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Abstract Model predictive control (MPC) has been
successfully applied to many transportation systems.
For the control of overhead cranes, existing MPC
approaches mainly focus on improving the regula-
tion performance, such as tracking error or steady-
state error. In this paper, energy efficiency as well
as safety is newly considered in our proposed MPC
approach. Based on the system model designed, the
MPC approach is applied to minimize an objective
function that is formulated as the integration of energy
consumption and swing angle. In our approach, promis-
ing results in terms of low energy consumption and
small swing angle can be found, while the solutions
obtained can satisfy all practical constraints. Our test
results indicate that the MPC approach can ensure sta-
bility and robustness of improving energy efficiency
and safety.
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1 Introduction

Overhead cranes are widely used to transport heavy or
hazardous loads in factories and harbors. For a trans-
portation task, the crane is expected to arrive the end
quickly with acceptably small swing. However, it is dif-
ficult to meet such requirements of time efficiency and
safety in crane control, as the crane is an underactuated
system with one control input (actuating force) but two
degrees of freedom (motion of the trolley and swing of
the payload). Positioning accuracy and anti-swing are
two basic requirements, which are highly correlated in
the crane operation. Researchers in the communities
of mechatronics and control have made a lot of efforts
on designing effective and efficient control methods for
the underactuated crane [1–4]. The difficulty of control
arises from the strong state coupling between motion of
the trolley and swing of the payload. The swing not only
affects operational efficiency, but also brings potential
risks of damaging the payload or surrounding objects.
Therefore, the first task in crane control is to analyze
such kinematic coupling behavior. Researchers often
separate the design of controller into an anti-swing part
and a positioning part and then combine the two parts
for achieving required performance.

Many previous works have considered improving
regulation performances of overhead cranes. Existing
strategies can be generally grouped into three cate-
gories: optimal control, input shaping and feedback
control. Optimal control was first proposed as an open-
loop strategy to design the optimal sequence of con-
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trol. Motion trajectories obtained are optimal in terms
of some preferred objectives, such as the steady-state
error or transportation time [5,6], while satisfying prac-
tical and physical constraints. Input shaping is a com-
mand generation method that aims to limit residual
swing [7]. The swing induced by the first part of the
command is canceled by the swing induced by the fol-
lowing part of the command. Input shaping is imple-
mented in real time by convolving the command signal
with an impulse sequence [8]. Note that optimal control
and input shaping are not suitable for some applica-
tions with large system uncertainties and external dis-
turbances as they do not have closed-loop mechanisms.

For the third category, feedback control is the most
commonly used strategy for underactuated systems.
Based on real-time measured information, such as posi-
tion, velocity and swing angle, the control input is
adjusted to reduce the error between actual and ref-
erenced states. Proportional-derivative (PD) control
[9,10], sliding-mode control [11–13], fuzzy control
[14,15] and adaptive control [16] have all been applied
to overhead cranes in the fold of feedback strategies.
Generally, feedback strategies can be divided into two
types, tracking and non-tracking strategies. Firstly, tra-
jectories are designed to maximize operation efficiency
under some physical constraints[17]. Then, feedback
control is employed to track the planned trajectories
in the environment with uncertainties and disturbances
[18–20]. In these tracking strategies, additional resid-
ual swing will be caused during the tracking process
even though the planned trajectories are optimally
designed to suppress residual swing. Secondly, non-
tracking strategies have been proposed to regulate the
control performance in real time [16,21–23]. These
methods skip the step of trajectory planning but still
achieve positioning accuracy and Lyapunov stabiliza-
tion. Due to lack of planning mechanisms, it is dif-
ficult to optimize operational efficiency for this type
of feedback strategies. To overcome these weakness
aforementioned, a model predictive control approach
is proposed as a feedback strategy.

