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a b s t r a c t 

In this paper, the leaderless consensus problem of multi-agent systems with jointly connected topologies 

and nonlinear dynamics is considered, in which the nonlinear dynamics are assumed to be non-identical 

and unknown. The unknown nonlinear dynamics existing in the systems are assumed to be linearly pa- 

rameterized, and an adaptive design method for leaderless multi-agent systems is presented. By just using 

the relative position information between each agent and its neighbors, a distributed adaptive consensus 

control algorithm for the considered systems is proposed, in which the network graphs are jointly con- 

nected. Both the global uniform asymptotical stability and the global uniform asymptotical parameter 

convergence analysis of the adaptive control algorithm are carried out by using adaptive control theory, 

Lyapunov theory and algebraic graph theory. Finally, an example is given to illustrate the validity of our 

theoretical results. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Distributed cooperative control of multi-agent systems has been

taken much attentions by many researchers in automatical control

and multi-robot coordination. Its broad applications include in var-

ious fields, such as, multi-robot rendezvous, flocking and swarming

control, multi-robot formation control, etc. In distributed coordi-

nated control of multi-agent systems, a significant problem is to

design distributed coordinated controllers such that consensus can

be achieved on a decision value. 

In the past decades, the consensus problem of both leader-

following and leaderless multi-agent systems have been exten-

sively studied on different topics under various assumptions, for

example, distributed robust consensus [1] , consensus in time-delay

networks [2,3] , consensus with finite-time convergence [4] , av-

erage consensus [5,6] , consensus in jointly connected networks

[7] , group consensus [8] , containment control [9] , consensus with

communication constraints [10] , etc. In the studies of consensus

problem of multi-agent systems, variable network topologies have

been extensively investigated in the literature. However, informa-

tion transfer may interrupt in some practical applications due to

the instability of communication channels. Therefore, joint con-

nectedness [7,11,12] is an important assumption for the network

topologies of multi-agent systems. It does not requires that the
∗ Corresponding author. 
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witching graphs are connected at any moment, which means that

he switching graphs are permitted to be disconnected at any time

nstant. 

In practice, uncertainty and unmodeled dynamics may exist in

he systems. Therefore, one of the interesting topics on consensus

roblem is investigating the case of multi-agent systems with un-

nown nonlinearity. The adaptive design method is a good choice.

n [13,14] , a coordination problem steering a group of agents to

 formation with a prescribed reference velocity is considered.

daptive algorithms are proposed for reference velocity recovery

13] and reference velocity tracking [14] . In [15] , robust adaptive

esign techniques is applied in multi-agent systems such that

he considered systems can reach consensus. As the controller for

ach agent only use its neighbor agents’ information, the proposed

lgorithm is distributed. In [16] , the authors propose an adaptive

nite-time leader-following consensus algorithm for multi-agent

etworks, in which the model dynamics of both leader and fol-

ower agents are non-identical, unknown and nonlinear. A type of

omogenous Lyapunov function is introduced in the finite-time

ontrol algorithm design and stability analysis based on finite-time

tability theory. In [17] , the unknown nonlinear dynamics of multi-

gent systems are approximated by neural networks. An adaptive

ontroller is proposed for directed multi-agent networks such

hat the consensus error vectors and weight estimate errors are

niformly ultimately bounded. In [18] , for a class of interconnected

onlinear pure-feedback systems, the unknown nonlinear dynam-

cs of the interconnected system are approximated by fuzzy logic

ystems. An adaptive output feedback control approach is pro-

http://dx.doi.org/10.1016/j.neucom.2017.02.031
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osed such that all variables are semi-globally uniformly ultimately

ounded and the system errors converge to a small neighborhood

f the origin. In [19] , under linear parameterizations assumptions,

n adaptive control strategy is proposed for leader-following

ulti-agent networks that is undirected and jointly connected.

n [20] , the authors present distributed cooperative adaptive

ontrollers to solve the uniformly exponential stability problem

f a group of uncertain systems in a general framework. Some

ther studies on adaptive consensus of multi-agent systems focus

n adaptive tuning of the network weights, or coupling strength

21,22] . 

In this paper, the leaderless consensus problem of multi-agent

ystems is studied. The multi-agent networks considered in this

aper are jointly connected. The system model is assumed to be

onidentical, nonlinear and unknown. The uncertain dynamics

f all agents are assumed to be linearly parameterized by some

asis functions and the unknown parameters are estimated by

ach agent. For networks with jointly connected topologies, a

istributed adaptive consensus scheme is proposed through only

elative position feedback between agents. By introducing the Per-

istent excitation (PE) assumption for regressor matrix, and using

lgebraic graph theory and Lyapunov techniques, we prove that

he consensus can be achieved globally uniformly asymptotically,

n the meanwhile, the global uniform asymptotical parameter

onvergence to zero is also guaranteed. 

