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SUMMARY

This paper addresses the problem of output feedback stabilization for nonlinear systems with sampled
and delayed output measurements. Firstly, sufficient conditions are proposed to ensure that a class of
hybrid systems are globally exponentially stable. Then, based on the sufficient conditions and a dedicated
construction continuous observer, an output feedback control law is presented to globally exponentially
stabilize the nonlinear systems. The output feedback stabilizer is continuous and hybrid, and can be derived
without discretization. The maximum allowable sampling period and the maximum delay are also given.
At last, a numerical example is provided to illustrate the design methods. Copyright © 2015 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Recently, great progress has been made in the problem of design global asymptotic output feedback
control laws for nonlinear systems. For example, the problem of global asymptotic stabilization by
output feedback has been studied for a class of nonlinear systems [1]. The nonlinear terms consid-
ered in [1] admit an incremental rate that is dependent on the measured output. In [2], the author
introduced a technique to stabilize a fully linearizable nonlinear system. The technique was utilized
in [3] and [4]. In [5], a linear output feedback controller with dynamic high gain was presented to
globally regulate a class of nonlinear systems.

It should be noted that the previous results concerned with output feedback stabilization are
based on continuous time analysis. However, for a networked control system, the output is usually
transmitted through a shared band-limited digital communication network. It is only available at
discrete-time instants. Therefore, it is interesting to study output feedback stabilization for contin-
uous systems with sampled and delayed measurements. More recently, three main approaches are
proposed to deal with these problems. The first one is based on discrete time analysis by introducing
a consistent approximation of the exact discretized model [6–8]. A quadratic observer incorporated
with a quadratic dynamic feedback was proposed to achieve quadratic approximated feedback lin-
earization with stability [7]. In [8], multirate sampled-data output feedback control of a class of
nonlinear systems was presented based on high gain observers. It should be noted that in some cases,
it will be difficult to obtain an exact discrete time model for a nonlinear system. The second one
is based on continuous time analysis followed by discretization [9–11]. For example, sampled-data
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output feedback stabilization of nonlinear systems by using high-gain observers has been considered
in [9–11]. By carefully choosing the sampling period, the authors proposed a sampled-data output
feedback controller such that the closed-loop systems are regionally or globally stable [12]. The
results obtained in [12] are based on the assumption that full-state are measurable. The third one is
based on a mixed continuous and discrete time analysis without discretization [13–18]. For exam-
ple, based on the existence of a controller and a special Lyapunov function satisfying certain L2
gain conditions, the authors presented a sampled-data output feedback stabilizer to ensure that the
closed-loop system is globally stable by using a hybrid system method [13]. It should be noted that
the closed-loop system is required to transform into the hybrid system introduced in [19]. In [17, 20],
a state feedback law has been constructed to achieve global asymptotic stabilization for nonlinear
systems under sampled and delayed measurements, and with inputs subject to delay and zero-order
hold. The sampled-data feedback is based on a predictor mapping, which can be constructed induc-
tively. There are few results on sampled-data output feedback stabilization for nonlinear systems in
lower-triangular form with delayed output measurements, which motivates the present study.

In this paper, our aim is to design an output feedback stabilizer for a class of nonlinear systems
with sampled and delayed measurements. Firstly, sufficient conditions are given to ensure that a
class of hybrid systems are globally exponentially stable. The sufficient conditions are derived by
constructing an iteration with a parameter. Then, based on the sufficient conditions and a dedicated
construction continuous observer, an output feedback control law is presented to globally exponen-
tially stabilize the nonlinear systems. The output feedback stabilizer is continuous and hybrid. It
has simple and explicit form and can be derived without discretization. The maximum allowable
sampling period and the maximum delay are also given.

This paper is organized as follows. In Section 2, some definitions are presented for hybrid sys-
tems. Then, global exponential stable sufficient conditions are given for the hybrid systems. In
Section 3, continuous output feedback stabilizer are presented for a class of single-output nonlinear
systems with sampled and time delayed measurements. Section 4 provides an example to illustrate
the validity of the proposed design methods. Finally, the paper is concluded in Section 5.

2. GLOBAL EXPONENTIAL STABILITY FOR HYBRID SYSTEMS

Let Rn denote n-dimension real space and RC denote 1-dimension positive real space. For any
x 2 Rn, let kxk D .xT x/1=2. For a continuous function f W R! R and t 2 R, let lims!t� f .s/ D
lims!t;s<t f .s/. For a matrix P 2 Rn�n, �max.P / and �min.P / denote the largest and the smallest
eigenvalues of P , respectively.