In this paper, model predictive control (MPC) is
developed for crane control, in which trajectory plan-
ning is not required but operational efficiency (in terms
of energy and safety) can be optimized. MPC has
emerged since the early 1970s, and MPC has been
successfully applied particularly in the process con-
trol. MPC is a feedback control strategy that uses an
explicit model of plant to predict the future response

of plant over a finite horizon. The goal of MPC is to
compute a future control sequence in the defined hori-
zon by minimizing a cost function, which is subject
to a set of constraints in both the control actions and
the plant outputs [24,25]. Only “the first part” of the
sequence is applied to control at the next state. The-
oretical properties such as stability and robustness of
MPC have been studied by many authors since the early
work [26]. Up to the present, MPC has become one
of the most popular multivariable control algorithms
in various industries, including chemical engineering,
food processing, aerospace application and recently in
power systems [25,27,28]. This is due to its facility of
handling constraints, its ability of using simple mod-
els, and its closed-loop stability and inherent robust-
ness in many applications. In the transportation field,
MPC has been employed to solve the path-tracking
problems of terrestrial autonomous vehicles [29] and
heavy-haul trains [30]. Researchers have also applied
MPC to boom cranes [31] and gauntry cranes [32]
for tracking and anti-swing. However, existing MPC
approaches for cranes only consider minimizing track-
ing error and steady-state error. They have neglected
two important issues, i.e., energy efficiency and safety,
which turn out to be significantly urgent when a large
number of cranes have been equipped in some interna-
tional industrial fields. To the best of our knowledge,
little work has been done to minimize the swing risk,
while most work only considered the swing as a con-
straint of control. Besides the swing risk, the control
sequence is also related to the profile of power, as well
as the total energy consumption. However, as such rela-
tion is not clear yet, energy consumption has seldom
been considered in crane control.

In this paper, two objectives, energy efficiency and
safety, are evaluated in our proposed MPC approach.
The contributions of this paper include the following
four aspects. Firstly, in our MPC approach, the two
objectives have been integrated based on a discrete-
time model of crane. Our approach can deliver promis-
ing performance in terms of minimal energy consump-
tion and swing. Secondly, our MPC approach does not
require a reference trajectory, which reduces the work-
load of controller. Thirdly, most practical and physi-
cal constraints, such as zero residual swing, maximal
velocity and acceleration, are satisfied in our MPC
approach. Fourthly, due to the closed-loop structure
of MPC, the proposed approach has good robustness
when the crane system experiences disturbances. The
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Fig. 1 Two-dimensional overhead crane system

proposed MPC approach has been compared with the
open-loop control approach in the simulation part. The
comparative study is shown that our MPC approach
can deliver better control performance than the open-
loop control, in terms of energy consumption, swing
and robustness.

The rest of this paper is organized as follows.
Section 2 presents the dynamical model of overhead
cranes. The discrete-time model of overhead cranes is
deduced in Sect. 3. The proposed MPC approach to
optimize the energy efficiency and the safety is given
in Sect. 4. The comparative results are shown in Sect. 5.
Section 6 concludes this paper.

2 Dynamic model of overhead cranes

The structure of an overhead crane can be illustrated
as shown in Fig. 1, where the trolley moves on the
horizontal bridge and the payload is connected with a
constant length rope. Let p(t), θ(t) and F(t) denote the
trolley’s position, the payload’s swing angle and overall
force on the trolley, respectively. In this paper, bridge
deformation, air resistance as well as stiffness and mass
of the rope is neglected, and the load is considered as
a point mass. Moreover, as this study only focuses on
the control of horizontal transportation, hoisting and
lowering of the payload are not considered. Then, the
overhead crane system with constant rope length can
be described as follows:

(M + m) p̈ + ml cos θ θ̈ − ml sin θ θ̇2 = F, (1)

ml2θ̈ + ml cos θ p̈ + mgl sin θ = 0, (2)

where M and m denote masses of the trolley and the
payload, respectively. l is the length of the rope; g is
the gravitational acceleration. The overall force F is
composed of the actuating force Fa, the friction Fr and
the disturbance d as

F = Fa − Fr + d, (3)

Motivated by the friction models in [33–35], this
paper employs a similar nonlinear friction model as

Fr = fr0 tanh ( ṗ/ξ) + kp ṗ + kr| ṗ| ṗ, (4)

where fr0, kp and kr ∈ R are friction-related para-
meters and ξ ∈ R is a static friction coefficient,
which can be obtained from off-line experimental
analysis. In the right-hand side, the first component is
the Coulomb friction, the second one is the damping
effect of the trolley, and the third part is an approx-
imation of other effects. Note that the small friction
caused by the payload’s swing is neglected in the above
model.

