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Abstract: Long-range dependence (LRD) is discovered in time series arising from different fields, especially in network traffic
and econometrics. Detecting the presence and the intensity of LRD plays a crucial role in time-series analysis and fractional
system identification. The existence of LRD is usually indicated by the Hurst parameters. Up to now, many Hurst parameter
estimators have been proposed in order to identify the LRD property involved in a time series. Since different estimators have
different accuracy and robustness performances, in this study, 13 most popular Hurst parameter estimators are summarised
and their estimation performances are investigated. LRD processes with known Hurst parameters are generated as the control
data set for the robustness evaluation. In addition, three types of LRD processes are also obtained as the test signals by
adding noises in terms of means, trends and seasonalities to the control data set. All 13 Hurst parameter estimators are
applied to these LRD processes to estimate the existing Hurst parameters. The estimation results are documented and
quantified by the standard errors. Conclusions of the accuracy and robustness performances of the estimators are drawn by
comparing the estimation results.
1 Introduction

The study of long-range dependence (LRD) has received
considerable attention in diverse research areas, such as
agronomy, astronomy, chemistry, economics, engineering,
environmental science, geoscience, hydrology, mathematics,
physics and statistics [1]. The LRD phenomenon is known
as the dependence between observations far away in time.
The presence and intensity of LRD are traditionally
measured by the Hurst parameters, H, introduced by Hurst
[2] during his studies on Nile discharges and problems
related to water storage. The H parameter ranges in (0, 1).
From a physical point of view, H is a measure of
roughness; the roughness or anti-correlation in the signal is
maximal when H is close to zero. White noise with zero
correlation has H ¼ 0.5. Smoother correlated signals have
H near 1.0 [3].

The Hurst parameter has a close relationship with power
law, long memory, fractal, fractional calculus and chaos
theory. Detection of LRD is crucial to time-series analysis,
especially to fractional system identification and prediction
[4]. Many methods for estimating H are proposed in the
literature. For instance, the oldest and most common
method is the re-scaled range (R/S) method [5]. The
aggregated variance method [6] is based on a dispersional
analysis. The periodogram method [7] is the linear
regression of the log periodogram. The Whittle estimator
[8] is obtained by minimising the objective function based
on the periodogram. Abry and Veitch’s [9] method is a
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wavelet-based analysis tool of H. Higuchi’s [10] method is
based on fractal theory. Most of the above-mentioned
estimators are based on linear regression with graphical
analysis, except the whittle estimator.

Different estimators have different accuracy and robustness
performances. Previous studies [4, 6, 8, 11], have made
intensive efforts to compare the accuracy and robustness of
the existing Hurst parameter estimators. In [4], 12 Hurst
parameter estimators are analysed to compare their
robustness against three kinds of noises, namely the 30 dB
signal-to-noise ratio (SNR) white Gaussian noise, 30 dB
SNR stable noise and fractional autoregressive integrated
moving average (FARIMA) with stable innovations. Taqqu
et al. [6], summarise nine Hurst parameter estimators and
compare their performances when they are applied to both
the fractional Gaussian noise (fGn) and FARIMA(0, d, 0)
processes at some determined Hurst parameter values.
Taqqu and Teverovsky [8] concentrate on comparing the
robustness of the Whittle-type estimators; both the Gaussian
innovations and the infinite-variance symmetric stable
innovations are considered. In Ref., [11], the robustness of
Hurst parameter estimators for noisy multifractional
processes, and multifractional processes with infinite
second-order statistics is tested and analysed.

However, none of these studies clearly provides sufficient
information for selecting the most suitable Hurst parameter
estimators to detect the LRD properties involved in a time
series with the presence of means, trends and seasonalities.
In this study, four different LRD processes, namely, LRD
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process with known Hurst parameters, LRD process with
non-zero means, LRD process with linear trends and LRD
process with seasonalities are generated to evaluate the
robustness of existing Hurst parameter estimators. In the
following, 13 most popular existing Hurst parameter
estimators are documented and investigated: (i) R/S method
[5]; (ii) aggregated variance method [12]; (iii) difference
variance method [6]; (iv) absolute value method [5]; (v)
variance of residuals method [6]; (vi) periodogram method
[7]; (vii) modified periodogram method [13]; (viii) Whittle
estimator [8]; (ix) diffusion entropy method [14]; (x)
Kettani and Gubner’s [15] method; (xi) Abry and Veitch’s
[9] method; (xii) Koutsoyiannis’ [16] method; (xiii)
Higuchi’s [10] method. A brief summary for all the above-
mentioned 13 Hurst parameter estimators can be found in
[4]. These estimators are applied to the four LRD processes.
The estimation results are quantified by the standard errors.
The robustness evaluation results show that the presence of
trends and seasonalities has an essential influence on most
of the 13 Hurst parameter estimators. However, Abry and
Veitch’s method exhibits strong robustness to the trends,
whereas the Whittle estimator is not vulnerable to
seasonalities.

