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a  b  s  t  r  a  c  t

Nonlinear  dynamics  of  flow-induced  oscillations  of cylinders  is  investigated.  The  approach  in our  paper
is  made  to  introduce  an  harmonic  forced  vibration  in  the  coupling  term of  the  structural  equation  since
this  may  be  the  consequence  of approximating  the  potential  force  that could  act  as a  periodic  excitation.
The  method  of multiple  scales  is used  to determine  the  steady  state  responses.  Amplitude  and  phase
modulation  equations  as well  as  external  force-response  and  frequency-response  curves  are  obtained.
We show  that  harmonic  excitation  can  induce  resonance  phenomena  in  the oscillation  of  the  structure
for  a range  of frequencies  of  potential  force,  and  also  lock-in  phenomena  appear  in  the  structure  part.
Also,  we  find  that  the  structure  can  be  damaged  as  the  amplitude  of the  potential  excitation  increases.
Numerical  simulations  confirm  the existence  of  chaotic  vibration  in  the  system,  a  small  damping  signal
control  is  used  to suppress  it since  it may  cause  fatigue  in the  system.  The  model  developed  is expected
to yield  better  results  for  structure  in  water.

Crown Copyright ©  2012 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Vortex-induced vibration (VIV) of cylindrical structures mod-
elled by coupled oscillators has been a subject of extensive
theoretical, experimental and numerical studies (Iwan, 1975; Iwan
and Blevins, 1974; Williamson and Govardhan, 2004; Sarpkaya,
2004; Gabbai and Benaroya, 2005). Cross wind vibration of slender
structures induced by vortex shedding may occur under cer-
tain meteorological conditions. This vortex shedding induces an
approximately periodic excitation on the structure and causes it
to vibrate. The structural vibration modifies the flow, which in
turn alters the induced force acting on the cylinder. The result-
ing fluid–structure interaction is a non-linear process and will
give rise to structural vibration with multiple frequencies (Blevins,
1994; Blake, 1986). In extreme cases this may lead to failure of
the structures, but even if this event does not occur, the vibra-
tions will cause fatigue damage in the materials of the structure,
thereby increasing the maintenance cost of the building. In addi-
tion, the excessive acceleration magnification will frequently cause
occupants’ discomfort (Love and Tait, 2010; Wu et al., 2009). The
suppression of these oscillations has become one of the major
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concerns to civil engineers. A number of methods exist for
improving the performance of existing structures to meet the
requirements. Strengthening of the buildings or the installation
of a base isolation system is complicated, difficult, and expensive.
Therefore, incorporating control devices is proposed to mitigate
excessive oscillations. Recently, (Alvarez-Ramirez et al., 2003;
Tereshko et al., 2004; De Souza et al., 2007) have shown that the
injection of small damping signals suffices to regulate the motion
of a chaotic system around less complex attractors, such as equi-
librium points and periodic orbits.

A model of VIV failure, is generally taken as a paradigmatic
example of the resonance effects on structures under the action of
time-periodic forcing caused by vortex shedding due to impinging
wind on the structure. Even recognizing that the ultimate source
of the problem is the interaction between the periodicities of the
structure oscillations and the vortices that are created, it turns
out that the standard textbook explanation, based on linear res-
onance arguments, is somewhat imprecise (Billah and Scanlan,
1991). Linear resonance is a rather narrow phenomenon and very
difficult to occur in an irregularly changing environment (Lazer and
McKenna, 1990). The possible inadequacy of a linear explanation
for the structure in a model of vortex induced vibration to describe
response characteristics, such as the amplification of body displace-
ment at lock-in and frequency lock-in, both at high and low mass
ratios was already pointed out in the work done by Ref. (Li-ming
et al., 2009). Due to advances in the understanding of nonlinear
oscillators (Nayfeh and Mook, 1979), the role of nonlinear effects
in the dynamical behavior of suspension bridges has been better
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appreciated. In this perspective, the nonlinear response analysis
of vortex-induced vibration in a structure–wake system consisting
each of a nonlinear damping oscillators has been considered in Ref.
(Li-ming et al., 2009).