The main contributions of this work are mainly in three as-

ects. First, a purely distributed adaptive consensus algorithm is

roposed for leaderless multi-agent networks which are assumed

o be jointly connected. Consensus analysis is given by using Lya-

unov theory, algebraic graph theory, and Barbalat’s lemma. In

19] , a similar model is considered for leader-following multi-agent

ystems. The control algorithm proposed in [19] depends on the lo-

al consensus errors from itself and its neighbors. From the defini-

ion of the local consensus error, each agent requires not only the

nformation of its neighbors but also the information of its neigh-

ors’ neighbors. Therefore, it is not purely distributed. In this pa-

er, a purely distributed control algorithm only depending on rel-

tive position measurements between its neighbors, is proposed.

he leaderless consensus stability analysis is more challenging than

hat in leader-following systems, because the zero eigenvalue of

he system matrix in leaderless systems is intrinsic even if the

raph is connected. Second, by introducing the PE condition, a suf-

ciency condition is derived for the considered systems to achieve

he parameter convergence. Since the intrinsic zero eigenvalue ex-

sts in leaderless multi-agent systems, the parameter convergence

nalysis is a challenging work. By using some transformations, a

ommon matrix C is obtained to derive the sufficiency condition

or parameter convergence. The PE condition is also introduced in

13,14,20] for the parameter convergence. In [13,14] , because the

opology of interconnected graph is fixed, the parameter conver-

ence is straightforward form the classical adaptive control the-

ry. In [20] , a cooperative PE condition and a integration-based

opology condition are introduced for cooperative adaptive sys-

ems to reach uniformly exponential stability in a general frame-

ork. Some applications are given for identification and control

f multi-agent systems. Third, the topologies of the interconnected

raphs are switching, especially, jointly connected. This condition

s more general. Except for [19,20] , the works [13–18,21,22] on

daptive system mentioned above are all for networks with fixed

opology. 

This paper is built up as follows. We state formally the problem

hich is formulated with some notations in Section 2 . We present

ur main results in Section 3 . We give an illustrative example and

how the simulation results to validate our theoretical results in

ection 4 . Concluding remarks are given in Section 5 . 
s

. Preliminaries and problem statement 

.1. Preliminaries 

The multi-agent interconnection networks can be expressed by

raphs. A graph G (V , E ) consists of a node set V = { 1 , 2 , . . . , N}
nd an edge set E ⊂ V × V , in which an edge ( i, j ) in the edge set

 is an unordered pair. A simple graph is undirected, and has no

epeated edges and self-loops. In this paper, only simple graphs is

onsidered. In an edge ( i, j ), the node j is termed as neighbor of the

ode i . Denote neighbors set of node i by N i = { j ∈ V | (i, j) ∈ E ,

j � = i } . A path in a graph is a sequence of edges (1 , 2) , (2 , 3) , . . .

n the graph. A graph G is termed to be connected if there exists

 path between any two nodes of the graph. For a collection of

raphs, its union is defined as a new graphs where its node set and

dge set are the union of node set and edge set of all of the graphs

n the collection. If the union of a collection of graphs is connected,

e say that the collection of graphs is jointly connected. 

The information exchanges between agents can be modeled by

 graph G , in which each agent is according to a node in V . An

dge ( i, j ) means that the agent i can receive, obtain or sense in-

ormation from agent j . Denote the weighted adjacency matrix of a

raph G by A = [ a i j ] ∈ R 

N×N , where a ij > 0 if (i, j) ∈ E and a i j = 0

f (i, j) / ∈ E . The degree of node i in a graph is defined as 
∑ 

j∈ N i 
a i j .

he degree matrix D ∈ R 

N×N of a graph G is a diagonal matrix

hose ii th entry being the degree of node i . Let L = D − A, the ma-

rix L is called the Laplacian of the graph. The following lemma of

 in algebraic graph theory [23] is well known. 

emma 1. The Laplacian L of graph G has at least one zero eigen-

alue with 1 N = (1 , 1 , . . . , 1) T ∈ R N as its eigenvector, and all the

on-zero eigenvalues of L are positive. The Laplacian L has a simple

ero eigenvalue if and only if graph G is connected. 

