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In this paper, a global finite-time observer is designed for a class of nonlinear systems with bounded rational powers imposed
on the incremental nonlinearities. Compared with the previous global finite-time results, the new observer designed here is
with a new gain update law. Moreover, an example is given to show that the proposed observer can reduce the time of the
observation error convergence.
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1. Introduction

Consider the problem of observer design for a nonlinear
system described by

{
ẋ = f (x, u),
y = h(x),

(1)

where x ∈ Rn is the state, u ∈ Rm is the input and y ∈ Rp

is the output. Unlike in the case of linear system, the ob-
servability of nonlinear system depends on the inputs of the
system (Gauthier & Bornard, 1981; Gauthier, Hammouri,
& Othman, 1992; Shim & Seo, 2003). Perhaps for this rea-
son, over the years, several papers have investigated the
relationship between nonlinear observability and the ex-
istence of nonlinear observers (Fliess, 1982; Hermann &
Krener, 1977). Since then, a lot of works have been done
to try to design nonlinear observers through linearisation
of nonlinear systems (Kotta, 1987; Krener & Isidori, 1983;
Rugh, 1986). With the definition of uniform observabil-
ity or observability for any input as proposed by Gauthier
et al. (1992), thereafter, many existing results on nonlinear
observer design are based on uniform observability. For ex-
ample, Gauthier et al. (1992) proposed a simple nonlinear
observer by a high gain method, then a nonlinear observer
is designed in Hammouri, Targui, & Armanet (2002) for
nonlinear systems with a triangular structure, and high gain
observers in the presence of measurement noise (Ahrens &
Khalil, 2009) are employed to output feedback control prob-
lem for a class of nonlinear systems through a switched-
gain approach and so on. A common assumption for the
observer design of nonlinear system is the Lipschitz condi-
tion in the nonlinear terms as discussed in the works (Chen
& Chen, 2007; Pertew, Marquez, & Zhao, 2006; Rajamani,
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1998) and references therein. Research on nonlinear ob-
server design has also been done on some other kinds of
nonlinear systems. Krishnamurthy, Khorrami, and Chandra
(2003) give global high-gain-based observers for nonlinear
systems with output-dependent upper diagonal terms, while
global asymptotic high gain observers are studied in Praly
(2003) for nonlinear systems with the nonlinear terms ad-
mitting an incremental rate of the measured output.

Based on the finite-time stability and homogeneity the-
ory of nonlinear systems (Bhat & Bernstein, 2000, 2005),
different kinds of finite-time observers for nonlinear sys-
tems are developed. For example, Perruquetti, Floquet, and
Moulay (2008) introduced a finite-time observer with ap-
plication to secure communication, where a homogeneous
Lyapunov function is constructed. Then, based on this ho-
mogeneous Lyapunov function, semi-global finite-time and
two different kinds of global finite-time observers are de-
signed for single output triangular nonlinear systems, which
are uniformly observable and globally Lipschitz (Ménard,
Moulay, & Perruquetti, 2010; Shen & Huang, 2009; Shen
& Xia, 2008). Global finite-time observers (Shen, Huang,
& Gu, 2011) are proposed for a class of globally Lipschitz
nonlinear systems with non-triangular structure where the
interactions between all the states of the nonlinear terms
are allowed. Then, in Burlion, Ahmed-Ali, & Lamnabhi-
Lagarrigue (2011), a global finite-time observer with high
gain is designed for a class of nonlinear systems where
the nonlinear terms admit an incremental rate depending
only on the output. Unfortunately, in all these papers, the
derivative of the homogeneous Lyapunov function along
the observation error system is not continuous. Then, Shen
& Xia (2010) give a correct proof of the convergence of
observation error and a semi-global finite-time observer is

C© 2013 Taylor & Francis
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designed for the following nonlinear systems whose solu-
tions exist for all positive time,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ1 = x2 + f1(y, u),
ẋ2 = x3 + f2(y, x2, u),

...
ẋn = fn(y, x2, . . . , xn, u),
y = x1 = Cx, C = [

1 0 . . . 0
]
,

(2)

where u ∈ Rm, x ∈ Rn, y ∈ R, with the nonlinear terms
fi(·)(i = 2, . . . , n) satisfying conditions

|fi(y, x2, . . . , xi, u) − fi(y, x̂2, . . . , x̂i , u)| ≤ �(u, y)⎛
⎝1 +

n∑
j=2

|x̂j |υj

⎞
⎠ i∑

j=2

|xj − x̂j | + l

i∑
j=2

|xj − x̂j |βij , (3)

where �(·) is a continuous function, l > 0, υj ∈
[0, 1

j−1 )(j = 2, . . . , n), the rational powers of the incre-

mental terms satisfy q−i

q−j+1 < βij < i
j−1 (2 ≤ j ≤ i ≤ n)

(where q > n is a positive real number). Asymptotic and
finite-time stability are studied for a class of nonlinear ho-
mogeneous systems (Shen & Xia, 2011) where the best
possible lower bound of homogeneity of degree is obtained.
Then, motivated by Rosier (1992), a new kind of continuous
homogeneous Lyapunov function and a global finite-time
observer are constructed in Li, Shen, & Xia (2011) for a
nonlinear system (2) under condition (3) with a better lower
bound of the rational powers n−i

n−j+1 < βij < i
j−1 (2 ≤ j ≤

i ≤ n).
In this paper, we restrict our attention to estimating the

states only for those nonlinear systems (2) whose solutions
globally exist and are unique for all positive time. The
primary objective of this paper is to design a new global
finite-time observer for nonlinear system (2) with condi-
tion (3). We will show that under the same rational powers

n−i
n−j+1 < βij < i

j−1 (2 ≤ j ≤ i ≤ n), global finite-time ob-
servers exist with a new gain update law where two new
items are introduced compared with the dynamic high gain
used in Li et al. (2011). Moreover, through an example, it
will be shown that the observer proposed in this paper can
render the observation error converging much more quickly
than that in Li et al. (2011) although the amplitude of the
observation error curve is a bit greater.

