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a b s t r a c t

In this paper, finite-time adaptive consensus problem is investigated for first-order multiagent systems
with unknown nonlinear dynamics. Linearly parameterized method is introduced to model unknown
nonlinear dynamics of the systems. By only utilizing the local relative position state information between
each agent and its neighbors, decentralized finite-time adaptive consensus algorithms are presented
with directed fixed and switching network topologies which satisfy detailed balance condition. Based on
classical Lyapunov analysis techniques, both finite-time stability and finite-time parameter convergence
are guaranteed by making use of the proposed control algorithms. Finally, the results in Simulations part
are presented to validate our main results.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

The topic of distributed coordinated control of multiple dynamical
agents has received extensive attention by many researchers over the
past few decades [1–7]. This is not only due to an increasing interest
in understanding thought-provoking animal group behaviors, such as
flocking and swarming, but also due to its broad applications in di-
verse places, such as multi-vehicles rendezvous, attitude alignment,
formation control of autonomous robots, unmanned aerial vehicles
and so forth. Consensus problem is the fundamental problem in
multiagent systems. The essence of it is to construct proper control
laws so that all agents can attain a consensus decision value by using
the information of each agent and its neighbors. In order to achieve
improved cooperative performances for multiagent systems, various
works have been done in [8–14], to cite only a few.

In recent years, finite-time consensus problem becomes a re-
search hotspot in multiagent systems. The purpose of it is to con-
struct proper control protocols such that finite-time consensus can
be attained. Although asymptotic consensus is enough to satisfy
practical demand in engineering in general, finite-time consensus is
sometimes more desirable for some engineering applications, such
as in some situations where rigid convergence time and high pre-
cision must be met. Compared with conventional asymptotic
), yuhui@ctgu.edu.cn (H. Yu),
consensus, finite-time consensus reveals numerous advantages, for
instance, faster response, higher accuracy, and better robustness and
anti-disturbance performance against uncertainties and so forth. On
account of these superiorities, several kinds of finite-time consensus
protocols have been proposed for first-order [15,16], second-order
[17,18] or high-order [19] multiagent systems.

However, most of the existing works focus attention on finite-
time consensus algorithms design for multiagent systems without
unknown nonlinear dynamics. In [20–23], by employing state
feedback or adaptive design methods, finite-time consensus pro-
blems are investigated for multiagent systems under the absence
of unknown nonlinear dynamics. On the current situation, it is a
big challenge to construct decentralized finite-time adaptive con-
trol laws for multiagent systems with embedded unknown non-
linear dynamics such that finite-time consensus is attained. In
[24], a class of distributed controllers is developed for solving fi-
nite-time leaderless consensus problem of nonlinear multiagent
systems with parametric uncertainties under an undirected graph.
In [25], finite-time consensus problem is solved for a group of
high-order agents taking into account unknown nonlinear dy-
namics under undirected fixed network topology. The finite-time
stability is derived by employing the homogeneous Lyapunov
function, which is too complicated to find a specific form of it. In
addition, the finite-time consensus algorithms designed in this
paper, which base on local consensus errors and relative position
measurements between each agent and its neighbors, are not
purely decentralized.
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Motivated by the observations mentioned above, we research
the finite-time consensus problem of first-order leader-following
multiagent systems with unknown nonlinear dynamics under the
cases of directed fixed and switching network topologies which
satisfy detailed balance condition in this paper. It is assumed that
the unknown nonlinear dynamics existed in the systems satisfy
linearly parameterized condition. Under some assumptions, we
propose decentralized finite-time adaptive control schemes for the
systems to attain finite-time consensus, meanwhile, the parameter
convergence in finite-time is also guaranteed in both cases of di-
rected fixed and switching network topologies. The finite-time
control laws injected in each agent of networks are only depen-
dent on the relative position state information of each agent and
its neighbors. With the help of graph theory, classic Lyapunov
theory, Hölder's inequality and Barbalat's Lemma, stability results
derived in this paper indicate that both finite-time consensus and
finite-time parameter convergence are attained globally.

The innovation of this paper is reflected as the following three
aspects: (1) Purely decentralized finite-time adaptive algorithms
for first-order multiagent systems with unknown nonlinear dy-
namics under the cases of directed fixed and switching network
topologies are developed to attain finite-time consensus and fi-
nite-time parameter convergence. Based on developed purely
decentralized schemes, communication links among agents in the
systems are not necessary in this paper. They are greatly improved
compared to the algorithms proposed in [25]. (2) Instead of using
the complicated homogeneous Lyapunov functions in [25], con-
ventional Lyapunov functions are used for stability analysis. By this
way, the proofs of our main results are more concise and under-
standable compared with those of [25]. (3) Both finite-time con-
sensus and finite-time parameter convergence can be attained for
multi-agent networks under the cases of directed fixed and
switching network topologies. To assure finite-time consensus as
well as finite-time parameter convergence at the same is a chal-
lenging work. To the best of our knowledge, few researchers
concern this issue, except for the authors of [25].