Consider the following system:8̂̂<
ˆ̂:

Px.t/ D f .x.t/; x.tk//;
tkC1 D tk C TkC1;

x.tkC1 C �kC1/ D limt!tkC1C�kC1
� x.t/;

t 2 Œtk C �k; tkC1 C �kC1/; k > 0;
(1)

where ¹tkºk2N is a sequence of positive numbers defined by tkC1 D tk C TkC1, TkC1 denotes the
k C 1th sampling period, �k denotes time delay and has an upper bound � , that is, �k 6 � . Let
Tmax D max¹Tkº and Tmin D min¹Tkº. We also assume that � 6 Tmin, which can be taken non-
strict with the understanding that by any chance, the update instant tk C �k meets with the next
transmission instant tkC1, the update is implemented before the next sample is taken. The function
f W Rn � Rn ! Rn is continuous. It should be noted that x.t/ is continuous on tkC1 C �kC1,
therefore, it is continuous on Œt0;1/.

Remark 1
Sampling arises simultaneously with input and output delays in many control problems, especially
in control over networks. Similar systems to the form (1) arise frequently in certain applications
in mathematical control theory and numerical analysis, which have been investigated in [15, 17,
20–24]. For example, the authors proposed a system-theoretic framework to study hybrid uncertain
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systems [21]. They also presented characterizations of robust global asymptotic output stability.
In [15], observer was designed for certain classes of nonlinear systems with both sampled and
delayed measurements by using a small-gain approach. Continuous-discrete observers have also
been studied for multi-input and multi-output state affine systems with sampled and delayed output
measurements [24].

We next give the following definitions for the hybrid system (1).

Definition 1
Consider the system (1), for each .t0; x0/ 2 RC �Rn, there exists a piecewise continuous function
t ! x.t; t0; x0/ with the initial condition x.t/ D x0 (t 2 Œt0; t0 C �0�) satisfying (1). We call
that x.t; t0; x0/ is a solution of the system (1). If f .�/ satisfies that f .0; 0/ D 0, and there exist
a non-decreasing function N W RC ! RC and a positive constant � such that kx.t; t0; x0/k <
e��.t�t0/N.kx0k/ for any x0 2 Rn, then, the system (1) is globally exponentially stable.

Now, we give the following sufficient conditions to ensure the hybrid system (1) is globally
exponentially stable.

Theorem 1
Suppose there exist three positive constants �1, ˛1, ˇ1, and a positive definite and radially
unbounded function V.x.t// defined on Œt0;1/, satisfying the following conditions:

dV.x.t//

dt

ˇ̌̌
ˇ
(1)

6 �˛1V.x.t//C ˇ1V.x.tk//; t 2 Œtk C �k; tkC1 C �kC1/; k > 0 (2)

and

max
k>0

°
�1e
�˛1.TkC1��k/ C e�˛1.TkC1C�kC1��k/

±
< 1;

max
k>0

²�
ˇ1

˛1
C �1

ˇ1

˛1
�
ˇ1

˛1
e�˛1.TkC1��k/ .e�˛1�kC1 C �1/

�
=�1

³
< 1:

(3)

Then, the system (1) is globally exponentially stable.

Proof
The main point of the proof is to construct an iteration with a parameter. Then, a convergent
sequence with the parameter can be obtained based on the iteration. Therefore, the exponential
stability of the system (1) can be derived.

Multiplying the both sides of (2) by e˛1t yields

e˛1t
d

dt
V .x.t//j(1) C e

˛1t˛1V.x.t// 6 e˛1tˇ1V.x.tk//; t 2 Œtk C �k; tkC1 C �kC1/:

Integrating the above differential inequality from tk C �k to t , we have

V.x.t// 6 e�˛1.t�tk��k/V.x.tk C �k//C
ˇ1

˛1
V.x.tk//

�
ˇ1

˛1
e�˛1.t�tk��k/V.x.tk//; t 2 Œtk C �k; tkC1 C �kC1/:

(4)

Note that x.t/ is continuous on Œt0;1/. Let t D tkC1 C �kC1 and t D tkC1, respectively, then

V.x.tkC1 C �kC1// 6 e�˛1.TkC1C�kC1��k/V.x.tk C �k//C
ˇ1

˛1
V.x.tk//

�
ˇ1

˛1
e�˛1.TkC1C�kC1��k/V.x.tk//;

and

V.x.tkC1// 6 e�˛1.TkC1��k/V.x.tk C �k//C
ˇ1

˛1
V.x.tk// �

ˇ1

˛1
e�˛1.TkC1��k/V.x.tk//:

From the previous two inequalities, we have
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V.x.tkC1 C �kC1//C �1V.x.tkC1// 6
�
e�˛1.TkC1C�kC1��k/ C �1e

�˛1.TkC1��k/
�
V.x.tk C �k//

C

�
ˇ1

˛1
C �1

ˇ1

˛1
�
ˇ1

˛1
e�˛1.TkC1��k/.e�˛1�kC1 C �1/

�
V.x.tk//; k > 0:

(5)

Let �1 D max
®
maxk>0

®
�1e
�˛1.TkC1��k/ C e�˛1.TkC1C�kC1��k/

¯
, maxk>0

°�
ˇ1
˛1
C �1

ˇ1
˛1
�

ˇ1
˛1
e�˛1.TkC1��k/ .e�˛1�kC1 C �1/

�
=�1

±±
. From (3), we have 0 < �1 < 1. Therefore, it follows

from (5) that

V.x.tkC1 C �kC1//C �1V.x.tkC1// 6 �1ŒV .x.tk C �k//C �1V.x.tk//�; k > 0: (6)

