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• The backstepping approach is firstly applied to control design for pantograph–catenary system.
• The closed-loop system is capable of tracking not only constant reference contacting force but also time-varying periodic reference forces.
• A high-order differentiator is designed to approximate the unknown derivatives of time-varying elasticity coefficient.
• A simple observer is designed to reconstruct the un-measurable system states.
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a b s t r a c t

In this paper, a nonlinear partial-state feedback control is designed for a 3-DOF pantograph–catenary
system by using backstepping approach, such that the contacting force of the closed-loop system is
capable of tracking its reference profile. In the control design, the pantograph–catenary model is trans-
formed into a triangular form, facilitating the utilization of backstepping. Derivatives of virtual controls in
backstepping are calculated explicitly. A high-order differentiator is designed to estimate the unknown
time derivatives of elasticity coefficient; and an observer is proposed to reconstruct the unmeasurable
states. It can be proved theoretically that, with the proposed nonlinear partial-state feedback control, the
tracking error of the contacting force is ultimately bounded with tunable ultimate bounds. Theoretical
results are demonstrated by numerical simulations.

© 2019 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Pantograph–catenary system is prevailingly adopted inmodern
railway industry to supply electricity to high-speed trains. To guar-
antee that the high-speed train obtains stable electricity supply
from the wires, a solid contact between pantograph and catenary
is of great importance [1]. As pointed out in previous researches,
the loss of contact would lead to insufficient supply of energy
to the high-speed train, resulting in disfunctions in acceleration,
braking and communication. In another aspect, however, with
over-contacting force, there would be considerably arcing phe-
nomenon or rapidwear in both pantograph and catenary, reducing
significantly the duration of the entire system. Consequently, it is
significantly necessary tomaintain an appropriate contacting force
between pantograph and catenary.
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To maintain an optimal contacting force for the pantograph–
catenary system is a challenging task, since there exist couplings
and periodic nonlinearities in its dynamics [2] due to the high
speed of the train. Influences resulted from couplings and periodic
nonlinearities become especially negative, if the train speed is
large such that the frequency of catenary stiffness variation is
excessively high. The optimal contacting force between the pan-
tograph and catenary can be calculated experimentally [3]. Active
PID control strategy can be applied to maintaining a constant
reference contacting force [4]. Other advanced control technolo-
gies that can be employed to the pantograph–catenary system in-
clude robust optimal control [5], feedback linearization [6], output-
feedback regulation [7], output-feedback control with adaptive es-
timation [8], model predictive control [9], and an implementation-
oriented technique named wire-actuated control with contact
force estimation [10].

Some typical difficulties in active control design for panto-
graph–catenary system include that: (1) the elasticity coefficient
of the catenary is time-varying, and the parameters in its math-
ematical model are unknown; and (2) some system states, such
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as displacement velocities of the pantograph, are unmeasurable.
For the time-varying elasticity coefficient of the catenary, it can
be assumed that it is periodic, and some approximations have
been proposed [10,11]; however, the approximatedmodels cannot
be directly used, because accuracy of the approximated model is
un-assured, and some parameters are difficult to determine. To
estimate the unmeasurable states, sliding mode observers have
been proposed [7]; however, typical problems in sliding mode
control (such as chattering) would arise.

Generally, there exist two types of pantograph–catenary system
modeling, namely 2-DOF modeling [7,11–14] and 3-DOF model-
ing [5,10,15,16]. The 3-DOF model contains more dynamics (thus
more accurate) than the 2-DOF model; however, it is compar-
atively complicated, and there exist more uncertain parameters
or un-measurable states. In this paper, based on backstepping
approach, a nonlinear partial-state feedback control is proposed
for a 3-DOF pantograph–catenary system. The linear time-varying
model of the pantograph–catenary system can be transformed into
a cascaded form, and backstepping can be applied to serve as the
fundamental structure of the proposed controller, such that the
controller can be designed in steps for reduced-order subsystems.
Another advantage of applying backstepping is to facilitate the
design of observers for unmeasurable states, and to guarantee the
stability of the closed-loop system. Main contributions of this paper
include: (1) the backstepping approach is firstly applied to control
3-DOF pantograph–catenary system; (2) by using backstepping
approach, the closed-loop system is capable of tracking not only
constant reference contacting force but also time-varying periodic
reference forces; (3) a high-order differentiator is designed to
approximate the unknown derivatives of time-varying elasticity
coefficient, such that usage of unknown time-varying elasticity
coefficient model can be avoided; and (4) a simple observer is
designed to reconstruct the unmeasurable system states. Ultimate
boundedness of tracking errors of the closed-loop system can be
proved. The theoretical results are validated by numerical simula-
tions.

The layout of this paper is arranged as following. In Section 2,
the mathematical model of the pantograph–catenary system is
presented, and the objectives of control design are stated. In Sec-
tion 3, a full-state feedback nonlinear backstepping control is de-
scribed in detail, and asymptotic stability of the tracking error
is proved theoretically. In Section 4, a high-order differentiator
is designed to estimate the time derivatives of elasticity coeffi-
cient, and an observer is designed to reconstruct the unmeasurable
system states; it is proved that the tracking error of the closed-
loop system with the proposed partial-state feedback control is
ultimately bounded with tunable ultimate bounds. In Section 5,
main theoretical results are demonstrated by numerical simula-
tions, and corresponding discussions are given. The final section
is the conclusion.

2. Problem statement

In this section, the pantograph–catenary system ismodeled into
a 3-DOF time-varying linear system. In the pantograph–catenary
system, as depicted by Fig. 1, the pantograph is fixed on the top
of the train, and runs in high-speed with the train. A supporting
force is exerted on the lower frame of the pantograph from some
actuators, and to generated a contacting force between the pan-
headof the pantograph and the catenary, such that electrical power
can be transferred from the catenary to the train through the
pantograph.

Due to the high speed of the train, there exist some considerable
vibrations in the catenary, and the contact force would be neg-
atively influenced. Excessively large contact force would lead to
extreme wear of the pan-head and the catenary, while too small

Fig. 1. Pantograph–catenary system equipped on a practical high-speed train.

Fig. 2. Approximate structure of the pantograph–catenary system.

contact force would result in arcing phenomenon or even lost
of contact. All of these situations will deteriorate the electricity
supply for the train. Consequently, the objective of this paper is
to design an active control for the pantograph, such that a proper
reference contacting force can be maintained.

