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a b s t r a c t

In this paper, finite time dual neural networks with a new activation function are presented to solve
quadratic programming problems. The activation function has two tunable parameters, which give more
flexibility to design the neural networks. By Lyapunov theorem, finite-time stability can be derived for
the proposed neural networks, and the actual optimal solutions of the quadratic programming problems
can be obtained in finite time interval. Different from the existing recurrent neural networks for solving
the quadratic programming problems, the neural networks of this paper have a faster convergent speed,
at the same time, they can reduce oscillation when delay appears, and have less sensitivity to additive
noise with careful selection of the parameters. Simulations are presented to evaluate the performance of
the neural networks with the tunable activation function. In addition, the proposed neural networks are
applied to estimate parameters for an energy model of belt conveyors. The effectiveness of our methods
are validated by theoretical analysis and numerical simulations.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Recently, recurrent neural networks have made great develop-
ment. They are widely applied in scientific and engineering field,
for example, optimization [1,2], control of chaos [3], pattern
classification [4,5], signal processing [6], robotics [7], solving
time-varying Sylvester equation [8], the winners-take-all competi-
tion [9–11], etc.

With the development of recurrent neural networks, remark-
able advances have been made in the field of online optimization.
For example, by removing the explicit constraints and by introdu-
cing a penalty term into the cost function, recurrent neural
networks are designed to solve the constrained optimization
problem in [12–14]. However, the designed neural networks only
converge to the optimal solution asymptotically and the conver-
gence time is infinite. In order to obtain the accurate solution, in
[15] and [16], dynamic Lagrange multipliers are introduced to
regulate the constraints and the optimal solution can be obtained
in finite time. However, the number of neurons in the neural
networks is increased. The reason is that extra neurons are
required for the dynamics of the Lagrange multipliers. It is
well known that the complexity and cost of its hardware

implementation are relevant to the number of neurons in neural
networks. Then, research on reduction of neuron number without
losing efficiency and accuracy receives some researchers’ attention
[17–33]. For examples, Zhang investigated and analyzed the
performance of gradient neural network applied to time-varying
quadratic minimization and quadratic programming problems in
[20]. Wang presented a k-winners-take-all (kWTA) neural network
and proved its global stability and finite-time convergence in [23].
Bian and Chen proposed a smoothing neural network with a
differential equation which could be implemented easily in [32].
There are also some neural network models for solving optimiza-
tion problems, which can efficiently deal with time delays [34–38].
For instance, Liu and Cao proposed a delayed neural network
which could effectively solve a class of linear projection equations
and some quadratic programming problems in [34]. In order to
deal with the convex optimization problem in finite time, the
authors firstly presented a recurrent neural network with a
continuous function, jxjr signðxÞð0oro1Þ in [39]. The activation
function was also applied to a dual neural network model in [25].
The finite-time convergence property and the optimality of the
proposed neural network for solving the quadratic programming
problem are proven. The parameter r has an effect on the
convergence time. The neural network has a faster convergent
speed with a smaller r. However, chattering phenomenon will
happen, especially in the case when time delay appears. On the
other hand, the neural network with a smaller r is less sensitive to
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additive noise. Therefore, it is worth while to study finite-time
dual neural network for solving quadratic programming problems
with a relative high robustness against time delay and noise.

In the paper, our main contribution is to present recurrent
neural networks with a tunable activation function to solve
quadratic programming problems. The tunable activation function
is k1jxjr signðxÞþk2x, where k1, k2 are tunable positive parameters.
These parameters are not only helpful to accelerate convergence
speed, but also helpful to improve robustness of the neural
networks with appearance of time delay and noise. The motivation
comes from the idea of Gao and Hung in [43]. Adding the term
k2xðtÞ to the activation function is a standard technique in sliding
mode control. It can be used to suppress chattering [43].

The paper is organized as follows. In Section 2, finite-time
criteria and upper bounds of the convergence time are reviewed.
In Section 3, we present finite-time recurrent neural networks
with a tunable activation function for solving quadratic program-
ming problems. In Section 4, numerical simulations are given to
show the effectiveness of our methods. Section 5 concludes
the paper.