Semi-empirical models for VIV of spring-loaded rigid right infi-
nite cylinder have been widely studied (Matsumoto et al., 2001;
Chang and Gu, 1999). A review article by Parkinson (Parkinson,
1989) presents a good summary of these models. A van der Pol-
type oscillator is commonly used to represent the time varying
forces on the structure due to vortex shedding (Bishop and Hassan,
1964). This equation has a negative damping term (energy input) at
small motion and a positive damping term (energy dissipation) at
larger motion. It is therefore able to model the self-excited and self-
limiting nature of VIV. However, this model is still unsatisfactory
for predicting quantitatively the transition region in the parameter
space (Plaschko, 1996). Hence, a modified version of semi-empirical
model equations has been proposed, where the transition of flow-
induced vibrations to chaos in terms of heteroclinic bifurcation
were investigated.

Among all researchers mentioned above, only the free vibration
experimental and theoretical is considered. In their work (Ogink
and Metrikine, 2010), an attempt has been made to improve a wake
oscillator model based on the model of Facchinetti et al. (Facchinetti
et al., 2004). By introducing a frequency dependent coupling. The
idea of this improvement arises from the obvious desire to have
a model that satisfies both the free and forced vibration exper-
iments. To extend research in this area of forced vibration, this
paper investigates the nonlinear oscillations and chaos control in
a structure–wake system with external periodic excitation due to
the potential force. The resulting governing equations of motion
describe a two-degree-of-freedom system having cubic nonlinear-
ities and external excitation. Our goal in this paper is twofold. First,
the effect of the forced excitation on the nonlinear response is
studied. On the other hand, chaotic vibration due to forced excita-
tion is controlled. The method of multiple time scales perturbation
technique is used to solve the nonlinear differential equations
describing the response system up to second order accuracy. The
case of mixed resonance and effects of system’s various parame-
ters are studied numerically. Chaos control using small amplitude
damping signals is used to suppress the chaotic oscillation of the
system.

2. Description of the vortex induced-vibrations on a
spring-loaded rigid right infinite cylinder

Even though a considerable number of structure–wake oscil-
lator models have been developed, the correspondence between
model predictions and VIV measurements is in most cases adequate
at best. The main problem is to find a model that can describe at the
same time both the correct range of flow velocities, in which lock-in
takes place, and the correct amplitude of cylinder motion. Here, we
assume that the structural elasticity includes cubic nonlinearity. In
the literature, so many different phenomenological forcing terms
have been used to model the coupling function between the struc-
ture and wake oscillator. It has been shown in Ref. (Li-ming et al.,
2009) that the coupling term in the structure equation includes the
potential force Fpotential = −mf ÿ, where mf is the potential fluid-
added mass, and the vortex force Fvortex. In Ref. (Li-ming et al., 2009),
the potential force was neglected to consider only the vortex force.
In our case, to improve the concept of the oscillator model it is
proposed to make the coupling term in the structure equation fre-
quency dependent (i.e., to consider that the potential force can be
approximated by a small harmonic function of time with frequency
ω). The fluid oscillator and the interaction between the structure
and the flow are modelled in the same manner in Ref. (Gabbai and

Benaroya, 2005), but a time varying coupling term is added and
imposed on the structure. We propose the following model of the
vortex induced-vibrations on a bridge column

ẍ + 2 "̃ẋ + ω2
1x + #̃x3 = $̃1y + f̃0 cos ωt, (1)

ÿ − ( ˜̨  − ˜̌ ẏ2)ẏ + ω2
2y = $̃2ẋ, (2)

In the above equations, x is the dimensionless spring-loaded
rigid right infinite cylinder displacement and y is a representa-
tive fluid property, for example, pressure or lift coefficient on the
structure. $1y + f0 cos ωt, and $2ẋ model the coupling between lift
force and structure motion. The dots represent differentiation with
respect to time t, ωi are the free frequencies of the structure and
fluid and ˜̨ , ˜̌ , "̃, f̃0, #̃, $̃1, and $̃2 are positive constants. Here the
structure is modelled by a forced and damped nonlinear oscillator
(Eq. (1)), while the periodic vortex shedding on the fluid is modelled
by a Rayleigh oscillator (Eq. (2)).