Applying iteratively (6) with the parameter �1, we have

V.x.tk C �k//C �1V.x.tk//6 �k1 ŒV .x.t0 C �0//C �1V.x.t0//�; k > 0; (7)

that is, the sequence ¹V.x.tk C �k//C �1V.x.tk//º is convergent. It follows from (4) and (7) that

V.x.t// 6 V.x.tk C �k//C
ˇ1

˛1
V.x.tk// 6 �k1

�
1C

ˇ1

˛1�1

�
ŒV .x.t0 C �0//C �1V.x.t0//�;

t 2 Œtk C �k; tkC1 C �kC1/:

For any t > t0C �0, there exists k > 0 such that t 2 ŒtkC �k; tkC1C �kC1/. Then, t�t0��0
TmaxC�

� 1 6 k.
Therefore,

V.x.t// 6 �
t�t0��0
TmaxC�

�1

1

�
1C

ˇ1

˛1�1

�
ŒV .x.t0 C �0//C �1V.x.t0//

D e
t

TmaxC�
ln�1�

�t0��0
TmaxC�

�1

1

�
1C

ˇ1

˛1�1

�
ŒV .x.t0 C �0//C �1V.x.t0//�;

which implies that the system (1) is globally exponentially stable. �

For Theorem 1, we have the following corollaries.

Corollary 1
If there exist three positive constants �1, ˛1, ˇ1 and a positive definite and radially unbounded
function V.x.t// defined on Œt0;1/, such that the condition (2) and

e�˛1.Tmin��/.1C �1/ < 1;
ˇ1.1C �1/

˛1�1
< 1; (8)

hold, then, the system (1) is globally exponentially stable.

Corollary 2
If there exist two positive constants ˛1; ˇ1 and a positive definite and radially unbounded function
V.x.t// defined on Œt0;1/, satisfying the condition (2) and

˛1 > ˇ1; Tmin � � >
ˇ1

˛1.˛1 � ˇ1/
; (9)

then, the system (1) is globally exponentially stable.

Proof
The condition (9) implies that there exists � > 0 such that e˛1.Tmin��/ � 1 > ˛1.Tmin � �/ > � >
ˇ1

˛1�ˇ1
. Therefore, the conditions (8) hold. The proof is completed. �
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Remark 2
The condition (9) can hold for sufficiently large value of Tmin, that is, there is no upper bound of
TkC�k . In fact, the inequality (4) holds on ŒtkC�k; tkC1C�kC1�. If Tk is sufficiently large, we have

V.x.tkC1 C �kC1// <
ˇ1

˛1
V.x.tk C �k//:

Then,

V.x.tk C �k// <
�
ˇ1
˛1

�k
V.x.t0 C �0// <

�
�1
1C�1

�k
V.x.t0 C �0//;

which implies that the system (1) is globally exponential stable.

3. CONTINUOUS OUTPUT FEEDBACK STABILIZATION FOR A CLASS OF NONLINEAR
SYSTEMS WITH SAMPLED AND DELAYED MEASUREMENTS

In this section, our aim is to propose an output feedback stabilization for the following system

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

Px1.t/ D x2.t/C f1.x1.t//;

:::

Pxn�1.t/ D xn.t/C fn�1.x1.t/; x2.t/; � � � ; xn�1.t//;

Pxn.t/ D fn.x1.t/; x2.t/; � � � ; xn.t//C u.t/;

y.t/ D x1.t/;

(10)

where x.t/ 2 Rn is the state, u.t/ 2 R is the input. We make the following assumptions. The output
y.t/ is sampled at instants tk and is available at instants tk C �k , where ¹tkº is a strictly increasing
sequence and satisfies limk!1 tk D1, and �k > 0 represents the transmission delay. The sampling
interval TkC1 D tkC1 � tk satisfies 0 < Tmin 6 tkC1 � tk 6 Tmax for two positive real numbers
Tmin, Tmax and for all k D 0; 1; � � � ;1. The transmission delays �k are unknown, but have an upper
bound � . We also assume that � 6 Tmin, that is, the measures sampled at instants tk are available
for the observer before the next measures sampled at instants tkC1. We assume that fi .x1; � � � ; xi /
(i D 1 � � � ; n) are unknown and satisfy the following conditions

jfi .x1; � � � ; xi /j 6 l1.jx1j C � � � C jxi j/; i D 1; � � � ; n; (11)

where l1 is a positive real number.