2. Preliminaries

Consider the following system:

_xðtÞ ¼ f ðxðtÞÞ; f ð0Þ ¼ 0; xARn; xð0Þ ¼ x0; ð1Þ
where f : D-Rn is continuous on an open neighborhood D of the
origin x¼0.

Definition 1 (Bhat and Bernstein [40]). The equilibrium x¼ 0 of (1)
is finite-time convergent if there are an open neighborhood U of
the origin and a function Tx : U\f0g-ð0;1Þ, such that every
solution trajectory xðt; x0Þ of (1) starting from the initial point
x0AU\f0g is well-defined and unique in forward time for
tA ½0; Txðx0ÞÞ, and limt-Txðx0Þ xðt; x0Þ ¼ 0. Then, Txðx0Þ is called the
convergence time (of the initial state x0). The equilibrium of (1) is
finite-time stable if it is Lyapunov stable and finite-time conver-
gent. If U ¼D¼Rn, the origin is a globally finite-time stable
equilibrium.

The following Lemmas provide sufficient conditions for the
origin of the system (1) to be a finite-time stable equilibrium.

Lemma 1 (Bhat and Bernstein [40]). Suppose there are a C1 positive
definite function V(x) defined on a neighborhood U �Rn of the origin,

and real numbers k140 and 0oro1, such that

_V ðxÞjð1Þr�k1V ðxÞr ; 8xAU : ð2Þ
Then, the origin of the system (1) is locally finite-time stable. The
convergence time T1, depending on the initial state x0, satisfies

T1ðx0Þr
Vðx0Þ1� r

k1ð1�rÞ ; ð3Þ

for all x0AU . Further, if U ¼Rn and V(x) is radially unbounded (that
is VðxÞ-þ1 as JxJ-þ1), the origin of system (1) is globally
finite-time stable.

Lemma 2 (Shen and Xia [41], Shen and Huang [42]). If there are a C1

positive definite function V(x) defined on a neighborhood U �Rn of
the origin, and real numbers k1; k240 and 0oro1, such that

_V ðxÞjð1Þr�k1V ðxÞr�k2VðxÞ; 8xAU: ð4Þ
Then, the origin of system (1) is finite-time stable. The convergence
time T2 satisfies

T2ðx0Þr
ln 1þk2

k1
V ðx0Þ1� r

� �
k2ð1�rÞ ; ð5Þ

for all x0AU . If U ¼Rn and V(x) is radially unbounded, the origin of
system (1) is globally finite-time stable.

Remark 1. From Lemmas 1 and 2, we can see the upper bound of
the convergence time is relevant to r. It decreases with decrease of
r. When r is greater than 0 but sufficiently close to 0, the term
jxjr signðxÞ is very close to signðxÞ for x with small absolute values.
Therefore, it may yield chattering phenomenon. For example,
consider the following scalar differential equation:

_xðtÞ ¼ �jxðtÞjr signðxðtÞÞ; 0oro1: ð6Þ
The trajectories of (6) with different value of r are given in Fig. 1.

From Fig. 1, we can see that the trajectory of (6) with r¼0.2 has
the fastest convergence speed, but the chatting phenomenon
happens also. To overcome the problem, we can select a small
value of k1 and a large value of k2 for the following scalar
differential equation:

_xðtÞ ¼ �k1jxðtÞjr signðxðtÞÞ�k2xðtÞ; 0oro1: ð7Þ
Fig. 2 shows the trajectory of (7). From Fig. 2, we can see the
chattering phenomenon disappears.

In sliding mode control, the introduction of k2x, called reaching
control, to suppress chattering is the idea of Gao and Hung in [43].
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Fig. 1. The trajectories of (6) with different value of r.
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Fig. 2. The trajectory of (7) with r¼0.2, k1 ¼ 0:0001, k2 ¼ 15.
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The following Lemmas are also useful for our main results.