The configuration of the paper is given as follows. Some pre-
liminaries and formal statement of the problem are presented in
Section 2. Our main results are given in Section 3 including de-
centralized finite-time adaptive consensus control with directed
fixed and switching network topologies. Section 4 provides a nu-
merical example to verify the validity of the algorithms proposed
in Main Results part under the case of directed switching network
topologies. The conclusions are drawn in the final section.
2. Preliminaries and problem statement

2.1. Notations

In this paper, ∥ ∥ = ∑ | |=x xi
N

i1 1 and ∥ ∥ = ( )x x xT
2

1/2 denote
1-norm and Euclidean norm of vector x, respectively. For ∀ ∈ x N ,
it is a basic property that ∥ ∥ ≤ ∥ ∥x x2 1. For a symmetric matrix

∈ ×P N N , λ ( )Pmax and λ ( )Pmin are, respectively, used to denote its
maximum and minimum eigenvalues. Il is the ×l l identity matrix.
Notation ( … )z zcol , , n1 is introduced here to denote column vector
of …z z, , n1 .

2.2. Graph theory

The information interaction among agents in multiagent sys-
tems can be described by a graph [26]. Thus, it is necessary to
introduce this useful tool as follows.

A directed graph is denoted by ( ), consisting of a node set
= { … }N1, 2, , and an edge set ⊂ × with ordered pair
( ) ∈i j, , which indicates that node i can obtain information of
node j. Notation = { ∈ |( ) ∈ ≠ }j i j j i, ,i is introduced to denote
the set of neighbors of node i. A path in a directed graph is a se-
quence of distinct edges in , which connect end to end. If a path
exists between any two distinct nodes of a directed graph, this
graph is said to be strongly connected. The ijth item of weighted
adjacency matrix ∈ ×N N of graph is denoted as aij, which is
positive if (i, j) is an edge of graph and 0 otherwise. The degree
matrix ∈ ×N N of graph is a diagonal matrix with diagonal
elements = ∑ ∈d ai j iji

for ∈i . And the Laplacian matrix of
weighted directed graph is expressed as = − .

Another graph ¯ on node set ¯ = { … }N0, 1, 2, , is introduced
here to represent the information exchange between N follower
agents and the leader agent labeled as node 0, and its edges in-
cluding as well as the edges between leader agent and follower
agents. The connection weight between agent ∈i and leader
agent is denoted as ≥b 0i , which is positive when leader agent is a
neighbor of agent i and 0 otherwise.

A graph is said to be detailed balanced if there exist some real
numbers ω > 0i , ∈i , such that the coupling weights of the
graph satisfy ω ω=a ai ij j ji for all ∈i j, [27].

Assumption 1. The directed graph is strongly connected and
detailed balanced, and >b 0i for at least one ∈i .

Remark 1. From Assumption 1, the leader agent is globally
reachable. In addition, we only extend the case of undirected
graphs slightly to that of detailed balance graphs due to the
symmetric requirement in designing purely decentralized para-
meter adaptive laws. It is a challenging work to consider the case
of directed graphs excluding detailed balance graphs. We will
consider this case in our future work.

Let = + = ( … )H b b b, diag , , , N1 2 , ω ω ω ω{ } = { … }diag diag , , , N1 2 .
Then, we have the following lemma based on Lemma 4.1 in [28]:

Lemma 1. Under Assumption 1, ω{ }Hdiag is symmetric and positive
definite.

Remark 2. According to the definition of detailed balance graph, it
is easy to verify that ω ω{ } = { }H Hdiag diagT is symmetric. Based on
Lemma 4.1 in [28], we can obtain that ω{ }Hdiag is positive
definite.

2.3. Problem statement

The dynamics of N follower agents considered in this paper can
be modeled as the following form:

̇ ( ) = ( ( ) ) + ( ) ∈ ( )x t f x t t u t i, , , 1i i i i

with ∈ xi denoting the ith follower agent's position state, ∈ ui

denoting the ith follower agent's control input, and smooth func-
tion ( ( ) )f x t t,i i denoting the ith follower agent's unknown non-
linear dynamics. We assume that ( ( ) )f x t t,i i , ∈i , are continuous
in t and Lipschitz in xi(t) so as to guarantee that there exist unique
solutions. The leader agent's underlying dynamics considered in
this paper can be modeled as the following form:

̇ ( ) = ( ) ( )x t v t , 20 0

with ∈ x0 denoting position state of the leader agent, and ∈ v0

denoting unknown control input of the leader agent.

Remark 3. In this paper, it is assumed that the states of all agents
are scalars in  to avoid complicated expressions, which can be
easily extended to n by using the Kronecker product.

For the sake of obtaining our main results, a useful lemma [29]
is introduced here.



