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Abstract: In lighting retrofit projects, a lamp population is subject to decay, which results in significantly deteriorated energy
efficiency (EE) and reduced cost saving. Incremental retrofit and maintenance are studied to overcome the decay in the
population, so that EE performance can be sustained. Current models of natural decay cannot reflect the interactive dynamics
of incremental retrofit and maintenance, so a new decay model is proposed for these interventions. Using a control approach, a
multiple-input and multiple-output state equation is formulated. Adaptive control laws are designed to cope with unknown
parameters of the proposed model, and to achieve stable performance improvement. This new model is verified, based on
empirical data, and the results of adaptive control indicate that the number of working lamps can be maintained as a required
value.

1 Introduction
The deployment of energy efficiency (EE) programmes, as a kind
of demand-side management (DSM), is one of the most useful
alternative solutions for reducing power demand and greenhouse
gas emissions [1–3]. With around 40% of the total demand, the
building sector will have a great potential to reduce total demand,
therefore improving the building EE becomes urgent [3, 4]. Since
the start of this century, many policies and projects concerning
building retrofit (also referred to as innovation or refurbishment in
the literature) have been initiated all over the world to improve
building EE, as building retrofit is currently the most feasible and
practical way to reduce the demand of the building sector.

Many building retrofit projects are relevant to lighting retrofit
[5–7]. Due to easy accessibility and energy saving, light retrofit
projects are promoted in various EE incentive programmes, such as
clean development mechanisms (CDM) [8], white tradable
certificate schemes [9], DSM, and performance contracting [10]. In
lighting retrofit projects, energy-efficient lamps, such as compact
fluorescent light (CFL) and light-emitting diodes (LED), are used
to retrofit less efficient incandescent lights. In general, building EE
retrofit (BEER) refers to changing out-of-date facilities in existing
buildings through innovative and efficient technologies for
lighting, water heating, ventilation/cooling/heating, building
envelope, and other energy-consuming systems [11, 12]. There are
a large number of these energy systems, and their EE performance
has highly complicated correlations. Therefore, designing an
optimal retrofit strategy for minimal building energy consumption
is a difficult task of BEER, especially BEER on a large scale.

In a recent study [13], the large-scale BEER was defined,
modelled, and optimised in a time-building-technology framework.
The large-scale BEER was unveiled in three dimensions, i.e. time,
building, and technology. In the building dimension, different types
of building, such as, office, commercial/residential/industrial
buildings, school, and hospital, will be assigned different priorities
for retrofit in a large-scale BEER project. In the technology
dimension, different types of technology will have different
priorities for retrofit. In the time dimension, incremental retrofit
can be done every year, and investment is also assigned a different
amount each year. In this framework of large-scale BEER, there

remain several open issues that require further study, such as decay
and maintenance.

In this paper, decay and maintenance in lighting retrofit projects
will be studied, because lighting projects are representative and
relatively simple to model. Lighting projects involve large
populations that are suitable for statistical models. For example,
energy-saving control strategies are proposed to minimise the
energy consumption of multi-group lighting sources [14, 15]. For
the LED lighting systems, lumen depreciation is studied by
diagnosing individual LED failures using a photosensor system
[16].

For lighting retrofit projects, one practical issue in the time
dimension is to model the decay of the population with multiple
interventions, such as incremental retrofit and maintenance [17].
The decay model of once-off retrofit has been studied in lighting
retrofit projects, in which accurate decay models provide basis
knowledge to design retrofit plans, and cost-effective metering
plans [4, 18, 19]. In fact, the population of installed efficient lights
are subject to deterioration due to certain factors, such as
flickering, lamp burnout, and ballast failure, so the number of
working lamps is dynamically decreasing. Consequently, the
performance of energy saving, financial payback, and carbon
emission deteriorates over time. In many projects, maintenance is
essentially required in the contract, so that the failed facilities can
be repaired or replaced to overcome the deterioration in EE
performance. In case of both incremental retrofit and maintenance,
the population decay model should be re-formulated to solve
practical problems in EE applications, such as lighting retrofit,
measurement and verification [20–22], energy reliability [23–25],
and distributed generation [26]. Such kinds of decay become more
complicated than natural decay in the following three respects.