Lemma 3 (Li et al. [25]). Let ‖x‖a be the a-norm of x¼ ½x1; x2;…;

xn�T , ‖x‖a ¼ ð∑n
i ¼ 1jxijaÞ1=a, for 0oboa, we have

‖x‖ar‖x‖b: ð8Þ

Lemma 4 (Hwang [45]). Let A be a Hermitian matrix of n, and let B
be a principal sub-matrix of A of order n�1. If λnrλn�1r⋯r
λ2rλ1, lists the eigenvalues of A and μnrμn�1r⋯rμ3rμ2 the
eigenvalues of B, then

λnrμnrλn�1r⋯rλ2rμ2rλ1: ð9Þ

Lemma 5 (Li et al. [25]). Let ε1 ¼ λminðEMET Þ, εq ¼ λmaxðEMET Þ,
where EARq�n, MARn�n, M ¼MT, and let A1 ¼DðI�ρEMET Þþ
ρEMET , where I is an identity matrix of proper dimensions,
D¼ diagðd1; d2;…; dqÞ with 0rdir1 for i¼ 1;2;…; q, ρAR,
0oρr2=εq. Then,

A1þAT
1Zρε1I ð10Þ

xT ðA1þAT
1ÞxZρε1xTx; for 8xARn: ð11Þ

In addition, METx¼ 0, when xT ðA1þAT
1Þx¼ 0.

3. Dual neural networks with a tunable activation function
for solving quadratic programming problem

Consider the following quadratic programming problem:

minimize
1
2
xTWxþcTx; ð12aÞ

subject to Ax¼ b; ð12bÞ

lrExrh; ð12cÞ
where xARn, WARn�n is a positive definite matrix, cARn,
AARm�n, bARm, EARq�n, hARq, lARq, mon and hZ l. As in
[22], we assume that the equality constraint is irredundant, that is,
rankðAÞ ¼m.

According to Karush–Kuhn–Tucker (KKT) conditions [44], we
have

WxþcþATλþETμ¼ 0; ð13Þ

Ax¼ b; ð14Þ

Ex¼ h if μ40;
lrExrh if μ¼ 0;
Ex¼ l if μo0;

8><
>: ð15Þ

where λARm and μARq are dual variables to the equality
constraint (12b) and the inequality constraint (12c), respectively.
Introducing a saturation function, we have

ρEx¼ gðρExþμÞ; ð16Þ
where ρAR, ρ40 is a scaling factor, and the saturation function
gðxÞ ¼ ½g1ðx1Þ;g2ðx2Þ;…; gqðxqÞ�T is defined as

giðxiÞ ¼
ρhi if xi4ρhi;
xi if ρlirxirρhi;
ρli if xioρli:

8><
>: ð17Þ

As in [25], we obtain

x¼ �½W �1ET �W �1AT ðAW �1Þ�1AW �1ET �μ�W �1c

þW �1AT ðAW �1AT Þ�1ðbþAW �1cÞ; ð18Þ

λ¼ �ðAW �1AT Þ�1AW �1ETμ�ðAW �1AT Þ�1ðbþAW �1cÞ: ð19Þ

Define the following constant vector:

s¼W �1AT ðAW �1AT Þ�1ðbþAW �1cÞ�W �1c; ð20Þ

M¼W �1�W �1AT ðAW �1AT Þ�1AW �1: ð21Þ
Then

�ρEMETμþρEs¼ gððI�ρEMET ÞμþρEsÞ: ð22Þ
In order to solve μ in (22), a layer of dynamic neurons is given as
follows

ε _μ ¼ �F ðgððI�ρEMET ÞμþρEsÞ
þρEMETμ�ρEsÞ; ð23Þ

where ε is a scaling positive parameter, F ðxÞ is a tunable activation
function,

F ðxÞ ¼ k1jxjr signðxÞþk2x; ð24Þ
0oro1, k1, k2 are tunable positive parameters, for
z¼ ½z1; z2;…; zq�T ,
F ðzÞ ¼ ½F ðz1Þ;F ðz2Þ;…;F ðzqÞ�T : ð25Þ

The following dual network can be used to solve the program-
ming problem (12):

State equation : ε _μ ¼ �F ðgððI�ρEMET ÞμþρEsÞ þρEMETμ�ρEsÞ;
ð26aÞ

Output equation : x¼ �METμþs; ð26bÞ
where gð�Þ is given by (17).

The following Lemmas are needed for the main results.

Lemma 6. There exists a solution of the neural network (26) on
½0;1Þ.