Remark 3
The system (10) is firstly introduced in [25], where a linear state feedback control law has been
proposed to achieve global exponential stability without considering sampled measurements. Under
the same condition, the authors in [26] have presented a linear dynamic output compensator to
globally exponentially stabilize the system (10). In [27], an exponential observer has been built for
a biological system. Global asymptotic stabilization via output feedback has also been studied for
nonlinear systems similar to (10) in [1]. The dynamics considered in [1] are in a feedback form
and the nonlinear terms have an incremental rate that depends on the measured output. In [17,
20], a state feedback law has been constructed to achieve global asymptotic stabilization for the
nonlinear system (10) under sampled and delayed measurements, and with inputs subject to delay
and zero-order hold.
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Next, we construct the following output feedback stabilizer8̂̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂̂
ˆ̂̂̂:

POx1.t/ D Ox2.t/C La1e1.tk/;

:::

POxn�1.t/ D Oxn.t/C L
n�1an�1e1.tk/;

POxn.t/ D L
nane1.tk/C u.t/;

Oxi .tkC1 C �kC1/ D limt!.tkC1C�kC1/
� Oxi .t/;

i D 1; � � � ; n; t 2 Œtk C �k; tkC1 C �kC1/; k > 0;

(12)

u.t/ D �
�
Lnk1 Ox1.t/C L

n�1k2 Ox2.t/C � � � C Lkn Oxn.t/
�
; (13)

where Ox.t/ D Ox.t0/ D Ox0 for t 2 Œt0 � Tmax � �; t0 C �0� and L > 1, e1.tk/ D x1.tk/ � Ox1.tk/,
ai > 0 and ki > 0, i D 1; 2; � � � ; n are the coefficients of the Hurwitz polynomial sn C w1sn�1 C
� � � C wn�1s C wn, with wi D ai or wi D kn�iC1. Now, we give the definition of output feedback
stabilization for the system (10).

Definition 2
We call that the n-dimensional system (10) is globally exponentially stabilizable under the con-
dition (11) and x.t/ D x0 for t 2 Œt0 � Tmax � �; t0�, if there exists an n-dimensional
dynamical system (12) such that the 2n-dimensional subsystem (10)–(12) satisfies k Ox.t/k 6
e��.t�t0/N.k Ox0k; kx0k/ and k Ox.t/ � x.t/k 6 e��.t�t0/N.k Ox0k; kx0k/ for any x0 2 Rn and
Ox0 2 Rn, where � > 0 and N W RC ! RC is a non-decreasing function. Or, we call that n-
dimensional dynamical system (12) globally exponentially stabilizes the n-dimensional system (10)
under the condition (11).

The following lemma is also useful for our main results.

Lemma 1 ([28])
For any positive definite matrix U 2 Rn�n, scalar � > 0, vector function w W Œ0; ��! Rn such that
the integrations concerned are well defined, the following inequality holds

�Z �

0

w.s/ds

	T
U

�Z �

0

w.s/ds

	
6 �

�Z �

0

w.s/TUw.s/ds

	
:

Let ei .t/ D xi .t/ � Oxi .t/ denote the estimation error of the high-gain observer (12). Then, the
error dynamics is given by

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂
:

Pe1.t/ D e2.t/ � La1e1.tk/C f1.x1.t//;

:::

Pen�1.t/ D en.t/ � L
n�1an�1e1.tk/

Cfn�1.x1.t/; x2.t/; � � � ; xn�1.t//;

Pen.t/ D �L
nane1.tk/C fn.x1.t/; x2.t/; � � � ; xn.t//

ei .tkC1 C �kC1/ D limt!.tkC1C�kC1/
� e.t/;

i D 1; � � � ; n; t 2 Œtk C �k; tkC1 C �kC1/; k > 0:

(14)

In order to simplify the analysis, we consider the following coordinate transformation

"i .t/ D
ei .t/

Li
; ´i .t/ D

Oxi .t/

Li
; i D 1; 2; � � � ; n:

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2016; 26:3075–3087
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The closed-loop system (10) and (14) can be expressed as

8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:̂

P"1.t/ D L"2.t/ � La1"1.t/C La1."1.t/ � "1.tk//C
f1
L
;

:::

P"n�1.t/ D L"n.t/ � Lan�1"1.t/C Lan�1."1.t/ � "1.tk//C
fn�1
Ln�1

;

P"n.t/ D �Lan"1.t/C Lan."1.t/ � "1.tk//C
fn
Ln
;

"i .tkC1 C �kC1/ D limt!.tkC1C�kC1/
� "i .t/; i D 1; � � � ; n;

(15)

and 8̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂:

Ṕ1.t/ D L´2.t/C La1"1.t/ � La1."1.t/ � "1.tk//;

:::

Ṕn�1.t/ D L´n.t/C Lan�1"1.t/ � Lan�1."1.t/ � "1.tk//;

Ṕn.t/ D �L.k1´1.t/C � � � C kn´n.t//C Lan"1.t/ � Lan."1.t/ � "1.tk//;

´i .tkC1 C �kC1/ D limt!.tkC1C�kC1/
� ´i .t/;

i D 1; � � � ; n; t 2 Œtk C �k; tkC1 C �kC1/; k > 0:

(16)

Now, we give the following results.