3.  Perturbation solution

In this section, we use the method of multiple scales (Nayfeh
and Mook, 1979) to find the averaged equations of the system. Our
aim here is that one would expect a coupled nonlinear oscillator
to exhibit (approximately) oscillations which occur at the external
and mixed resonance depending of the magnitude of the external
amplitude f0. In this section, the damping, nonlinear and coupling
coefficients are considered as global first order perturbations and
then may be rewritten as ˜̨  = ε˛, ˜̌

 = εˇ,  "̃ = ε", f̃0 = εf0, #̃ = ε#,
$̃1 = ε$1, and $̃2 = ε$2. To this end, we introduce a fast time scale
T0 = t and a slow time scale T1 = εt where ε is a small dimensionless
parameter. Then, the time derivative become





d
dt

= D0 + εD1 + ...,

d2

dt2 = D2
0 + 2εD0D1 + ...

(3)

where the differentiation operator Dk = ∂/∂Tk, k = 0, 1.
The expression of x(t ; ε) and y(t ; ε) are taken to be in the form

{
x(t; ε) = x0(T0, T1) + εx1(T0, T1) + ...,

y(t; ε) = y0(T0, T1) + εy1(T0, T1) + ...
(4)

Substituting solution (4) into system Eqs. (1) and (2) with all the
above new parameters, then dropping the tildes on terms, and bal-
ancing the coefficients of like powers of ε in the resulting equation
yields the following ordered perturbation equations:

Order ε0:
{

D2
0x0 + ω2

1x0 = 0,

D2
0y0 + ω2

2y0 = 0.
(5)

Order ε1:
{

D2
0x1 + ω2

1x1 = −2D0D1x0 − 2"D0x0 + $1y0, −#x3
0 + f0 cos ωT0

D2
0y1 + ω2

2y1 = −2D0D1y0 +
(

 ̨ − ˇ(D0y0)2)D0y0 + $2D0x0.
(6)

The general solutions of system Eq. (5) can be expressed as
{

x0 = A(T1) exp jω1T0 + c.c,

y0 = B(T1) exp jω2T0 + c.c,
(7)

where c . c . stands for complex conjugate of its preceding terms. The
functions A and B are unknown function of T1 and j =

√
−1; their

dependence on time will be exhibited when solving the solvability
conditions. Substituting the solutions x0 and y0 into the right-hand
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side of Eq. (6) yields an expression in terms of trigonometric func-
tions as follows

D2
0x1 + ω2

1x1 = −j
(

2ω1Ȧ + 2"ω1A + 3# | A|2A
)

exp jω1T0

+ $1B exp jω2T0 − #A3 exp 3jω1T0

+ f0
2

exp jωT0 + c.c

(8)

D2
0y1 + ω2

2y1 = jω2
(
−2Ḃ − 3ω2

2  ̌ | B|2B + ˛B
)

exp jω2T0

+ jˇω3
2B3 exp 3jω2T0 + j$2ω1A exp jω1T0 + c.c

(9)

where the dot on A and B denotes the differentiation with
respect to T1. They can be determined by eliminating the secular
terms at the next approximation. From the above Eqs. (8) and (9),
the resonance cases are: external resonance (ω = ω1); internal res-
onance (ω2 = ω1); simultaneous resonance, i.e., any combination of
the above resonance cases is considered as a simultaneous reso-
nance. In this paper, only the last case of simultaneous resonance
will be analyzed because it is the one that couples the structure
with the wake and also gives the effect of the harmonic excitation
on the steady state oscillation.