In this paper, we consider the case that the interconnected

raphs of the systems are switching over time. The set of all pos-

ible switching graphs is denoted by { G p | p ∈ P} , where P is an

ndex set. For describing the time dependence of graphs, a piece-

ise constant switching signal σ (t) : [0 , ∞ ) → P is defined. We

se G σ (t) to denote the underlying graphs at time t on N nodes.

ince the Laplacian L of the graph, the neighbors set N i of agent i ,

nd the ( i, j )th entry a ij of A are all vary with time, their time vary-

ng versions are denoted by L σ ( t ) , a ij ( t ) and N i (t) , , respectively. 

.2. Problem statement 

Consider a group of N nonidentical nonlinear agents, the dy-

amics of the i th agents are described by 

˙ 
 i (t) = f i (x i (t ) , t ) + u i (t) , i = 1 , 2 , . . . , N, (1)

here x i (t) ∈ R is the position state of the i th agent, u i (t) ∈ R is

he control input, and f i ( x i ( t ), t ) is the unknown nonlinear dynam-

cs of agent i , which is assumed to be continuous in t and Lipschitz

n x i ( t ) to guarantee the existence of unique solution of Eq. (1) . 

We denote the stack column vector of x i ( t ) with i in some index

et S by col( x i ( t )) i ∈ S or simply col( x i ( t )) , the stack column vector

f vector x and y by col( x, y ) , etc. Letting x (t) = col (x i (t )) , u (t ) =
ol (u i (t)) , f (x, t) = col ( f i (x i , t)) , the dynamics of N agents can be

ewritten as 

˙ 
 (t) = f (x, t) + u (t) . (2)

emark 1. We assume that x i ∈ R , i = 1 , 2 , . . . , N, to avoid com-

licated expressions. It is trivial to extend this case to that of

 i ∈ R 

n , i = 1 , 2 , . . . , N, by using Kronecker product �. 

In this work, the consensus problem of above systems is consid-

red, that is, designing distributed controllers u i (t) , i = 1 , 2 , . . . , N,

uch that the consensus can be reached. 
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For the considered systems (1) , the consensus is said to be

achieved if, for some distributed controller u i (t) , i = 1 , 2 , . . . , N, 

lim 

→∞ 

| x i (t) − x j (t) | = 0 , i � = j, i, j = 1 , 2 , . . . , N, (3)

for ∀ x i (0) , i = 0 , 1 , . . . , N. 

3. Main results 

In this section, the linear parameterizations models of the lead-

erless systems (1) are given firstly. Then, we present our dis-

tributed controllers and parameter adaptive laws. Finally, the sta-

bility and parameter convergence analysis are given. 

The unknown nonlinear dynamics f i ( x i ( t ), t ), i = 1 , . . . , N, of

group of agents are supposed to be linearly parameterized as 

f i (x i (t ) , t ) = φT 
i (x i (t ) , t ) ϑ i , i = 1 , 2 , . . . , N, (4)

where φi (x i (t ) , t ) ∈ R 

m is the basis function column vector,

ϑ i ∈ R 

m is the parameter column vector which is constant, un-

known and will be estimated. 

Let ˆ ϑ i be the estimate of ϑi , the estimate of f i ( x i ( t ), t ) can be

expressed as 

ˆ f i (x i (t ) , t ) = φT 
i (x i (t ) , t ) ̂  ϑ i , i = 1 , 2 , . . . , N. (5)

Remark 2. The linearly parameterized models of the unknown

nonlinear dynamics have been extensively investigated in classical

adaptive control theory [24,25] . Examples for multi-agents systems

can be found in [13,14,16,19,26] . 

3.1. Distributed adaptive consensus algorithm design 

For multi-agent systems (1) , let [ t k , t k +1 ) , k = 0 , 1 , 2 , . . . be an

infinite time interval sequence, where t 0 = 0 is the initial time in-

stant, T 0 ≤ t k +1 − t k ≤ T , and T 0 , T are some positive constants. 

Assumption 1. The switching times of the switching signal σ ( t ) is

finite in any bounded time intervals. 

From Assumption 1 , suppose that each time interval

[ t k , t k +1 ) , k = 0 , 1 , 2 , . . . , is divided into a finite time interval

sequence 

[ t 0 k , t 
1 
k ) , . . . , [ t 

l 
k , t 

l+1 
k 

) , . . . , [ t l k −1 

k 
, t 

l k 
k 
) , (6)

where t k = t 0 
k 
, t k +1 = t 

l k 
k 

for some integer l k ≥ 0, t l+1 
k 

− t l 
k 

≥ τ, 0 ≤
l ≤ l k − 1 , τ > 0 is a positive constant, the so-called dwell time.