First, there is an aggregate population of installed lights with
different working time. For example, the population of installed
lights in the first year has a decay curve different from that of the
population of installed lights in the second and subsequent years.
Second, in the case of both incremental retrofit and maintenance,
interaction of multiple variables is involved in the decay model.
The new intervention of maintenance has brought new
characteristics to the decay model. Maintenance will change the
average EE performance and the average working time, and
consequently the decay curve will become non-singular. Third, the
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parameters of the decay model are usually unknown, although they
can be estimated through additional tests on a population of similar
lamps.

The other issue in the time dimension is making long-term
plans for incremental retrofit and maintenance even if the decay
model is known. The retrofit plans have been intensively studied
by using empirical [27] and multi-criteria methods [28, 29]. In
approaches to optimisation, several conflicting objectives, such as
EE, financial payback, carbon emission, and other technical,
economic, ecological, social, aesthetical concerns, have been
optimised in the design of retrofit plans. For stable performance
improvement, maintenance plans for lighting and other building
facilities have become a recent focus in this research area. For
lighting retrofit projects, optimal maintenance planning is proposed
to optimise the number of lights to replace the failed lamps, so that
the EE lighting project achieves sustainable performance in terms
of maximal energy savings and the cost-benefit ratio [30]. For
general BEER projects, corrective maintenance planning for
building energy systems, such as lighting, monitoring, water
heating, and oven, is proposed to design optimal maintenance plans
for maximising energy saving and minimising the internal rate of
return [31, 32].

However, current planning schemes in the literature cannot be
extended in retrofit projects with multiple interventions, as they
have neglected the interaction between incremental retrofit and
maintenance. To the best of our knowledge, there are few studies of
combined planning for incremental retrofit and maintenance,
especially in the large-scale BEER projects. As the parameters in
the decay model are unknown, the parameters should be estimated
at the early stage of implementation process, which brings extra
challenges for planning. Therefore, in this paper, adaptive control
is studied for the planning problem of lighting projects with
unknown parameters. The stability of adaptive control can ensure
stable EE performance of these retrofit projects. Due to the closed-
loop mechanism, uncertainty about lamp decay or lumen
degradation can be attenuated.

The contributions of this paper are three-fold. First, a
mathematical model is built for lighting projects with incremental
retrofit and maintenance. The decay of the lamp population has a
logistic-like curve that is related to the number of retrofitted lamps.
The proposed model is verified based on the empirical data and the
interactive dynamics can also be observed in the verification.
Second, the decay process is studied by using a control approach,
in which a multiple-input and multiple-output (MIMO) control
system is derived, based on the proposed decay model. Third, to
handle the unknown parameters in the system model, adaptive
control laws are designed for planning incremental retrofit and
maintenance. The stability of the proposed control laws is proven
with the Lyapunov theory, which ensures that the EE performance
can be sustained at a desired value.

The paper is organised as follows. Several models of natural
lighting decay are introduced in Section 2. In Section 3, the decay
of an aggregate population with incremental retrofit and
maintenance is modelled, and the MIMO state equation is
formulated. In Section 4, adaptive control laws are newly designed,
and the stability of the adaptive controller is proved. In Section 5,
the model is verified, and the adaptive control is tested and
analysed in the simulation. Then paper is concluded in Section 6.

2 Models of natural decay
System dynamics in lighting projects, such as the CFL project and
the LED project, is caused by the performance decay of the lamps.
The performance decay or deterioration of working lamps affects
the energy saving, financial profit, and carbon emission over the
evaluation period. An exact model of the population decay is
necessary to reflect the system dynamics. Irrespective of the types
of light used, three kinds of decay model are commonly applied.

Let N(t) denote the population size at the tth year. N(0) is the
size of initial population. In many natural phenomena, such as
population growth and radioactive decay, quantities grow or decay
at a rate proportional to their size. In other words, they satisfy the
following differential equation:

dN(t)
dt = kN(t), (1)

where k is the decay rate. Note that (1) is called the law of natural
growth if k > 0, and it is called the law of natural decay if k < 0.

The only solution of (1) is an exponential function

N(t) = N(0)ekt . (2)

 
Remark 1: Equation (2) satisfied the law of (1) as

dN(t)
dt = N(0)(ekt)′ = kN(0)ekt = kN(t) . (3)

The exponential decay model is commonly used in different
areas [33]. Normally a constant decay rate (failure rate) applies to
this model, but in certain cases, the decay rate changes over time.
In this lighting application, the lamp population exhibits ageing, so
that old lamps are more likely to fail at any time than newly
installed lamps.