2.1. Mathematical model of pantograph–catenary system

The 3-DOF pantograph–catenary system is composed by a head,
a plunger and frames. In this paper, the pantograph–catenary
model under consideration is an under-actuated one, and it is
different from the fully-actuated model in [5]. Its structure can
be approximated by a mass-elasticity model, as is given in Fig. 2,
where the active control u is only exerted on the lower frame. The
dynamic equations of the 3-DOF pantograph–catenary system can
be obtained by⎧⎨⎩ m1ẍ1 = k1(x2 − x1) + b1(ẋ2 − ẋ1) − k(t)x1,

m2ẍ2 = −k1(x2 − x1) − k2(x2 − x3) − b1(ẋ2 − ẋ1) − b2(ẋ2 − ẋ3),
m3ẍ3 = −k2(x3 − x2) − b2(ẋ3 − ẋ2) − b3ẋ3 + u,

(1)
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wherem1 andm2 denote the mass of the pantograph head and the
plunger, respectively;m3 denotes the gross mass of the frames; x1,
x2 and x3 are the positions of the pantograph head, the plunger and
the frames, respectively; k1 and k2 denote the elasticity constants
of the plunger and the frames; b1, b2 and b3 are the damping
constants of the pantograph head, the plunger and the frames, re-
spectively; t denotes the continuous time; k(t) is the time-varying
elasticity (or stiffness) coefficient between the pantograph head
and the wire; and u is the control input.

The output of the pantograph–catenary system is the contacting
force between the pantograph head and the wire:

Fc ≜ k(t)x1, (2)

where the contacting force Fc is assumed to be measured directly,
and the position x1 can be measured, indicating that the value of
the elasticity coefficient can be obtained by

k(t) =
Fc
x1
. (3)

However, it is supposed in this paper that the accurate physical
model of the time-varying elasticity coefficient k(t) is unknown.

The time-varying elasticity coefficient can be approximated by
a high-order periodic model [11]:

k(t) = K0 +

3∑
i=1

Ki cos(
2iπ
L

Vt) + K7 cos(
14π
L

Vt), (4)

where Ki (i = 0, 1, 2, 3, 7) are constant uncertain stiffness coeffi-
cients; V is the train speed; and L is the span length.

Remark 1. The contact force can be measured directly with strain
gages, accelerometers and strain gage position sensors, as pro-
posed in [17]. It has to be acknowledged that, the measurement
might be somehow inaccurate in harsh environment. The contact
force can also be estimated by using numerical methods, e.g., [11],
but with fully-known elasticity coefficient.

Remark 2. Nonlinearities in the pantograph are neglected in this
paper, and the pantograph is assumed to be a 3-DOFmass–spring–
damper system with constant elasticity and damping coefficients.
Please see [18] for more details.

Remark 3. The elasticity coefficient (4) of the catenary is time-
varying due to vibrations of the contacting wire, and it can be
expanded as Taylor Series. In quite a lot of previous researches,
higher-order terms in Taylor Series are neglected, and only the first
order periodic term is considered [5,6,8,13,14]. However, some
researches claim that it is inaccuracy to consider only the first
periodic term in the Taylor Series [11,16]. Consequently, more
higher-order terms in Taylor Series are considered in this paper to
improve the accuracy of the structure. In the Taylor Series of the
catenary, parameters are unmeasurable and to be estimated.

2.2. Linear time-varying representation

The system model (1) can be transformed into a linear time-
varying representation:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ż1 = z2,
ż2 = −

k1+k(t)
m1

z1 −
b1
m1

z2 +
k1
m1

z3 +
b1
m1

z4,
ż3 = z4,
ż4 =

k1
m2

z1 +
b1
m2

z2 −
k1+k2
m2

z3 −
b1+b2
m2

z4 +
k2
m2

z5 +
b2
m2

z6,
ż5 = z6,
ż6 =

k2
m3

z3 +
b2
m3

z4 −
k2
m3

z5 −
b2+b3
m3

z6 +
1
m3

u,

(5)

or

ż = A(t)z + bu,

where z = [z1, z2, z3, z4, z5, z6]T ≜ [x1, ẋ1, x2, ẋ2, x3, ẋ3]T , and

A(t)=

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
−

k1+k(t)
m1

−
b1
m1

k1
m1

b1
m1

0 0
0 0 0 1 0 0
k1
m2

b1
m2

−
k1+k2
m2

−
b1+b2
m2

k2
m2

b2
m2

0 0 0 0 0 1
0 0 k2

m3

b2
m3

−
k2
m3

−
b2+b3
m3

⎤⎥⎥⎥⎥⎥⎥⎦ ,

b =

⎡⎢⎢⎢⎢⎢⎣
0
0
0
0
0
1
m3

⎤⎥⎥⎥⎥⎥⎦ .
The output of the system can be given by

y = C(t)z, (6)

where y = Fc , and C(t) = [k(t), 0, 0, 0, 0, 0]. System (5) is time-
varying in existence of the time-varying elasticity coefficient k(t).

2.3. Optimal contacting force with respect to mechanical wear and
electrical resistance

The optimal contact force should achieve a tradeoff between
materialwear and electrical resistance of the pantograph–catenary
system. The material wear decreases as the contact force de-
creases; meanwhile, decrease of the contact force would lead to
larger electrical resistance between the pantograph and catenary,
impeding the reliable currency transmission.

Thematerialwear includes oxidationalwear andmeltwear. The
oxidational wear model [19] of the contact wire can be given by

wo(Fc) = fm

[
αwµPeq(Fc)

Lox
−

A0.5
n Kox

(
T ox
m − Tb

)
Peq(Fc)0.5n0.5

asp

LoxH0.5
0 lbv

]
,

(7)

where wo(Fc) denotes the wear of the contact wire, which is a
function of the contacting force; fm represents the volume fraction
of molten material; αw denotes the heat distribution coefficient;µ
is the sliding friction coefficient of the contact wire material; Lox
denotes the latent heat of fusion per unit volume of oxide; An is
the actual contact area; Kox represents the thermal conductivity of
oxide; T ox

m denotes the melting temperature of the material; Tb is
the bulk temperature; nasp is the number of asperity in contact; H0
denotes the hardness of material; lb denotes the equivalent linear
diffusion distance for bulk heating; and v is the actual velocity
of the train. Some values of the above parameters can be found
in [19,20]. The equivalent contact force Peq(Fc) is a function of the
contact force Fc :

Peq(Fc) = Fc + Pe = Fc +
Re

µv
I2, (8)

where Pe is the equivalent electrical contact force; Re denotes the
electrical resistance at the contact point; and I is the electrical
current transferred through the contact.

The melt wear model [19] of the contact wire is a function of
the contacting force Fc , and it can be given by

wm(Fc) = fm

[
αwµPeq(Fc)

Lm
−

AnKm (Tm − T0)
Lmlbv

]
, (9)

where Lm is the latent heat of fusion per unit volume for metal;
Km is the thermal conductivity of the metal material; Tm is the
melting temperature of the metal material; and T0 is the ambient
temperature.
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The electrical resistance with respect to contact force [21] can
be calculated by

Re(Fc) =
ρ1 + ρ2

4

√
πH
Fc
, (10)

where ρ1 and ρ2 are resistance rates of the pantograph and the
catenary; and H is the contact hardness of the materials.