The rest of the paper is organised as follows. Some pre-
vious results are reviewed in Section 2. Then in Section 3,
our main result, a global finite-time observer with a new
gain update law is designed for system (2) under condition
(3) with a detailed proof. An example is given in Section 4,
highlighting the performance of the proposed observer and
some comparisons are made with the results in Li et al.
(2011). Then the paper is concluded in Section 5. Finally,
the proofs of two useful lemmas are included in Appendix.

2. Previous results

Before we consider the global finite-time observer for sys-
tem (2) with condition (3), let us recall some previous results
for nonlinear system (2) with condition (3) where the ratio-
nal powers satisfying q−i

q−j+1 ≤ βij < i
j−1 (2 ≤ j ≤ i ≤ n)

(where q > n is a positive real number) in Shen & Xia
(2010) and n−i

n−j+1 ≤ βij < i
j−1 (2 ≤ j ≤ i ≤ n) in Li et al.

(2011), respectively.
For nonlinear system (2), earlier Shen & Xia (2010)

present a semi-global finite-time observer of the following
form:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

˙̂x1 = x̂2 + La1�e1�α1 + f1(y, u),
˙̂x2 = x̂3 + L2a2�e1�α2 + f2(y, x̂2, u),

...
˙̂xn = Lnan�e1�αn + fn(y, x̂2, . . . , x̂n, u),

(4)

with the observer gain L being dynamically updated by

L̇ = −L[ϕ1(L1−σ − ϕ2) − ϕ3�(u, y, x̂)], L(0) > ϕ2,

(5)
where ϕ1, ϕ2 ≥ 1 and ϕ3 are three positive real num-
bers, �(u, y, x̂) = �(u, y)(1 +∑n

j=2 |x̂j |vj ) and ai >

0(i = 1, . . . , n) are the coefficients of the Hurwitz poly-
nomial,

sn + a1s
n−1 + · · · + an−1s + an (6)

and

αi = iα − (i − 1), i = 1, . . . , n, (7)

where α ∈ (1 − 1
n−1 , 1) and the rational power βij satisfy

q−i

q−j+1 ≤ βij < i
j−1 (2 ≤ j ≤ i ≤ n) (where q > n is a pos-

itive real number).
Then, based on the same gain update law (5), a kind of

global finite-time observers with two homogeneous terms
(Li et al., 2011) with different degrees (one less than 1
and the other greater than 1) are constructed for nonlinear
system (2) with condition (3) where the rational powers
satisfying n−i

n−j+1 ≤ βij < i
j−1 (2 ≤ j ≤ i ≤ n) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x1 = x̂2 + La1�e1�α1 + L1−(β1−1)(1−η)σ a1�e1�β1

+ f1(y, u),
˙̂x2 = x̂3 + L2a2�e1�α2 + L2−(β2−1)(1−η)σ a2�e1�β2

+ f2(y, x̂2, u),
...

˙̂xn = Lnan�e1�αn + Ln−(βn−1)(1−η)σ an�e1�βn

+ fn(y, x̂2, . . . , x̂n, u),

(8)

where βi = iβ − (i − 1), (i = 0, 1, . . . , n), β > 1+σ
σ

, 0 <

η < 1 − α < 1.
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3. Main result

The purpose of this paper is try to design a global finite-
time observer with a new gain update law for the nonlinear
system (2) with condition (3) where the rational powers
satisfying n−i

n−j+1 ≤ βij < i
j−1 (2 ≤ j ≤ i ≤ n). Before we

give our result, let us introduce a useful lemma first.
The rational power βij (2 ≤ j ≤ i ≤ n) in Equation (3)

satisfies the following condition.

Lemma 3.1: For βij (2 ≤ j ≤ i ≤ n) given in
Equation (3), 1 − 1

n
< α < 1, if βij > n−i

n−j+1 , we
have α − 1 − αj−1βij + αi−1 < 0.

Proof: The proof of Lemma 3.1 is given in Appendix. �

In the following, we will prove that the observer of the
form (4) with the following dynamic gain,

L̇ = − L[ϕ1(L1−σ − ϕ2) − ϕ3�(u, y, x̂)

− ϕ4L
1−2σ |y − x̂1|m − ϕ5�(u, y, x̂) |y − x̂1|m],

(9)

L(0) > ϕ2 is a global finite-time observer for nonlinear
system (2) with condition (3), where ϕ1, ϕ2 > 1, ϕ3, ϕ4, ϕ5

are five positive numbers, m is a positive number satisfying

m ≥ max{αj−1βij − αi−1, 1}, 2 ≤ j ≤ i ≤ n, (10)

�(u, y, x̂) is the same as that in Equation (5).
For the gain update law L(t) in Equation (9), we have

the following result.

Lemma 3.2: For the observer gain L(t) in Equation (9),
there exists M > 0 such that L(t) < M, t ∈ [0, T ],∀T ∈
(0,∞).

Proof: The proof is simple, thus omitted here. �

The dynamics of the observation error e = x − x̂ is
given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ė1 = e2 − La1�e1�α1 ,

ė2 = e3 − L2a2�e1�α2 + f̃2,
...

ėn = −Lnan�e1�αn + f̃n,

(11)

where f̃2 = f2(y, x2, u) − f2(y, x̂2, u), . . . , f̃n = fn(y,

x2, . . . , xn, u) − fn(y, x̂2, . . . , x̂n, u). Consider the change
of coordinates

εi = ei

Li−1+σ
,

where 0 < σ < 1 will be given later. Then Equation (11)
can be expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε̇1 = Lε2 − L(α1−1)σ+1a1�ε1�α1 − L̇

L
σε1,

ε̇2 = Lε3 − L(α2−1)σ+1a2�ε1�α2 − L̇

L
(σ + 1)ε2 + f̃2

L1+σ
,

...

ε̇n = −L(αn−1)σ+1an�ε1�αn − L̇

L
(n − 1 + σ )εn + f̃n

Ln−1+σ
.

(12)
Before we prove the global finite-time stability of the

error system (12), let us investigate some properties of the
following homogeneous nonlinear system,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε̇1 = Lε2 − L(α1−1)σ+1a1�ε1�α1 ,

ε̇2 = Lε3 − L(α2−1)σ+1a2�ε1�α2 ,
...