As the second kind of decay model, a linear population decay,
suggested in CDM guidelines, is utilised in the lighting projects
[18]. In the linear model, the population is linearly decayed over
the rated lifetime L as

N(t) = N(0) 1 − t
L ∗ 100 − ρL

100 , t ≤ L

0, t > L
, (4)

where ρL is the percentage of surviving lamps left at the end of the
rated lifetime L (ρL = 50 is recommended) [18]. When t > L, all
lamps are deemed to have failed in this model.

In empirical studies on the useful life of facilities in retrofit
projects [34], the decay curves are found to have logistic shapes.
The Poland efficient lighting project (PELP), conducted by the
World Bank through the International Finance Corporation, also
indicates a logistic curve for a population of 1.2 million lamps [35].
According to studies in the South Africa context [36, 37], a general
form of logistic function is formulated to fit empirical data. As the
third kind of decay model, the general form is expressed as

N(t) = N(0)
γ + eβt − K (5)

where β and γ are two parameters related to characteristics of the
device, and K = − ln(1 − r). As stated, this general form of the
decay model is especially applicable to the engineering context.

According to the three models, the decay dynamics can be
obtained for each model as

dΦ1

dt = kΦ1 (6)

dΦ2

dt = − 100 − ρL
100L , t < L (7)

dΦ3

dt = − βΦ3(1 − γΦ3) (8)

where Φ = N(t)/N(0) is the proportion of working lamps surviving
at time t. Φ1, Φ2, Φ3 denote the proportion calculated in each model,
respectively. Note that (8) is deduced from the differentiation at
both sides of (5). For each model, an example of the decay curve is
plotted in Fig. 1.

 
In this figure, decay parameters are set as k = − 1, L = 5, K = 3,
β = 0.95, and γ = 1.05. Note that these models have been used to
approximate the decay of CFL and LED. These models only fit
essential factors of natural decay without any intervention, so these
decay curves are all non-increasing as shown in the figure.
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3 System dynamics with multiple interventions
When only considering natural decay in the lighting retrofit
project, system dynamics can be generalised as

Φ̇ = f (Φ), (9)

where f (Φ) is the decay function. With respect to model 3, it
follows that f (Φ) = − βΦ(1 − γΦ).

In the control approach, the number of working lamps is
regarded as a state variable, i.e. x(t) = N(t). Based on the logistic
decay models (5) and (8), the state equation can be expressed as

ẋ = − βx + βγ
x(0) x2, (10)

where x is the number of working lamps, and x(0) is the size of
initial population. Note that the control system studied is a non-
linear system.

 
Remark 2: The state equation (10) is obtained by the

differentiation at both sides of (5) as

ẋ = x(0) 1
γ + eβt − K ′

= −x(0) βeβt − K

(γ + eβt − K)2

. (11)

By substituting eβt − K = x(0)/x − γ in the above equation, (10) can
be obtained.

The dynamics of natural decay cannot fit the practical decay
dynamics well when there are multiple interventions, which
include incremental retrofit and maintenance. Incremental retrofit
means that retrofit does not only happen at the beginning, but also
happens subsequently at multiple times. Compared with once-off
retrofit, the number of retrofitted facilities in this case is
incremental over time, so we call this incremental retrofit. To
ensure stable performance of EE and cost saving, the broken or ill-
conditioned facilities should be repaired or replaced. Maintenance
means replacement or repair of retrofitted lamps that have
deteriorated, and maintenance will be conducted frequently every
year. It is obvious that both incremental retrofit and maintenance
have certain effects on the decay dynamics (10).

However, (10) cannot be applied, when retrofit and
maintenance are interacted during the whole evaluation period. At
time t, a new EE facility could be used for maintenance of a
retrofitted facility in a poor condition, and it could also be used for
retrofitting an existing old facility. In other words, incremental
retrofit will increase the population size and the number of working
lamps, but maintenance only increases the number of working
lamps. When different effects of incremental retrofit and

maintenance are included into (10), the number of working lamps
with incremental retrofit and maintenance can be expressed as

ẋ = − βx + βγx2

x(0) + ∫τ = 0
t u1 dτ

+ u1 + u2, (12)

where u1(t) is the number of retrofitted lamps at time t, and u2(t) is
the number of lamps undergoing maintenance. Note that when
there is no intervention, i.e. u1(t) = u2(t) = 0, (12) is equivalent
with (10). When only maintenance is done, i.e. u1(t) = 0, the
population size remains the same as x(0), and the number of
working lamps increases by u2(t). When only retrofit is done, i.e.
u2(t) = 0, the population size increases by the cumulative number
of retrofitted lamps, i.e. ∫τ = 0

t u1 dτ, and the number of working
lamps also increases by u1(t).