Based on (7)–(10), the cost function to calculate the optimal
contact force can be constructed by

J(Fc) = q1wo(Fc) + q2wm(Fc) + q3Re(Fc), (11)

where q1, q2 and q3 are positive weight parameters for optimiza-
tion. The optimal contact force can be calculated by

F∗

c = argmin
Fc

J(Fc), (12)

subject to (7)–(10).
The value of optimal contacting force may vary from case

to case with respect to different values of parameters in vari-
ous pantograph–catenary projects. Detailed value of pantograph–
catenary parameters can be found in examples in [11,22,23] Gen-
erally, the optimal contacting force is often constant, and its value
is around 100–120 N [23].

Remark 4. It has to be admitted that, in this paper, no system-
atic way of selecting weight parameters can be given. Parameter
selecting has to be processed through trials. Different values of
weight parameters reflect different emphasis on electricity resis-
tance (contact force) or wear. For example, with the values of
parameters provided in [19] and the weight parameters q1 = 0.2,
q2 = 1 and q3 = 0.5, it can be calculated that the optimal
contacting force should be F∗

c = 109.7N.

Remark 5. The optimization (12) can be solved by using MATLAB
function ‘‘fmincon’’.

2.4. Control objective

Suppose that, in this research, the contact force (Fc) and the
positions (x1, x2 and x3, or z1, z3 and z5) can be measured directly.
However, in practical cases, the velocities (ẋ1, ẋ2 and ẋ3, or z2, z4 and
z6) are often unmeasurable.Moreover, the stiffness coefficients (Ki)
are uncertain constant parameters.

Remark 6. Although corresponding devices are fairly expen-
sive, the contact force is measurable indeed. There exist some
researches on estimation of contact forcewithout using the expen-
sive devices [10,11].

The objective of this paper is to design a nonlinear control
for the pantograph–catenary system with unmeasurable displace-
ment variations and uncertain stiffness coefficients, such that the
output of the system is capable of tracking a constant reference
contacting force with small tracking error:

lim
t→+∞

|y(t) − yr | < ϵ, (13)

where yr = F∗
c is the reference contacting force, and ϵ > 0 is a

small positive number.

3. Full-state feedback nonlinear control

In this section, a full-state feedback nonlinear control is de-
signed to give a fundamental structure of the proposed partial-
state feedback control. In the next section, differentiators and state
observerswill be designed to replace the uncertain parameters and
unmeasurable states.

To facilitate control design, the time-varying model is trans-
formed into a triangular form (the definition of triangular system
can be referred to [24]). The nonlinear control is designed through
backstepping [25], with derivatives of virtual controls calculated
explicitly. Asymptotic stability of tracking errors of the closed-loop
system is proved theoretically.

3.1. Model transformation

Define manifolds:

ξ1 = k1z3 + b1z4, (14)

ξ2 = k2z5 + b2z6. (15)

It follows from (5), (14) and (15) that the 3-DOF model can be
transformed into a triangular form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ż1 = z2,
ż2 = −

k1+k(t)
m1

z1 −
b1
m1

z2 +
1
m1
ξ1,

ξ̇1 = k1z4 + b1
(

k1
m2

z1 +
b1
m2

z2 −
k1+k2
m2

z3 −
b1+b2
m2

z4 +
1
m2
ξ2

)
,

ξ̇2 = k2z6 + b2
(

k2
m3

z3 +
b2
m3

z4 −
k2
m3

z5 −
b2+b3
m3

z6 +
1
m3

u
)
,

(16)

with internal dynamics given by{
ż3 = −

k1
b1
z3 +

1
b1
ξ1,

ż5 = −
k2
b2
z5 +

1
b2
ξ2.

(17)

Remark 7. It can be seen from (17) that the internal dynamics is
actually a linear stable system{

ż3 = −
k1
b1
z3,

ż5 = −
k2
b2
z5.

(18)

plus inputs 1
b1
ξ1 and 1

b2
ξ2.

In another aspect, based on (6), it holds that

x1 = z1 =
y

k(t)
.

Then, an auxiliary reference profile can be defined:

z1r ≜
yr
k(t)

.

The objective is then to design control for the triangular system
(16)–(17), such that

lim
t→+∞

|z1(t) − z1r (t)| <
ϵ

supt→+∞(|k(t)|)
. (19)

3.2. Control design by using backstepping

The nonlinear control for (16)–(17) is designed step by step via
backstepping in this section.

Step 1: Define tracking error e1 = z1 − z1r . It follows that

ė1 = ż1 − ż1r = z2 − ż1r = e2 + α1 − ż1r ,

where e2 ≜ z2 − α1, and α1 is the virtual control to be tracked by
z2. Design the virtual control

α1 = −c1e1 + ż1r , (20)

where c1 > 0 is a constant control gain. It then follows that

ė1 = −c1e1 + e2. (21)

Select the Lyapunov candidate L1 =
1
2 e

2
1. Its time derivative can

be calculated by

L̇1 = −c1e21 + e1e2, (22)
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where −c1e21 is negative definite, and e1e2 is to be canceled in the
next step.

Step 2: The time derivative of e2 can be calculated by

ė2 =ż2 − α̇1

= −
k1 + k(t)

m1
z1 −

b1
m1

z2 +
1
m1
ξ1 − α̇1

= −
k1 + k(t)

m1
z1 −

b1
m1

z2 − α̇1 + e3 + α2,

where e3 ≜ 1
m1
ξ1 − α2, and α2 is the virtual control to be tracked

by 1
m1
ξ1. Design the virtual control

α2 = −e1 − c2e2 +
k1 + k(t)

m1
z1 +

b1
m1

z2 + α̇1, (23)

where c2 > 0 is a constant control gain. It then follows that

ė2 = −e1 − c2e2 + e3.

Select the Lyapunov candidate L2 = L1+
1
2 e

2
2. Its time derivative

can be calculated by

L̇1 = −c1e21 − c2e22 + e2e3,

where −c1e21 − c2e22 is negative definite, e1e2 in (22) is canceled,
and e2e3 is to be canceled in the next step.

Step 3: The time derivative of e3 can be calculated by

ė3 =
1
m1
ξ̇1 − α̇2

=
b1
m1

(
k1
m2

z1 +
b1
m2

z2 −
k1 + k2

m2
z3 −

b1 + b2
m2

z4

)
+

k1
m1

z4 − α̇2 +
b1
m1

1
m2
ξ2

=
b1
m1

(
k1
m2

z1 +
b1
m2

z2 −
k1 + k2

m2
z3 −

b1 + b2
m2

z4

)
+

k1
m1

z4 − α̇2 + e4 + α3.

where α3 is the virtual control to be tracked by b1
m1m2

ξ2, and e4 ≜
b1

m1m2
ξ2 − α3.

Design the virtual control

α3 = − e2 − c3e3 + α̇2 −
k1
m1

z4

−
b1
m1

(
k1
m2

z1 +
b1
m2

z2 −
k1 + k2

m2
z3 −

b1 + b2
m2

z4

)
, (24)

where c3 > 0 is a constant control gain. It then follows that

ė3 = −e2 − c3e3 − e4.