This paper is organised as follows. In Section 2,
preliminary studies on LRD property and fGn processes are
reviewed. In Section 3, the test signals are generated and
Hurst parameter estimator evaluation procedures are
provided. Subsequently, the performances of the 13
estimators against means, trends and seasonalities are
investigated and the results are given in both graphic styles
and quantified by the standard errors in Section 4. The
performances of the 13 estimators are summarised in
Section 5.

2 Preliminaries

Preliminaries on LRD and fGn are essential for this study.
Detailed descriptions of these two concepts are provided
below.

2.1 Long-range dependence

A stationary process with finite second-order statistics is said
to have LRD if its covariance function C(n) decays slowly as
n � 1. That is, there exists an a, 0 , a , 1, such that

lim
n�1

C(n)

n−a
= c (1)

where c is a finite, positive constant. That is to say, for large n,
C(n) is similar to c/na [17]. The parameter a has a
relationship to H as a ¼ 2 2 2H. The LRD can also be
defined by the spectral density. A weak stationary time
series Xi is said to be long-range dependent if its spectral
density follows

f (l) � Cf |l|−b (2)

as l � 1, for certain Cf . 0 and real parameter b [ (0, 1).
The parameter b is related to the Hurst parameter by
H ¼ (1 + b)/2 [18]. For 0.5 , H , 1, the process has
LRD, for H ¼ 0.5 the observations are uncorrelated, and for
0 , H , 0.5 the process has short-range dependence and
the correlations sum up to zero.
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2.2 Fractional Gaussian noise

Before testing the Hurst parameter estimators, some control
data set with known Hurst parameters are reqired. The
control data are better synthesised from the first principle of
fractional Brownian motion (fBm), which is a Gaussian
process as defined in [19]. Successive increments of an fBm
are called fGn [19], which is defined as follows.

Let Xi denote a time series. Then Xi is second-order
stationary if its mean value E(Xi) does not depend on i and
if the auto-covariance function E[(Xi 2 E(Xi))(Xj 2 E(Xj))]
depends on i and j only through their difference k ¼ i– j, in
which case one has

g(k) = E[(Xi − E(Xi))(Xi−k − E(Xi−k))] (3)

The variance of the process is s2 ¼ g(0) ¼ E[(Xi 2 E(Xi))
2],

and the autocorrelation function is r(k) ¼ g(k)/s2. A second-
order stationary process is said to be exactly second-order
self-similar with Hurst exponent H [ (0, 1) if

g(k) = (s2/2)(|k + 1|2H − 2|k|2H + |k − 1|2H) (4)

or equivalently

r(k) = 1

2
(|k + 1|2H − 2|k|2H + |k − 1|2H) (5)

If Xi is a Gaussian process, then it is known as an fGn.

3 Test signal generation and Hurst
parameter estimator evaluation procedures

3.1 Test signal generation

In order to evaluate the robustness of the 13 Hurst parameter
estimators against means, trends and seasonalities, test signals
that exhibit the LRD properties with known Hurst parameters
are required as control data sets. For this purpose, fGn time
series, denoted by Fk(t, Hj) with the standard deviation
s ¼ 1 and known Hurst parameters Hj are adopted to
generate the test signals. Four LRD processes are produced
for the robustness evaluation for the 13 estimators. As
shown in (6)

F̃k(t, Ĥj) = Fk(t, Hj) + a + bt + c sin(2pft) (6)

where Ĥj denotes the Hurst parameters that need to be
characterised from the following four LRD processes
that are produced by adjusting the coefficients a, b and c
in (6).