Define x1 = x(0) + ∫τ = 0
t u1 dτ and x2 = x. The state equation 12

can be transformed as

ẋ1 = u1,

ẋ2 = − βx2 + βγx2
2

x1
+ u1 + u2,

(13)

In the control approach, the system dynamics with incremental
retrofit and maintenance is a standard non-linear system. Actually,
x1(t) is the cumulative number of retrofitted lamps at time t, and
x2(t) is the number of working lamps at time t. Note that
x1(t) ≥ x2(t) is a practical constraint.

Given a sampling period t0, the continuous control system can
be written into a discrete form. The discrete system can be
formulated as (14), where k represents the index of sample and
x1(0) ≥ x2(0). u1(k) is the number of retrofitted lamps over the kth
interval. u2(k) is the number of lamps undergoing maintenance over
the kth interval. x1(k) is the cumulative number of retrofitted lamps
at the kth interval, and x2(k) is the number of working lamps at the
kth interval

x1(k + 1) = x1(k) + u1(k)t0,

x2(k + 1) = (1 − βt0)x2(k) + βγt0
x2(k)2

x1(k) + u1(k)t0 + u2(k)t0,
(14)

The average working time of the population is defined as the
working time of all lamps divided by the population size. The
average working time is related to the percentage of working lamps
and the working hours of each lamp. The average working time can
indicate the lumen level, which means that a lamp with more
working hours will be subject to more lumen deprecation.

 
Theorem 1: Given a population of energy efficient lamps,

maintenance will result in a shorter average working time than
incremental retrofit.

 
Proof: Assume that the average working hours of the

population at time t is Lt, and the population size of retrofitted
lamps is x1(t). If only n lamps is maintained, the average working
hours after maintenance can be calculated as (Lt(x1(t) − n))/x1(t).

If only n lamps is retrofitted, the average working hours after
the incremental retrofit is calculated as (Ltx1(t))/(x1(t) + n).

It is obvious that

Lt(x1
2(t) − n2) < Ltx1

2(t) . (15)

Divide both sides with x1(x1(t) + n), then

Lt(x1(t) − n)
x1(t) < Ltx1(t)

x1(t) + n . (16)

The proof is completed. □

Fig. 1  Decay curves in the three decay models (k = − 1, L = 5, K = 3,
β = 0.95 and γ = 1.05)
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4 Adaptive control
The controller is necessary to keep the number of working lamps in
the lighting retrofit, so the performance of EE and cost saving can
be stable. As shown in Fig. 2, the number of working lamps will
become 0, if there is no controller. 

Assume β and γ are known, a feedback controller is required to
achieve stable states, so that

lim
t → ∞ x1(t) = r1, lim

t → ∞ x2(t) = r2, (17)

where r1 is the reference value of the population size, and r2 is the
reference value of the working lamps. Note that r1 ≥ r2 holds.

Define the tracking error as

e1 = x1 − r1, (18)

e2 = x2 − r2 . (19)

Take the derivative of e1 and e2. It yields

ė1 = ẋ1 = u1, (20)

ė2 = ẋ2 = − βx2 + βγ x2
2

x1
+ u1 + u2

= ϕ[ − β, βγ]T + u1 + u2,
(21)

where ϕ = [x2, (x2
2/x1)] is the composite function used for

simplicity.
To cancel the non-linear items in (21), a feedback controller is

straightforwardly designed as

u1 = − k1e1, (22)

u2 = − k2e2 − u1 − ϕp, (23)

where k1 > 0 and k2 > 0 are the control gains. p is the parameter
vector to be determined in the controller design. In the assumption
of known parameters, p = [ − β, βγ]T can be used to achieve stable
control. In other words, the number of working lamps can be kept
as the required value with the above scheme according to Theorem
2.

 
Theorem 2: Assume β and γ are known, the closed-loop system

under the feedback controller (22) and (23) with p = [ − β, βγ]T is
Lyapunov stable.

The proof has been given in the Appendix. As shown in Fig. 2,
the feedback controller can drive the number of working lamps
towards the reference value (set as 1200 for illustration). However,
the parameters of the model must be known in the feedback
control.