The crane dynamics consist of the actuated part
[Eq. (1)] and the underactuated part [Eq. (2)]. The latter
part is the system kinematics that defines the coupling
behavior between the trolley’s acceleration ẍ(t) and
the payload’s swing angle θ(t). The main difficulty in
controlling the overhead crane lies in the handling of
such coupling behavior. When the swing angle is small
enough (θ(t) < 5◦), the kinematic equation (2) can be
linearized with the approximations of cos θ � 1 and
sinθ � θ . The approximated linear kinematics can be
obtained as

l θ̈ + ẍ + gθ = 0. (5)

In the evaluated time interval [0, T ], the crane is
required to arrive at the destination without residual
swing. Therefore, several principles must be satisfied
according to the physical and practical situations in
crane control.

Principle 1 The trolley reaches the desired location pd

at the end of the period. The final states must ensure
that the trolley is static with no swing and that it can be
lowered immediately as

p(T ) = pd, ṗ(t) = 0, θ(T ) = 0, θ̇ (T ) = 0. (6)
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Principle 2 During the horizontal transportation, the
velocity and acceleration of the trolley must be limited
in certain ranges as

{
0 ≤ ṗ(t) ≤ vm, t ≤ T
| p̈(t)| ≤ am, t ≤ T

, (7)

where vm and am are the permitted maximum of veloc-
ity and acceleration, respectively.

Principle 3 The payload swing during the transporta-
tion must be limited within a safe range as

|θ(t)| ≤ θm, t ≤ T, (8)

where θm is the permitted maximum of swing ampli-
tude.

In the approach of control system, the dynamic
model of overhead crane can be rewritten as a mul-
tiple input multiple output (MIMO) state-space model.
Denote the system state as x � [p − pd, ṗ, θ, θ̇ ], the
system input as the acceleration u � p̈ and the sys-
tem output as y � x . According to Eq. (5), the linear
state-space equation can be expressed as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ =

⎡
⎢⎢⎣

0 1 0 0
0 0 0 0
0 0 0 1
0 0 −w2

n 0

⎤
⎥⎥⎦ x +

⎡
⎢⎢⎣

0
1
0

− 1
l

⎤
⎥⎥⎦ u

y = x

, (9)

where wn = √
g/ l is the natural frequency of sys-

tem. Note that the continuous steady-space models
have been used in many linear control methods [18,22],
in which the system has been proven controllable and
stable.

3 Discrete-time model of overhead cranes

Many control approaches are implemented on discrete
systems, where at each sampling instant, MPC uses the
current state of plant to compute the input for the next
control period. Therefore, the continuous system is first
discretized by a sampling period t0, and N = T/t0 is
the total number of samples. The discrete-time model
of cranes can be formulated as Eq. (10) and (11).

(M + m) a(n) + ml cos θ(n)θ̈(n)

− ml sin θ(n)θ̇(n)
2 = F(n) (10)

ml2θ̈ (n)+ ml cos θ(n) p̈(n)+ mgl sin θ(n)=0, (11)

where n = 1, . . . , N ; p̈(n) and F(n) represent accel-
eration and overall force at the nth sample, respec-
tively. θ(n), θ̇ (n) and θ̈ (n) are measured swing angle,
swing velocity and swing acceleration at the nth sam-
ple, respectively. At the period [n − 1, n), the overall
force F(n) is composed of the actuating force Fa(n),
the friction Fr (n) and the disturbance d(n) as

F(n) = Fa(n) − Fr (n) + d(n). (12)

In Eq. (12), Fr (n) is the friction at the nth sample,
which can be formulated similarly with Eq. (4) as

Fr (n) = fr0(tanh v(n)/ξ) + kpv(n) + kr |v(n)|v(n),

(13)

where v(n) = ṗ(n) is the velocity of trolley at the nth
sample.