Proof. Because (17) and (24) are continuous functions on ½0;1Þ,
then, F ðgððI�ρEMET ÞμþρEsÞþρEMETμ�ρEsÞ is also continuous
on ½0;1Þ. Therefore, there exists a solution of the neural network
(26) on ½0;1Þ [46]. □

Lemma 7 (Li et al. [25]). xn ¼ �ρMETμnþs is the optimal solution
of the programming problem (12), where μ¼ μn is an equilibrium
point of (26).

Now we present the main result.

Theorem 1. With the tunable activation function (24), the neural
network (26) is stable in the sense of Lyapunov. When EMET has full
rank, the neural network converges to an equilibrium point μn in
finite time and the upper bound of the convergence time T3 satisfies

T3r
2ε

ρε1k
2
2ð1�r2Þ

ln 1þV1� r
0 k22ð1þrÞ1� r

k21

" #
; ð27Þ

where V0 ¼ ð1=rþ1Þ‖gððI�ρEMET Þμ0þρEsÞþρEMETμ0�ρEs‖rþ1
rþ1 is

the initial value of V(t), and V(t) is given as follows:

VðtÞ ¼ 1
rþ1

‖gððI�ρEMET ÞμþρEsÞþρEMETμ�ρEs‖rþ1
rþ1: ð28Þ

Proof. Along the trajectory of (26), the time derivative of V(t)
defined by (28) is given by

_V ðtÞ ¼ _μT ðJðI�ρEMET ÞþρEMET ÞTF ðgððI�ρEMET Þμ
þρEsÞþρEMETμ�ρEsÞ

¼ �1
ε
ðF ðgððI�ρEMET ÞμþρEsÞþρEMETμ�ρEsÞÞT

ðJðI�ρEMET ÞþρEMET ÞTF ðgððI�ρEMET Þμ
þρEsÞþρEMETμ�ρEsÞ; ð29Þ
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where J ¼Dþg is the upper-right Dini derivative of gððI�ρEMET Þ
μþρEsÞ. According to (17), we have

J ¼ diagðJ1; J2;…; JnÞ;
where

Ji ¼
1 if ρlir ððI�ρEMET ÞμþρEsÞirρhi

0 if ððI�ρEMET ÞμþρEsÞirρli or

ððI�ρEMET ÞμþρEsÞiZρhi:

8>><
>>: ð30Þ

From Lemmas 4 and 5, it follows that

ðJðI�ρEMET ÞþρEMET ÞT þðJðI�ρEMET ÞþρEMET ÞZρε1I: ð31Þ
Bringing (31) into (29), we have

_V ðtÞr�ρε1
2ε

J ðF ðgððI�ρEMET ÞμþρEsÞþρEMETμ�ρEsÞÞT J
JF ðgððI�ρEMET ÞμþρEsÞþρEMETμ�ρEsÞJ

¼ �ρε1
2ε

‖F ðgððI�ρEMET ÞμþρEsÞþρEMETμ�ρEsÞ‖2

¼ �ρε1
2ε

Jk1ðgððI�ρEMET ÞμþρEsÞþρEMETμ�ρEsÞr

þk2ðgððI�ρEMET ÞμþρEsÞþρEMETμ�ρEsÞJ2: ð32Þ
Lemma 3 implies that

_V ðtÞr�ρε1
2ε

ðk21‖ðgððI�ρEMET ÞμþρEsÞþρEMETμ�ρEsÞ‖2r2r
þk22‖ðgððI�ρEMET ÞμþρEsÞþρEMETμ�ρEsÞ‖22Þ

r�ρε1
2ε

ðk21‖ðgððI�ρEMET ÞμþρEsÞþρEMETμ�ρEsÞ‖rðrþ1Þ
rþ1

þk22‖ðgððI�ρEMET ÞμþρEsÞþρEMETμ�ρEsÞ‖rþ1
rþ1Þ

Then, we have

_V ðtÞr�ρε1
2ε

½k21ðð1þrÞVðtÞÞrþk22ð1þrÞVðtÞ�: ð33Þ

By Lemma 2, we can obtain that VðtÞ ¼ 0 when t4T3. This
completes the proof. □

In addition, by Lemma 6 we can obtain the optimal solution of
the programming problem in finite time.