Fig. 1. Unmanned vehicle.
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Lemma 2. Consider a dynamic system ̇ ( ) = ( ( ))x t f x t , ( ) =f 0 0,
∈ x N , ( ) =x x0 0. Suppose that there exists a continuous function
( ) → V x : such that the following conditions hold: (a) V(x) is a

positive-definite function; (b) there exist real numbers >αc 0 and
α ∈ ( )0, 1 , and an open neighborhood ⊂  of the origin such that

̇ ( ) ≤ − ( )α
αV x c V x , ∈ ⧹{ }x 0 . Then the origin is a finite-time stable

equilibrium of this system. Moreover, the settling time T of this system

satisfies ≤ ( )
α

α
( − )

−
α

T V x
c

1
1

1 .

We assume that the unknown nonlinear dynamics ( ( ) )f x t t,i i ,
∈i , are parameterized as follows:

ϕ θ( ( ) ) = ( ( ) ) ( )f x t t x t t, , , 3i i i
T

i i

and the unknown control input signal of the leader agent is
parameterized as follows:

ϕ θ( ) = ( ) ( )v t t , 4T
0 0 0

with ϕ ( ( ) )x t t,i i , ϕ ( ) ∈ t m
0 denoting basis function column vectors

and θi, θ ∈ m
0 denoting constant true parameter column vectors,

which are unknown and should be estimated.
As θ0 is not commonly attainable to each agent, follower agent i

estimates leader agent's unknown parameter vectors θ0 by θ̂ i0 and
( )v t0 by ^ ( )v ti0 , respectively, so as to design decentralized con-

trollers. So one has

ϕ θ^ ( ) = ( ) ^ ∈ ( )v t t i, . 5i
T

i0 0 0

And the function ( ( ) )f x t t,i i can be similarly estimated as

ϕ θ^ ( ( ) ) = ( ( ) ) ^ ∈ ( )f x t t x t t i, , , . 6i i i
T

i i

Remark 4. In this paper, linearly parameterized method is used to
estimate all the unknown nonlinear dynamics of the system. The
readers can refer to [13,25,30–32] for more applications of this
method. Of course, there are some other feasible methods to
handle unknown nonlinear dynamics when finite-time consensus
problems of the multiagent systems are considered. The most
widely used methods are to assume all agents's unknown non-
linear dynamics satisfy Lipschitz-type condition [33,34] or boun-
ded condition [35]. When the multiagent systems are subject to
external disturbances, linearly parameterized method is also fea-
sible to deal with external disturbances if external disturbances of
the systems satisfy linearly parameterized assumption. The other
approach is to assume that disturbances of all agents satisfy
bounded condition [21,36].

Remark 5. There are some practical systems satisfying agent's
dynamics (1). When the states of all agents are within the scope of
3, the multiagent systems could be unmanned aerial vehicle
systems [37] while the states of all agents are within the scope of
2, the multiagent systems could be unmanned vehicle systems in
the plane. Terms ui(t) and ( ( ) )f x t t,i i in dynamic equation (1) are,
respectively, the force linear input and inherently nonlinear input
which satisfies linear parameterizations assumption of agent i in
the latter situation (see Fig. 1).

Before continuing, a vital assumption should be made to assure
parameter convergence in finite-time, that is, the regressor matrix
Φ must satisfy the following persistently exciting (PE) [31]
condition:

PE condition: Two positive real numbers δ0 and l0 exist here to
ensure that the following inequality holds:

∫ ΦΦ τ ≥ > ∀ ≥ ( )
δ+

d l I t0, 0. 7t

t
T

0
0

Remark 6. As a standard assumption in classical adaptive control
[30,31], the PE condition is very helpful to ensure parameter
convergence and the richness of the regressor matrix Φ in-
formation throughout the system time. For more typical applica-
tions of PE condition in multiagent systems, the readers can refer
to [13,25,32].

The control purpose in this paper is to design effective decen-
tralized finite-time adaptive consensus schemes to obtain leader-
following finite-time consensus while ensuring finite-time para-
meter convergence, namely

∥ ( ) − ( )∥ =
( )→

x t x tlim 0,
8t T

i 0
s

and

θ θ θ θ∥ ^ − ∥ = ∥ ^ − ∥ =
( )→ →

lim 0, lim 0,
9t T

i
t T

i i0 0
s s

with ( )x 0i being any initial condition of xi(t), ∈ ¯i , >T 0s being
the settling time.
3. Main results

3.1. Decentralized finite-time adaptive consensus with directed fixed
topology

Decentralized finite-time adaptive consensus problem for the
leader-following multiagent system (1) and (2), whose network
topology is directed and fixed while satisfying detailed balance
condition, will be studied in this part.