Select the Lyapunov candidate L3 = L2+
1
2 e

2
3. Its time derivative

can be calculated by

L̇3 = −c1e21 − c2e22 − c3e23 + e3e4,

where e3e4 is to be backstepped in the next step.
Step 4: The time derivative of e4 can be calculated by

ė4 =
b1

m1m2
ξ̇2 − α̇3

=
b1b2
m1m2

(
k2
m3

z3 +
b2
m3

z4 −
k2
m3

z5 −
b2 + b3

m3
z6

)
+

b1k2
m1m2

z6 − α̇3 +
b1b2

m1m2m3
u,

where u is the control to be designed.

The control can be designed by

u =
m1m2m3

b1b2

(
−e3 − c4e4 + α̇3 −

b1k2
m1m2

z6

−
b1b2
m1m2

(
k2
m3

z3 +
b2
m3

z4 −
k2
m3

z5 −
b2 + b3

m3
z6

))
, (25)

where c4 > 0 is the control parameter. Select Lyapunov candidate
L4 = L3 +

1
2 e

2
4; it follows that

L̇3 = −c1e21 − c2e22 − c3e23 − c4e24, (26)

which ends the backstepping design.

3.3. Time derivatives of virtual controls

As can be seen from Section 3.2, the proposed control is given
by (25), where virtual controls are given by (20) and (23). It should
be noted in (23) and (25) that, before applying the proposed
backstepping-based nonlinear control, derivatives of virtual con-
trols (namely α̇1 and α̇2) should be calculated.

The time derivative of virtual control α1 can be calculated by

α̇1 = − c1ė1 + z̈1r = −c1 (z2 − ż1r)+ z̈1r , (27)

where

ż1r =

d
(

yr
k(t)

)
dt

=
ẏrk − yr k̇

k2
, (28)

z̈1r =
(ÿrk − yr k̈)k2 − 2kk̇(ẏrk − yr k̇)

k4
, (29)

k̇ = −

3∑
i=1

Kiωi sin(
2iπ
L

Vt) − K7ω7 sin(
14π
L

Vt), (30)

k̈ = −

3∑
i=1

Kiω
2
i cos(

2iπ
L

Vt) − K7ω
2
7 cos(

14π
L

Vt), (31)

ωi =
2iπ
L

V , i = 1, 2, 3, 7. (32)

The time derivative of virtual control α2 can be calculated by

α̇2 = −ė1 − c2ė2 +
k1 + k
m1

ż1 +
k̇
m1

z1 +
b1
m1

ż2 + α̈1, (33)

where ė1 can be calculated by

ė1 = (z2 − ż1r) , (34)

and ż1r is calculated by (28); ė2 can be calculated by

ė2 = −
k1 + k
m1

z1 −
b1
m1

z2 +
k1
m1

z3 +
b1
m1

z4 − α̇1, (35)

where α̇1 is calculated by (27)–(31); ż1 and ż2 can be obtained by

ż1 = z2, (36)

ż2 = ė2 + α̇1, (37)

where ė2 is calculated by (35), and α̇1 is calculated by (27); α̈1 can
be calculated by

α̈1 = −c1ë1 + z(3)1r = −c1 (ż2 − z̈1r)+ z(3)1r , (38)

where ż2 and z̈1r can be obtained respectively by (31) and (37).
Denote z̈1r in (29) by

z̈1r =
θ − φ

ψ
,

where

θ = (ÿrk − yr k̈)k2,
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φ = 2kk̇(ẏrk − yr k̇),

ψ = k4.

It follows that

z(3)1r =
(θ̇ − φ̇)ψ − (θ − φ)ψ̇

ψ2 ,

where

θ̇ =
(
y(3)r k + ÿr k̇ − ẏr k̈ − yrk(3)

)
k2 + 2kk̇

(
ÿrk − yr k̈

)
, (39)

φ̇ = 2kk̇
(
ÿrk − yr k̈

)
+
(
ẏrk − yr k̇

) (
2k̇2 + 2kk̈

)
, (40)

ψ̇ = 4k3k̇. (41)

...
k =

3∑
i=1

Kiω
3
i sin(

2iπ
L

Vt) + K7ω
3
7 sin(

14π
L

Vt). (42)

The time derivative of α3 can be calculated by

α̇3 = −ė2 − c3ė3 −
k1
m1

ż4

−
b1
m1

(
k1
m2

ż1 +
b1
m2

ż2 −
k1 + k2

m2
ż3 −

b1 + b2
m2

ż4

)
+ α̈2,

(43)

where ė2 can be calculated by (35); ė3 can be calculated by

ė3 =
b1
m1

(
k1
m2

z1 +
b1
m2

z2 −
k1 + k2

m2
z3 −

b1 + b2
m2

z4

)
+

k1
m1

z4

− α̇2 +
b1
m1

1
m2
ξ2;

(44)

żi (i = 1, 2, 3, 4) can be calculated by using the state equations in
(5).

In (43), the second-order derivative of α2 in (43) can be calcu-
lated by

α̈2 = −ë1 − c2ë2 +
k1 + k
m1

z̈1 +
k̇
m1

ż1 +
k̈
m1

z1 +
b1
m1

z̈2 +
...
α1, (45)

where

ë1 = ż2 − z̈1r , ż2 = ė2 + α̇1, (46)

ë2 = −
k1 + k
m1

ż1 −
k̇
m1

z1 −
b1
m1

ż2 +
k1
m1

ż3 +
b1
m1

ż4 − α̈1, (47)

z̈1 = ż2, z̈2 = ë2 + α̈1, (48)
...
α1 = −c1(z̈2 −

...
z 1r ) + z(4)1r , (49)

z(4)1r =
θ̈ − φ̈

ψ
−

2(θ̇ − φ̇)ψ̇ + (θ − φ)ψ̈
ψ2 +

2(θ − φ)ψ̇2

ψ3 . (50)

Remark 8. It is implied from (27)–(50) that the derivatives of
virtual controls can be explicitly calculated from system states and
the reference contacting force.

3.4. Analysis on closed-loop system

The control algorithm can be summarized as following.

Algorithm 1.

(1) Calculate the virtual control α1 with (20) and (28).
(2) Calculate the virtual control α2 with (23) and (27)–(31).
(3) Calculate the virtual control α3 with (24) and (33), where

ė1, ė2, ż1 and ż2 are calculated with (34)–(37), and α̈1 is
calculated with (38)–(42).

(4) Calculate the control uwith (25),where some relevant terms
can be calculated by (43)–(50).

Stability of the closed-loop system with the proposed control
algorithm can be given by the following proposition.

Proposition 1. Consider the pantograph–catenary system given by
(1)–(4). Its reference contacting force is constant or time-varying
continuous periodic. If the control is designed by Algorithm 1, then
tracking error of the closed-loop system are globally asymptotically
stable, and (13) is satisfied globally.