Note that the discrete-time model is nonlinear. For
applying our proposed linear MPC approach, a linear
discrete steady-space model is required. Based on con-
tinuous steady-space model Eq. (9), the discrete state-
space equation can be deduced using basic control the-
ory as

{
x(n + 1) = Gx(n) + Hu(n)

y(n) = x(n)
, (14)

where x(n) � [p(n) − pd, ṗ(n), θ(n) and u(n) �
p̈(n). G and H are the system matrix and input matrix
in the state space as

G =

⎡
⎢⎢⎣

1 t0 0 0
0 1 0 0
0 0 cos wnt0

sin wnt0
wn

0 0 −wn sin wnt0 cos wnt0

⎤
⎥⎥⎦ , (15)

H =
[

0.5t2
0 , t0,

cos wnt0 − 1

lw2
n

,− sin wnt0
lwn

]T

. (16)

Note that the countability matrix [H G H G2 H G3 H ]
has full rank. There exists optimal design of controller
that ensures system stable at x = 0.

In the discrete model, we denote the vector of accel-
eration as a (a(n) = p̈(n)) and denote the state vector
of velocity as v (v(n) = ṗ(n)). Suppose that the initial
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position is p(0), the initial velocity is v(0), the initial
acceleration is a(0), the initial swing angle is θ(0), and
the initial swing velocity is θ̇ (0). Given an acceleration
vector a, from Eq. (14), the velocity v and the displace-
ment p can be expressed as

{
p = p0 + Bv(0)t0 + Apat2

0
v = v0 + Avat0

, (17)

where⎧⎨
⎩

p = [p(1), . . . , p(N )]T

v = [v(1), . . . , v(N )]T

a = [a(1), . . . , a(N )]T
(18)

p0 = [
N︷ ︸︸ ︷

p(0), . . . , p(0)]T , v0 = [
N︷ ︸︸ ︷

v(0), . . . , v(0)]T ,

(19)

B = [1, 2, . . . , N ]T , (20)

Ap =

⎡
⎢⎢⎢⎢⎢⎣

0.5 0 0 . . . 0
1.5 0.5 0 . . . 0
2.5 1.5 0.5 . . . 0
...

...
...

...
...

N − 0.5 N − 1.5 N − 2.5 . . . 0.5

⎤
⎥⎥⎥⎥⎥⎦

N×N

,(21)

Av =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0
...

...
...

...
...

1 1 1 . . . 1

⎤
⎥⎥⎥⎥⎥⎦

N×N

. (22)

According to Eq. (14), the swing angle θ(n) can be
formulated as

θ(n) = θ(0)cos(nwnt0) + θ̇ (0)

wn
sin(nwnt0) + Aθ a,

(23)

where

Aθ = 1

lw2
n

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cos Nwnt0−cos (N −1)wnt0
cos (N −1)wnt0−cos (N −2)wnt0
cos (N − 2)wnt0−cos (N −3)wnt0

...

cos 2wnt0−cos 3wnt0
cos wnt0−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T

.

(24)

In Eq. (23), the first two components at the right-
hand side is the initial condition response and the third

component is the forced response. It can be noticed that
Eqs. (17) and (23) show calculation to predict state
variables from the initial time. From the kth sample,
x(k + i), 1 ≤ i ≤ N − k has similar expression with
Eqs. (17) and (23) according to the discrete state-space
equation.

In our proposed MPC, the input sequence is the actu-
ating force over the transportation period. In the above
discrete model, when acceleration is determined, force
and velocity can be determined at the same time. There-
fore, for the cranes with actuating motors working in
the force or velocity control mode, the discrete model
can be used. In other words, acceleration is equivalent
with force and velocity using simple transformations
according to Eqs. (10) and (17). Based on this discrete
model, the procedure of the MPC approach is given at
the following section. Note that the discrete model is
still useful in other control strategies, such as optimal
control, proportional- integral-derivative (PID) control
and some closed-loop control methods.