1. LRD 1: LRD processes with known Hurst parameters
F̃k (t, Ĥj) = Fk (t, Hj);
2. LRD 2: LRD processes with non-zero means
F̃k (t, Ĥj) = Fk (t, Hj) + a;
3. LRD 3: LRD processes with linear trends
F̃k (t, Ĥj) = Fk (t, Hj) + bt;
4. LRD 4: LRD processes with seasonalities

F̃k(t, Ĥj) = Fk(t, Hj) + c sin(2pft)

Hj increases from 0.01 to 0.99 in steps of 0.01, j ¼ 1, 2,
. . . ,99; for the estimator evaluation, each of the four LRD
IET Signal Process., 2012, Vol. 6, Iss. 9, pp. 849–856
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processes will be generated 100 times for every Hj, where
k ¼ 1, 2, . . . ,100 represents the kth generated LRD process;
t ¼ 1, 2, . . . ,8760 since the length of an hourly sampled
time series for 365 days in a year is 365 × 24 ¼ 8760.
LRD 1 represents the LRD processes with known Hurst
parameters, LRD 2–4 are the LRD processes with additive
noises in terms of means, trends and seasonalities,
respectively. It is noted that during the evaluation process
of the 13 estimators, the mean, trend and seasonality noises
will only be added separately.

3.2 Hurst parameter estimator evaluation
procedures

In this section, detailed Hurst parameter estimator robustness
evaluation procedures are provided as shown in the flowchart
in Fig. 1. For LRD 1, the Hurst parameters are estimated
by different Hurst parameter estimators by the following
steps:

Step 1: Let j ¼ 1, k ¼ 1 and the temporary variable Hs ¼ 0.
Step 2: In the inner loop of the flowchart, 100 replications of
each of the four LRD processes are generated. For the kth
generated LRD process, Ĥj is estimated by a certain
estimator, and then summed up and stored in Hs.
Step 3: The final estimated Hurst parameter �Hj is the average
of the 100 estimates of Ĥj.
Step 4: For the outer loop, Steps 2 and 3 will repeat 99 times
until all �Hjs are obtained.

During the robust evaluation for each Hurst parameter
estimator, Ĥj of LRD 1 is taken as a benchmark for
comparison purpose. By following similar evaluation
procedures, the final estimated Hurst parameters of LRD 2–
4 can also be obtained. The impact of means, trends and
seasonalities to the 13 estimators can be characterised by
comparing the final Hurst parameter estimates between
LRD 1 and LRD 2–4. For LRD 4, daily seasonalities with
frequency f ¼ 1/24 are generated to add into the LRD 1
processes for the robustness evaluation of the 13 estimators.
In order to achieve a fair comparison of the estimation
performances for the 13 Hurst parameter estimators, the
expectations of a, b and c for LRD 2–4 are calculated,
respectively, as provided in Table 1, where N is suggested

Fig. 1 Flowchart of the Hurst parameter estimator evaluation
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to be a sufficient large number, say 1 000 000; Fk is short
for Fk(t, 0.5).

4 Robustness assessment and comparison

In this section, the robustness evaluation results of the 13
Hurst parameter estimators are provided from Figs. 2–14.
In these figures, the solid lines (in black) are the known
Hurst parameter values Hj as the reference lines. In order to
indicate the severity of the estimation bias, two bias
threshold Hj + 0.03, denoted by solid lines (in grey) are
also plotted in all these figures. The estimated Hurst

Table 1 Initial coefficients for the evaluation

LRD processes Coefficients in (6)

LRD 1 a ¼ 0, b ¼ 0, c ¼ 0

LRD 2 a = (1/N)
∑N

k=1 [max(Fk ) − min(Fk )]

b ¼ 0, c ¼ 0

LRD 3 a ¼ 0, c ¼ 0

b = (1/(N × 8760))
∑N

k=1 [max(Fk ) − min(Fk )]

LRD 4 a ¼ 0, b ¼ 0, f ¼ 1/24

c = (1/N)
∑N

k=1 [max(Fk ) − min(Fk )]

Fig. 2 Estimates of LRD 1–4 by R/S method

Fig. 3 Estimates of LRD 1–4 by aggregated variance method
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parameters Ĥj of different LRD processes are denoted by lines
with different styles and colours. Specifically, the estimates of
LRD 1–4 are represented by a dotted line, a circle line, a
dash–dotted line and a dashed line, respectively.

4.1 R/S method

The estimates by the R/S method for the LRD 1–4 processes
are presented in Fig. 2. The dotted line and the circle line
coincide with each other, which shows that the mean value
does not severely affect the R/S estimator. However,
the estimates for LRD 1 and 2 are biased for almost all
Hurst parameter values (0 , H , 1). Ĥ is apparently
overestimated at around H [ (0, 0.6] and underestimated at
around H [ [0.8, 1). In addition, the dash–dotted line
shows that the estimated Hurst parameters are severely
overestimated. Nevertheless, the dashed line is severely
underestimated. It indicates that the R/S method is robust
neither to the trends nor to the seasonalities.