Proof. Consider Lyapunov candidate L4. It satisfies

β1∥e∥2
≤ L4 ≤ β2∥e∥2,

where e ≜ [e1, e2, e3, e4]T , β1 = β2 =
1
2 , and ∥ · ∥ denotes the

Euclidean norm of vector or co-vector. The time derivative of L4
along the closed-loop system with the control algorithm given in
Algorithm 1 can be calculated by

L̇4 = −c1e21 − c2e22 − c3e23 − c4e24 ≤ −β3∥e∥2, (51)

where β3 = min[c1, c2, c3, c4]. Moreover,∂L4∂e
 ≤ β4∥e∥,

where β4 = 1. Consequently, according to Theorem 4.10 in [25], L4
is a Lyapunov function, and e1, e2, e3 and e4 are globally asymptot-
ically stable.

Based on (51), it can be obtained that

L4(t) ≤ e−
β3
β2

tL4(0),

and therefore,

∥e1∥ ≤∥e∥ ≤

√
1
β1

L4(t) ≤

√
1
β1

e−
β3
β2

tL4(0), (52)

indicating that (13) and (19) are satisfied.
Moreover, according to Proposition 4 in Appendix, z3 and z5

track periodic trajectories z3r and z5r asymptotically, and tracking
errors ez3 ≜ z3 − z3r and ez5 ≜ z5 − z5r satisfy (70) in Appendix,
where L2(0) = 0 and ∥L2(e)∥ ≤ κz

3∥e∥ with κz
3 > 0.

Select a Lyapunov candidate L0 = L4 +
1

2γ z
3
ez3

2
+

1
2γ z

5
ez5

2 for the
full-state closed-loop system, where γ z

3 > 0 and γ z
5 > 0. Its time

derivative can be calculated by

L̇0 ≤ − β3∥e∥2
−

k1
b1γ z

3
ez3

2
+
κz
3

γ z
3
ez3∥e∥ −

k2
b2γ z

5
ez5

2
+
κz
5

γ z
5
ez5∥e∥

= −

(
1
2
β3 −

κz
3
2b1

4k1γ z
3

)
∥e∥2

−

(√
k1

b1γ z
3
ez3 −

κz
3

2

√
b1k1γ z

3 ∥e∥

)2

−

(
1
2
β3 −

κz
5
2b2

4k2γ z
5

)
∥e∥2

−

(√
k2

b2γ z
5
ez5 −

κz
5

2

√
b2k2γ z

5 ∥e∥

)2

≤0,

where γ z
3 and γ z

5 can be selected appropriately such that(
1
2
β3 −

κz
3
2b1

4k1γ z
3

)
> 0,

(
1
2
β3 −

κz
5
2b2

4k2γ z
5

)
> 0;

and L̇0 = 0 if and only if e = 0, ez3 = 0 and ez5 = 0.
Consequently, tracking errors of the closed-loop system with

the proposed control are globally asymptotically stable. □

Remark 9. Formore details about the principle and design process
of backstepping, please see [25].
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Remark 10. It should be noted that the system (1) (or (5)) is
linear time-varying; consequently, the criteria of stability for time-
varying system (e.g., Theorem 4.10 in [25]) should be used for
closed-loop system analysis.

Remark 11. As can be seen from (52), performances of the closed-
loop system can be tuned by control gains.

4. Partial-state feedback control

In practical applications, although its value can be obtained by
using (3), the elasticity coefficient model (4) are usually unknown,
indicating that k̇, k̈,

...
k and k(4) cannot be directly calculated through

the steps in Section 3. Moreover, velocities of the springs z2, z4
and z6 are un-measurable; they cannot be used directly for state
feedback.

In this section, it is supposed that the actual contacting force
y, displacements z1, z3 and z5 are measurable; differentiators and
observers are designed to estimate the uncertain k̇, k̈,

...
k and k(4),

and un-measurable z2, z4 and z6.

4.1. High-order differentiators for estimating k̇, k̈ and k(3)

It follows from (6) that k(t) can be obtained by

k =
y
x1
, (53)

where y = Fc and x1 can be directly measured.
A simple high-order differentiator can be introduced to esti-

mate time-derivatives of the elasticity coefficient:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ζ̇1 = ζ2,

ζ̇2 = ζ3,

ζ̇3 = ζ4,

ζ̇4 = ζ5,

ζ̇5 = R5
(
−a1(ζ1 − k(t)) −

a2
R ζ2 −

a3
R2
ζ3 −

a4
R3
ζ4 −

a5
R4
ζ5

)
,

(54)

where ai (i = 1, 2, 3, 4, 5) and R are positive differentiator param-
eters to be tuned. For some recent detailed researches in differen-
tiators, please refer to [26,27].

The time-derivatives of k are estimated by

k̂ = ζ1, (55)
ˆ̇k = ζ2, (56)
ˆ̈k = ζ3, (57)

k̂(3) = ζ4, (58)

k̂(4) = ζ5. (59)

Proposition 2. With the differentiator (54), the time derivatives of
the elasticity coefficient can be estimated by (56)–(59) with bounded
estimation errors.

Proof. It is obvious that (54) is an asymptotically stable linear sys-
temwith a periodic input k(t). Consequently, it can be claimed that
ζ1 tracks k(t) with bounded tracking errors, which can be tuned
arbitrarily small by assigning appropriate ai (i = 1, 2, 3, 4, 5) and
R. It can be seen that ζi (i = 2, 3, 4, 5) are time derivatives of ζ1,
and they are uniformly differentiable; as a result, they are capable
of tracking time derivatives of kwith bounded errors. □

Remark 12. Let ζ̃i ≜ ζi − k(i−1) (i = 1, 2, 3, 4, 5), and ζ̃ ≜
[ζ̃1, ζ̃2, ζ̃3, ζ̃4, ζ̃5]

T . It is apparent that estimation errors of the

differentiator are input-to-state stable (ISS [25]) with respect to
k(i−1) (i = 2, 3, 4, 5). Moreover, there exists a positive function
L5(ζ̃i) satisfying

δd1∥ζ̃∥
2

≤ L5 ≤ δd2∥ζ̃∥
2,

L̇5 ≤ −δd3∥ζ̃∥
2
+ βd(k̇, k̈, k(3), k(4)),

where δdi > 0, (i = 1, 2, 3), and βd is a positive scalar satisfying
βd(0, 0, 0, 0) = 0.

Remark 13. It should be noted that ˆ̇k, ˆ̈k, k̂(3), and k̂(4) are estimated
values of k̇, k̈, k(3), and k(4); they are different from derivatives ˙̂k, ¨̂k,
k̂(3), and k(4).

Remark 14. In this section, the high-order differentiator is applied
to estimate derivatives of k. More detailed analysis on high-order
differentiators can be found in [26] and [27].