4 Model predictive control approach

Before introducing the MPC approach, the new objec-
tive function in terms of energy efficiency and safety
must be formulated. Note that the control period tc is
usually same or larger than the sampling period t0 in
the MPC. For the interval [k, K ) (where K = T/tc and
0 ≤ k < K is the current instant), energy consumption
can be expressed as

E =
∫ T

ktc
Fa ẋdt =

K∑
i=k+1

Fa(i)v(i)tc, (25)

where E is energy consumption of the motor and Fa(i)
and v(i) are the actuating force and the velocity at
the control period [i − 1, i). Substituting Eq. (10) into
Eq. (12), Fa(n) can be expressed by a(n).

For the interval [k, N ), safety can be evaluated by
the maximal swing angle as

θs = max
i∈{k+1,...,K } θ(i), (26)

where S is the maximal swing angle in the future inter-
val. According to Eq. (23), the swing angle can also be
expressed by a(i).
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The proposed objective function has integrated
energy consumption and safety as

J = α

K∑
i=k+1

Fa(i)v(i)tc + (1 − α) max
i∈{k+1,...,K } θ(i),

(27)

where α is the weighting parameter for integration. As
energy efficiency and safety can be expressed by accel-
eration, the objective function value is only determined
by a(i).

The control input a(i) must be bounded by the max-
imal acceleration am as

a(i) ∈ [−am, am], i = 1, . . . , K . (28)

There are many equality and inequality constraints
for the objective function. Equality constraints include
final states of displacement, velocity and swing angle.
Inequality constraints include limitation of the maxi-
mal velocity, the maximal acceleration and the maxi-
mal swing. Therefore, the objective function (27) must
be subject to a set of constraints as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(K ) = pd

v(K ) = 0
θ(K ) = 0
θ(K − 1) = 0
|a(i)| ≤ am, i = k + 1, . . . , K
0 ≤ v(i) ≤ vm, i = k + 1, . . . , K
|θ(i)| ≤ θm, i = k + 1, . . . , K

. (29)

MPC is employed to solve this optimal control prob-
lem at each control period tc, but not in each sam-
pling period t0 (t0 << tc) for saving computational
cost. In the proposed MPC approach, the optimal con-
trol problem in the prediction horizon [k, K ) is repeat-
edly solved (k = 0, 1, . . . , K ). The input is applied
to the system based on the obtained optimal solution.
The optimal control problem, including the objective
function and the set of constraints, has been defined
in Eqs. (27) and (29). The optimization variable is the
sequence of the acceleration for each control period.
At the kth sample, an optimal solution of acceleration
[a(k + 1), a(k + 2), . . . , a(K )]T can be obtained after
solving the optimal problem. According to the first part
of solution, the actuating force F(k + 1) is computed
and applied to the system in the next control period tc,

i.e., [ktc, ktc + tc). The procedure of the MPC approach
can be illustrated as Algorithm 1.

Set k = 0;1
while k < K do2

Measure state variables x(k), v(k), θ(k), θ̇(k);3
Solve the optimal control problem Eq. (27) subject to4
Eq. (29);
For the optimal solution5

[a(k + 1), a(k + 2), . . . , a(K )]T , compute F(k + 1)

and apply it to the system at [ktc, ktc + tc), where tc is
the control period;
k = k + 1;6

end7

Algorithm 1: The proposed MPC approach for
crane control

It can be noticed that in the MPC approach, ref-
erence trajectories are not required and extra computa-
tion of planning trajectory is skipped. At each sampling
instant, the horizon of the optimal control problem will
be decreased by one when approaching the end. At the
beginning of each control period, displacement, veloc-
ity, swing angle and swing velocity are measured. If
there are disturbances in the previous periods, they can
be detected. The optimal MPC controller will make the
compensation and correction automatically. For this
reason, the closed-loop nature of the MPC controller
comes with an inherent property of robustness.