 

0 
k 
, t 1 

k 
, . . . , t 

l k −1 

k 
are the time instants at which the time-varying

graph switches, in other words, in each such time subinterval

[ t l 
k 
, t l+1 

k 
) the switching graph G σ (t) is time invariant. Note that

the switching graph G σ (t) is possibly disconnected in each such

subinterval [ t l 
k 
, t l+1 

k 
) . If the union of { G σ (t) | t ∈ [ t k , t k +1 ) } is con-

nected, then we say it is jointly connected across the time interval

[ t k , t k +1 ) , k = 0 , 1 , 2 , . . . . 

Motivated by [12] , we have the following lemma: 

Lemma 2. Let matrices L i 1 , L i 2 , . . . , L i s be associated with the graphs

G i 1 
, G i 2 

, . . . , G i s , respectively. If these graphs are jointly connected,

then 
∑ i s 

p= i 1 L p is an effective Laplacian matrix of some connected

graph. 

Proof. Obviously, matrix 
∑ i s 

p= i 1 L p is an effective Laplacian matrix

of the connected graph ∪ 

i s 
p= i 1 G p . �

Assumption 2. In each time interval [ t k , t k +1 ) , the switching graph

G p , p ∈ P is jointly connected. 

Remark 3. In the study of switching topologies, the joint connect-

edness [7,11,12] subject to the Assumptions 1 and 2 is more gen-

eral. It does not require the switching graphs are connected at any
oment. In other word, the switching graphs can be disconnected

t any time instants. 

Let � = col (ϑ i ) , ˆ � = col ( ̂  ϑ i ) . In the following, we present our

ontrol algorithm for adaptive consensus achieving: 

 i (t) = −c 
∑ 

j∈ N i (t) 

a i j [ x i (t) − x j (t)] − φT 
i (x i , t) ̂  ϑ i 

i = 1 , 2 , . . . , N, (7)

nd 

˙ ˆ 
 i (t) = c 1 φi (x i , t) 

∑ 

j∈ N i (t) 

a i j [ x i (t) − x j (t)] , 

i = 1 , 2 , . . . , N, (8)

here c, c 1 > 0 are positive constant numbers. 

The Eqs. (7) and (8) can be rewritten in the following form: 

 (t) = −cL σ (t) x (t) − �T (x, t) ̂  � (9)

nd 

˙ ˆ (t) = c 1 �(x, t ) L σ (t) x (t ) , (10)

here �(x, t) = diag (φ1 (x 1 , t) , φ2 (x 2 , t) , . . . , φN ( x N , t )), L σ ( t ) is the

aplacian of graph G σ (t) . 

.2. Stability analysis 

Let x̄ (t) = 

1 
N 

∑ N 
i =1 x i (t) and define 

 i (t) = x i (t) − x̄ (t) , i = 1 , 2 , . . . , N, (11)

s the consensus error of the i th agent. 

Let e (t) = col (e i (t)) , we have 

 (t) = 

(
I N − 1 

N 

1 N 1 

T 
N 

)
x (t) = Cx (t) , (12)

here C = I N − 1 
N 1 N 1 

T 
N = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

N−1 
N − 1 

N · · · − 1 
N 

− 1 
N 

N−1 
N · · · − 1 

N 

. 

. 

. · · · · · ·
. 
. 
. 

− 1 
N − 1 

N · · · N−1 
N 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

is positive semi-

efinite with eigenvalues 0 and 1, I N ∈ R 

N×N is the identity matrix.

Let ϑ̄ i = 

ˆ ϑ i − ϑ i , �̄ = 

ˆ � − � = col ( ̄ϑ i ) . Considering the time in-

erval [ t l 
k 
, t l+1 

k 
) , 0 ≤ l ≤ l k − 1 , k = 0 , 1 , . . . , we have 

˙ 
 (t) = C ̇ x 

= C[ f (x, t) + u (t)] 

= −cCL σ (t) e (t) − C�T (x, t) ̄�. (13)

From (10) –(13) and the properties of L in Lemma 1 , we have 

C = L − 1 

N 

L 1 N 1 

T 
N = L, CL = L − 1 

N 

1 N 1 

T 
N L = L, (14)

hen LC = CL = L . The error system of the system (1) can be ob-

ained as follows: 
 

˙ e (t) = −cL σ (t) e (t) − C�T (x, t) ̄�, 

˙ �̄(t) = c 1 �(x, t ) L σ (t) e (t ) . 
(15)