If k1 ¼ k2 ¼ 1, we have the activation function

F ðxÞ ¼ jxjr signðxÞþx: ð34Þ
We have the following corollary for (26) with the activation
function (34).

Corollary 1. The neural network (26) with the activation function
(34) is stable in the sense of Lyapunov. In addition, if EMET has full
rank, the neural network converges to an equilibrium point μn in
finite time and the upper bound of the convergence time T4 satisfies

T4r
2ε ln½1þV1� r

0 ð1þrÞ1� r �
ρε1ð1�r2Þ ; ð35Þ

where V0 is given in Theorem 1.

Proof. Using the same method as Theorem 1, we can obtain the
result. □

Remark 2. In Theorem 1, the term k2x is added to accelerate the
convergent speed of the neural network. The parameters k1, k2
give more flexibility to solve the quadratic programming problem.
By careful section of k1, k2, chattering phenomenon will be avoided
and the convergent speed can be accelerated. Moreover, the
tunable activation function can also decrease the sensitivity to
additive noise. In practice, when r is close to 1, we can select
k1 ¼ 1, k2 ¼ 1. When r is close to 0, we can select k1o0:05 and
k2Z1.

Remark 3. F ðgððI�ρEMET ÞμþρEsÞþρEMETμ�ρEsÞ in (23) is con-
tinuous everywhere and locally Lipschitz everywhere except on
u¼ un. Hence forward uniqueness for all initial conditions except
the equilibrium point follows from [47].

Remark 4. There exist several other neural network models which
can be used to solve quadratic programming problem (12)
[14,16,17,22,26,21,39,25]. In Table 1, we summarize the compar-
isons of these neural network models with our model (26).

4. Numerical simulations and application

In the section, we present two numerical examples to illustrate
the efficiency of the neural network (26) with the tunable
activation function (24): online calculation of a quadratic pro-
gramming problem and parameters estimation for an energy
model of belt conveyors.

The simulation is performed with the programming language
Matlab 7.10.0 on a desktop computer with the Intel (R) Core(TM)
G640 Duo CPU at 2.80 GHz, 1.59 GHz and 1.90 GB of RAM. The
configuration parameters are given as: variable-step, ode45, rela-
tive tolerance 1e�5.

Example 1. The quadratic programming problem is to

minimize 3x21þ3x22þ4x23þ5x24þ3x1x2þ5x1x3þx2x4�11x1�5x4;

ð36aÞ

subject to 3x1�3x2�2x3þ4x4 ¼ 0; ð36bÞ

4x1þx2�x3�24x4 ¼ 0; ð36cÞ

�73r�50x1þ50x2r�50; ð36dÞ

�20r32x1þ10x3r41: ð36eÞ
For the example, we have

W ¼

6 3 5 0
3 6 0 1
5 0 8 0
0 1 0 10

2
6664

3
7775; c¼

�11
0
0
�5

2
6664

3
7775; b¼ 0

0

� �
;

A¼ 3 �3 �2 1
4 1 �1 �2

� �
; E¼ �50 50 0 0

32 0 10 0

� �
;

l¼ �73
�20

� �
; h¼ �50

41

� �
:

The largest and smallest eigenvalues of the matrix EMET are
εq ¼ 138:4337 and ε1 ¼ 18:5319, respectively. Moreover, EMET has
full rank and satisfies the conditions of Theorem 1. Then, the
neural network (26) converges to the optimal solution in finite
time. In addition, we choose ρ¼ 0:01r2=εq, the scaling factor
ε¼ 10�8 in the simulation.

In the following, we will use this example to systematically
evaluate the performance of the proposed activation function in

Table 1
Comparisons of (26) with other neural network models by solving problem (12).

Neural network models Theoretical error Convergent time Number of neurons

[14] Non-zero Infinite n
[16] Zero Infinite nþmþ4q
[17] Zero Infinite n
[22] Zero Infinite q
[26] Zero Infinite mþq
[21] Zero Finite nþ2q
[39] Zero Finite n
[25] Zero Finite q
(26) Zero Finite q

P. Miao et al. / Neurocomputing 143 (2014) 80–89 83



three aspects: convergence speed, sensitively to additive noise and
robustness against time delay.