4.2 Aggregated variance method

The estimates by the aggregated variance method for the
LRD 1–4 processes are presented in Fig. 3. The overlap of
the dotted line and the circle line shows that the mean value
does not influence the aggregated variance estimator. Ĥ of
LRD 1 and 2 is slightly biased at around H [ (0, 0.7).
However, an underestimation appears at around H [ [0.7,
1). However, the dash–dotted line is generally close to 1.0
and the dashed line is far underestimated. It shows that this
estimator has poor robustness performance to LRD
processes with trends and seasonalities.

4.3 Difference variance method

The estimates by the difference-variance method for the LRD
1–4 processes are presented in Fig. 4. The Hurst estimates for
LRD 1 and 2 are generally underestimated and overlap with
the lower bound of the bias threshold in the range
0 , H , 1. Therefore the mean value has no influence on
this estimator. However, as shown by the dash–dotted
line, the estimates are obviously overestimated at around
H [ (0, 0.6) < (0.9, 1). On the contrary, the estimates are
underestimated at around H [ [0.6, 0.9]. Moreover, as
shown by the dashed line, the seasonalities impose a greater
impact on this estimator, and Ĥ is extremely biased. Thus,

Fig. 4 Estimates of LRD 1–4 by difference-variance method
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the difference-variance method is severely affected by
trends and seasonalities.

4.4 Absolute value method

The estimates by the absolute value method for the LRD 1–4
are presented in Fig. 5. The estimation performance of the
absolute value method is very similar to the aggregated
variance method. The estimates are nearly unbiased when H
is around (0, 0.7) but underestimated when H is around
[0.7, 1) for both LRDs 1 and 2. The dash–dotted line is
severely overestimated and the dashed line is always under
the reference line. Thus, the absolute value method exhibits
poor estimation performance to trends and seasonalities.

4.5 Variance of residuals method

The estimates by the variance of residuals method for the
LRD 1–4 are presented in Fig. 6. The dotted line and the
circle line show that the variance of residuals method
estimates the Hurst parameters for both LRD 1 and 2
accurately given that all estimates lie within the range of the
H + 0.03 bias thresholds (solid line in grey). However, the
trends influence this estimator since overestimation occurs
at around H [ (0, 0.8) as shown by the dash–dotted line,

Fig. 6 Estimates of LRD 1–4 by variance of residuals method

Fig. 5 Estimates of LRD 1–4 by absolute value method
IET Signal Process., 2012, Vol. 6, Iss. 9, pp. 849–856
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whereas only slightly biased estimation appears when H is
around [0.8, 1). The influence of the seasonalities is more
severe, as shown by the dashed line. The estimator can
hardly give accurate estimates of LRD 4.

4.6 Periodogram method

The estimates by the periodogram method for the LRDs 1–4
are presented in Fig. 7. The overlap of the dotted line and the
circle line shows that the mean value does not affect this
estimator. The estimates are slightly biased when H is
around (0, 0.2) for LRDs 1 and 2. However, the linear
trends make the estimation performance poor. As shown by
the dash–dotted line, the Hurst parameters are severely
overestimated. In addition, it can be observed that the
seasonalities do not affect this estimator. The estimates
denoted by the dashed line are slightly biased when H is
around (0.2, 1), only a little underestimated when H is
around (0, 0.2].

4.7 Modified periodogram method

The estimates by the modified periodogram method for the
LRDs 1–4 are presented in Fig. 8. The dotted line and the
circle line show that Ĥ of LRDs 1 and 2 are a little
underestimated at around H [ (0.2, 1) since the estimates

Fig. 8 Estimates of LRD 1–4 by modified periodogram method

Fig. 7 Estimates of LRD 1–4 by periodogram method
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are very close to the lower bound of the bias threshold.
However, the underestimation of Ĥ is more severe when H
is around (0, 0.2] given that the estimates are out of the
range of the bias thresholds. The estimates shown by the
dash–dotted line is severely overestimated. In addition,
the estimates denoted by the dashed line is consistently
underestimated when 0 , H , 1. Generally, the modified
periodogram method is severely influenced by the linear
trends.