For directed fixed network topology, decentralized finite-time
adaptive consensus control schemes proposed here consist of the
following two parts:

Decentralized finite-time feedback laws:

∑ω Φ Θ= − ( − ) + ( − ) + ^

( )

α

∈

⎡

⎢
⎢
⎢

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

⎥

⎦
⎥
⎥u k a x x b x x ,

10
i i

j
ij i j i i i

T
i0

i

and decentralized finite-time parameter adaptive laws:

∑

∑

θ ϕ ω

θ ϕ ω

^ ̇ = − ( ) × ( − ) + ( − )

^ ̇ = ( ) × ( − ) + ( − )
( )

∈

∈

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

k
k

t a x x b x x

k
k

x t a x x b x x

,

, ,
11

i i
j

ij i j i i

i i i i
j

ij i j i i

0
1

0 0

2
0

i

i

with Φ ϕ ϕ= ( − )col ,i i0 , Θ θ^ = ( ^coli i0 , θ̂ )i , ω > 0i , ∈i , α ∈ ( )0, 1 ,
>k 1, k1, k2 being positive constants. Let
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ω= [ ∑ ( − ) + ( − )]∈y a x x b x xi i j ij i j i i 0i
, ⌈ ⌋ = | | ( )α αy y ysgni i i , ∈i ,

where (·)sgn is the sign function.

Remark 7. In [25], based on local consensus errors and relative
position measurements between each agent and its neighbors, the
authors presented a finite-time adaptive consensus algorithm for a
multiagent system. In fact, it is not purely decentralized. In this
regard, purely decentralized laws (10) and (11), which only depend
on the local relative position state information between each agent
and its neighbors, are proposed here for the systems under the
case of fixed network topology. Unlike [25], communication links
among agents in the systems are not necessary in terms of purely
decentralized laws (10) and (11) in this paper. And these in-
formation can be measured by the on-board sensor of each agent,
such as ultrasonic or infrared-based relative positioning sensors
[38].

Letting = ( … )u u u ucol , , , N1 2 , = ( … )x x x xcol , , , N1 2 , ¯ ( ) =x t
( ) − ⊗ ( )x t x t1N 0 , ω= { }M Hdiag , ζ ζ ζ ζ= ( … ) = ¯Mxcol , , , N1 2 ,

ζ ζ ζ⌈ ⌋ = | | ( )α α sgni i i , ∈i , ζ ζ ζ ζ⌈ ⌋ = (⌈ ⌋ ⌈ ⌋ … ⌈ ⌋ )α α α αcol , , , N1 2 ,

Φ Φ Φ Φ= { … }diag , , , N1 2 , Θ Θ Θ Θ^ = ( ^ ^ … ^ )col , , , N1 2 , we have

ζ Φ Θ= − ⌈ ⌋ + ^ ( )αu k . 12T

With (12), letting = ( … )f f f fcol , , , N1 2 , Θ θ θ= ( )col ,i i0 ,

Θ Θ Θ Θ= ( … )col , , , N1 2 , Θ Θ Θ¯ = ^ − , and noting that ̇ ( ) = +x t f u, the
error system can be written as follows:

ζ Φ Θ¯ ̇( ) = − ⌈ ⌋ + ¯ ( )αx t k , 13T

and

Θ Φ¯ ̇ = − ( ⊗ ) ¯
( )k

I K Mx
1

, 14N

where ( )=K k I
k I0

0m

m

1

2
.

For system (1) and (2) under the case of directed fixed network
topology, the following main theorem can be obtained.

Theorem 1. Consider the multiagent system (1) and (2). Suppose
that Assumption 1 holds, ϕ ( )ti , ∈ ¯i , are uniformly bounded and
continuous, and the PE condition given in (7) is met. Then, there exists
ε ∈ ( )0, 11 , such that, for every α ε∈ ( − )1 , 11 , under feedback laws
(10) and parameter adaptive laws (11), we have (a) global consensus
for this system is obtained in finite-time; (b) global parameter con-
vergence is assured in finite-time; (c) the settling time

< λ

α λ

( )

( − ) ( )

α α α

α α

( − ) ( + )

( + ) +Ts
N M

k M

2

1

3 /2
max
1 /2

1 /2
min
1

.

For the purpose of proving Theorem 1, the following two
lemmas are necessary to be proved first.

Before going on, the following Lyapunov candidate function is
constructed:

( ) = ¯ ¯
( )V t

k
x Mx

1
2

. 15
T

Let Ω σ≜ {¯ ( ) ≤ }σ x V t: .

Lemma 3. Consider the error system (13) and (14). If Assumption 1
holds, there exists ε ∈ ( )0, 11 , such that, for every α ε∈ ( − )1 , 11 , one
has the following: (a) this system is uniformly stable; (b) for ∀ ≥t t0,

∀ ¯ ( ) ∈ x t N
0 , Θ̄ ( ) ∈ t Nm

0
2 , the solution Θ( ¯ ¯ )x, of this system is uni-

formly bounded; (c) for ∀ ≥t t0, ∀ ¯ ( ) ∈ x t N
0 , Θ̄ ( ) ∈ t Nm

0
2 ,

∥ ¯ ( )∥ =→∞ x tlim 0t ; (d) there exists ⁎t1 such that Ω¯ ( ) ∈x t 1 for any

≥ *t t1 .