Let λmin ( P ) be the the smallest non-zero eigenvalue of the posi-

ive semi-definite matrix P . The N eigenvalues of L p are denoted by
1 
p , λ

2 
p , . . . , λ

N 
p with λ1 

p = 0 due to L p having at least a zero eigen-

alue. Define γp = λmin (L p ) , μp = λmax (L p ) , p ∈ P . Then 

min = min { γp | p ∈ P} , δmax = max { μp | p ∈ P} (16)

re well defined and obviously positive. 

ssumption 3. The PE ( persistently exciting ) condition [25] 
 t+ δ0 

t 

�C�T dτ ≥ αI > 0 , ∀ t ≥ 0 , (17)

s satisfied, where δ0 and α are some positive reals. 
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emark 4. In classical adaptive control theory [25] , the PE condi-

ion is a standard assumption for the regressor matrix �. It guar-

ntees the information richness of the regressor � and plays a key

ole in the parameter convergence analysis, i.e., 

lim 

→∞ 

‖ ̂

 ϑ i − ϑ i ‖ = 0 , (18) 

or ∀ ̂

 ϑ i (0) , i = 1 , 2 , . . . , N. However, the problem how to check the

E condition is still open. Because C is symmetric and positive

emi-definite, there exists some matrix B such that C = BB T . If �

s periodic and then �B is also periodic. Additional conditions can

e imposed which ensure the PE condition. For example, if � is

eriodic, then it is well known [24,27] that the PE condition (17) is

nsured. 

In the following, we present our main result: 

heorem 1. Assume that the Assumption 1 –3 are satisfied and sup-

ose that φi and ˙ φi , i = 0 , 1 , . . . , N, are uniformly bounded. Then, un-

er the control scheme (7) and (8) ,the consensus of the multi-agent

ystems (1) can be reached globally uniformly asymptotically, and the

lobal uniform asymptotical parameter convergence is also guaranteed

n the sense of (3) and (18) ,respectively. 

roof. Considering the positive semi-definite function 

 (t) = 

1 

2 c 
e (t) T L p e (t) + 

1 

2 cc 1 
�̄T (t) ̄�(t) . (19) 

or systems (15) . Except for the switching instants, V ( t ) is continu-

us and differentiable . 

Consider a time interval [ t l 
k 
, t l+1 

k 
] with switching graph G p , p ∈

, included in the time interval [ t k , t k +1 ] . Calculating the time

erivative of V ( t ) defined in (19) along the trajectory of the system

15) , we get 

˙ 
 (t) = −e (t) T L 2 p e (t) 

≤ −γp e (t) T L p e (t) 

≤ −δmin e (t) T L p e (t) 

≤ 0 . (20) 

Therefore, V ( t ) is non-increasing and V ( t ) ≥ 0. Then,

im t→∞ 

V (t) = V (∞ ) is finite. 

In the following, we focus on proving lim t→∞ 

| x i − x j | = 0 . 

Consider the infinite sequence 

 V (t k ) , k = 0 , 1 , . . . } . 
ased on the Cauchy’s convergence criteria, for ∀ ε > 0, there exists

n integer K > 0, such that 

 V (t k +1 ) − V (t k ) | < ε

or ∀ k > K . Then, we have | ∫ t k +1 
t k 

˙ V (t) dt | < ε and therefore, 

 k −1 ∑ 

l=0 

∫ t l+1 
k 

t l 
k 

˙ V (t) dt > −ε. 

From (20) , we have 

ε < 

l k −1 ∑ 

l=0 

∫ t l+1 
k 

t l 
k 

˙ V (t) dt 

≤ −
l k −1 ∑ 

l=0 

∫ t l+1 
k 

t l 
k 

δmin e (t) T L σ (t l 
k 
) e (t) dt. (21) 

Because l k is assumed to be finite within the time interval

 t k , t k +1 ) . Then, we derive 

ε ≤ −δmin 

∫ t l+1 
k 

t l 
e (t) T L σ (t l 

k 
) e (t) dt 
k 
≤ −δmin 

∫ t l 
k 
+ τ

t l 
k 

e (t) T L σ (t l 
k 
) e (t) dt, (22) 

r equivalently 

min 

∫ t l 
k 
+ τ

t l 
k 

e (t) T L σ (t l 
k 
) e (t) dt ≤ ε, (23) 

or ∀ k > K , where l = 0 , 1 , . . . , l k − 1 and k = 0 , 1 , 2 , . . . . 