4.2. Observer for z2, z4 and z6

The observer for z2, z4 and z6 can be designed by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂z1 = ẑ2 + l1(z̃1, z̃3, z̃5),

˙̂z2 = −
k1+k(t)

m1
ẑ1 −

b1
m1

ẑ2 +
k1
m1

ẑ3 +
b1
m1

ẑ4 + l2(z̃1, z̃3, z̃5),

˙̂z3 = ẑ4 + l3(z̃1, z̃3, z̃5),

˙̂z4 =
k1
m2

ẑ1 +
b1
m2

ẑ2 −
k1+k2
m2

ẑ3 −
b1+b2
m2

ẑ4 +
k2
m2

ẑ5

+
b2
m2

ẑ6 + l4(z̃1, z̃3, z̃5)

˙̂z5 = ẑ6 + l5(z̃1, z̃3, z̃5),

˙̂z6 =
k2
m3

ẑ3 +
b2
m3

ẑ4 −
k2
m3

ẑ5 −
b2+b3
m3

ẑ6 + l6(z̃1, z̃3, z̃5) +
1
m3

u,

(60)

where z1, z3 and z5 are outputs; ẑi (i = 1, 2, 3, 4, 5, 6) are estima-
tions of zi (i = 1, 2, 3, 4, 5, 6); z̃i ≜ ẑi − zi (i = 1, 2, 3, 4, 5, 6) are
estimation errors; and
l1(z̃1, z̃3, z̃5) = −ϖ1z̃1,

l2(z̃1, z̃3, z̃5) =

(
k1 + k(t)

m1
−ϖ2

)
z̃1 −

k1
m1

z̃3,

l3(z̃1, z̃3, z̃5) = −ϖ3z̃3,

l4(z̃1, z̃3, z̃5) = −
k1
m2

z̃1 +

(
k1 + k2

m2
−ϖ4

)
z̃3 −

k2
m2

z̃5,

l5(z̃1, z̃3, z̃5) = −ϖ5z̃5,

l6(z̃1, z̃3, z̃5) = −
k2
m3

z̃3 +

(
k2
m3

−ϖ6

)
z̃5,

whereϖi > 0 (i = 1, 2, 3, 4, 5, 6).

Proposition 3. With the observer designed by (60), observation
errors z̃i (i = 1, 2, 3, 4, 5, 6) are globally exponentially stable.

Proof. Subtracting (60) by (5) yields⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

˙̃z1 = −ϖ1z̃1 + z̃2,
˙̃z2 = −ϖ2z̃1 −

b1
m1

z̃2 +
b1
m1

z̃4,
˙̃z3 = −ϖ3z̃3 + z̃4,
˙̃z4 =

b1
m2

z̃2 −ϖ4z̃3 −
b1+b2
m2

z̃4 +
b2
m2

z̃6,
˙̃z5 = −ϖ5z̃5 + z̃6,
˙̃z6 =

b2
m3

z̃4 −ϖ6z̃5 −
b1+b2
m3

z̃6.

(61)
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Select a Lyapunov candidate

Lo6 =
ϖ2m1

2
z̃21 +

m1

2
z̃22 +

ϖ4m2

2
z̃23 +

m2

2
z̃24 +

ϖ6m3

2
z̃25 +

m3

2
z̃26 .

Its time derivative can be calculated by

L̇o6 = −ϖ1ϖ2m1z̃21 − b1z̃22 + b1z̃2z̃4 −ϖ3ϖ4m2z̃23 − (b1 + b2)z̃24
+b1z̃2z̃4 + b2z̃4z̃6

−ϖ5ϖ6m3z̃25 + b2z̃4z̃6 − (b2 + b3)z̃26

= −ϖ1ϖ2m1z̃21 − b1
(
z̃2 − z̃4

)2
−ϖ3ϖ4m2z̃23

−b2(z̃4 − z̃6)2 − b3z̃26 −ϖ5ϖ6m3z̃25
≤ 0

where L̇o6 = 0 if and only if z̃ ≜ [z̃1, z̃2, z̃3, z̃4, z̃5, z̃6]T = 0.
Consequently, the observation errors are globally asymptoti-

cally stable. It is apparent that (61) is a time-invariant linear sys-
tem; therefore, the observation errors are globally exponentially
stable. □

With the proposed observer (60), the un-measurable z2, z4 and
z6 can be re-constructed by ẑ2, ẑ4 and ẑ6.

Remark 15. According to Lyapunov converse theorem [25], there
exists a Lyapunov function L6 for the exponentially stable linear
system (61), such that

δob1 ∥z̃∥2
≤ Lo6(z̃) ≤ δob2 ∥z̃∥2,

L̇o6(z̃) ≤ −δob3 ∥z̃∥2,

where δobi > 0, (i = 1, 2, 3).

Remark 16. More detailed information of tracking by using ob-
servers can be found in [28].

4.3. Stability of the closed-loop system with observers

With the observer (54) and (60), the un-measurable k̇, k̈,
...
k , k(4),

z2, z4 and z6 can be reconstructed, and the control algorithm can be
summarized as following.

Algorithm 2.

(1) Calculate the virtual control α1 with (20) and (28), where k̇
should be replaced by ˆ̇k in (56), and k is calculated by (53).

(2) Calculate the virtual control α2 with (23) and (27)–(29),
where k̇ and k̈ should be replaced by ˆ̇k in (56) and ˆ̈k in (57),
respectively; and k is calculated by (53). z2 is reconstructed
by ẑ2 in (60).

(3) Calculate the control α3 with (25) and (33), where ė1, ė2,
ż1 and ż2 are calculated with (34)–(37); α̈1 is calculated by
(38)–(41); k is calculated by (53); k̇, k̈ and k(3) are replaced
by ˆ̇k in (56), ˆ̈k in (57) and k̂(3) in (58), respectively; and z2 and
z4 are reconstructed by ẑ2 and ẑ4 in (60).

(4) Calculate the controluwith (25),where derivatives of virtual
controls can be calculated by (43)–(50); k is calculated by
(53); k̇, k̈, k(3), k(4) are replaced by ˆ̇k, ˆ̈k, k̂(3), k̂(4) in (56)–(59),
respectively; and z2, z4 and z6 are reconstructed by ẑ2, ẑ4 and
ẑ6 in (60).

Stability of the closed-loop system with uncertain parameters
and unmeasurable states can be given by the following theorem.

Theorem 1. Consider the pantograph–catenary system given by
(1)–(4), where the elasticity coefficient model is unknown, and dis-
placement variations ẋ1, ẋ2, and ẋ3 are unmeasurable. Suppose that
the reference contacting force is constant or continuously periodic.
The control is designed by Algorithm 2, with time derivatives of k(t)
estimated by the differentiator (54), and with the unmeasurable z2,
z4, and z6 reconstructed by the observer (60). Then, tracking errors of
the closed-loop system are ultimately bounded with tunable ultimate
bounds, and (13) is satisfied.