Proof. Lyapunov candidate function is selected as follows:
Θ Θ( ) = ¯ ¯ + ¯ ( ⊗ ) ¯
( )

−W t
k

x Mx I K
1

2
1
2

. 16
T T

N
1

Taking the time derivative of W along the solution of system (13)
and (14) yields

ζ ζ̇ = − ⌈ ⌋ ( )αW . 17T

For (17), we use the same method as Proposition 1 in [39]. By
selecting α= +p 1 , α α= ( + )q 1 / in Hölder's inequality, we have

∑ ∑ ∑ζ ζ ζ

ζ ζ

∥ ∥ = (| | × ) ≤ | |

= ( ⌈ ⌋ )

α
α α

α

α
α

α
α α α

= =

+
+

=

+ +

+ +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

N

1 1

.

i

N

i
i

N

i
i

N

T

1
1 1

1

1
1

1

1 1

1
1

1

Applying the above inequality follows that ζ ζ ζ⌈ ⌋ ≥ ‖ ‖α α α− +NT
1
1 .

Noting that ζ = ¯Mx, we have

ζ ζ λ̇ ≤ − ‖ ‖ ≤ − ‖ ‖ ≤ − ( )‖¯‖ ( )α α α α α α α− + − + − + +W N N N M x . 181
1

2
1

min
1

2
1

Applying the same arguments as in [31], (a) and (b) hold.
From (18), we have ( ) = (∞)→∞W t Wlimt and

∫λ τ τ( ) ‖¯ ( )‖ ≤ ( ) − (∞)
α

α
α

+

→∞
+M

N
x d W t Wlim .

t t

t
min
1

2
1

0
0

With Barbalat's Lemma [31], it follows that ‖ ¯ ( )‖ =α
→∞

+x tlim 0t 2
1 ,

which means that (c) holds.
From sign-preserving theorem of continuous function, it fol-

lows from (18) that

λ̇ ≤ − ( ) ¯ ¯
α→

W
M

N
x xlim .T

1

min
2

Thus, there exists ε ∈ ( )0, 11 such that, for every α ε∈ ( − )1 , 11 , we
have

λ̇ ≤ − ( ) ¯ ¯ ( )W
M

N
x x. 19

Tmin
2

When ¯ ( )x t is outside the set Ω1, from the definition of Ω1, we

have < ¯ ¯ ≤ ¯ ¯λ ( )x Mx x x1
k

T M
k

T1
2 2

max . Then, it follows that

λ
¯ ¯ >

( ) ( )
x x

k
M

2
.

20
T

max

Integrating (19) with respect to time t, we have

∫ τ( ) − ( ) ≤ − ¯ ¯λ ( )
W t W t x xd

M

N t

t T
0

min
2

0
. From (16) and (20), it gives

that

Ω( ) ≤ ( ) < ( ) − ( − ) ¯ ∈ ⧹ ( )V t W t W t l t t x, , 21N
0 1 0 1

where =
λ

λ

( )

( )l
k M

N M1
2 min

2

max
. From (21), there exists * = + ( ) −t t W t

l1 0
10

1
such

that

( ) ≤ ( ) < ( ) − ( − ) ≤ ( )V t W t W t l t t 1 220 1 0

as ≥ *t t1 , namely, Ω¯ ∈x 1 as ≥ *t t1 .
Therefore, there exists * ≥t t1 0,

* =
+ ( ) − ( ) >

( )

⎧
⎨⎪
⎩⎪

t
t

W t
l

W t

t

1
, if 1,

, otherwise, 23
1

0
0

1
0

0

so that Ω¯ ∈x 1 as ≥ *t t1 . From (16) and (22), we also have

Θ Θ¯ ¯ ≤ { } ≥ * ( )k k t t2 max , , . 24T
1 2 1

This finishes the proof of (d). □

Lemma 4. Consider the error system (13) and (14). Suppose that
Assumption 1 holds, ϕ ( )ti , ∈ ¯i , are uniformly bounded and
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continuous, and the PE condition given in (7) is met. Then, for every
α ε∈ ( − )1 , 11 , under feedback laws (10) and parameter adaptive
laws (11), this system is finite-time stable on set Ω1.

Proof. Taking the time derivative of V along the solution of system
(13) and (14), it follows that

ζ ζ Φ Θ̇ = − ⌈ ⌋ + ¯ ¯
( )

αV
k

x M
1

. 25
T T T

Applying the same method as in Lemma 3, and noting that
λ≤ ( ) ¯ ¯V M x x

k
T1

2 max , we have

Φ Θ̇ ≤ − + ¯ ¯
( )

α+
V l V

k
x M

1
, 26

T T
2

1
2

where =
λ

λ

( ) ( )

( )

α α

α α

( + ) +

( + )l
k M

N M
2

2 1 /2
min
1

max
1 /2

.

From Lemma 3, there exists *t1 such that Ω¯ ∈x 1 for any ≥ *t t1 .
Denote the non-trivial solution of (13) as ¯ ( ¯ ( ))x t t x t, ,0 0 . Three dif-
ferent cases will be analyzed as follows:

Case 1. There exists a time interval [ ] ⊂ [ * * + ]t t t t T, ,1 2 1 1 1 such that
¯ ( ¯ ( )) =x t t x t, , 00 0 for any ∈ [ ]t t t,1 2 with > =t t T,2 1 1

λ

α λ

( )

( − ) ( )

α α α

α α

( − ) ( + )

( + ) +
N M

k M

2

1

3 /2
max
1 /2

1 /2
min
1

.