(1) Convergence speed: In this part, we compare the conver-
gence speed and the chattering phenomenon with the activation
function (24), and the following activation function given in [25]:

F ðxÞ ¼ jxjr signðxÞ; 0oro1: ð37Þ

Let T5 and t5 denote the upper bound of the convergence time and
the actual convergence time of the neural network model [25],
respectively, and T3 and t3 denote the upper bound of the
convergence time and the actual convergence time of our model
(26), respectively. The initial value of μ is given by μ0 ¼ ½0:170:09�. By
simple computation, we can obtain that the upper bound T3 and
the actual convergence time t3 are 4:5774� 10�8 and
0:83� 10�8 s, respectively, with r¼0.6, k1 ¼ 1, k2 ¼ 1. The upper
bound T5 and the actual convergence time t5 are 14:3147� 10�8

and 1:1� 10�8 s, respectively. Obviously, we have 14:3147�
10�844:5774� 10�8 and 1:1� 10�840:83� 10�8. The simula-
tion results are shown in Figs. 3 and 4.

In order to eliminate the effect of random initialization, we
compare the performance of the neural network model [25] and
our model (26) with ten independently generated initializations of
uniform distribution on the interval ½0;1�. The unit of time is
10�8 s. Table 2 shows the simulation results.

Although reducing the value of r can speed up the convergent
speed of the neural network with the activation function (37), it
will present the chattering phenomenon when r is very close to 0.
With the proposed activation function (24), we can make the value
of k2 larger and the value of k1 smaller to reduce or even eliminate
the chattering phenomenon and at the same time to accelerate the
convergent speed. Figs. 5 and 6 show the simulation results.

(2) Sensitivity to additive noise: In practice, the dynamics of the
neural network may been disturbed by noise. In the part, we will
compare the sensitivity to additive noise with the activation
functions (24) and (37), respectively. For simplicity, we only
consider the presence of noise in the state equation:

State equation : ε _μ ¼ �F 1ðgððI�ρEMET ÞμþρEsÞ

þρEMETμ�ρEsÞþv; ð38aÞ

Output equation : x¼ �METμþs; ð38bÞ

where v is zero mean Gaussian white noise with covariance σI.

Fig. 3. The transient behavior of μ with the activation functions (24) and (37).

Fig. 4. The transient behavior of errors with the activation functions (24) and (37).

Table 2
Comparisons the upper bound of the convergence time and the actual convergence
time of the neural network model [25] and our model (r¼0.5, k1 ¼ 1, k2 ¼ 1).

Number of random initialization μ0 T5 t5 T3 t3

1 [0.81;0.16] 11.01 1.12 4.71 0.91
2 [0.91;0.97] 6.74 2.51 2.51 1.92
3 [0.13;0.96] 16.60 2.21 7.54 1.62
4 [0.91;0.49] 9.91 1.83 4.13 1.31
5 [0.63;0.80] 8.09 2.21 3.19 1.62
6 [0.10;0.14] 11.66 0.96 5.04 0.71
7 [0.28;0.42] 10.99 1.28 4.69 1.01
8 [0.55;0.92] 10.78 2.42 4.58 1.72
9 [0.96;0.79] 8.24 2.31 3.27 1.70
10 [0.96;0.93] 7.53 2.50 2.90 1.87
Mean 10.16 1.94 4.26 1.44
Var 8.02 0.36 2.10 0.18

Fig. 5. The transient behavior of errors under r¼0.2 with the activation functions
(24) and (37).
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The simulation results are given in Fig. 7. From Fig. 7, we can
see that the neural network with the tunable activation function
(24) is less sensitive to additive noise than the one with (37).

(3) Robustness against time delay: In the above two parts, time
delay is not taken into account for the neural network model. But
in implementation of the neural network, for example implemen-
tation with analog circuits by neural network, time delay is always
inevitable due to limited response rate and sometimes it is crucial
to the stability of the system. So, the following part, we evaluate
the influence of time delay on the neural computing with our
tunable activation function and the activation function in [25]
under different time delay. We consider the feedback channel of
the state equation with time delay:

State equation : ε _μðtÞ ¼ �F 1ðgððI�ρEMET Þμðt� �Þ
þρEsÞþρEMETμðt� �Þ�ρEsÞ; ð39aÞ

Output equation : x¼ �METμðt� �Þþs; ð39bÞ

where � is the time delay. As in [25], we use the 1=ε as the time
unit τ.