Proof. Consider that k̇, k̈, k(3), k(4), z2, z4, and z6 are reconstructed
by (54) and (60), respectively. It follows that the tracking error
dynamics can be given by⎧⎪⎪⎨⎪⎪⎩

ė1 = −c1e1 + e2 + o1(z̃, ζ̃ ),
ė2 = −e1 − c2e2 + e3 + o2(z̃, ζ̃ ),
ė3 = −e2 − c3e3 + e4 + o3(z̃, ζ̃ ),
ė4 = −e3 − c4e4 + o4(z̃, ζ̃ ),

(62)

where ζ̃ ≜ [ζ̃1, ζ̃2, ζ̃3, ζ̃4, ζ̃5]
T ; o1(z̃), o2(z̃), o3(z̃) and o4(z̃) are

errors resulted from differentiator errors and observation errors,
and they satisfy

o1(0, 0) = 0, o2(0, 0) = 0, o2(0, 0) = 0, o2(0, 0) = 0.

Since k̇, k̈, k(3), k(4) are continuously bounded, and ζ̃ and z̃ are
bounded, there exist positive κij (i = 1, 2, 3, 4, j = 1, 2) such that
the following expressions hold locally:

∥o1(z̃, ξ̃ )∥ ≤ κ11∥z̃∥ + κ12∥ζ̃∥,

∥o2(z̃, ξ̃ )∥ ≤ κ21∥z̃∥ + κ22∥ζ̃∥,

∥o3(z̃, ξ̃ )∥ ≤ κ31∥z̃∥ + κ32∥ζ̃∥,

∥o4(z̃, ξ̃ )∥ ≤ κ41∥z̃∥ + κ42∥ζ̃∥. (63)

It follows that the time derivative of L4 can be calculated by

L̇4 = −c1e21 − c2e22 − c3e23 − c4e24 + e1o1 + e2o2 + e3o3 + e4o4

≤ −

4∑
i=1

(
cie2i + κi1∥eiz̃∥ + κi2∥eiζ̃∥

)
.

Select the Lyapunov candidate L7 = L4 + γdL5 + γobL6 with
γd > 0 and γob > 0. Its time derivative can be calculated by

L̇7 ≤

4∑
i=1

(
−cie2i + κi1∥eiz̃∥ + κi2∥eiζ̃∥

)
−γobδ

ob
3 ∥z̃∥2

− γdδ
d
3∥ζ̃∥

2
+ γdβd

= −

4∑
i=1

(ci − 2ηi) e2i + γdβd −

4∑
i=1

(
γobδ

ob
3 −

κ2
i1

4ηi

)
z̃2i

−

4∑
i=1

(
√
ηiei −

κi1

2
√
ηi
z̃
)2

−

4∑
i=1

(
γdδ

d
3 −

κ2
i2

4ηi

)
ζ̃ 2i −

4∑
i=1

(
√
ηiei −

κi2

2
√
ηi
ζ̃

)2

≤ −

4∑
i=1

(ci − 2ηi) e2i + γdβd −

4∑
i=1

(
γobδ

ob
3 −

κ2
i1

4ηi

)
z̃2i

−

4∑
i=1

(
γdδ

d
3 −

κ2
i2

4ηi

)
ζ̃ 2i

where 0 < 2ηi < c1 (i = 1, 2, 3); γob > 0 and γd > 0 can be
selected large enough, such that γobδob3 −

κ2i1
4ηi
> 0 and γdδd3−

κ2i2
4ηi
> 0.
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Then, it can be claimed that L7 satisfies

δ1∥ē∥2
≤ L7 ≤ δ2∥ē∥2, (64)

L̇7 ≤ −δ3∥ē∥ + γdβd(k̇, k̈, k(3), k(4)), (65)

where ē ≜ [eT , z̃T , ζ̃ T ]T , and

δ1 = min
[
1
2
, γobδ

ob
1 , γdδ

d
1

]
, δ2 = max

[
1
2
, γobδ

ob
2 , γdδ

d
2

]
,

δ3 = min
i=1,2,3,4

[
ci − 2ηi, γobδob3 −

κ2
i1

4ηi
, γdδ

d
3 −

κ2
i2

4ηi

]
.

Consequently, it can be concluded that ē is ISS with respect to
k(i) (i = 1, 2, 3, 4).

Since k(t) is periodic, it follows that k(i) (i = 1, 2, 3, 4) are
periodic and bounded, and it holds that

βd(k̇, k̈, k(3), k(4)) ≤ β̄d, (66)

where β̄d > 0 denotes the bound of βd. It can be solved from (64)
and (65) that

L7(t) ≤ e−
δ3
δ2

t
(
L7(0) −

δ2γdβ̄d

δ3

)
+
δ2γdβ̄d

δ3
,

and therefore,

∥e1∥ ≤

√
1
δ1

e−
δ3
δ2

t
(
L7(0) −

δ2γdβ̄d

δ3

)
+
δ2γdβ̄d

δ1δ3
, (67)

which can be tuned by assigning appropriate δi (i = 1, 2, 3).
Moreover, according to Proposition 5 in Appendix, z3 (and z5)

tracks a periodic trajectory z3r (and z5r ) asymptotically, and its
tracking error ez3 ≜ z3−z3r (ez5 ≜ z5−z5r ) satisfies (71) in Appendix,
where L3(0) = 0 and ∥L3(ē)∥ ≤ βz

3∥ē∥ with βz
3 > 0.

Select a Lyapunov candidate Lob0 = L7 +
1

2γ z
3
ez3

2
+

1
2γ z

5
ez5

2 for the
full-state closed-loop system with observers, where γ z

3 > 0 and
γ z
5 > 0. Its time derivative can be calculated by

L̇ob0 ≤ −δ3∥ē∥2
−

k1
b1γ z

3
ez3

2
+
βz
3

γ z
3
ez3∥ē∥

−
k2

b2γ z
5
ez5

2
+
βz
5

γ z
5
ez5∥ē∥ + γdβ̄d

= −

(
δ3 −

βz
3
2b1

4k1γ z
3

−
βz
5
2b2

4k2γ z
5

)
∥ē∥2

+ γdβ̄d

−

(√
k1

b1γ z
3
ez3 −

βz
3

2

√
b1k1γ z

3 ∥ē∥

)2

−

(√
k2

b2γ z
5
ez5 −

βz
5

2

√
b2k2γ z

5 ∥ē∥

)2

where γ z
3 and γ z

5 can be selected large enough such that(
δ3 −

βz3
2b1

4k1γ z
3

−
βz5

2b2
4k2γ z

5

)
> 0. As a consequence, tracking errors of

the closed-loop system with the proposed control and observers
are ultimately bounded with tunable ultimate bounds. □

5. Simulations and discussion

In the simulations, values of parameters of the pantograph–
catenary system are taken from [6,9,11], as listed in Table 1. The
train speed is set to V = 90m/s to test performances of the closed-
loop system with high speed. The reference contact force is set by
100N. Initial values of system states are given by

[x1(0), ẋ1(0), x2(0), ẋ2(0), x3(0), ẋ3(0)]T

Table 1
Values of parameters.
Notations Values Notations Values

k1 7015.9 Nm−1 L 65 m
m1 8 kg m2 12 kg
b1 120 Nsm−1 b2 30 Nsm−1

V 90 ms−1 K0 7000 Nm−1

K1 3360 Nm−1 K2 650 Nm−1

K3 160 Nm−1 K7 160 Nm−1

k2 1550.1 Nm−1

Table 2
Values of control gains and observer gains.
Notations Values Notations Values

c1 12 a1 128
c2 36 a2 128
c3 108 a3 64
c4 324 a4 32
R 200 a5 4
ϖ1 20 ϖ2 4
ϖ3 20 ϖ4 4
ϖ5 20 ϖ6 4

Fig. 3. Contact force with full-state feedback control: the tracking error is globally
exponentially stable.