In this case, it is obvious that ¯ ( ) ≡x t 0 for any >t t1. From (14),
we obtain Θ̄ ̇ ≡ 0 for any >t t1. Then, for any >t t1, it can be ob-
tained that Θ̄ is a constant vector.

For any >t t1, we show that Θ̄ ≡ 0 by a contradiction method.
Define function

Ξ Θ Θ Θ Θ Θ( ¯ ( ) ) = [ ¯ ( + ) ¯ ( + ) − ¯ ( ) ¯ ( )]t t t T t T t t,
1
2

,T T
2 2

where >T 02 .
For ∀ >t t1, it is obvious that Ξ Θ( ¯ ( ) ) ≡t t, 0 as Θ̄ ( )t is a constant

vector, then ≡Ξ 0d
dt

. Supposing Θ̄ ( ) ≠t 0 and taking the time deri-

vative of Ξ Θ( ¯ ( ) )t t, , we have

∫

∫

∫

∫

∫

Ξ Θ Θ Θ Θ Θ

τ
Θ τ Θ τ τ

τ
Θ Φ τ

Θ Φ Φ Θ τ

Θ ΦΦ Θ τ

Θ ΦΦ τ Θ

( ¯ ( ) ) = ¯ ( + ) ¯ ̇ ( + ) − ¯ ( ) ¯ ̇ ( )

= ( ¯ ( ) ¯ ̇ ( ))

= − ¯ ( ⊗ ) ¯

≤ − { } ¯ ¯

≤ − ¯ ¯

= − ¯ ¯
( )

+

+

+

+
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where = λ{ } ( )l k k M
k3

min ,1 2 min . Applying the PE condition defined in
(7), (27) becomes

Ξ Θ Θ( ¯ ( ) ) ≤ − ‖ ¯‖ < ∀ > ( )
d t t

dt
l l t t

,
0, , 280 3 2

2
1

which contradicts that ≡Ξ 0d
dt

, ∀ >t t1. Hence, for ∀ >t t1, Θ̄ ≡ 0.
Therefore, this error system is finite-time stable under this case.

Case 2. ¯ ( ¯ ( ))x t t x t, ,0 0 only goes through the value of 0 at some time
points, but does not remain this value as ∈ [ * * + ]t t t T,1 1 1 .

Let { ∈ ℓ} ⊂ [ * * + ]t i t t T: ,i 1 1 1 be a time sequence that ¯ ( ¯ ( ))x t t x t, ,0 0

passes through 0 at each time point ti, where ℓ is an index set. For
convenience, we assume that < +t ti i 1, i, + ∈ ℓi 1 . Note that
{ ∈ ℓ}t i:i must be a finite set. If not, an infinite subsequence
{ ∈ ℓ}t i:i nn of { ∈ ℓ}t i:i would exist such that = *→∞t tlimn in ,

* ∈ [ * * + ]t t t T,1 1 1 . Then, there exists * >n 0 such that as > *n n ,
| − *| < ϵt tin for any ϵ > 0. Hence, for any ∈ ( * − ϵ *)t t t, , it follows
¯ ( ¯ ( )) ≡x t t x t, , 00 0 on account of the continuity of ¯ ( ¯ ( ))x t t x t, ,0 0 and
¯ ̇ ( ¯ ( ))x t t x t, ,0 0 . This contradicts Case 2. Based on the above analysis, let
{ } =ti i

n
1 be a finite set that ¯ ( ¯ ( ))x t t x t, ,0 0 passes through 0 at each ti.

There exists ϵ > 01 such that set Υ = ⋃ ( − ϵ + ϵ )= t t,i
n

i i1 0 0 is nonempty
open set for any ϵ > 00 , < ϵ < ϵ0 0 1. Then, on the compact set

Υ[ * * + ]⧹t t T,1 1 1 , ¯ ( ¯ ( )) ≠x t t x t, , 00 0 . Since the continuity of ¯ ( ¯ ( ))x t t x t, ,0 0

on Υ[ * * + ]⧹t t T,1 1 1 , a constant >l 04 exists here such that ≥V l4,

Υ∀ ∈ [ * * + ]⧹t t t T,1 1 1 .
From (24), we obtain that there exists ˜ >k 1, such that for > ˜k k,

Θ Θ Υ¯ ¯ < ≤ ∀ ∈ [ * * + ]⧹ ( )k
l V t t t T

1
, , , 29
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with λ >Φ 0 based on the fact that Φ Φ λ< ΦM M IT T 2 due to Φ being
uniformly bounded. From (26), (29), (30) and noting that

λ≥ ( ) ¯ ¯V M x x
k

T1
2 min , we obtain that
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λ
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with < <T T0 0 1. Due to Lemma 2, this error system is finite-time
stable and the settling time of it satisfies
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1

This implies ¯ ( ¯ ( )) =x t t x t, , 00 0 for any ∈ [ * + * + ]t t T t T,1 0 1 1 , which is
not in accord with our assumption of this case. Therefore, the
second case does not exist.