3.1. The mixed resonance case

Here, we analyze the case where the structure inters in an exter-
nal resonance with the harmonic excitation (ω = ω1) in the presence
of one-to-one internal resonance (ω1 = ω2). The previous resonant
relations can be expressed as follows

ω1 = ω2 + ε'1, ω = ω1 + ε'0 (10)

where '0 measures the detuning between the excitation fre-
quency and the natural frequency of the first oscillator, '1 gives
a measure of the internal detuning between the two oscillators.
Substituting (10) into Eqs. (8) and (9) together with the polar rep-
resentations below





A = a(T1)
2

exp j(1(T1) + c.c,

B = b(T1)
2

exp j(2(T1) + c.c,

(11)

where a, b and (1, (2 are respectively the amplitudes and phases of
the oscillators. The secular producing terms in Eqs. (8) and (9) must
be eliminated. Using the solvability conditions and after separating
real and imaginary parts, the following set of first-order differential
equations is obtained:





ω1ȧ + "ω1a + 3#
8

a3 − $1

2
b sin ı1 − f0

2
sin ı0 = 0,

ω1a
(
'0 − ı̇0

)
+ $1

2
b cos ı1 + f0

2
cos ı0 = 0,

ω2ḃ +
3ω3

2ˇ

8
b3 − ˛ω2

2
b − $2ω1

2
a cos ı1 = 0,

bω2(ı̇1 − ı̇0) + bω2('0 + '1) + $2ω1

2
a sin ı1 = 0,

(12)

where ı0 = '0T1 − (1, and ı1 = (2 − (1 − '1T1.
The singular points of system Eq. (12) corresponding to steady

state and periodic equilibrium are described by assuming ȧ = ḃ = 0
and ı̇1 = ı̇0 = 0. Using these conditions in system Eq. (12) leads to
the following set of nonlinear algebraic equations that are solved
numerically to obtain the fixed point response of the system

a2 =
4ω2

2('0 + '1)2

$2
2ω

2
1

b2 +
ω2

2b2

$2
2ω

2
1

(
 ̨ −

3ˇω2
2

4
b2

)2

, (13)
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Fig. 1. Frequency response curve on the structure for different excitation amplitude.

and
(
ω2

1$2'0a2 + $1ω2

2

(
3ˇω2

2
4

b2 − ˛

)
b

)2

+
(
$1ω2 ('0 + '1) b2 + $2ω1

(
"ω1 + 3#

8
a2

)
a2

)2

−
f 2
0 ω

2
1$

2
2 a2

4
= 0

(14)

4. Frequency and forced response curves

In this section, the fixed point response of the coupled oscil-
lators is obtained by solving the frequency response Eqs. (13) and
(14) numerically for fixed parameters " = 0.0015, # = 0.05,  ̨ = 0.002,

 ̌ = 0.067, $1 = 0.002, $2 = 0.4, '1 = 1, ω1 = 1, and ω2 = 1. The rep-
resentative solutions are illustrated by the frequency and forced
responses plots of Figs. 1 and 2.

In Fig. 1, a typical frequency-response graph is shown. The
steady-state response of the structure plot given in Fig. 1 shows the
resonant of a system for three values of the amplitude of external
excitation. The physical consistency of the modeling can be verified
by three values of the amplitude of the external excitation. Increas-
ing amplitude excitation is found to enlarges the lock-in domain
and progressively increase the resonance peak. Meanwhile, dotted
line appearing in Fig. 1 characterize unstable solutions. Therefore,
this property enables one to design an appropriate external ampli-
tude to enhance the control performance and avoid the appearance
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Fig. 2. Forced response curve on the structure for different detuning parameter.
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Fig. 3. Bifurcation diagram of the structure showing the projections of the attractors
in  the stroboscopic section against the external excitation amplitude f0. " = 0.0015,
#  = 0.05,  ̨ = 0.002,  ̌ = 0.067, $1 = 0.002, ω2 = ω1 = 1, ω = 0.75 and $2 = 0.4.

of the higher amplitude oscillation in practical vibration control.
Fig. 2 presents the forced response of the system, under the effect
of the detuning parameter. From this figure, it is shown that for
a fixed value of the detuning parameter '0, there is one solution
whose amplitude increases and tend asymptotically to a non-zero
amplitude value as the amplitude of the potential force increases.
The above forced response curve can be used to control the vibra-
tion of the structure, in fact, it is easy to see that when the value of
the detuning parameter tends to zero then the structure will oscil-
late with higher amplitude and consequently, the structure will be
damaged.