Theorem 2
There exists an output feedback control law in the form of (12), which globally exponentially stabi-
lizes the system (10) with the condition (11), if ai > 0 and ki > 0 (i D 1; � � � ; n) are selected such
that there exist two symmetric positive definite matrices P and Q such that

ATP C PA 6 �I; (17)

BTQCQB 6 �2I; (18)

are satisfied, and L satisfies

L > ¹1; l1; 6nl1�1; 2.ˇ2 C 1/nl1�1º; (19)

and

Tmax C � 6 1
c3L

; Tmin � � >
�

c2
c1�c2

�
1
c1L

; (20)

where c1 D min
°

1
8�1.ˇ2C1/

; 1
8�3

±
,c3>max

´
8;16n Na1



�21.ˇ2C 1/C�

2
3

�
C c1;

�1
c1
;
�1C

q
�2
1
C4c3

1
�1

2c2
1

μ
,

c2 D
�1
c2
3

, �1 D
16n Na2

1.�
2
1
.ˇ2C1/C�

2
3/

�2.ˇ2C1/
, and Na1 D max

®
a2i
¯
, �1 D �max.P /, �2 D �min.P /, �3 D

�max.Q/, �4 D �min.Q/, ˇ2 D 4n Na1�23, A D

2
6664
�a1 1 � � � 0
:::

:::
: : :

:::

�an�1 0 � � � 1
�an 0 � � � 0

3
7775 ; B D

2
6664

0 1 � � � 0
:::

:::
: : :

:::

0 0 � � � 1

�k1 �k2 � � � �kn

3
7775.

Proof
Consider the following positive definite function

V1.t/ D .ˇ2 C 1/".t/
TP".t/; V2.t/ D ´.t/

TQ´.t/; (21)

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2016; 26:3075–3087
DOI: 10.1002/rnc



3082 Y. SHEN, D. ZHANG AND X. XIA

where ".t/ D Œ"1.t/; � � � ; "n.t/�T , ´.t/ D Œ´1.t/; � � � ; ´n.t/�T . Let F D
�
f1
L
; f2
L2
; � � � ; fn

Ln

�T
. Then,

dV1.t/

dt

ˇ̌̌
ˇ(15) C

dV2.t/

dt

ˇ̌̌
ˇ
(16)

D L.ˇ2 C 1/".t/
T .PAC ATP /".t/C 2.ˇ2 C 1/".t/

TPF

C 2L.ˇ2 C 1/".t/
TP Œa1; � � � ; an�

T ."1.t/ � "1.tk//C L´.t/
T .QB C BTQ/´.t/

C 2L´.t/TQŒa1; � � � ; an�
T "1.t/ � 2L´.t/

TQŒa1; � � � ; an�
T ."1.t/ � "1.tk//

6 �L.ˇ2 C 1/".t/T ".t/C
1

4
L.ˇ2 C 1/".t/

T ".t/C 4L.ˇ2 C 1/�
2
1n Na1."1.t/ � "1.tk//

2

C 2.ˇ2 C 1/".t/
TPF � 2L´.t/T ´.t/C L´.t/T ´.t/C Ln�23 Na1"1.t/

2 C
1

4
L´.t/T ´.t/

C 4Ln Na1�
2
3."1.t/ � "1.tk//

2

6 �3
4
L.ˇ2 C 1/".t/

T ".t/C 4L.ˇ2 C 1/�
2
1n Na1Œ"1.t/ � "1.tk/�

2 C 2.ˇ2 C 1/".t/
TPF

�
3

4
L´.t/T ´.t/C Ln�23 Na1"

2
1.t/C 4Ln Na1�

2
3Œ"1.t/ � "1.tk/�

2; t 2 Œtk C �k; tkC1 C �kC1/:

(22)
In addition, from the condition (11), it follows thatˇ̌

2".t/TPF
ˇ̌
6 2."T .t/P".t//1=2.F TPF /1=2 6 2nl1�1."T .t/".t//1=2

� Œ."T .t/".t//1=2 C .´.t/T ´.t//1=2� 6 nl1�1.3"T .t/".t/C ´T .t/´.t//:
(23)

By Lemma 1, we have

j "1.t/ � "1.tk/ j
26 .t � tk/

R t
tk
j P"1.s/ j

2 ds

6 4.t � tk/L2
R t
tk

�
"2.s/

2 C
l2
1

L2
.´1.s/

2 C "1.s/
2/C Na1"1.tk/

2

	
ds; t 2 Œtk C �k; tkC1 C �kC1/:

(24)
From (22), (23) and (24), it follows that

dV1.t/

dt

ˇ̌̌
ˇ(15) C

dV2.t/

dt

ˇ̌̌
ˇ
(16)

6 �.ˇ2 C 1/
�
3

4
L � 3nl1�1

	
".t/T ".t/C 16.ˇ2 C 1/L

3

� n Na21�
2
1.t � tk/

2"1.tk/
2 C 16.ˇ2 C 1/L

3n Na1�
2
1.t � tk/

Z t

tk

�
"1.s/

2 C "2.s/
2 C ´1.s/

2
�
ds

�

�
3

4
L � .ˇ2 C 1/nl1�1

�
´.t/T ´.t/C Ln�23 Na1".t/

T ".t/C 16L3n Na21�
2
3.t � tk/

2"1.tk/
2

C 16L3n Na1�
2
3.t � tk/

Z t

tk

Œ"1.s/
2 C "2.s/

2 C ´1.s/
2�ds; t 2 Œtk C �k; tkC1 C �kC1/:

(25)