ε̇n = −L(αn−1)σ+1an�ε1�αn .

(13)

First, for system (13), suitably choose ai(1 ≤ i ≤ n)
such that there exists P T = P > 0 satisfying

AT P + PA ≤ −I, h1I ≤ D1P + PD1 ≤ h2I, (14)

where h1, h2 > 0 are real constants, D1 = diag{σ, 1 +

σ, . . . , n − 1 + σ }, A =

⎡
⎢⎣

−a1 1 . . . 0
.
.
.

.

.

.
. . .

−an−1 0 . . . 1
−an 0 . . . 0

⎤
⎥⎦.

The following lemma gives a new homogeneous Lya-
punov function. Under this Lyapunov function and condi-
tion (14), we will see that system (13) is finite-time stable.

Lemma 3.3: For system (13), construct the following ho-
mogeneous function:

V (ε) =

⎧⎪⎪⎨
⎪⎪⎩

∫ ∞

0

1

vq+1
(χ ◦ V̄ )(vε1, v

α1ε2, . . . , v
αn−1εn)dv,

ε ∈ Rn \ {0},
0, ε = 0,

(15)

where V̄ (ε) = εT P ε, P,D1 are given in Equation (14),

q > 0 is an integer, χ (s) =
⎧⎨
⎩

0, s ∈ (−∞, 1]
2(s − 1)2, s ∈ (1, 3

2 )
1 − 2(s − 2)2, s ∈ [ 3

2 , 2)
1, s ∈ [2, ∞)

, χ (s) ∈

C ′(R,R). Then
(i) V (ε) is a positive definite function homogeneous

of degree q with respect to the weights {αi−1}1≤i≤n.
V (ε) is called a q h-Lyapunov function of V̄ (ε) w.r.t.
χ,L, (α0, α1, . . . , αn−1).

(ii) There exist c1, c2 > 0 such that

c1V (ε) ≤ ∂V (ε)

∂ε

T

D1ε ≤ c2V (ε). (16)
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(iii) If q > max{αi}0≤i≤n−1 + 1, dV (ε)
dt

|(13) is C1 on Rn,
then there exists a c3 > 0 such that

dV (ε)

dt

∣∣∣∣
(13)

≤ −c3L
1−σV (ε)γ , (17)

where γ = q+α−1
q

.

Proof: We give a direct and detailed proof of the lemma
in Appendix. �

Based on Lemmas 3.1–3.3, our main result with explicit
proof is given in the following.

Theorem 3.4: If n−i
n−j+1 ≤ βij < i

j−1 (2 ≤ j ≤ i ≤ n), then

for any 1 − 1
n

< α < 1, there exist ϕi > 0 (1 ≤ i ≤ 5) and
0 < σ < 1 such that the system (4) with dynamic high gain
(9) is a global finite-time observer for nonlinear system (2)
with condition (3).

Proof: Under the condition that 1 − 1
n

< α < 1, ai(1 ≤
i ≤ n) satisfying Equation (14), 0 < σ < 1 (which will be
given later), we will use the homogeneous Lyapunov func-
tion V (ε) as defined in Lemma 3.3 to derive the global
finite-time stability.

For all ε ∈ Rn, calculating the derivative of the Lya-
punov function V (ε) defined in Equation (15) along the
solution of system (12), from Lemma 3.3, we have

dV (ε)

dt

∣∣∣∣
(12)

≤ −c3L
1−σV (ε)γ + c2ϕ1(L1−σ − ϕ2)V (ε)

−c1ϕ3�(u, y, x̂)V (ε) − c1ϕ4L
1+(m−2)σ |ε1|mV (ε)

−c1ϕ5L
mσ�(u, y, x̂)|ε1|mV (ε) + ∂V (ε)

∂ε

T

F̃ , (18)

where F̃ = (0,
f̃2

L1+σ , . . . ,
f̃n

Ln−1+σ )T .

For ∂V (ε)
∂ε

T
F̃ , we have

∣∣∣∣∣∂V (ε)

∂ε

T

F̃

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=2

∂V (ε)

∂εi

f̃i

Li−1+σ

∣∣∣∣∣
≤

n∑
i=2

∣∣∣∣∂V (ε)

∂εi

∣∣∣∣ 1

Li−1+σ

(
�(u, y, x̂)

×
i∑

j=2

|xj − x̂j | + l

i∑
j=2

|xj − x̂j |βij

)

≤
n∑

i=2

i∑
j=2

�(u, y, x̂)

∣∣∣∣∂V (ε)

∂εi

∣∣∣∣ |εj |

+ l

n∑
i=2

i∑
j=2

∣∣∣∣∂V (ε)

∂εi

∣∣∣∣|εj |βij L(j−1+σ )βij −(i−1+σ ).

If βij < i
j−1 , there exists a σ1 > 0 such that βij <

i−σ1
j−1+σ1

, vj < 1−σ1
j−1+σ1

and (2 ≤ j ≤ i ≤ n). Choose 0 <

σ < σ1, then we get

L(j−1+σ )βij −(i−1+σ ) < L1−2σ .

Then, by Lemma 4.2 in Bhat & Bernstein (2005), we have

∣∣∣∣∣∂V (ε)

∂ε

T

F̃

∣∣∣∣∣ ≤
n∑

i=2

i∑
j=2

�(u, y, x̂)

∣∣∣∣∂V (ε)

∂εi

∣∣∣∣ |εj |

+ lL1−2σ

n∑
i=2

i∑
j=2

∣∣∣∣∂V (ε)

∂εi

∣∣∣∣ |εj |βij ≤ k1�(u, y, x̂)

×
n∑

i=2

i∑
j=2

V (ε)
q−αi−1+αj−1

q

+ k2lL
1−2σ

n∑
i=2

i∑
j=2

V (ε)
q−αi−1+αj−1βij

q , (19)

where k1 = max{z:V (z)=1} | ∂V (z)
∂zi

||zj | and k2 =
max{z:V (z)=1} | ∂V (z)

∂zi
||zj |βij .