4.8 Whittle estimator

The estimates by the Whittle estimator for the LRDs 1–4 are
presented in Fig. 9. From the dotted line and the circle line, it
is found that the estimation of H is slightly biased and only a
little underestimated when H is close to zero. It indicates that
the Whittle estimator is robust to the means. As shown by the
dash–dotted line, the trends severely affect the Whittle
estimator. The estimated Ĥ is overestimated and generally
greater than 1.0. The dashed line shows that seasonalities
have little influence on the Whittle estimator since the
estimates are generally within the range of the bias thresholds.

4.9 Diffusion entropy method

The estimates by the diffusion entropy method for the LRDs
1–4 are presented in Fig. 10. The dotted line and the circle
line show that the estimates are slightly biased when H is
around (0, 0.7), and a little underestimated when H is
around [0.7, 1.0). The mean value does not severely
influence the diffusion entropy method. However, the
estimates Ĥ are always in range (0.8, 1.0) as provided by
the dash–dotted line. Thus, the diffusion entropy estimator
is generally overestimated with respect to the impact of
linear trends. In addition, the dashed line shows that the
estimates for LRD 4 are severely underestimated.

4.10 Kettani and Gubner’s method

The estimates by Kettani and Gubner’s method for the LRDs
1–4 are presented in Fig. 11. The estimates for LRD 1 are
generally accurate when H is around (0, 0.9) and only a
little underestimated at around H [ [0.9, 1). The mean
value does not affect Kettani and Gubner’s method. Thus,
the dotted line and the circle line coincide with each other.

Fig. 9 Estimates of LRD 1–4 by Whittle estimator
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However, from the dash–dotted line and the dashed line, it is
clear that the estimates of LRDs 3 and 4 are severely
overestimated.

4.11 Abry and Veitch’s method

The estimates by Abry and Veitch’s method for the LRD 1–4
processes are presented in Fig. 12. The Abry and Veitch’s
method is a wavelet-based Hurst parameter estimator. In
this study, the Daubechies wavelet is chosen as the mother
wavelet and the number of vanishing moments is three for
the estimator evaluation. More detailed explanation can be
found in [9]. It is very interesting to see that three of the
estimation curves for LRDs 1–3 overlap in Fig. 12. Ĥ is
slightly biased when H is around (0.1, 1.0), and
underestimated at around H [ (0, 0.1]. The results indicate
that this estimator is robust to the means and trends.
However, the dashed line is severely underestimated. It is
evident that Abry and Veitch’s method is poor in estimating
the Hurst parameters from time series with seasonalities.

4.12 Koutsoyiannis’ method

The estimates by Koutsoyiannis’ method for the LRD 1–4
processes are presented in Fig. 13. From the dotted line and

Fig. 11 Estimates of LRD 1–4 by Kettani and Gubner’s method

Fig. 10 Estimates of LRD 1–4 by diffusion entropy method
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the circle line, it is found that the estimates of LRDs 1 and
2 are generally accurate at around H [ (0.1, 0.9). However,
this estimator tends to be infinite when H is close to 1.0 as
can be found from the dotted line and the circle line. The
reason for the infinity estimates are given in [16, 20], where

Fig. 12 Estimates of LRD 1–4 by Abry and Veitch’s method

Fig. 13 Estimates of LRD 1–4 by Koutsoyiannis’ method

Fig. 14 Estimates of LRD 1–4 by Higuchi’s method
IET Signal Process., 2012, Vol. 6, Iss. 9, pp. 849–856
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Table 2 Standard errors of Hurst parameter estimates

Estimators LRD 1 LRD 2 LRD 3 LRD 4

R/S 0.0613 0.0613 0.6252 0.4038

aggregated variance 0.0258 0.0258 0.5758 0.5995

difference variance 0.0311 0.0311 0.4395 0.2771

absolute value 0.0261 0.0261 0.5750 0.6347

variance of residuals 0.0045 0.0045 0.2514 0.5124

periodogram 0.0529 0.0529 0.6610 0.0532

modified periodogram 0.0483 0.0483 0.7021 0.1164

whittle estimator 0.0144 0.0144 0.9040 0.0144

diffusion entropy 0.0224 0.0224 0.5307 0.3855

Kettani and Gubner 0.0129 0.0129 0.5131 0.5560

Abry and Veitch 0.0441 0.0441 0.0441 0.9407

Koutsoyiannis N/A N/A N/A 0.2838

Higuchi 0.0062 0.5788 0.5764 0.6006
detailed numerical method in finding Ĥ is also provided in the
two references. In addition, the estimator is very sensitive to
the linear trends given that the all estimates for LRD 3 are
tends to be infinite. From the dashed line (in black) we find
that the estimates are in the range (0.6, 0.7), because of the
impact of the seasonalities.