Construct the following auxiliary integral function:

V3.t/ D
R t
t�Tmax��

R t
� Œ".s/

T ".s/C ´.s/T ´.s/�dsd�; t 2 Œt0;1/:

We have

dV3.t/
dt
D .Tmax C �/.".t/

T ".t/C ´.t/T ´.t// �
R t
t�Tmax��

.".s/T ".s/C ´.s/T ´.s//ds; (26)

and

V3.t/ 6 .Tmax C �/
R t
t�Tmax��

Œ".s/T ".s/C ´.s/T ´.s/�ds; t 2 Œt0;1/: (27)
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Now, consider the following Lyapunov–Krasovskii function

V.t/ D V1.t/C V2.t/C L
2V3.t/: (28)

From (19), (25), (26) and (27), we can obtain

dV.t/

dt
j(15),(16)6�Œ.ˇ2C1/

�
3

4
L�3nl1�1

�
� n�23 Na1L�".t/

T".t/�

�
3

4
L�.ˇ2C1/nl1�1

	
´.t/T ´.t/

C .Tmax C �/L
2Œ".t/T ".t/C ´.t/T ´.t/�

C
�
16L3n Na1



�21.ˇ2 C 1/C �

2
3

�
.t � tk/ � L

2
�

Z t

t�Tmax��

Œ".s/T ".s/C ´.s/T ´.s/�ds C 16L3n Na21


�21.ˇ2 C 1/C �

2
3

�
.t � tk/

2"1.tk/
2

6 � 1
�1

�
1

4
�.TmaxC�/L

	
LV1.t/C

�
16n Na1



�21.ˇ2 C 1/C �

2
3

�
�

1

.Tmax C �/L

	
L3V3.t/

�
1

�3

��
1

4
� .Tmax C �/L

	
LV2.t/C

16L3n Na21


�21.ˇ2 C 1/C �

2
3

�
�2.ˇ2 C 1/

.Tmax C �/
2V1.tk/:

Note that L > ¹6nl1�1; 2.ˇ2 C 1/nl1�1º, ˇ2 D 4n�23 Na1, Tmax C � <
1
c3L

, then we have

dV.t/

dt
j(15),(16) 6 �

1

�1.ˇ2 C 1/

�
1

4
�
1

c3

�
LV1.t/C

�
16n Na1



�21.ˇ2 C 1/C �

2
3

�
� c3

�
L3V3.t/

�
1

�3

�
1

4
�
1

c3

�
LV2.t/C

16n Na21


�21.ˇ2 C 1/C �

2
3

�
�2.ˇ2 C 1/c

2
3

LV1.tk/:

Because c3 > max

´
8; 16n Na1



�21.ˇ2 C 1/C �

2
3

�
C c1;

�1
c1
;
�1C

q
�2
1
C4c3

1
�1

2c2
1

μ
, c1 D

min
°

1
8�1.ˇ2C1/

; 1
8�3

±
, c2 D

�1
c2
3

, then

dV.t/

dt
j(15),(16) 6 �c1LV1.t/ � c1L3V3.t/ � c1LV2.t/C c2LV1.tk/

6 �c1LV.t/C c2LV.tk/; t 2 Œtk C �k; tkC1 C �kC1/; k > 0:

Let ˛1 D c1L, ˇ1 D c2L, and .".t; t0; "0; ´0/, ´.t; t0; "0; ´0// denote the solution of (15)-
(16). Then, Tmin � � > c2

c1.c1�c2/L
implies that there exists �1 > 0 such that �1 D

max
®
e�˛1.Tmin��/.1C �1/ , ˇ1.1C�1/

˛1�1

±
< 1. Using the same methods as in Theorem 1, we obtain

that V.".t// 6 e
t

TmaxC�
ln�1�

�t0��0
TmaxC�

�1

1 ŒV .".t0C�0; t0; "0; ´0/C�1V.".t0; t0; "0; ´0//�; t > t0. Then,
k Ox.t/ � x.t/k 6 e

t
TmaxC�

ln�1N1 and k Ox.t/k 6 e
t

TmaxC�
ln�1N2; t > t0, where N1 D L2.n�1/

.ˇ2C1/�2

�
�t0��0
TmaxC�

�1

1 ŒV .".t0C �0; t0; "0; ´0/C�1 V.".t0; t0; "0; ´0//� andN2 D L2.n�1/

�4
�
�t0��0
TmaxC�

�1

1 ŒV .".t0C

�0; t0; "0; ´0/C�1V.".t0; t0; "0; ´0//�.
Next, we will prove that any solutions of (10) don’t finite-time escape on the interval Œt0; t0C �0�.