Then, for δ > 0, define Bδ
�= {ε : V (ε) ≤ δ},Pδ =

{ε : |ε1| < δ}. Let � = {ε : (0, ε2, . . . , εn) ∈ Rn}.
The proof is divided into two parts: ε ∈ Rn \ � and

ε ∈ �, where part I consists of two small parts ε ∈ B1 \ �

and ε ∈ (Rn \ B1) \ � , respectively. When ε ∈ B1 \ �,
we can get dV (ε)

dt
|(12) ≤ − 1

3c3L
1−σV (ε)γ . Then we have

dV (ε)
dt

|(12) ≤ −c3L
1−σ V (ε)γ for ε ∈ (Rn \ B1) \ �. Thus,

we obtain dV (ε)
dt

|(12) ≤ − 1
3c3L

1−σ V (ε)γ for all ε ∈ Rn \ �.
Then when ε ∈ �, it can be verified that the non-trivial so-
lution of system (12) can only pass through � finite times.
Thus, from the combination of these two parts, we obtain
the global finite-time stability of error system (12).

Part I:
1. When ε ∈ B1 \ �, from Equations (18) and (19), we

have

dV (ε)

dt

∣∣∣∣
(12)

≤ −c3L
1−σ V (ε)γ + c2ϕ1(L1−σ − ϕ2)V (ε)

− c1ϕ3�(u, y, x̂)V (ε)

− c1ϕ4L
1+(m−2)σ |ε1|mV (ε)

− c1ϕ5L
mσ�(u, y, x̂)|ε1|mV (ε)

+ k1n
2�(u, y, x̂)V (ε)

+ k2n
2lL1−2σ V (ε)

q+β

q , (20)

where β = min2≤j≤i≤n{αj−1βij − αi−1}. From Lemma 3.1,

we can derive γ <
q+β

q
, then there exist d11, d21, d31 > 0

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Pr

et
or

ia
] 

at
 1

3:
45

 0
9 

M
ay

 2
01

3 



International Journal of Control 763

such that when ϕ1 < d11, ϕ2 > d21, ϕ3 > d31 we have

dV (ε)

dt

∣∣∣∣
(12)

≤ −1

3
c3L

1−σV (ε)γ − c2ϕ1ϕ2V (ε)

− c1ϕ4L
1+(m−2)σ |ε1|mV (ε)

− c1ϕ5L
mσ�(u, y, x̂)|ε1|mV (ε)

≤ −1

3
c3L

1−σV (ε)γ , (21)

where d11 = c3
3c2

, d21 = ( 3k2n
2l

c3
)

1
σ and d31 = k1n

2

c1
.

2. When ε ∈ (Rn \ B1) \ �, from Equations (18) and
(19), we can derive

dV (ε)

dt

∣∣∣∣
(12)

≤ −c3L
1−σV (ε)γ + c2ϕ1(L1−σ − ϕ2)V (ε)

− c1ϕ3�(u, y, x̂)V (ε)

− c1ϕ4L
1+(m−2)σ |ε1|mV (ε)

− c1ϕ5L
mσ�(u, y, x̂)|ε1|mV (ε)

+ k1n
2�(u, y, x̂)V (ε)

q−αn−1+1
q

+ k2n
2lL1−2σ V (ε)

q+β̄

q , (22)

where β̄ = max2≤j≤i≤n{αj−1βij − αi−1}.
Let G = {z : V (z) = 1}. For any ε ∈ (Rn \ B1) \ �,

there exist δ > 0 and λ such that ε =
(λεδ

1, λ
α1εδ

2, . . . , λ
αn−1εδ

n)T = diag{λ, λα1 , . . . , λαn−1}εδ,

εδ = (εδ
1, . . . , ε

δ
n)T ∈ G \ Pδ . Then we have

|ε1|mV (ε)=λm+q |εδ
1|mV (εδ) = λm+q |εδ

1|m =V (ε)
m+q

q |εδ
1|m.

Because |εδ
1|m ≥ minε∈G\Pδ

|ε1|m = δm, then we can get the
following inequality:

|ε1|mV (ε) ≥ δmV (ε)
m+q

q , ε ∈ (Rn \ B1) \ �. (23)

Thus, from Equations (22) and (23), we obtain

dV (ε)

dt

∣∣∣∣
(12)

≤ −c3L
1−σV (ε)γ + c2ϕ1(L1−σ − ϕ2)V (ε)

− c1ϕ3�(u, y, x̂)V (ε)

− c1ϕ4L
1+(m−2)σ δmV (ε)

m+q

q

− c1ϕ5L
mσ�(u, y, x̂)δmV (ε)

m+q

q

+ k1n
2�(u, y, x̂)V (ε)

q−αn−1+1
q

+ k2n
2lL1−2σ V (ε)

q+β̄

q . (24)

Because m ≥ max{αj−1βij − αi−1, 1}(2 ≤ j ≤ i ≤
n), we can get L1+(m−2)σ ≥ L1−σ . Then, there ex-
ist d41, d51 > 0 such that ϕ4 > 2c2

c1δm ϕ1 holds when

ϕ4 > d41, ϕ5 > d51. Thus, for ε ∈ (Rn \ B1) \ �, we have

dV (ε)

dt

∣∣∣∣
(12)

≤ − c3L
1−σV (ε)γ − c2ϕ1ϕ2V (ε)

− c1ϕ3�(u, y, x̂)V (ε) ≤ −c3L
1−σV (ε)γ ,

(25)

where d41 = max{ 2k2n
2l

c1δm , 2c3
3c1δm } and d51 = k1n

2

c1δm .
Finally, from Equations (21) and (25), by combining

parts 1 and 2, we get that the following inequality,

dV (ε)

dt

∣∣∣∣
(12)

≤ −1

3
c3L

1−σ V (ε)γ , (26)

holds for ε ∈ Rn \ �.
Part II:
When ε ∈ �, let ε(t, t0, ε0) denote a non-trivial solution

of system (12). In the following, we will verify that there
does not exist such t2 > t1 ≥ t0 that ε(t, t0, ε0) stays on �

in the interval (t1, t2). We will prove it using a contradiction
argument. Suppose there exists such interval that ε(t, t0, ε0)
can stay on �. From the first equation of system (12), we can
derive ε2 = 0 on (t1, t2). Then, from the second equation,
we can obtain ε3 = 0 on (t1, t2). Then following the same
steps, we have εi = 0(2 ≤ i ≤ n) on (t1, t2), which is a
contradiction. Thus, ε(t, t0, ε0) can only pass through �.
Let tk denote the time when ε(t, t0, ε0) passes through �.
From Equation (26), we have

dV (ε)

dt

∣∣∣∣
(12)

V (ε)−γ ≤ −1

3
c3L

1−σ ≤ −1

3
c3ϕ

1−σ
2 . (27)

Integrate both sides of Equation (27), we have

n∑
k=1

∫ tk+1

tk

V (ε)−γ dV (ε) ≤ −1

3
c3ϕ

1−σ
2

∫ tk+1

tk

dt,

i.e.