Case 3. ¯ ( ¯ ( )) ≠x t t x t, , 00 0 for any ∈ [ * * + ]t t t T,1 1 1 .

Employing the approach mentioned above, it can also be de-
rived that the last case does not exist.

In conclusion, there exist > ˜k k, < ϵ < ϵ0 0 1 such that, for any
α ε∈ ( ), 11 , the error system (13) and (14) is finite-time stable on

Ω1 and the settling time < λ

α λ

( )

( − ) ( )

α α α

α α

( − ) ( + )

( + ) +T .s
N M

k M

2

1

3 /2
max
1 /2

1 /2
min
1 □

Remark 8. Parameters k1 and k2 are chosen according to the
practical demand. Parameter k is determined by the inequalities
(29) and (30).

Proof of Theorem 1. Applying Lemmas 3 and 4, we can easily
derive Theorem 1. □

3.2. Decentralized finite-time adaptive consensus with directed
switching topologies

Decentralized finite-time adaptive consensus problem for the
leader-following multiagent system (1) and (2), whose network
topology is directed and switching while satisfying detailed bal-
ance condition, will be discussed in this part.

Note that the network topology of the system is time variant
throughout the system time. A bounded contiguous time sequence
[ )+t t,k k 1 , = …k 0, 1, 2, , with =t 00 , ≤ − ≤+t tk k0 1 for two
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positive constants 0 and , is introduced here. Suppose that time
varying network topology switches at time points tk, = …k 0, 1, 2, ,
and is unchanged in each time interval [ )+t t,k k 1 . The notations
{ ¯ | ∈ }ss and { | ∈ }ss are introduced here to, respectively, de-
note all possible graphs on node set ¯ and corresponding sub-
graphs on node set with being a finite index set. For con-
venience's sake, a piecewise constant switching signal
σ ( ) [ ∞) →t : 0, is defined here to depict the time dependence of
graphs. Then, the possible graphs at time t on node set ¯ and node
set can be, respectively, denoted as ¯σ ( )t and σ ( )t . Notations

( )ti , aij(t), bi(t) and σ ( )t are used here to describe the time
varying versions of neighbor sets i of all follower agents, all the
ijth items aij of adjacency matrix , all weighting coefficients bi,
and Laplacian matrix , respectively. Throughout this paper, signal
σ ( )t is assumed to switch finite times in any bounded time
interval.

Assumption 2. The directed graph σ ( )t is strongly connected and
detailed balanced, and ( ) >b t 0i for at least one ∈i .

For directed switching network topologies, decentralized finite-
time adaptive consensus control schemes proposed here can be
split into the following two parts:

Decentralized finite-time feedback laws:

∑ω Φ Θ= − ( ) ( )( − ) + ( )( − ) + ^

( )

α

∈ ( )

⎡
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⎢
⎢
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⎤
⎦
⎥
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⎥

⎦
⎥
⎥u k t a t x x b t x x ,

33
i i

j t
ij i j i i i

T
i0

i

and decentralized finite-time parameter adaptive laws:

∑

∑

θ ϕ ω

θ ϕ ω

^ ̇ = − ( ) ( ) × ( )( − ) + ( )( − )

^ ̇ = ( ) ( ) × ( )( − ) + ( )( − )
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∈ ( )

∈ ( )
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⎥
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k
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,

, ,
34

i i
j t

ij i j i i

i i i i
j t

ij i j i i

0
1

0 0

2
0

i

i

where ∈i .
Letting ω= { }σ σ σ( ) ( ) ( )M Hdiagt t t , η η η η= ( … ) = ¯σ ( )M xcol , , , N t1 2 , the

error system for the case of directed switching network topologies
can be written as follows:

η Φ Θ¯ ̇( ) = − ⌈ ⌋ + ¯ ( )αx t k , 35T

and

Θ Φ¯ ̇ = − ( ⊗ ) ¯
( )σ ( )

k
I K M x

1
. 36N t

For each ∈s , define μ λ= ( )Ms smin and ν λ= ( )Ms smax . De-
pending on Lemma 1, it follows that

δ μ δ ν= { | ∈ } = { | ∈ } ( )s smin , max 37s smin max

are positive and not dependent on time t.
For system (1) and (2) under the case of directed switching

network topologies, another main theorem can be obtained.

Theorem 2. Consider the multiagent system (1) and (2). Suppose

that Assumption 2 holds, ϕ ( )ti , ∈ ¯i , are uniformly bounded and

continuous, and the PE condition given in (7) is met. Then, there exists

ε ∈ ( )0, 12 , such that, for every α ε∈ ( − )1 , 12 , under feedback laws
(33) and parameter adaptive laws (34), we have the following: (a)
global consensus for this system is attained in finite-time; (b) global
parameter convergence is assured in finite-time; (c) the settling time
< δ

α δ( − )

α α α

α α

( − ) ( + )

( + ) +Ts
N

k

2

1

3 /2
max
1 /2

1 /2
min
1

.