From (23) and ε > 0 being arbitrary, we have 

lim 

→∞ 

∫ t+ τ

t 

e T 

( 

l k −1 ∑ 

l=0 

L σ (t l 
k 
) 

) 

eds = 0 . (24) 

Now, we need to prove the function e T ( 
∑ l k −1 

l=0 
L 
σ (t l 

k 
) 
) e is uni-

ormly continuous. This is due to the uniform boundedness of e ( t ),
¯ (t) and ˙ e , which can be derived form (15), (19), (20) and the

ssumption of uniform boundedness of φi and 

˙ φi . From the Bar-

alat’s lemma, we have 

lim 

→∞ 

e T 

( 

l k −1 ∑ 

l=0 

L σ (t l 
k 
) 

) 

e = 0 . (25) 

Since the switching graphs are jointly connected across the

ime interval [ t k , t k +1 ) , we have the matrices 
∑ l k −1 

l=0 
L 
σ (t l 

k 
) 
, k =

 , 1 , 2 , . . . , are effective Laplacian of some connected graph based

n Lemma 2 . Let W k = [ 1 √ 

N 
1 N , S k ] ∈ R 

N×N be an orthogonal matrix,

nd S k ∈ R 

N ×(N −1) such that 

 

T 
k ( 

l k −1 ∑ 

l=0 

L σ (t l 
k 
) ) W k = diag { ν1 

k , ν
2 
k , . . . , ν

N 
k } , (26) 

here ν1 
k 

= 0 , 0 < ν2 
k 

≤ · · · ≤ νN 
k 

, are the N eigenvalues of
 l k −1 

l=0 
L 
σ (t l 

k 
) 
, due to the symmetry of 

∑ l k −1 

l=0 
L 
σ (t l 

k 
) 

and Lemma 1 . 

Let ζ (t) = W 

T 
k 

e (t) , we have 

(t) = ( ζ1 (t) , ζ2 (t ) , . . . , ζN (t ) ) 
T 

= 

⎛ 

⎝ 

1 √ 

N 

1 

T 
N 

S T 
k 

⎞ 

⎠ Cx 

= 

⎛ 

⎝ 

1 √ 

N 

1 

T 
N Cx 

S T 
k 
Cx 

⎞ 

⎠ . (27) 

Noting that 1 T N C = 0 , we have ζ1 (t) = 

1 √ 

N 
1 T N Cx = 0 . Then 

 

T 

( 

l k −1 ∑ 

l=0 

L σ (t l 
k 
) 

) 

e = ζ (t) T diag { ν1 
k , ν

2 
k , . . . , ν

N 
k } ζ (t) 

≥ ν2 
k ζ (t) T ζ (t) 

≥ 0 . (28) 

From (25) and (28) , we have 

lim 

→∞ 

ζ T (t) ζ (t) = 0 . (29) 

his implies 

lim 

→∞ 

‖ e i (t) ‖ = 0 , i = 1 , 2 , . . . , N. (30) 

herefore, lim t→∞ 

| x i (t) − x j (t) | = 0 , i, j = 1 , 2 , . . . , N, i � = j. 

Now, we prove that 

lim 

→∞ 

‖ ̄�(t) ‖ = 0 , (31) 

or any initial condition �̄(0) , i.e., for ∀ ε > 0, there exists t ε > 0

uch that ‖ ̄�(t) ‖ < ε, ∀ t > t ε . 
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To prove (31) , we first show that: For ∀ ε > 0 and 

ˆ T > 0 , there

exists t > 

ˆ T such that 

‖ ϑ̄ i (t) ‖ < ε, i = 1 , 2 , . . . , N, (32)

for ∀ x (0) and �̄(0) . 

We prove this by contradiction that, for ∀ ε > 0 and some i ∈
{ 1 , 2 , . . . , N} , a time t ε, 1 such that 

‖ ϑ̄ i (t) ‖≥ ε, ∀ t ≥ t ε, 1 (33)

does not exist. 

Consider the time interval [ t k , t k +1 ) = [ t k , t k + T k ) with T 0 ≤ T k
≤ T and construct the following function 

�( ̄�(t ) , t ) = 

1 

2 

[ ̄�T (t + T k ) ̄�(t + T k ) − �̄T (t ) ̄�(t )] . (34)

From the initial condition x ( t ε ) and �̄(t ε ) , according to

(19), (29) , and lim t→∞ 

V (t) = V (∞ ) , then lim t→∞ 

�̄T (t) ̄�(t) ex-

ists and lim t→∞ 

�( ̄�(t ) , t ) = 0 due to (34) . Therefore, �( ̄�(t ) , t )

is bounded. 