1

1 − γ
V (ε(tn+1))1−γ ≤ 1

1 − γ
V (ε(t1))1−γ

− 1

3
c3ϕ

1−σ
2 (tn+1 − t1). (28)

Here, we still use the contradiction argument to prove that
{tk} is a finite sequence. If {tk} is not a finite sequence, then
we have tn −→ +∞ as n −→ +∞. And we can get that the
left-hand side of Equation (28) approaches to zero while the
right-hand side approaches to −∞, which is a contradiction.
Thus, {tk} is a finite sequence. Therefore, there exists a T1

such that Equation (26) holds for all ε ∈ Rn(t > T1).
Thus, from Theorem 4.2 in Bhat & Bernstein (2000) and

by combining part I and part II, we get the global finite-time
convergence of the observation error εi(i = 1, . . . , n). The
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764 Y. Li et al.

Figure 1. Observation errors of system (29) (shown in (a), (b) and (c)) and system (30) (shown in (d), (e) and (f)) under condition I,
condition II and condition III.

settling time T (ε0) is T (ε0) ≤ 3
c3ϕ2

1−σ (1−γ )V (ε0)1−γ + T1,

where t0 is the initial time and ε0 = (e0
1,

e0
2

ϕ2
σ , . . . ,

e0
n

ϕ2
n−1+σ )T

is the initial state. Then from Lemma 3.2, we get ei

Mi−1+σ <
ei

Li−1+σ = εi = 0 when t > T (ε0) + T1 (1 ≤ i ≤ n), i.e. the
system (4) with update gain (9) is a global finite-time ob-
server for system (2) with condition (3).

This completes the proof. �

4. Example

Example 1: Consider the same nonlinear system as in
Li et al. (2011),

⎧⎨
⎩

ẋ1 = x2,

ẋ2 = −1.5x2 − x1.4
2 − x1,

y = x1,

where the following nonlinear condition holds: |(−1.5x2 −
x1.4

2 − x1) − (−1.5x̂2 − x̂1.4
2 − x1)| ≤ (1.5 + 1.4|x̂2|0.4)

|x2 − x̂2| + |x2 − x̂2|1.4. Following the results in Li et al.

(2011), a global finite-time observer is designed as

⎧⎪⎪⎨
⎪⎪⎩

˙̂x1 = x̂2 + 4L�y − x̂1�α + 4L1−(β−1)(1−η)σ �y − x̂1�β,
˙̂x2 = 3L2�y − x̂1�2α−1 + 3L2−2(β−1)(1−η)σ �y − x̂1�2β−1

− 1.5x̂2 − x̂1.4
2 −y,

L̇ = −L[ϕ1(L1−σ − ϕ2) − ϕ3(1.5 + 1.4|x̂2|0.4)],

(29)

while the global finite-time observer designed in this paper
is as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

˙̂x1 = x̂2 + 4L�y − x̂1�α,
˙̂x2 = 3L2�y − x̂1�2α−1 − 1.5x̂2 − x̂1.4

2 − y,

L̇ = −L[ϕ1(L1−σ − ϕ2) − ϕ3(1.5 + 1.4|x̂2|0.4)
−ϕ4L

1−2σ |x1 − x̂1|2
−ϕ5(1.5 + 1.4|x̂2|0.4)|x1 − x̂1|2].

(30)

To illustrate the performance of systems (29) and (30)
more clearly, several figures are given under the following
three different initial conditions and parameters.

Condition I
Parameters: α = 0.95, β = 105, σ = 0.01, η = 0.01,

ϕ1 = 0.1, ϕ2 = 1.2, ϕ3 = 0.2, ϕ4 = 500, ϕ5 = 400.
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International Journal of Control 765

The initial values: x1(0) = 0.2, x2(0) = 0.3, x̂1(0) =
0.1, x̂2(0) = 0.4, L(0) = 1.5.

Condition II
Parameters: α = 0.8, β = 104, σ = 0.001, η = 0.1,

ϕ1 = 0.01, ϕ2 = 1, ϕ3 = 1, ϕ4 = 20, ϕ5 = 30. The ini-
tial values: x1(0) = 2, x2(0) = 5, x̂1(0) = 3, x̂2(0) =
1, L(0) = 1.5.

Condition III
Parameters: α = 0.8, β = 104, σ = 0.001, η = 0.1,

ϕ1 = 0.01, ϕ2 = 1, ϕ3 = 1, ϕ4 = 20, ϕ5 = 30. The ini-
tial values: x1(0) = 2, x2(0) = 5, x̂1(0) = 3, x̂2(0) =
1, L(0) = 10.

From the simulations (with uniform random number
noise added to the observers) as shown in Figure 1, we can
see that the change of different parameters as well as the
initial values of the states and the high gain L do have some
effect on the convergence of the observation error system.
However, it is very clear that no matter under which case, the
new global finite-time observer (30) proposed by this paper
can render the error systems converge more quickly while
it is a bit more noise-sensitive than the one (29) designed
previously.