In fact, from (13), we have u.t/ D u0 D �
�
Lnk1 Ox1.t0/C L

n�1k2 Ox2.t0/C � � � C Lkn Oxn.t0/
�

for t 2 Œt0; t0 C �0�. Let Qf .x.t// D Œx2.t/ C f1.x1.t//; � � � ; xn.t/ C
fn�1.x1.t/; � � � ; xn�1.t//; fn.x1.t/; � � � ; xn.t//�

T C Qu, where Qu D Œ0; � � � ; 0; u0�
T . Then, the

system (10) with the control u.t/ D u0 on Œt0; t0 C �0� can be expressed as

Px.t/ D Qf .x.t//C Qu; t 2 Œt0; t0 C �0�: (29)
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Integrating the differential equation (29) from t0 to t yields,

x.t/ D x0 C

Z t

t0

. Qf .x.s//C Qu/ds; t 2 Œt0; t0 C �0�:

Moreover, it follows from (11) that there exists a constant l2 > 0 such that k Qf .x.t//k 6 l2kx.t/k.
Therefore,

kx.t/k 6 kx0k C
Z t

t0

.k Qf .x.s//k C ju0j/ds 6 kx0k C
Z t

t0

.l2kx.s/k C ju0j/ds; t 2 Œt0; t0 C �0�:

By Gronwell Lemma [29], we have

kx.t/k 6 .kx0k C �0ju0j/el2�0 ; t 2 Œt0; t0 C �0�:

The proof is completed. �

From Theorem 2, we also have the following results.

Corollary 3
There exists an output feedback control law in the form of (12), which globally exponentially stabi-
lizes the system (10) with the condition (11), if ai > 0 and ki > 0 (i D 1; � � � ; n) are selected such
that there exist two symmetric positive definite matrices P , Q and a constant L > 1 such that (17),
(18), (19) and

� < 1
�2L

�
1
c3
� 1
c4

�
; Tmax <

1
c3L
� 1
�2L

�
1
c3
� 1
c4

�
; Tmin >

1
c4L
C 1

�2L

�
1
c3
� 1
c4

�
; (30)

are satisfied, where �2 > 2, c4 D
.c1�c2/c1

c2
, c1, c3, c2 and �1 are given in Theorem 2.

Proof
Note that c2 D

�1
c2
3

. Then c3 >
�1
c1

implies that c1 >
�1
c3
D �1

c2
3

c3 D c2c3 > 8c2. Therefore,

c4 > 0. On the other hand, from c3 >
�1C

q
�2
1
C4c3

1
�1

2c2
1

, we have c21c
2
3 � c3�1 � c1�1 > 0. Then,

c3 <
c1.c1c23��1/

�1
D c1

�
c1
c2
� 1

�
. Therefore, c3 <

c1.c1�c2/
c2

D c4. Thus, 1
c3
� 1
c4
> 0. Moreover,

it is easy to check that the conditions (30) imply that the conditions (20) are satisfied. The proof
is completed. �

Remark 4
In this paper, Tmax, � and Tmin depend on the high-gain L ( c2, c3, c4, �2 are constants that are
independent on L). If the high-gain L is large, Tmax and � will be small to ensure the convergence.
In fact, if the nonlinear terms fi .x1; � � � ; xi / change dramaticly, which means that l1 is very large,
then L will be given larger to dominate the nonlinear terms. Because e1.tk/ D x1.tk/ � Ox1.tk/
is a constant on the interval Œtk C �k; tkC1 C �kC1/, then Tk and � will be very small to ensure
exponential convergence.

Remark 5
In [8], the authors described a class of continuous nonlinear systems at the sampled instants by a
discrete-time equation. Then, they considered multirate sampled-data output feedback control of the
nonlinear systems without considering transmission delay. It should be noted that in some cases, it
will be difficult to obtain an exact discrete time model for a nonlinear system, not to mention that
it is nearly impossible to achieve an accurate approximation when there exist unknown nonlinear
functions. In [17, 20], a state feedback law has been constructed to achieve global asymptotic sta-
bilization for the nonlinear system (10) under sampled and delayed measurements, and with inputs
subject to delay and zero-order hold. The nonlinear terms fi .�/ considered in [17, 20] are Lipschitz.
The sampled-data feedback is based on a predictor mapping, which can be constructed inductively.
In [13], a sampled-data output feedback stabilizer was presented to ensure that the closed-loop sys-
tem is globally stable based on a hybrid system method. However, the closed-loop system is required
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to transform into the hybrid system introduced in [19], whereas the systems considered in this paper
are in lower-triangular form with sampled and delayed measurements, and the nonlinear functions
fi .x1; � � � ; xi / are unknown. The proposed output feedback stabilizer is continuous and hybrid. It
has a simple and explicit form and can be derived without discretization.