Calculating the time derivative of the function �( ̄�(t ) , t ) de-

fined in (34) at the time instant t k , we have 

˙ �( ̄�(t k ) , t k ) 

= 

∫ t k + T k 

t k 

d 

dτ
[ ̄�T (τ ) ˙ �̄(τ )] dτ

= c 1 

l k −1 ∑ 

l=0 

∫ t l+1 
k 

t l 
k 

d 

dτ
( ̄�T (τ )�(x, τ ) L p e (τ )) dτ

= 

l k −1 ∑ 

l=0 

∫ t l+1 
k 

t l 
k 

c 2 1 e 
T (τ ) L p �

T (x, τ )�(x, τ ) L p 

+ c 1 �̄
T (τ ) ˙ �(x, τ ) L p − cc 1 �̄

T (τ )�(x, τ ) L 2 p } e (τ ) dτ

−
l k −1 ∑ 

l=0 

∫ t l+1 
k 

t l 
k 

c 1 �̄
T (τ )�(x, τ ) L p �

T (x, τ ) ̄�(τ ) dτ

� I 1 − I 2 . (35)

Due to the boundedness of e ( t ), �̄(t) , �( x, t ), and 

˙ �(x, t) , there

exists a constant number M > 0 such that 

I 1 ≤ M 

l k −1 ∑ 

l=0 

∫ t l+1 
k 

t l 
k 

‖ e (τ ) ‖ dτ. (36)

From Assumption 1 , l k , k = 1 , 2 , . . . , are finite and lim t→∞ 

‖
e (t) ‖ = 0 , we have 

I 1 ≤ 1 

2 

c 1 αδmin ε
2 , ∀ t k ≥ t ε, 2 . (37)

Let U p = [ 1 √ 

N 
1 N , F p ] ∈ R 

N×N be an orthogonal matrix, and F p ∈
R 

N ×(N −1) such that 

 

T 
p L p U p = diag { λ1 

p , λ
2 
p , . . . , λ

N 
p } , (38)

where λ1 
p = 0 , 0 ≤ λ2 

p ≤ · · · ≤ λN 
p , are the N eigenvalues of L p , due

to the symmetry of L p . 

From (38) and U P U 

T 
P 

= 

1 
N 1 N 1 

T 
N 

+ F p F 
T 
p = I N , we have F p F 

T 
p = I N −

1 
N 1 N 1 

T 
N = C. Then 

L p = U p 

⎛ 

⎜ ⎜ ⎝ 

0 

λ2 
p 

. . . 

λN 
p 

⎞ 

⎟ ⎟ ⎠ 

U 

T 
p 

≥ δmin F p F 
T 
p 

= δ C. (39)
min 
herefore 

 2 ≥ c 1 δmin 

l k −1 ∑ 

l=0 

∫ t l+1 
k 

t l 
k 

�̄T (τ )�(x, τ ) C�T (x, τ ) ̄�(τ ) dτ. (40)

By the contradiction, we assume that there exists a time t ε, 1 

uch that (33) is satisfied. From the PE condition (17) , we have 

 2 ≥ c 1 αδmin ε
2 , ∀ t l k ≥ t ε, 1 . (41)

From (35),(37) and (41) , we obtain 

˙ ( ̄�(t k ) , t k ) ≤ −1 

2 

c 1 αδmin ε
2 < 0 , ∀ t k ≥ t ε, 3 (42)

ith t ε, 3 = max { t ε, 1 , t ε, 2 } , which contradicts the boundedness of

( ̄�(t ) , t ) . So, (32) holds. 

Due to lim t→∞ 

‖ e (t) ‖ = 0 , we have 

 e (t) ‖ ≤
√ 

1 

2 c 1 δmax 
ε, ∀ t ≥ t ε, 4 (43)

olds for ∀ ε > 0 and some time instant t ε, 4 . 

From (32) , 

 ̄�(t ε ) ‖ ≤ 1 √ 

2 

ε, (44)

olds for some time instant t ε > t ε, 4 . 

From the initial condition e ( t ε ) and �̄(t ε ) , according to (19),

43) and (44) , we have 

 ̄�(t) ‖ ≤
√ 

c 1 δmax ‖ e (t ε ) ‖ 

2 + ‖ ̄�( t ε ) ‖ 

2 ≤ ε, ∀ t ≥ t ε . (45)

hus, (31) holds. 