5. Conclusion

A global finite-time observer was designed for a class of
nonlinear systems with rational powers imposed on the in-
cremental nonlinear terms. Compared with the previous
global finite-time results, the observer was given with a
new gain update law where the term |y − x̂1|m is intro-
duced. Through an example, we showed that the observer
proposed in this paper can reduce the convergence time of
the observation error.
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Appendix: Proofs of Lemma 3.1 and Lemma 3.3
A.1. Proof of Lemma 3.1

Proof: To prove α − 1 − αj−1βij + αi−1 < 0 is equivalent to
prove βij >

αi

αj−1
for 2 ≤ j ≤ i ≤ n. For 1 − 1

n
< α < 1, we

have αi

αj−1
= iα−(i−1)

(j−1)α−(j−2) , which is strictly increasing with re-

spect to α. Because α < 1, βij > n−i

n−j+1 , there exists a ε > 0

such that α < n−1+ε

n
and βij > n−i+iε

n−j+1+jε−ε
. Then we get αi

αj−1
<

i n−1+ε
n −(i−1)

(j−1) n−1+ε
n −(j−2)

= n−i+iε

n−j+1+jε−ε
< βij . �

Thus, the proof is completed.
A.2. Proof of Lemma 3.3

Proof: First, for π > 0, 0 < σ < 1, define Fπ
�= {ε : |ε1| =

π},B1,π
�= {ε : εT ε ≤ π},B1,π

�= {ε : εT ε < π},B2,π
�=

{(ε1, ε2, . . . , εn)T :
∑n

i=2 ε2
i ≤ π 2},B2,π

�= {(ε1, ε2, . . . , εn)T :∑n

i=2 ε2
i < π 2},B3,π,i

�= {(ε1, L
−iσα1ε2, . . . , L

−iσαn−1εn)T :∑n

i=2 ε2
i ≤ π 2},B3,π,i

�= {(ε1, L
−iσα1ε2, . . . , L

−iσαn−1εn)T :∑n

i=2 ε2
i < π 2},Pπ

�= {ε : |ε1| ≤ π},Pπ
�= {ε : |ε1| < π} and

Sπ
�= {ε : εT ε = π}.

The proofs of (i) and (ii) are quite easy. For (i), by change of
integration, it can be verified that V (ε) is homogeneous of degree
q with respect to the weights {αi}0≤i≤n−1. From condition (14), it
is also not difficult to derive the inequality (16) in (ii).

The proof of (iii) is a bit complicated. We will see that the
proof is divided into two parts. The first part is to construct a
compact set A (where A will be given later) encircling the origin
where some inequalities are obtained. The compact set is derived
by combination of four sets. In the second part, for any ε ∈ Rn \
{0}, the inequality (17) in (iii) is derived through establishing the
relationship between dV (ε)

dt
|(13) and dV (ε0)

dt
|(13), ε0 ∈ A by use of the

homogeneity theory.
Part I: This part is divided into six parts. In the first

four parts, we will show that dV (ε)
dt

|(13) satisfies some inequali-

ties on the following sets S1 ∩ PL−σ , (P (1+π1)L−σ \ P(1−π1)L−σ ) ∩
B3,π1,2,FL−hσ ∩ (B1,1 \ B3,π1,2) and (PL−σ \ PL−hσ ) ∩ (B3,π1,2 \
B3,π1,2) separately, where π1 > 0, h > 2 will be given later. Then
in the fifth part, V (ε) admits some inequalities for ε belonging to
each of these four sets. Finally, in the sixth part, the compact set
A is derived from the combination of these four sets.

(1) Let l1 be the largest l > 0 such that
max{v≤l} max{ε∈B1,2\B

1, 1
2

} V̄ (vε1, . . . , v
αn−1εn) ≤ 1.

Let l2 be the smallest l > 0 such that
min{v≥l} min{ε∈B1,2\B

1, 1
2

} V̄ (vε1, . . . , v
αn−1εn) ≥ 2. Then we

have V (ε) = ∫ l2
l1

1
vq+1 (χ ◦ V̄ (vε1, . . . , v

αn−1εn))dv + 1
ql

q
2
, ε ∈

B1,2 \ B1, 1
2
. And

dV (ε)

dt

∣∣∣∣
(13)

= 2L

∫ l2

l1

χ ′(V̄ (vε1, . . . , v
αn−1εn))

vq+α
K(v, ε1, . . . , εn)

× dv, ε ∈ B1,2 \ B1, 1
2
, (A.1)

where

K(v, ε1, . . . , εn) =

⎡
⎢⎢⎣

0
vα1ε2

...
vαn−1εn

⎤
⎥⎥⎦

T

P

⎡
⎢⎢⎣

vα1ε2

...
vαn−1εn

0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

vε1

0
...
0

⎤
⎥⎥⎦

T

× P

⎡
⎢⎣

vα1ε2 − a1L
(α1−1)σ �vε1�α1

...
−anL

(αn−1)σ �vε1�αn

⎤
⎥⎦

+

⎡
⎢⎢⎣

0
vα1ε2

...
vαn−1εn

⎤
⎥⎥⎦

T

P

⎡
⎢⎣

−a1L
(α1−1)σ �vε1�α1

...
−anL

(αn−1)σ �vε1�αn

⎤
⎥⎦ .

(A.2)

When ε ∈ S1 ∩ PL−σ , from Equations (A.1) and (A.2),

there exists L1 > 2 such that when L > L1, we have dV (ε)
dt

∣∣∣
(13)

<

−L

2

∫ l2
l1

1
vq+α

∑n

i=2 v2αi−1ε2
i χ

′(V̄ (vε1, . . . , v
αn−1εn))dv, ε ∈

S1 ∩ PL−σ , where a∗ = max{1≤i≤n} ai, p̄ = max{1≤i,j≤n} |Pij |.
And clearly, we have (S1 ∩ P0) ⊂ (S1 ∩ PL−σ ) ⊂

(S1 ∩ P2−σ ). Let l3 be the largest l > 0 such that
max{v≤l} max{ε∈S1∩P0} V̄ (vε, . . . , vαn−1εn) ≤ 1. Let l4 be the small-
est l > 0 such that min{v≥l} min{ε∈S1∩P0} V̄ (vε, . . . , vαn−1εn) ≥ 2.
It is not difficult to get l3 ≥ l1, l4 ≤ l2. Then we have

dV (ε)

dt

∣∣∣∣
(13)

< −Ld1, ε ∈ S1 ∩ PL−σ , (A.3)

where d1 = 1
2 min{ε∈S1∩P2−σ }

∫ l4
l3

1
vq+α

∑n

i=2 v2αi−1ε2
i χ

′(V̄ (vε1, . . . ,

vαn−1εn))dv.
(2) Because a1P11 > 0, from Equations (A.1) and (A.2), there

exist π1 ∈ (0, 1) such that for ε ∈ (P1+π1 \ P1−π1 ) ∩ B3,π1,1, we

have dV (ε)
dt

|(13) < −L1−σ
∫ l2

l1

a1P11v1+α1

vq+α χ ′(V̄ (±v, 0, . . . , 0))dv.