5. Chaotic dynamics of the coupled oscillators

The aim of this section is to use numerical simulations to estab-
lish parameter regimes where specific behavior of our model of
vortex-induced vibration could be expected, and thus to determine
for which parameter combinations either periodic, quasi-periodic
or chaotic behavior could be avoided or encountered. In the two-
time scales analysis in Section 4, most coefficients of (1) and (2)
are assumed small and of the same order. However, it is interest-
ing to know the dynamics of the system when the parameters vary
in different ranges. In this section, the dependence of the system
dynamics on its parameters is studied using a bifurcation analysis.
The internal resonance condition ω1 = ω2 is applied. Sometimes, it
is easy to adjust the driving force to change the behavior of the
coupled system once it is designed and physically constructed.
Therefore, the frequency and amplitude of the driving force are
used as main control parameters in the bifurcation. The diagnostics
used to establish structural changes involved, bifurcation diagrams
in the intervals of the amplitude of the external forcing f0 and
the influence of the f0 in the Poincaré maps. The fourth-order
Runge–Kutta routine is used for numerical integration. The bifurca-
tion diagrams for specific parameter values are presented in Fig. 3
for 0 ≤ f0 ≤ 90.

It is shown from Fig. 3 that the structure behavior in a funda-
mentally periodic and weak chaotic solutions persisting for f0 ≤ 31 .
At the value of f0 = 31, a period-4 until the value f0 ≈ 47.5 . At the
value of f0 & 47.5, until 53.6, a first large band chaotic solution is
born and as f0 increases the system undergoes multi-periodic, weak
chaotic and a successively period doubling solutions. A chaotic-
saddle explosion appears at f0 ≈ 67 . Here, the chaotic attractor
undergoes an abrupt instantaneous enlargement to a larger chaotic
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Fig. 4. Poincaré maps (a) f0 = 52 (b) f0 = 85.

attractor, which includes the original attractor as a subset, on col-
liding with a chaotic saddle.

The qualitative change on the system dynamics due to the
amplitude of the parametric perturbation is examined on the
Poincaré maps whose attractor geometrical structure looks very
complicated. As the control parameter f0 becomes smaller, the
number of the fixed points in cluster decreases and the fractal struc-
ture of the attractor becomes more and more visible as shown in
Fig. 4(a). The following investigation is motivated by the fact that a
small amplitude damping suffices to regulate the motion of the
coupled chaotic system around less complex attractors, such as
equilibrium points and periodic orbits. By a small damping force,
we mean that chaos suppression can be obtained with controllers
using small energy levels compared with the total energy of the
system. This is the aim of the next section.

6. Small damping signal control of chaos

In this section, the focus is shifted to the suppression of chaotic
motion in the vortex induced-vibration (VIV) system. To do so, we
can add a control input in Eqs. (1) and (2) in the following form
{

ẍ + 2"ẋ + ω2
1x + #x3 = $1y + f0 cos ωt + u(ẋ),

ÿ − (  ̨ − ˇẏ2)ẏ + ω2
2y = $2ẋ,

(15)
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Fig. 5. Bifurcation diagrams of the cylinder in terms of control parameters showing
the  suppressing of the chaotic attractors of Fig. 4(a) in the stroboscopic section into
(a)–(c) ke = 0.4, ) = 0.2 and (b)–(d) ke = 5, ) = 0.2 against the control parameter umax

for f0 = 85.