5 Numerical simulation

The overhead crane system described in [17] is used to
test our proposed MPC approach. The physical para-
meters of the system are listed as follows

m =1.025 kg, M =7 kg, l =0.75 m, g =9.8 m/s2.

(30)

The desired location of trolley in simulation is set as
pd = 0.6m, and the practical constraints are given as

vm = 0.4 m/s, am = 0.2 m/s2, θm = 5◦. (31)

The parameters for the friction model Eq. (4) are
referred from the off-line regression results in [34] as

fr0 =4.4, kp =0.05; kr =0.45, ξ = 0.01. (32)
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Fig. 2 Block diagram of
the MPC approach
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For comparisons, we also evaluate the open-loop
optimal control method on the tested crane. The open-
loop optimal controller utilizes the optimal trajectory
in terms of energy consumption and safety, which is
planned before start.

In this simulation section, zeros initial conditions are
assumed as p(0) = 0, ṗ(0) = 0, p̈(0) = 0, θ̇ (0) =
0, θ̈ (0) = 0. The MPC approach is implemented as
the block diagram shown in Fig. 2. At each sampling
period, the optimal acceleration a(k) is obtained by
minimizing the objective (27) based on states x(k),
v(k), θ(k) and θ̇ (k). Note that these states variables
can be measured by sensors in practical applications.
Here, the state variables are calculated based on the sys-
tem simulation when the disturbance d(k) is assumed

known. In the following simulation, the evaluated con-
trol period is 7 s, the sampling period t is 0.0005 s,
and the control period is 0.1 s. In the MPC and the
open-loop control, the optimization algorithm for min-
imizing the objective function is chosen as fmincon
function in the MATLAB software. In the fmincon
function, the algorithm type is set as “active-set” and
the maximum function evaluation times are 7,000. In
this simulation, we will validate stability and robust-
ness of the MPC approach in the presence of differ-
ent types of disturbances, including the random dis-
turbances, the impulse disturbances and the periodi-
cal sine-wave disturbances. The disturbances are added
to the actuating force between 1 and 3 s as shown in
Fig. 3.
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Fig. 4 Comparison
between the MPC and the
open-loop control with no
disturbance (α = 1)
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5.1 Tests on energy efficiency (α = 1)

When α = 1 is used in Eq. (27), energy consump-
tion will only be considered over the evaluation time.
When there exists no disturbance, the results of open-
loop control and MPC have been shown in Fig. 4. For
the open-loop control, energy consumption is 2.6381 J.
For the MPC, energy consumption is 2.6378 J. Figure 4
shows profiles of acceleration and state variables (dis-
placement, velocity and swing). It can be noticed that
these profiles obtained by the MPC and the open-loop
control are close to each other when no disturbance
exists.

For the random disturbances, energy consumption
obtained in the MPC is 2.6593 J and energy consump-
tion obtained in the open-loop control is 5.8463 J. The
MPC is more energy efficient than the open-loop con-
trol. Figure 5 gives profiles of state variables of these
two approaches between 5 and 7 s with the random dis-

turbances. Nominal profiles which represent optimal
profiles under the assumption of no disturbance are
also given in the figure. It is worth noting that the final
displacement, velocity and swing in the open-loop con-
trol violate the practical constraints. The results of the
MPC approach can satisfy the constraints, such as zero
velocity and zero swing. The MPC profiles can con-
verge to the nominal profiles at the end of transportation
period.

For the impulse disturbances, energy consumption
obtained in the MPC is 2.6584 J and energy consump-
tion obtained in the open-loop control is 2.8834 J.
Energy consumed in the open-loop approach is more
than energy consumption in the MPC due to the impulse
disturbances. Figure 6 gives profiles of state variables
of the MPC and open-loop approaches between 5 and
7 s. In the open-loop approach, the final displacement,
velocity and swing violate the practical constraints.
In the MPC, the results obtained can satisfy the con-
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Fig. 5 State variables of the
MPC and the open-loop
control with the random
disturbance (α = 1)
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Fig. 6 State variables of the
MPC and the open-loop
control with the impulse
disturbance (α = 1)
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Fig. 7 State variables of the
MPC and the open-loop
control with the sine-wave
disturbance (α = 1)
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straints, such as zero velocity and zero swing. The MPC
profiles are more closer to the nominal profiles and con-
verge at the end.

