1− ‖M‖)−1 (29)

where Ψ = ‖Γ(CΓ)−1‖[(1− qT )(δ + εT ) + εT ]+ζ(1 +
‖Γ(CΓ)−1C‖).

Proof: Substituting control (14) into the system (3) yields

xk+1 = Mxk +Wk + Vk (30)

where

Wk =Γ(CΓ)−1 [(1− qT )sk − εT sgn(sk)]

Vk = dk − Γ(CΓ)−1Cdk−1.

Since dk is bounded by ‖dk‖ ≤ ζ, then

‖Vk‖ ≤ ζ
(
1 +

∥∥Γ(CΓ)−1C
∥∥) . (31)

Furthermore, once the system trajectories have entered into the
QSMD, then

‖Wk‖ ≤‖Γ(CΓ)−1‖[(1− qT )‖sk‖+ εT ]

≤‖Γ(CΓ)−1‖[(1− qT )(δ + εT ) + εT ]. (32)

Noting definition Ψ, it follows from (30) that

‖xk+1‖ = ‖Mxk +Wk + Vk‖
≤‖M‖‖xk‖+ ‖Wk‖+ ‖Vk‖
≤‖M‖‖xk‖+Ψ

iterating it for n times from the kth step, we have

‖xk+n‖ ≤ ‖M‖n‖xk‖+Ψ

n−1∑
i=0

‖M‖n−1−i. (33)

Therefore, if ‖M‖ < 1, it follows from (31)–(33) that the
state trajectories of the SMC system in steady state will be
bounded by (29). This completes the proof of Theorem 3.

V. NUMERICAL EXAMPLES

Consider the second-order system with time-varying uncer-
tainties in the form of (1), where

A =

[
0 1
5 −2

]
b =

[
0
1

]

Df =

[
0

a (1 + 2.2 cos(0.5πt))

]

and a is an adjustable parameter. The initial state is assumed as
x(0) = [2.1 1]T.

The sampling period is chosen as T = 0.1. Then, the
discrete-time representation of the system with ZOH sampling
is obtained as

xk+1 = Φxk + Γuk + dk (34)

where

Φ =

[
1.02351 0.09139
0.45696 0.84073

]
Γ =

[
0.00470
0.09139

]

dk = a×
[
0.10080 0.00470
0.02351 0.09139

] [
0

1 + 2.2 cos(0.5πKT )

]

and C = [1 1] in (4).
In the following, we discuss the system dynamics in three

cases.

Case I: Consider the system (34) with an adjustable parameter
a = 0 (i.e., dk = 0); when the control (14) with parameters
q = 5 and ε = 3 is implemented, then the switching func-
tion of the closed-loop SMC system is shown in Fig. 1.
Here, the big switching parameter ε = 3 is chosen so as
to show the dynamics depicted by Lemma 2. As stated by
Lemma 2, the system trajectories starting from the initial
state enter into the QSMD sΔ1 = {xk||Cxk| ≤ 0.2} as
defined in (18), and the two points {−0.2, 0.2} at the two
ends of the QSMD are a global two-periodic attractor.
Moreover, it can be observed from Fig. 1 that the system
trajectories first cross the switching manifold in k∗∗ + 1
number of steps, where k∗∗ = 2 is the maximal integer
bounded below the real number 2.7370.
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Fig. 1. Switching function with the reaching law in case I.

Fig. 2. Switching function with the reaching law in case II.

Case II: When the control (17) with parameters q = 5 and ε = 1
is implemented for the system (34) with an adjustable pa-
rameter a = 1, then the switching function, system states,
and controller are shown in Figs. 2–4, respectively. When
the proposed SMC (14) with the same parameters is im-
plemented, then the switching function, system states, and
controller are shown in Figs. 5–7, respectively. By compar-
ison, we can observe that the dynamics of the closed-loop
system designed by using the proposed reaching law are
effectively improved in the presence of uncertainties.

The uncertainty boundary δ = 0.033070 in (8) sat-
isfies the condition (28), i.e., δ ≤ (qTεT/2− qT ) =
0.033333; Fig. 5 confirms Remark 4 that, once sk has
crossed the switching manifold, it maintains to cross the
switching manifold in all subsequent steps. The QSMD
is defined as sΔ2 = {xk||Cxk| ≤ δ + εT = 0.13307} by
(23) in Theorem 2.

It should be indicated that the long sampling period
T = 0.1 is chosen in order to clearly exhibit the system

Fig. 3. System states with the reaching law in case II.

Fig. 4. Controller with the reaching law in case II.

Fig. 5. Switching function with the improved reaching law in case II.

dynamics of the closed-loop system. If the sampling period
T = 0.01 and the same control parameters q = 5 and ε = 1
are implemented, then the magnitude of the controller will
be alleviated as Fig. 8.
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Fig. 6. System states with the improved reaching law in case II.

Fig. 7. Controller with the improved reaching law in case II.

Case III: Consider the system (34) with an adjustable parameter
a = 1.05; when the proposed SMC (14) with parameters
q = 5 and ε = 1 is implemented, the switching function
of the closed-loop system is shown in Fig. 9. Because
the uncertainty boundary δ = 0.034723 in (8) and it does
not satisfy the condition (28), i.e., δ > (qTεT/2− qT ) =
0.033333, it is observed from Fig. 9 that the sequence {sk}
does not maintain to cross the switching manifold in all
subsequent steps, but it still lies in the QSMD defined by
sΔ2 = {xk||Cxk| ≤ δ + εT = 0.13472} by (23) in Theo-
rem 2; moreover, it is still attracting and invariant.

VI. CONCLUSION

In this paper, a new discrete reaching law with a disturbance
compensator has been presented. A discrete sliding-mode con-
troller is designed by using the proposed reaching law. The
time steps for system trajectories to converge to the switching
manifold are found, and the QSMD of the closed-loop system
is obtained. Furthermore, the system trajectories of the closed-

Fig. 8. Controller with the improved reaching law in the case of the sampling
period T = 0.01 in case II.

Fig. 9. Switching function with the improved reaching law in case III.

loop system in QSMD are described. Future work will focus
on the nonlinear discrete systems with DSMC and industry
applications.
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