Because dV (ε)
dt

|(13) is homogeneous of degree q + α − 1 with
respect to the weights {αi}0≤i≤n−1, we get

dV (ε)

dt

∣∣∣∣
(13)

< −d2L
1−(q+α)σ , ε ∈ (P (1+π1)L−σ \ P(1−π1)L−σ )

× ∩ B3,π1,2, (A.4)

where d2 = ∫ l2
l1

a1P11v1+α1

vq+α χ ′(V̄ (±v, 0, . . . , 0))dv.
(3) Let l5 be the largest l > 0 such that

max{v≤l} max{ε∈P(1+π1)L−σ ∩(B1,1\B3,π1 ,2)} V̄ (vε1, . . . , v
αn−1εn) ≤ 1.

And let l6 be the smallest l > 0 such that
min{v≥l} min{ε∈P(1+π1)L−σ ∩(B1,1\B3,π1 ,2)} V̄ (vε1, . . . , v

αn−1εn) ≥ 2.

Then, for ε ∈ P (1+π1)L−σ ∩ (B1,1 \ B3,π1,2), we have
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V (ε) = ∫ l6
l5

1
vq+α (χ ◦ V̄ (vε1, . . . , v

αn−1εn))dv + 1
ql

q
6

and

dV (ε)
dt

∣∣∣
(13)

= 2L
∫ l6

l5

1
vq+α χ ′(V̄ (vε1, . . . , v

αn−1εn))K(v, ε1, . . . , εn)dv.

And for any ε ∈ P (1+π1)L−σ ∩ (B1,1 \ B3,π1,2),
there exists L̃ ≥ 1 such that ε =
(L̃σ (L̃−σ L−σ ε1), L̃α1σ L−2α1σ ε2, . . . , L̃

αn−1σ L−2αn−1σ εn)T , |ε1| ≤
1 + π1,

∑n

i=2 ε2
i = π 2

1 .

Then, for any ε ∈ FL−hσ ∩ (B1,1 \ B3,π1,2), there ex-

ists h̄1 > 2 such that when h ≥ h̄1, we have dV (ε)
dt

∣∣∣
(13)

<

−L

2

∫ l6
l5

χ ′(V̄ (vL−hσ ,...,v
αn−1 L̃

αn−1σ
L

−2αn−1σ
εn))

vq+α

∑n

i=2 L̃2αi−1σ L−4αi−1σ

v2αi−1ε2
i dv.

Moreover, for any ε ∈ FL−hσ ∩ (B1,1 \ B3,π1,2), let l7(ε) and
l8(ε) be such that 5

4 ≤ V̄ (vε1, . . . , v
αn−1εn) ≤ 7

4 when l7(ε) ≤ l ≤
l8(ε) (without loss of generality, it is assumed that 0 ≤ l7(ε) ≤
l8(ε)). Note that from the definition of χ (s), 1 ≤ χ ′(s) ≤ 2 for
5
4 ≤ s ≤ 7

4 . Then, there exists h̄2 > 2 such that when h > h̄2

we can get dV (ε)
dt

∣∣∣
(13)

< −L

2

∫ l8(ε)
l7(ε)

∑n
i=2 L̃

2αi−1σ
L

−4αi−1σ
v

2αi−1 ε2
i

vq+α dv <

− 5L

16λ̄(q+α−1)
l8(ε)q+α−1−l7(ε)q+α−1

l7(ε)q+α−1 l8(ε)q+α−1 , where λ̄ = λmax(P ).

It is clear that {z : zT P z = 5
4 } ∩ {z : zT P z = 7

4 } = ∅, thus,

we can derive M1 <
∑n

i=1(z1
i

q+α−1
αi−1 − z2

i

q+α−1
αi−1 )2, where M1 > 0

is a positive real number, z1 = (z1
1, . . . , z

1
n)T ∈ {z : zT P z = 7

4 }
and z2 = (z2

1, . . . , z
2
n)T ∈ {z : zT P z = 5

4 }. Because
(l8(ε)L̃σ (L̃−σ L−hσ ε1), l8(ε)α1 L̃α1σ L−2α1σ ε2, . . . , l8(ε)αn−1 L̃αn−1σ

L−2αn−1σ εn)T ∈ {z : zT P z = 7
4 } and

(l7(ε)L̃σ (L̃−σ L−hσ ε1), l7(ε)α1 L̃α1σ L−2α1σ ε2, . . . , l7(ε)αn−1 L̃αn−1σ

L−2αn−1σ εn)T ∈ {z : zT P z = 5
4 }, we can

get M1 ≤ L̃2(q+α−1)σ L−4(q+α−1)σ (l8(ε)q+α−1 −
l7(ε)q+α−1)2(

∑n

i=2 ε

2(q+α−1)
αi−1

i + 1),
∑n

i=2 ε2
i = π 2

1 .
Because {z : 1 ≤ zT P z ≤ 2} is a bounded compact set,

then there exist M2, M3 > 0 such that M2 <
∑n

i=2 z

2(q+α−1)
αi−1

i <
M3, z ∈ {z : 1 ≤ zT P z ≤ 2}. And it is not difficult to see
that there exist εj ∈ P (1+π1)L−σ ∩ (B1,1 \ B3,π1,2) such that
(lj (ε)L̃σ (L̃−σ L−hσ ε

j

1 ), lj (ε)α1 L̃α1σ L−2α1σ ε
j

2 , . . . , lj (ε)αn−1 L̃αn−1σ

L−2αn−1σ εj
n)T ∈ {z : 1 ≤ zT P z ≤ 2}, j = 7, 8. And

M3 > L̃2(q+α−1)σ L−4(q+α−1)σ lj (ε)2(q+α−1)
∑n

i=2 ε
j

i

2(q+α−1)
αi−1 , j =

7, 8,
∑n

i=2 ε
j

i

2 = π 2
1 .