If β and γ are unknown in practical applications, it is difficult to
determine proper values of p [38]. In this situation, it is necessary
to design an adaptive controller for ensuring stable EE
performance.

For the adaptive control, the following control scheme is
proposed:

u1 = − k1e1 (24)

u2 = − k2e2 − u1 − ϕp^ (25)

with the adaptive law for p^  given by

p^̇ = ηϕTe2, (26)

where η > 0 is the updating rate, and p^  is the estimate value of p.
When the parameters in the decay model are unknown, the
proposed adaptive control scheme can also keep the number of
working lamps as the required value according to the following
theorem.

 
Theorem 3: If the adaptive controller (24) and (25) with the

adaptive law (27) is used, then it is ensured that the tracking error
turns to zero as t → ∞

The proof has been given in the Appendix. As shown in Fig. 2,
the adaptive controller can also drive the number of working lamps
to the reference value, although the parameters of the model are
unknown.

For a discrete form, set p^(0) = 0, and the adaptive law for p^  can
be expressed as

p^(t + 1) = p^(t) + ηϕT(t)e2(t)t0 . (27)

The adaptive controller can be expressed as

u1(t) = − k1e1(t), (28)

u2(t) = − k2e2(t) − u1(t) − ϕ(t)p^(t) . (29)

5 Simulation verification
A lighting retrofit project for retrofitting 1500 incandescent lamps
is evaluated. After initial retrofit, the population size of retrofitted
CFLs is 1000. For each incandescent lamp, the rated power is 60 
W. For each CFL, the rated power is 14 W. Based on empirical
CFL data in Table 1, parameters in the proposed model are
assumed known as β = 0.921 and γ = 0.986 (reported in [19]) in
the first two case studies. In real applications, these two parameters
are usually unknown. In case 3, β and γ are unknown constants,
and the performance of adaptive control will be analysed.

As reported in [30], LED decay also follows the logistic curve
like that of CFL decay, so observations on the CFL project could
be expected to apply to the LED project too. For simplicity,
simulation verification on a LED project is omitted here.

5.1 Case 1: Comparison of different models

The proposed model is compared with existing models referred to
in Section 2. As known, model 1 is the natural decay model; model
2 is the linear decay model; and model 3 is the logistic decay
model. The main characteristic of the proposed model is its ability
to reflect different effects of incremental retrofit and maintenance.
However, models 1, 2, and 3 cannot be directly applied to describe
decay dynamics in such interventions. For fair comparison, the
CFL population of incremental retrofit or maintenance (at fourth
year) is regarded as an independent population in the three existing
models. Then decay curves of three existing models can be plotted
as shown in Fig. 3. In the first two tests, 200 CFLs are used for

Fig. 2  Performance of controller design (k1 = 1.5 and k2 = 0.5)
 

Table 1 PELP empirical data on surviving rates
Year 1 2 3 4 5 6 7 8 9 10 11
Surviving rate 0.97 0.97 0.91 0.83 0.77 0.4 0.29 0.08 0.02 0.02 0.02
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retrofit and maintenance, respectively. The decay curves are plotted
in Figs. 3a and b.

In comparison, another test is conducted where 100 CFLs are
used for retrofit and 100 CFLs are used for maintenance, as shown
in Fig. 3c. It can be noticed that decay curves of models 1, 2, and 3
are the same in the three tests, but decay curves of the proposed
model are different. The reason is the fact that the decay dynamics
change as incremental retrofit and maintenance are done. These
changes are not considered in existing models, but considered in
the proposed model. The detailed effects of incremental retrofit and
maintenance will be analysed in the following case studies.

5.2 Case 2: Comparison of intervention factors

In the second case, the effects of the intervention time are first
evaluated. Hundred new CFLs are used to replace the broken CFLs
for maintenance at the fourth, sixth, and eighth year, respectively.
The decay curves are plotted in Fig. 4a. It can be noticed that the
maintenance in the early years shows better results than in the
subsequent years. The maintenance at the fourth year results in the
slowest decay.

In comparison, 100 CFLs are used to replace another 100
incandescent lamps for incremental retrofit at the fourth, sixth, and
eighth year, respectively. As shown in Fig. 4b, the same conclusion
can be drawn that the incremental retrofit in the early years shows
better performance than in the latter years. However, the time
effects in the incremental retrofit are not as significant as those in
the maintenance. In the case of incremental retrofit, the decay
curves of the fourth and sixth years are overlapped after the sixth
year. One possible reason is the fact that the population of the
incremental retrofit is larger, so that the average effect is less.