Proof. The proof of this theorem is similar to that of Theorem 1. □
4. Simulations

To validate the proposed decentralized finite-time adaptive
consensus schemes, an example of a system consisting of 5 fol-
lower agents and 1 leader agent, whose network topology is di-
rected and switching while satisfying detailed balance condition,
is given in this section. The dynamics of follower agents are
modeled as

ϕ θ( ( ) ) = + (¯ ) = (¯ )) = ( ( ) )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟f x t t

i
t x t x x t t,

2
sin exp sin , exp

1
,i i i i

i

i
T

i i2

with ( )ϕ = ( ¯ )i
t
x

sin
exp i

, θ =
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟i 1

i
2 , =i 1, 2, 3, 4, 5, and the leader agent

described by

̇ ( ) =x t t
3

4
cos ,0

where control input ϕ θ( ) = = ( )v t t tcos T
0

3
4 0 0 with ϕ = tcos0 ,

θ =0
3

4
.

In this example, a finite set of graphs { }G G G G, , ,1 2 3 4 described
in Fig. 2 shows different underlying network topologies of the
system considered in this part. The network topology of this sys-
tem automatically switches every four time steps in the following
way: → → → → → ⋯G G G G G1 2 3 4 1 , to the next graph. In Fig. 2, the
numbers next to the edges are the coupling weights, which are
chosen in [ ]0.5, 1.5 randomly. In order to ensure that the above
four graphs are detailed balanced, we select

ω

ω

ω

ω

{ } = { }

{ } = { }

{ } = { }

{ } = { }

diag diag 15/7, 1, 3/2, 81/182, 9/13 ,

diag diag 1, 9/11, 6/11, 144/91, 12/13 ,

diag diag 1, 3/2, 35/11, 15/11, 1 ,

diag diag 1, 5/3, 3/4, 26/9, 13/7 ,

G

G

G

G

1

2

3

4

respectively. By a straightforward calculation, the smallest nonzero
eigenvalue δmin and biggest eigenvalue δmax of

ω= { }σ σ σ( ) ( ) ( )M Hdiagt t t are, respectively, 0.1253 and 6.3524.
For system (35) and (36), all the agents are static at t¼0. The

initial consensus error vector is ¯ ( ) = ( − − )x 0 3.9, 4.6, 4.9, 2.7, 3.2 T

and vector Θ̄ ( ) = ( − − − −0 2.5, 2.7, 0.2, 1.7, 2.6, 2.2, 0.4, 0.2,
− − − − − )T2.9, 1.0, 2.0, 1.8, 1.1, 0.2, 2.0 is the initial parameter
estimate error. Under decentralized feedback laws (33) and decen-
tralized parameter adaptive laws (34) with α = 0.7, k¼2.0, k1¼0.7,
and k2¼0.7, simulation is conducted in 300 s. By simple computa-
tion, we get <T 2082.4 ss . Let λ ( )tPE be the minimum eigenvalue of

∫ ΦΦ τ
δ+

d
t

t T0 . By choosing δ = 40 , Fig. 3 shows that λ ( ) >t 0PE for all

≥t 0. From Fig. 3, we can obtain that the smallest value of λPE is
=l 0.14760 , which shows that the PE condition (7), is satisfied. Five

components of the vector ¯ ( ) = ( ) − ⊗ ( )x t x t x t1N 0 are shown in
Fig. 4. The parameter estimate errors θ θ^ −i0 0 and θ θ^ −i i,

=i 1, 2, 3, 4, 5, are shown in Figs. 5 and 6, respectively. As illustrated
in Fig. 4, all follower agents follow the leader agent in finite-time.
Figs. 5 and 6 demonstrate that the parameters can be converged in
finite-time.

5. Conclusions

In this paper, finite-time adaptive consensus problem was re-
searched for first-order multiagent systems with unknown nonlinear



Fig. 2. Switching graphs.

Fig. 3. The PE condition is satisfied.
Fig. 4. Five components of consensus error vector ¯ ( )x t .
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dynamics. Linearly parameterized method was introduced to model
unknown nonlinear dynamics of the systems. By only utilizing the
local relative position state information between each agent and its
neighbors, decentralized finite-time adaptive consensus algorithms
were presented with directed fixed and switching network topolo-
gies which satisfy detailed balance condition. Based on classical
Lyapunov analysis techniques, both finite-time stability and finite-
time parameter convergence were assured by employing the



Fig. 5. Parameter estimate error θ θ^ −i0 0, =i 1, 2, 3, 4, 5.

Fig. 6. Parameter estimate error θ θ^ −i i, =i 1, 2, 3, 4, 5.
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proposed control algorithms. Finally, the results in Simulations part
were presented to validate our main results.
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