Then we can get l8(ε)q+α−1 − l7(ε)q+α−1 >

min{ε:
∑n

i=2 ε2
i
=π2

1 }

√
L4(q+α−1)σ M1

L̃2(q+α−1)σ (
∑n

i=2 ε

2(q+α−1)
αi−1

i
+1)

and 1
lj (ε)q+α−1 >

min{ε:
∑n

i=2 ε2
i
=π2

1 }

√
L̃2(q+α−1)σ ∑n

i=2 ε

2(q+α−1)
αi−1

i

L4(q+α−1)σ M3
, j = 7, 8. Therefore, we

have

dV (ε)

dt

∣∣∣∣
(13)

< −L1−2(q+α−1)σ L̃(q+α−1)σ d3, ε ∈ FL−hσ

∩(B1,1 \ B3,π1,2), (A.5)

where d3 = min{ε:
∑n

i=2 ε2
i
=π2

1 }
5
√

M1
∑n

i=2 ε

2(q+α−1)
αi−1

i

16λ̄(q+α−1)M3

√
∑n

i=2 ε

2(q+α−1)
αi−1

i
+1

.

(4) When ε ∈ (PL−σ \ PL−hσ ) ∩ (B3,π1,2 \ B3,π1,2), be-
cause for any ε1 = (ε1

1, ε
1
2, . . . , ε

1
n)T ∈ (PL−σ \ PL−hσ ) ∩

(B3,π1,2 \ B3,π1,2) and any ε2 = (±L−σ , ε1
2, . . . , ε

1
n)T ∈

FL−σ ∩ (B3,π1,2 \ B3,π1,2), we have ‖ε1 − ε2‖2
2 ≤ 4L−2σ .

Because of the continuity of dV (ε)
dt

∣∣∣
(13)

on ε ∈ Rn, we derive

dV (ε)

dt

∣∣∣∣
(13)

< −d2

2
L1−(q+α)σ < 0, ε ∈ (PL−σ \ PL−hσ )

∩(B3,π1,2 \ B3,π1,2). (A.6)

(5) From Equation (A.3), we can select L > max{1≤i≤2}{2, Li}
such that

V (ε)−γ ≥ d
−γ

4 , ε ∈ S1 ∩ PL−σ , (A.7)

where d4 = max∑n
i=2 ε2

i
=1 V (ε).

When ε ∈ FL−σ ∩ B3,π1,2, we can
have V (±L−σ , L−2α1σ ε2, . . . , L

−2αn−1σ εn) =
L−qσ V (±1, L−α1σ ε2, . . . , L

−αn−1σ εn) ≤ d5L
−qσ , where

d5 = max∑n
i=2 ε2

i
≤π2

1
V (±1, ε2, . . . , εn). Then, we get

V (ε)−γ > d
−γ

5 Lσ (q+α−1), ε ∈ FL−σ ∩ B3,π1,2. (A.8)

When ε ∈ FL−hσ ∩ (B1,1 \ B3,π1,2), by
use of homogeneity property, we have
V (±L̃σ L̃−σ L−hσ , L̃α1σ L−2α1σ ε2, . . . , L̃

αn−1σ L−2αn−1σ εn) =
L̃qσ L−qσ V (±L̃−σ L−(h−2)σ , ε2, . . . , εn) ≤ d6L̃

qσ L−2qσ , where
d6 = max|ε1|≤1,

∑n
i=2 ε2

i
≤π2

1
V (ε1, ε2, . . . , εn). Then the following

inequality holds:

V (ε)−γ > d
−γ

6 L2σ (q+α−1)L̃−σ (q+α−1),

ε ∈ FL−hσ ∩ (B1,1 \ B3,π1,2). (A.9)

When ε ∈ (PL−σ \ PL−hσ ) ∩ (B3,π1,2 \ B3,π1,2), we
can get V (±L−(1+(h−1)s)σ , L−2α1σ ε2, . . . , L

−2αn−1σ εn) =
L−qσ V (±L−(h−1)sσ , L−α1σ ε2, . . . , L

−αn−1σ εn) ≤ d6L
−qσ , where

0 < s < 1. Therefore, we get

V (ε)−γ > d
−γ

6 L(q+α−1)σ , ε ∈ (PL−σ \ PL−hσ ) ∩
(B3,π1,2 \ B3,π1,2). (A.10)

(6) Thus, from the above inequalities (A.3), (A.7); (A.4),
(A.8); (A.5), (A.9) and (A.6), (A.10), we can obtain a compact
set, which encircles the origin and is shown in the following:

A �= (S1 ∩ PL−hσ ) ∪ (FL−σ ∩ B3,π1,2) ∪ (FL−hσ ∩ (B1,1 \ B3,π1,2))

∪((PL−σ \ PL−hσ ) ∩ (B3,π1,2 \ B3,π1,2)),

and
dV (ε)

dt

∣∣∣∣
(13)

V (ε)−γ ≤ −c3L
1−σ , ε ∈ A, (A.11)

where c3 = min{d1d
−γ

4 , d2d
−γ

5 , d3d
−γ

6 ,
d2d

−γ
6

2 } > 0.

Part II: Because V (ε) and dV (ε)
dt

∣∣∣
(13)

are homogeneous of de-

grees q and q + α − 1 with respect to the weights {αi}0≤i≤n−1,
for any ε ∈ Rn \ {0}, there exist v0 > 0 and ε0 ∈ A such
that ε = (ε1, . . . , εn)T = (v0ε

0
1, . . . , v

αn−1
0 ε0

n)T . Moreover, we have
dV (ε)

dt
|(13) = v

q+α−1
0

dV (ε0)
dt

|(13) and V (ε) = v
q

0 V (ε0). Then, from
Equation (A.11), we derive

dV (ε)

dt

∣∣∣∣
(13)

= V (ε)−γ dV (ε0)

dt

∣∣∣∣
(13)

V (ε0)−γ ≤ −c3L
1−σ V (ε)−γ ,

ε ∈ Rn \ {0}. (A.12)

This completes the proof. �
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