From (30) and (31) , it follows that the equilibrium

ol (e (t) , �̄(t)) = 0 is attractive. Sine (30) and (31) hold uni-

ormly respect to the initial time instant, it follows that

ol (e (t) , �̄(t)) = 0 is globally uniformly asymptotically stable.

herefore lim t→∞ 

| x i (t) − x j (t) | = 0 , for ∀ x i (0) ∈ R , i = 1 , 2 , . . . , N

nd lim t→∞ 

‖ ̂  ϑ i − ϑ i ‖ = 0 , for ∀ ̂

 ϑ i (0) ∈ R 

m , i = 1 , 2 , . . . , N. This

ompletes the proof of the theorem. �

emark 5. From the proof, it is obvious that all of the variables of

he system are bounded. The main result of the paper shows that

nder the proposed controller (7) and the adaptive law (8) , lead-

rless consensus can be reached, and in the meanwhile, parameter

onvergence is also ensured. The distribution of the consensus con-

roller (7) and the adaptive law (8) is very important in algorithm

esign of multi-agent systems. However, the adaptive control al-

orithm proposed in [19] , which considered the leader-following

onsensus problem, is not purely distributed. 

. Simulations 

In this section, an example consisting of five agents is given

o validate the theoretical results proposed in this paper. The un-

nown nonlinear functions are assumed to be parameterized as 

f i (x i , t) = [ x i (t ) cos (t ) , x i (t ) sin (t )] ϑ i , i = 1 , 2 , . . . , 5 . (46)

e select ϑ i = [ −10 , 10] T , i = 1 , 2 , . . . , 5 , which are assumed to be

nknown in our algorithm. 

Supposing that all possible switching graphs are { G 1 ,

 2 , G 3 , G 4 , G 5 , G 6 } shown in Fig. 1 . The switching graphs

re assumed to switch one time per three time steps ac-

ording to G 1 → G 2 → G 3 → G 4 → G 5 → G 6 → G 1 ���.

owever, the union of G 1 ∪ G 2 ∪ G 3 (in 9 time steps) and

 4 ∪ G 5 ∪ G 6 (in 9 time steps) are jointly connected through

ome time intervals. Setting the initial states col (e (0) , �̄(0)) =
(−1 . 6 , 2 . 3 , 2 . 9 , 0 . 5 , −4 . 1 , 4 . 7 , −2 . 9 , 0 . 1 , −4 . 0 , 3 . 0 , −3 . 5 , 0 . 4 , −2 . 1 , 

1 . 8 , 0 . 8) T , c = 0 . 8 and c 1 = 100 , the adaptive control algorithms

7) and (8) are simulated in 180 (sec). Fig. 2 shows that the
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Fig. 1. Jointly connected graphs. 
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Fig. 2. Consensus errors converging to zero under (7) and (8) . 
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Fig. 3. Parameter errors converging to zero under (7) and (8) . 
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Fig. 4. The estimates of the true parameter under (7) and (8) . 
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Fig. 5. The control input. 
onsensus errors converge to zero. Fig. 3 shows that the parameter

rrors converge to zero. Fig. 4 shows that the components of the

stimates of parameters converge to the true parameters −10 and

0, respectively. Fig. 5 shows the curves of the control input. The

bove simulation results validate our theoretical results. 

emark 6. The adaptive algorithms mentioned above [13–22] are

ainly divided into two categories. One is using the parame-

er adaptive method [13–20] , another is by tuning the coupling

trength or network weights [21,22] adaptively. In this paper, a

eaderless consensus algorithm is presented using parameter adap-

ive method. However, the works [13–20] are all focus on leader-

ollowing problem. 

. Conclusions 

In this paper, the leaderless consensus problem of multi-agent

ystems with uncertainty has been investigated. Leaderless con-

ensus with parameter convergence is ensured by using adaptive

esign method. We use algebraic graph theory to model the in-

erconnection relations between agents, and the stability analy-

is has been conducted using the Barbalat’s lemma and Lyapunov

echniques. For jointly connected graphs, a common matrix C is

btained to derive the PE condition. The joint connectedness of

he switching graphs property ensures global uniform asymptoti-

al consensus achieving and the PE condition plays a key role the
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in the analysis of the global uniform asymptotical parameter con-

vergence. The simulation example illustrates the validation of our

algorithm. In the future works, we will focus on the following as-

pects: 1) considering the case of multi-agent systems with directed

topologies; 2) searching the sufficient conditions guaranteeing the

parameter convergence without the PE condition; 3) searching the

relationship between the control performance and parameters as-

sociated with jointly connected networks. 
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