where u is the control signal needed to be chosen. It should be
stressed that the control input could be a liquid lubricant or a damp-
ing force acting on the spring-loaded rigid right infinite cylinder.
Since system (15) can be seen as the interconnection between two
second-order subsystems in x and y, we conjecture that if we able
to suppress the chaotic behavior in the first oscillator, the chaotic
motion in the second oscillator will be suppress automatically. This
is why, in the sequel, we only consider the following second-order
subsystem

ẍ + 2"ẋ + ω2
1x = s(t) + u, (16)

where s(t) = − #x3 + $1y + f0 cos ωt is a forcing function which is
unknown to us. An alternative to suppress chaos in system equa-
tion (15) is to suppress the unceasing interactions of the potential
energy with the kinetic energy by introducing a damping action.
This can be achieved by a feedback u in terms of the velocity ẋ:

u = −keẋ, (17)

where ke is a positive constant. Then, the resulting controlled
system is

ẍ + (2" + ke)ẋ + ω2
1x = s(t). (18)

Let us consider the following partial energy as a Lyapunov candidate
function:

Ep(x, ẋ) = 1
2

ẋ2 +
ω2

1
2

x2.
(19)

Its time derivative along the trajectories of the closed-loop system
(15) satisfies

Ėp(x, ẋ) = −(2" + ke)ẋ2 + ẋs(t). (20)

Let the function s(t) satisfy |s(t)| ≤ sm for some sm > 0.

Ėp(x, ẋ) ≤ −|ẋ|
{

(2" + ke)|ẋ| − sm
}

. (21)

Let us define D = 1/(2" + ke). From inequality (21), it follows that if
|ẋ| ≥ Dsm, then Ėp(x, ẋ) < 0, hence, Ep(x, ẋ) decreases, which implies
that |ẋ| decreases as well, see inequality (21). It then follows from
the standard invariance arguments that the velocity satisfies the
following bound:

|ẋ| ≤ c, (22)

where c ≥ Dsm, (see Khalil, 1992, p. 323). From inequality (22), it
follows that the velocity depends linearly on the constant sm. Hence,
if this term is small, the resulting velocity will be small as well. The
dependence of the velocity on ke deserves special attention. Note
that D = 1/(2" + ke). Hence, as ke increases, (2"  + ke) will increase
and consequently D will decrease, which also decreases the velocity
bound. This argument shows that with the proposed method, ke
should be made as large as possible. In this way, the feedback term
u increases the stability properties of the controlled system around
equilibrium points.

The feedback function (17) can lead to excessively large con-
trol actions, which cannot be available in practice. In practice, in
the chaotic systems, the trajectories move erratically but in the
bounded region, and hence, require a bounded energy to be stabi-
lized. To avoid this situation, and since the dynamics of the chaotic
system are constrained to evolve within a bounded region, we pro-
pose the following bounded feedback function:

u = −umax tanh(keẋ), (23)

where umax defines the maximum amplitude of the control action.
Once again, the implementation of the damping feedback con-

troller (23) requires measurements of the velocity v = ẋ.  Velocity
measurements are not easy because of high noise sensitivity of
measurement devices. An alternative is to estimate the velocity v(t)
from measurements of the signal x(t). Thus, for the actual velocity
v(t), an estimate ve(t) is obtained as follows:

ve(t) = s
)es + 1

x(t) (24)

where s = d/dt is a time-derivative operator, so that v = sx and )e > 0
is a time-constant of the filter. The following must be pointed
out. On the one hand, 1/()es + 1) is a law pass filter with cutting
frequency )−1

e and the operation (1/()es + 1))x(t) filters out those
dynamics with frequencies significantly larger )−1

e . In this way, the
operation (s/()es + 1))x(t) provides a smoother estimate of the time-
derivative ẋ. That is, the larger the time-constant )e, the smoother
the velocity estimate ve(t). On the other hand, (24) is equivalent to
the differential system )ev̇e + ve = ẋ.  Now, let us introduce the vari-
able ωe = )eve − x, so that ve = )−1

e (ωe + x). In this way, the velocity
estimator (24) is equivalent to the following stable system:
{
ω̇e = −)−1

e (ωe + x),

ve = )−1
e (ωe + x).