The neural network in [25] will be more likely to oscillate with
a smaller r when time delay appears. So making the value of r

larger will be helpful to reduce the oscillate phenomenon. But we
know the convergence time will become longer with a larger value
of r. We can further decrease the oscillation and obtain a shorter
convergent time by carefully section of parameters k1, k2. We give
the simulations in the following situations:

Fig. 8: r¼1, time delay 1τ;
Fig. 9: r¼0.8, time delay 0:2τ;
Fig. 10: r¼0.2, time delay 0:008τ;
Fig. 11: r¼0, time delay 0:04τ.

Example 2. Parameters estimation for an energy model of belt
conveyors.

Belt conveyors are widely used to transfer bulk material in
mining, metallurgical and coal industry because of high transfer
capacity and long transfer distance. Fig. 12 shows a typical belt
conveyor.

As in [48–50], the mechanical power of a belt conveyor PT is
given by

PT ¼ FUV ; ð40Þ

Fig. 6. Partial enlarged view of Fig. 5.

Fig. 7. Error under r¼0.6 with noise level σ ¼ 1 by the method in [25] and our
method.

Fig. 8. Comparisons of errors under r¼1 with the time delay equal to 1τ by the
activation functions (24) and (37).

Fig. 9. Comparisons of errors under r¼0.8 with the time delay equal to 0:2τ by the
activation functions (24) and (37).
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and

FU ¼ FHþFNþFSþFst ; ð41Þ

where FH, FN, FS, and Fst are the main resistance, the secondary
resistance, the slop resistance, and the special resistance, and can

be expressed as

FH ¼ fLg½QROþQRUþð2QBþQGÞ cos δ�;

FN ¼ TV
3:6

þ T2

6:48ρb21
þCFt ;

FS ¼ K1
T2

V2 þK2
T
V
þK3;

Fst ¼ QGHg;

8>>>>>>>>><
>>>>>>>>>:

ð42Þ

where V is the belt speed (m/s), T is the feed rate (t/h),
QG ¼ T=3:6V , K1, K2 and K3 are constant coefficients related to
the structural parameters of the belt conveyor, CFt is a constant,
QRO, QRU, QB, δ, f, L, H, ρ, b1 and g are the unit mass of the rotating
parts of carrying idler rollers (kg/m), the unit mass of rotating
parts of the return idler rollers (kg/m), the unit mass of the belt
(kg/m), the unit mass of the load (kg/m), the inclination angle (1),
the artificial friction factor, the center-to-center distance (m), the
net change in elevation (m), the bulk density of material (kg/m3),
the width between the skirt boards (m) and the gravitational
acceleration (9.8 m/s2).

Let

θ1 ¼
1

6:48ρb21
;

θ2 ¼ gf ðQROþQRUþ2QBÞ½L cos δ

þLð1� cos δÞ 1� 2QB

QROþQRUþ2QB

� �
�þK3þCFt ;

θ3 ¼ K1;

θ4 ¼
gL sin δþgfL cos δ

3:6
þK2:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð43Þ

From (40)–(43), we can obtain

PT ¼ θ1T
2Vþθ2Vþθ3

T2

V
þθ4Tþ

V2T
3:6

: ð44Þ

The parameter vector Θ¼ ½θ1; θ2; θ3; θ4�T is determined by
the structural parameters and components of a belt conveyor, by
the operation circumstance and by the characteristic of the
material handled. It is relatively a constant vector for a certain
belt conveyor. In [49,50], Θ¼ ½2:3733� 10�4; 8:5663� 103;