4.13 Higuchi’s method

The estimates by Higuchi’s method for the LRD 1–4
processes are presented in Fig. 14. The dotted line shows
that the estimates are generally accurate for all H [ (0, 1).
However this estimator is severely vulnerable to the means,
trends and seasonalities. The Hurst estimation is constantly
equal to 1.0 for LRD 2 and 3. On the other hand, the
estimates are generally underestimated in LRD 4.

4.14 Quantitative comparison of the estimation
results

From Figs. 2–14, we can roughly compare the robustness
performances of the 13 Hurst parameter estimators. In order
to quantify the robustness, the standard errors S of different
estimations are calculated. S is defined as

S =

������������������∑n
j=1 (Hj − �Hj)

2

n − 1

√
(7)

where n is the number of estimated Hurst parameters by each
estimator and n ¼ 99 in this study. Table 2 gives the standard
errors of the estimates for the four different LRDs.

In Table 2, we can find that the standard errors for LRDs
1 and 2 are generally smaller than the standard errors for
LRD 3 and 4. It indicates that the linear trends and
seasonalities tend to impose worse effects to the Hurst
parameter estimators than the mean offset. It is also
interesting to find that the standard errors for LRD 1 and 2
are the same except for the Higuchi’s method, which
indicates that the mean values generally have no influence
to 12 of the estimators. In addition, we can also find the
best estimator for LRDs 1–4 by looking up the minimum
standard errors in each column. For instance, the variance
of residuals method is the best one for LRDs 1 and 2, Abry
and Veitch’s method is the most suitable estimator for LRD
3, whereas the Whittle estimator is recommended to
estimate Hurst parameter from LRD 4. However, it is also
IET Signal Process., 2012, Vol. 6, Iss. 9, pp. 849–856
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clear that none of the estimators consistently performed a
good estimation performance across four different LRD
processes.

5 Conclusion and discussion

In this study, the robustness performances of the 13 Hurst
parameter estimators have been evaluated for different LRD
processes with the existence of non-zero means, linear
trends and seasonalities. Since only a certain level of the
mean noise and linear trend are added into LRD 1 and not
all frequencies of the seasonalities have been tested in this
study, the conclusion might not be decisive. However, the
robustness assessment procedures developed in this paper
are applicable to practical scenarios, such as the prices in
stock markets, residential daily energy usage and so on,
where means, trends and daily seasonalities have been
exhibited. In addition, the robust evaluation results offer
useful information in choosing the most appropriate Hurst
parameter estimator for a particular LRD process in order to
avoid misusing of these estimators. For instance, for an
LRD process with mean offset, the variance of residuals
method is highly recommended since the standard error by
this estimator is less than 1%. In addition, if an LRD
process exhibits linear trends, the Abry and Veitch’s
method is suggested to be used to estimate the Hurst
parameter for this LRD process. Moreover, given an LRD
process with seasonalities, the Whittle estimator proves to
be the most suitable estimator for the Hurst parameter
estimation.

Besides all the above-mentioned contributions of this
study, more remarkable and challenging issues related to
this study are raised. These issues are listed in the following
and they are going to be considered and addressed in our
ongoing and future work.

First, one may argue that under the real world scenario, the
mean offset, the trends and seasonalities are not confined in
isolation, for instance, data sampled from the stock markets,
and residential daily energy usage. In this case, an
alternative way of estimating the Hurst parameter is to
conduct signal decomposition by separating the mean,
trend, seasonality and the random component in time-series
analysis [21]. The coefficients of mean, trend and
seasonality can be obtained by curve fitting and the random
component can be modelled as an fBm.

Second, the constant variance of the LRD processes is ideal
but not realistic. To further examine the robustness of
855
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estimators for real data, it is plausible to model the variance
term by the autoregressive conditional heteroskedasticity
(ARCH), the generalised ARCH model, the stochastic
volatility or diffusion model if it will be used in capturing
the Hurst parameter in the real data scenarios such as the
above-mentioned data from stock markets or residential
daily energy usage.

Thirdy, some real world data that sampled from the stock
markets or residential daily energy usage, either in fGn or
FARIMA type may be in multifractional or multiscales, see
[22, 23]. In these cases, the effects of trends and
seasonalities to the H estimators are also worth investigation.
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