(25)

In this way, the practical feedback control is

u = −umax tanh(keve). (26)

The robust damping feedback control (26) has the following
advantages. (i) It does not require the specification of any reference
signal to be tracked by the controlled system. In this case, the feed-
back strategy (26) can be seen as a self-controlling strategy because
it is driven only by measured system signals (Chen et al., 2000). (ii)
It only uses the estimate of the velocity ẋ which only requires mea-
surements of the signal x(t). (iii) The umax, ke, )e-parametrization
of the feedback controller (26) provides a simple tuning procedure.
In fact, the control amplitude umax is determined by the capacities
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Fig. 6. Phase portrait of the cylinder displacement in terms of the control parameters
for ke = 0.4, ) = 0.2 and f0 = 85 (a) umax = 2, (b) umax = 4.2, (c) umax = 4.6, (d) umax = 6.

of the control mechanisms. From Eq. (26), one can see that if umax
increases, the system trajectories can be less erratic. On the other
hand, the control gain ke determines the aggressiveness of the con-
trol action. As ke is set to large values umax tanh(keve) ( umaxsign(ve)
and the controller injects the maximum damping ±umax . Maybe
the most interesting tuning parameter is the filter gain )e that
determines the smoothness of the velocity estimation.

For the sake of illustration, the time-constant of the filter ) = 0.2
was chosen. In the following the effect of the maximum amplitude
umax of the control action on the behavior of the coupled nonlinear
oscillators for two value of the control gain ke will be described.
We have plotted in Fig. 5, the bifurcation diagrams for ke = 0.4 and
ke = 5. Fig. 5(a) and (b) show that the threshold of chaos to be sup-
pressed in term of umax decrease as as the control gain ke increases.
It is seen from Fig. 5(a) that when we fix ke = 0.4, chaotic behavior
appears for umax ≤ 4.1, while for 4.1 < umax ≤ 4.9 we have a suc-
cession of period doubling oscillations, then a range of period-4
oscillations appears for 0.49 < umax ≤ 10 which proves that chaotic
vibration is suppressed. At the same time for ke = 5, the region
where chaotic behavior appear is umax ≤ 2, then for 2 < umax ≤ 10
we have a succession of periodic, quasi-periodic and again periodic
oscillations. Thus, the chaotic vibration is also suppressed and we
only have periodic oscillation. It should be noted that these results
are numerically valid when ) ≤ ke. Fig. 6 shows the deformation of
the attractor as the parameter umax increases for the control gain
ke = 0.4. As expected, more damping is added as umax increases, so
the formerly chaotic trajectories are ordered around simpler peri-
odic orbits.

7. Conclusion

In this paper, we have studied the effect of potential force in
vortex-induced vibration modelled by a harmonic excitation on
the nonlinear dynamics of structure–wake oscillators. Besides their
engineering application, structure–wake systems enjoy also a more
fundamental interest due to the loss of smoothness in their dynam-
ics, leading to a plethora of complex dynamical phenomena, some
of which were presented throughout this paper. We have seen
that harmonic excitation can induce resonance phenomena in the
oscillation of the structure for a range of frequencies of potential
force, while lock-in phenomena also appear in the structure part.
Also, we found that the structure can be damaged as the ampli-
tude of the potential excitation increases. On the other hand, the
application of a self-controlling feedback has been used in order
to reduce the instability effects of chaotic trajectories, leading to a
more ordered system evolution. A procedure to suppress chaotic
behavior based on small-damping signals has also been presented.
This method is based on the fact that by altering the averaged
energy of the coupled oscillator, one can steer the system trajecto-
ries from chaotic attractor to a periodic orbit which gives improved
system performance. This small-damping controller feedback has
been confirmed numerically.
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