0:0031; 51:6804�T .
If we set the values of V and T, then the value of PT can been

obtained by (44). Therefore, we obtain the data, fPT ðiÞ;VðiÞ;
TðiÞ; i¼ 1;…;Ng, where N is sampling number. Using the data, we
can apply the proposed neural network to solve the approximate
solution of Θ by the following method:

minimize ∑
n

i ¼ 1
PT ðiÞ�LðiÞΘ̂�V2ðiÞTðiÞ

3:6

 !2

; ð45aÞ

subject to lrΘ̂rh; ð45bÞ
where LðiÞ ¼ ½T2ðiÞVðiÞ; V ðiÞ; ðT2ðiÞÞ=ðVðiÞÞ; TðiÞ�. Note that the pro-
blem (45) can been transformed into the following quadratic
programming problem:

minimize Θ̂
T
∑
n

i ¼ 1
LT ðiÞLðiÞΘ̂þ ∑

n

i ¼ 1
PT ðiÞ�

V2ðiÞTðiÞ
3:6

 !2

�2 ∑
n

i ¼ 1
PT ðiÞ�

V2ðiÞTðiÞ
3:6

 !
LðiÞΘ̂; ð46aÞ

subject to lrΘ̂rh: ð46bÞ
Then, we have W ¼ 2∑n

i ¼ 1L
T ðiÞLðiÞ, c¼ �2∑n

i ¼ 1ðPT ðiÞ�ðV2ðiÞTðiÞÞ=
3:6ÞLðiÞ, E¼ I4�4, l¼ ½0 102 0 10�T , h¼ ½1 104 1 100�T , s¼ �W �1c,
and M ¼W �1 (By properly selecting V(i) and T(i), we can ensure
that W is positive definite, and EMET has full rank). Therefore, we

Fig. 10. Comparisons of errors under r¼0.2 with the time delay equal to 0:008τ by
the activation functions (24) and (37).

Fig. 11. Comparisons of errors under r¼0 with the time delay equal to 0:04τ by the
activation functions (24) and (37).

Fig. 12. Typical profile of belt conveyors.
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can use the neural network (26) to solve the quadratic program-
ming problem (46).

In the simulation, we select ½Vð1Þ;Vð2Þ;Vð3Þ;Vð4Þ;Vð5Þ� ¼
½1;3;1:2;5;2�, ½Tð1Þ; Tð2Þ; Tð3Þ; Tð4Þ; Tð5Þ� ¼ ½300;100;100;100;100�.
Then, we have

W ¼

2:409� 1010 9:688� 105 1:700� 1010 7:640� 107

9:688� 105 8:088� 10 2:600� 105 2:840� 103

1:700� 1010 2:600� 105 1:642� 1010 5:773� 107

7:640� 107 2:840� 103 5:773� 107 2:600� 105

2
66664

3
77775;

EMET ¼

8:653� 10�8 �0:001 �1:059� 10�7 9:238� 10�6

�0:001 12:118 0:001 �0:112
�1:059� 10�7 0:001 1:308� 10�7 �1:167� 10�5

9:238� 10�6 �0:112 �1:167� 10�5 0:001

2
66664

3
77775:

The eigenvalues of the matrix W are 0.0825, 1:4392� 104,
2:8265� 109, 3:7681� 1010 and the eigenvalues of the matrix
EMET are 2:6538� 10�11, 3:5380� 10�10, 6:9482� 10�5, 12.1188.
Therefore, the matrix W is positive definite and the matrix EMET

has full rank. The largest eigenvalue of the matrix EMET is
εq ¼ 12:1188. We choose ρ¼ 0:16r2=εq, ε¼ 1. By implementa-
tion of the neural network, the output of (26) is Θ̂ ¼ ½2:37330935�
10�4;8:566299 98� 103;0:00309999;51:68040010�. Fig. 13 shows
the results. The transient behavior of JΘ̂�ΘJ is shown in Fig. 14
as well.

5. Conclusion

In the paper, finite time dual neural networks with a new
activation function were presented to solve quadratic program-
ming problems. The activation function has two tunable para-
meters, which give more flexibility to design a neural network. By
Lyapunov theorem, finite-time stability could be derived for the
proposed neural networks, and the actual optimal solutions of the
quadratic programming problems could be obtained in finite time
interval. Different from the existing recurrent neural networks for
solving the quadratic programming problems, the neural networks
of this paper have a faster convergent speed, at the same time, it
could reduce oscillation when delay appears, and have less
sensitivity to the additive noise with careful selection the para-
meters. The effectiveness of our methods were validated by
theoretical analysis and numerical simulations.
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