Based on Theorem 2 and Corollary 3, an algorithm sketch to set the design parameters is presented
as follows:

Step 1: We set the values of ai and ki such that (17) and (18) hold;
Step 2: We select L such that the condition (19) is satisfied;

Step 3: Calculate c1, select �2 > 2 and c3 such that c3 > max

´
8; 16n Na1.�

2
1.ˇ2 C 1/C �

2
3/C

c1;
�1
c1
;
�1C

q
�2
1
C4c3

1
�1

2c2
1

μ
, then calculate c2 and c4.

4. NUMERICAL SIMULATION

In this section, we use an example to show the effectiveness of our output feedback stabilization for
nonlinear systems with sampled and time delay measurements.

Example 1
A single-link robot arm system can be modeled by [30] or [31]8̂̂

ˆ̂̂̂<
ˆ̂̂̂̂
:̂

Ṕ1.t/ D ´2.t/;

Ṕ2.t/ D
K
J2N

´3.t/ �
F2.t/
J2

´2.t/ �
K
J2
´1.t/ �

mgd
J2

cos.´1.t//;

Ṕ3.t/ D ´4.t/;

Ṕ4.t/ D
1
J1
u.t/C K

J1N
´1.t/ �

K
J2N

´3.t/ �
F1.t/
J1

´4.t/;

y.t/ D ´1.t/;

(31)

where J1, J2, K, N , m, g, and d are known parameters, F1.t/ and F2.t/ are viscous friction
coefficients that are not precisely known. Suppose F1.t/ and F2.t/ are bounded by an unknown
constant C > 0. We introduce the change of coordinates x1 D ´1; x2 D ´2; x3 D

K
J2N

´3 �

mgd
J2
; x4 D

K
J2N

´4 and the pre-feedback 	 D K
J2N

�
1
J1
u � mgd

J2

�
; which transforms (31) into

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

Px1.t/ D x2.t/;

Px2.t/ D x3.t/ �
F2.t/
J2

x2.t/ �
K
J2
x1.t/ �

mgd
J2
.cos.x1.t// � 1/;

Px3.t/ D x4.t/;

Px4.t/ D 	 C
K2

J1J2N2
x1.t/ �

K
J2N

x3.t/ �
F1.t/
J1

x4.t/;

y.t/ D x1.t/:

Construct the following output feedback controller

8̂̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂ˆ̂̂̂:

POx1.t/ D Ox2.t/C a1L.y.tk/ � Ox1.tk//;

POx2.t/ D Ox3.t/ �
F2.t/
J2
Ox2.t/ �

K
J2
Ox1.t/ �

mgd
J2
.cos. Ox1.t// � 1/C a2L2.y.tk/ � Ox1.tk//;

POx3.t/ D Ox4.t/C a3L
3.y.tk/ � Ox1.tk//;

POx4.t/ D 	 C
K2

J1J2N2
Ox1.t/ �

K
J2N
Ox3.t/ �

F1.t/
J1
Ox4.t/C a4L

4.y.tk/ � Ox1.tk//;

u.t/ D �
�
k1L

4 Ox1.t/C k2L
3 Ox2.t/C k3L

2 Ox3.t/C k4L Ox4.t/
�
; t 2 Œtk C �k; tkC1 C �kC1/;

Oxi .tkC1 C �kC1/ D limt!tkC1C�kC1
� Ox.t/; i D 1; � � � ; 4; k > 0:
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Figure 1. Trajectories of the states xi .t/ .1 6 i 6 4/ with the output feedback stabilizer.

In the following simulation, we apply the system parameters: K=J2 D 5, mgd=J2 D 4,
K2=.J1J2N

2/ D 2, K=.J2N/ D 3, F1.t/=J1 D 10, F2.t/=J2 D 10 and L D 2. The control gains
ki and the observer gains ki are selected such that (17) and (18) hold. That is, the matrices A and
B in (17) and (18) are Hurwitz. The eigenvalues of A and B are in the left half plane. If the control
gains and observer gains are selected such that the eigenvalues are in the left half plane but far away
from the axis, then the convergence speed of the closed-loop system will be greatly improved. How-
ever, large overshoot will arise. By the error-and-trial method, we set the control gains k1 D 40,
k2 D 78, k3 D 49, k4 D 12, and the observer gains a1 D 4, a2 D 6, a3 D 4, a4 D 1.
The initial conditions of the whole system are .x1.0/; x2.0/; x3.0/; x4.0/; / D .�5;�1; 4; 20/ and
. Ox1.0/; Ox2.0/; Ox3.0/; Ox4.0/; / D .5; 3;�1;�4/. The sampling period Tk and the delay �k are given
as Tk D 0:1s and �k D 0:05s, respectively. The simulation results are shown in Figure 1.

5. CONCLUSION

In this paper, we addressed the problem of output feedback stabilization for nonlinear systems
with sampled and delayed output measurements. Firstly, sufficient conditions were proposed to
ensure that a class of hybrid systems are globally exponentially stable. Then, based on the sufficient
conditions and a dedicated construction continuous observer, an output feedback control law was
presented to globally exponentially stabilize the nonlinear systems. The output feedback stabilizer
was continuous and hybrid, and could be derived without discretization. The maximum allowable
sampling period and the maximum delay were also given.
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