= [0.005, 0, 0.01, 0, 0.01, 0]T .

Suppose that elasticity coefficient model is fully known in pri-
ori, and z2, z4 and z6 are measurable. In this case, Algorithm 1
is applied, with control gains listed in Table 2. The tracking per-
formance of the closed-loop system with respect to a constant
contacting force is illustrated by Fig. 3. As can be seen, the tracking
error is globally asymptotically stable, and the transient process is
satisfactory.

In more practical applications, the accurate model of elasticity
coefficient k(t) is unknown, and z2, z4 and z6 are unmeasurable,
implying that the elasticity coefficient model (4), as well as the un-
measurable z2, z4, and z6, cannot be used directly in control design.
In this case, Algorithm2 is appliedwith control gains, differentiator
parameters and observer gains listed in Table 2. Initial values of ob-
server states are all set to zeros. It can be seen from Fig. 4 that, with
the proposed partial-state feedback control algorithm, the closed-
loop system is capable of tracking the reference contacting force
with ultimately bounded tracking errors. The displayed bounded
tracking is in significant accordance with the theoretical results. It
can be seen from Figs. 5–7 that reconstructed signals ẑ2, ẑ4, ẑ6 are
capable of tracking their actual values exponentially. The control
signal is displayed in Fig. 8, where it can be seen that the controller
is fairly implementable.
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Fig. 4. Contact force with the proposed partial-state feedback control: the tracking
error is ultimately bounded.

Fig. 5. Observed z2: the observation error is globally exponentially stable.

Fig. 6. Observed z4: the observation error is globally exponentially stable.

The ultimate bound in (67) cannot be calculated explicitly,
since it is related to the differentiator error βd in (65). The train
is supposed to be operated in very high speed (90 m/s in this
simulation), such that the frequency of periodic catenary stiffness
k(t) is very high, and the tracking error of the differentiator would
be considerably large. The existence of βd is obvious; however,
its value is difficult to be determined explicitly. Even though we
cannot calculate the particular value of ultimate bound explicitly,

Fig. 7. Observed z6: the observation error is globally exponentially stable.

Fig. 8. Control signal of the closed-loop system with the proposed partial-state
feedback.

Fig. 9. Comparison of closed-loop performances with different control gains.

it can be tuned by control parameters. According to (67), δ1, δ2 and
δ3 are related directly to control gains c1, c2, c3 and c4. To illustrate,
a comparison of closed-loop performance with different control
gains is given in Fig. 9, where it can be seen that large control gains
would lead to smaller ultimate bounds.

Remark 17. In simulation, the closed-loop system is not ideally
continuous. Both themodel and the controller are discretized with
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small sampling intervals. Consequently, the control gains cannot
be increased to extremely large values to reduce the chattering. If
the control gains are extremely large and the trains speed is high,
there would be stability problems due to the discretization.

6. Conclusion

In this paper, a nonlinear partial-state feedback control is pro-
posed for a 3-DOF pantograph–catenary system, such that the
contact force between pantograph and catenary can track a con-
tinuous reference force. The proposed control is designed based on
backstepping approach, where time derivatives of virtual controls
are calculated explicitly. A high-order differentiator is designed for
estimating derivatives of time-varying elasticity coefficient, and an
observer is designed to reconstruct the unmeasurable spring veloc-
ities. Ultimate boundedness of tracking errors of the closed-loop
system with proposed control and observer is proved rigorously.
Theoretical results are demonstrated by numerical simulation.

It should be noted that the approach proposed in this paper
is open for further extensions (for example, adaptive control in
case of parametric uncertainties. For more details, please see the
canonical design process in [24]).
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Appendix. Tracking performance of z3 in Proposition 1 and
Theorem 1

Proposition 4. Suppose that the reference contacting force is con-
stant or continuously periodic. Then, in the closed-loop system with
Algorithm 1, z3 (and z5) tracks a periodic trajectory asymptotically.

Proof. It follows from definition of e3 that

ξ1 = e3 + α2

= e3 − e1 − c2e2 +
k1 + k
m1

(e1 + z1r ) +
b1
m1

(e2 + α1) + α̇1

= L1(e) +
k1
m1

z1r +
1
m1

yr +
b1
m1
α1 + α̇1

= L1(e) + P1 +
b1
m1

(−c1e1 + ż1r ) − c1ė1 + z̈1r

= L2(e) + P2,

(68)

where L1(e) and L2(e) are linear combinations of e1, e2 and e3, and
it holds that ∥L2(e)∥ ≤ κz

3∥e∥with some certain κz
3 > 0; P1 and P2

are continuously periodic terms.
Let z3r be the solution of the following system:

ż3r = −
k1
b1

z3r +
1
b1

P2, (69)

which is a stable linear time-invariant systemplus a periodic input.
It is apparent that z3r is ultimately periodic.

Let ez3 ≜ z3 − z3r . It follows from (17), (68) and (69) that

ėz3 = −
k1
b1

ez3 +
1
b1

L2(e), (70)

where e decreases exponentially according to (52). Consequently,
it can be claimed that ez3 → 0, indicating that z3 tracks a periodic
trajectory asymptotically.

With similar steps, it can be proved that z5 tracks a periodic
trajectory asymptotically. □

Proposition 5. Suppose that the reference contacting force is con-
stant or continuously periodic. Then, in the closed-loop system with
Algorithm 2, z3 (and z5) tracks a periodic trajectory asymptotically.

Proof. The proof is similar to that of Proposition 4. It can be proved
that ζ1 can be expressed as the sumofL3(ē) andP3, whereL3(ē) is a
linear combination of e and z̃, and P3 is composed by continuously
periodic terms. It holds that ∥L3(ē)∥ ≤ βz

3∥ē∥ with a certain βz
3 >

0. It follows that

ėz3 = −
k1
b1

ez3 + L3(ē), (71)

and ez3 → 0 (since ē vanishes), indicating that z3 tracks a periodic
trajectory asymptotically.

With similar steps, it can be proved that z5 tracks a periodic
trajectory asymptotically. □
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