Two kinds of interventions, i.e. maintenance and incremental
retrofit, are evaluated in the proposed model. In the fourth year,
100 CFLs are used to replace the broken CFLs for maintenance.
The decay curve is shown as ‘M’ in Fig. 5a. In comparison, 100

new CFLs are used to replace another 100 incandescent lamps for
incremental retrofit at the same time. The decay curve is shown as
‘R’ in the figure. The natural decay without any intervention is
shown as ‘N’ in the figure. It can be noticed that interventions can
postpone the decay process, as the post-intervention population of
CFLs has a slower decay rate than the pre-intervention population.
It can also be observed that the decay rate of maintenance is slower
than that of incremental retrofit as shown in the figure, and that the
overall population after maintenance has fewer average working
hours than the population after incremental retrofit, which matches
the statement of Theorem 1.

Furthermore, multiple interventions are also evaluated in this
case study. At the fourth and seventh years, maintenance and
incremental retrofit could be chosen by decision makers. The decay
curves of different combinations are plotted in Fig. 5b. In the
figure, ‘ M + M’ means that maintenance is conducted at the fourth
and seventh year, respectively; ‘ M + R’ means maintenance is
conducted at the fourth year and incremental retrofit is conducted
at the seventh year; ‘ R + M’ means that incremental retrofit is
conducted at the fourth year and maintenance is conducted at the
seventh year; ‘ R + R’ means that incremental retrofit is conducted

Fig. 3  Model comparisons
(a) Decay curves after the fourth-year retrofit, (b) Decay curves after the fourth-year
maintenance, (c) Decay curves after combined retrofit and maintenance

 

Fig. 4  Decay curves with intervention at the fourth, sixth, and eighth
years, respectively
(a) Maintenance, (b) Incremental retrofit

 

Fig. 5  Decay curves of different interventions
(a) Separate intervention, (b) Multiple interventions
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at the fourth and seventh years, respectively. According to
Theorem 1, the same observation can be made that the decay of
‘ M + M’ has the slowest rate, and that the decay of ‘ R + R’ has
the fastest rate.

5.3 Case 3: Performance of adaptive control

In the adaptive controller, the control gains are set as k1 = 0.5 and
k2 = 1.5, and the updating rate is η = 1 ∗ 10−7. The reference values

of x1 and x2 are r1 = 1500 and r2 = 1200, respectively. In other
words, the population size of CFLs is expected to be 1500, and the
number of working CFLs is expected to be 1200. The control laws
u1(t) and u2(t), i.e. retrofit and maintenance plans, follow (24) and
(25) designed in the adaptive control.

For the adaptive control, the profiles of state variables x1 and x2
are plotted in Fig. 6a. In the adaptive control, the steady-state
errors converge to 0 at finite time. As shown in the figure, it is
indicated that x1(9) = 1500 and x2(20) = 1200. In comparison, the
state profiles of feedback control, in which p = [ − 0.9, 0.81], are
also given in Fig. 6b. It can be noticed that the steady-state error is
present in the feedback control. For the adaptive control, the
profiles of input variables are plotted in Fig. 6c. It can be observed
that the maintenance has a constant value and no retrofit is required
when t ≥ 20.

The parameters in the controller are converging to
p1 = − 0.1210 and p2 = − 0.0919. With respect to EE, energy
saving is related with the number of working CFLs and daily
burning hours. If the average daily burning hour is 5 h, energy
saving in the first year is 83,950 kWh. Energy saving in the first 5,
10, and 20 years is 448,380, 915,730, and 1,920,700 kWh,
respectively. After 20 years, annual energy saving is constant at
100,740 kWh.

The robustness of control gains is also evaluated in this study.
When k2 and η are kept unchanged, k1 is set at 0.1, 0.3, 0.5, 0.7, and
0.9, respectively. With these different settings, the profiles of the
CFL population size are plotted in Fig. 7a. It can be observed that
all profiles converge to the reference value, which indicates the
robustness of k1. A large value of k1 causes x1 to converge rapidly.
When k1 and η are kept unchanged, k2 is set at 1.1, 1.3, 1.5, 1.7, and
1.9, respectively. With these different settings, the profiles of
working CFLs have been plotted in Fig. 7b. It can be observed that
the profiles converge to the reference value, which indicates the
robustness of k2. However, a small k2 (e.g. k2 < 1.1) causes x2 to
converge slowly with some oscillation.

The adaptive control is also tested in a case with state
uncertainty. Assume that state variables experience disturbance
during the first 5 years, and the disturbance values are random
numbers on the scale [ − 20, 20], as shown in Fig. 8a. As a result,
state profiles can also converge to reference ones, as shown in Fig.
8b. Therefore, it can be concluded that the designed adaptive
controller is stable to reject some uncertainty.

6 Conclusion
As an example of BEER, the lighting retrofit project is studied. In
consideration of incremental retrofit and maintenance, a new decay

Fig. 6  Comparison of adaptive control and feedback control
(a) State profiles in the adaptive control, (b) State profiles in the feedback control, (c)
Input variables in the adaptive control

 

Fig. 7  Effects of the control gains
(a) Population size under different k1, (b) Number of working CFLs under different k2

 

Fig. 8  Effects of the state uncertainty
(a) Profiles of the state disturbance, (b) Profiles of the state variables
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model is proposed for the lighting retrofit project. Based on the
characteristics of natural decay, the population decay with multiple
interventions is formulated in the proposed model. In the control
approach, a MIMO state equation is formulated to express the
interactive dynamics based on the proposed decay model. Retrofit
and maintenance plans are studied to stabilise the number of
working lamps and the size of the overall population. To cope with
unknown parameters of the system, an adaptive control approach is
proposed to design stable plans. The stability is proven
theoretically, and is tested in simulations.

Several observations were made in this study. First,
maintenance could contribute more to conquer performance decay
than incremental retrofit. Second, the early intervention
(maintenance or retrofit) was preferred to postpone performance
decay. Third, the adaptive control was robust to deliver stable EE
performance. This work is challenging and important in the field of
energy system and reliability. In future, stochastic models could be
studied for the economic analysis, efforts on novel LED models,
and control methods could also be made with regard to emergence
of LED.
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8 Appendix
 
8.1 Appendix 1: Proof of Theorem 2

Denote the Lyapunov function as V(x1, x2). A Lyapunov function
candidate is defined as

V = 1
2e1

2 + 1
2e2

2 . (30)

For ∀e1 ≠ 0, ∀e2 ≠ 0, it is obvious that V > 0. The derivative
function can be deduced as

V̇ = ė1e1 + ė2e2 . (31)

Substituting (20) and (23) into the above equation, the
derivative can be transformed as

V̇ = − k1e1
2 − k2e2

2 < 0. (32)

According to Lyapunov stability theory, the feedback controller
is stable. The proof is completed.

8.2 Appendix 2: Proof of Theorem 3

Choosing the Lyapunov function candidate as

V = 1
2e1

2 + 1
2e2

2 + 1
2η p~T p~ (33)

where p~ = p − p^ . The derivative of V w.r.t. time is

V̇ = e1ė1 + e2ė2 − 1
η p~T p^̇

= e1u1 + e2(ϕp + u1 + u2) − 1
η p~T p^̇

(34)
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Substituting the control laws (24) and (25) into (34), it can be
deduced that

V̇ = − k1e1
2 − k2e2

2 + e2ϕp~ − 1
η p~T p^̇ (35)

Inserting the adaptive law (27) into (35), it can be deduced that

V̇ = − k1e1
2 − k2e2

2 ≤ 0 (36)

which shows that V(t) is globally uniformly ultimately bounded
(i.e. V(t) ∈ L∞), which implies that e1 ∈ L∞, e2 ∈ L∞, and p~ ∈ L∞,

which further implies that x1 ∈ L∞, x2 ∈ L∞, and p^ ∈ L∞. From the
definition of ϕ, we have ϕ ∈ L∞. Then from (24) and (25) and
(27), it follows that u1 ∈ L∞, u2 ∈ L∞, and p^̇ ∈ L∞. From (20) and
(21) it is seen that ė1 ∈ L∞ and ė2 ∈ L∞. From (36) we have

k1∫
0

t
e1

2(τ) dτ + k2∫
0

t
e2

2(τ) dτ + V(t) = V(0) (37)

which implies that e1 ∈ L2 and e2 ∈ L2. According to Barbalat
Lemma, it shows that limt → ∞ e1(t) → 0 and limt → ∞ e2(t) → 0 as
t → ∞. The proof is completed.
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