For the sine-wave disturbances, energy consumption
obtained in the MPC is also 2.7394 J and energy con-
sumption obtained in the open-loop control is 3.4252 J.
The open-loop approach has less energy consump-
tion than the MPC due to the periodic disturbances.
Figure 7 shows their profiles of state variables between
5 and 7 s with the sine-wave disturbance. The same con-
clusion can be drawn in the open-loop control that final
displacement, velocity and swing violate the practical
constraints. The results obtained by the MPC can sat-
isfy the constraints, such as zero final velocity and zero
final swing.

It can be concluded that for different kinds of dis-
turbances, the MPC can reduce energy consumption of
crane to an acceptable extent while the practical con-
straints can all be satisfied. As mentioned before, in
the MPC as the constraints are satisfied, the payload
can be lowered immediately without any adjustment.
For the open-loop control, the required adjustment asks
for extra energy and time, which can be saved in our
proposed MPC approach.

5.2 Tests on safety (α = 0)

When α = 0, safety is considered in the objective func-
tion for minimizing the maximal swing angle. When
there exists no disturbance, the solutions obtained in the
open-loop control and the MPC have the same maximal
swing angles 0.0062 rad. Besides the maximal swing
angle, the residual swing angle is another important
metric to evaluate the oscillation of the payload. In this
paper, the residual swing is defined as the average swing
angle in the last R seconds (R = 2 is used here). The
residual swing in the open-loop control is 0.0062 rad;
the residual swing in the MPC is 0.0057 rad. The MPC
approach can obtain less residual swing angle than the
optimal solution. The reason is that when the crane is
approaching the destination, each optimal control prob-
lem in the MPC is to minimize the residual oscillation at
each control period. Figure 8 gives profiles obtained by
the MPC and the open-loop control in this case. It can
be noticed that the maximal swing angles in the MPC
and the open-loop control are the same. For reducing
the residual swing, accelerations in the last 2 s have
large differences between the MPC and the open-loop
control.
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Fig. 8 Comparison
between the MPC and the
open-loop control with no
disturbance (α = 0)
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For the three kinds of disturbances, the maximal and
residual swing angles obtained in the MPC and open-
loop approaches are listed in Table 1. The results of
the MPC are better than those of the open-loop con-
trol in terms of small maximal and residual swing. For
the random disturbances, the average of maximal and
residual swing is 0.0077 rad for the MPC and 0.0131 rad
for the open-loop control. For the impulse disturbances,
the maximal swing 0.0141 rad and the residual swing
0.0068 rad are obtained in the MPC. The average of
them is smaller than the average obtained by the open-
loop control. The same conclusion can be found in the
case of the sine-wave disturbances. Figures 9, 10 and
11 give the profiles of displacement, velocity and swing
between 5 and 7 s for the three kinds of disturbances,
respectively. The figures indicate that the practical con-
straints can be satisfied in the MPC approach and the
MPC profiles can converge to the nominal profiles.

It can be concluded that for different kinds of dis-
turbances, the safety of operation is enhanced in the

MPC by minimizing the maximal and residual swing
while all the practical constraints are satisfied. Com-
pared with the open-loop control, the MPC does not
need extra energy and time to adjust the violated con-
straints. Furthermore, the MPC approach aims to min-
imize the maximal swing, but due to its specific struc-
ture, it reduces the residual swing as well.

5.3 Tests on energy efficiency and safety (α = 0.01)

When α = 0.01, both energy efficiency and safety
have been considered in the control objective. If no
disturbance exists, the optimal solution obtained in the
MPC has J = 0.0324 (E = 2.6412, S = 0.0060),
while the solution obtained in the open-loop control
has J = 0.0326 (E = 2.6437, S = 0.0063). It can
be noticed that the MPC is slightly better than the
open-loop control in terms of energy consumption and
safety.
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Table 1 Swing
comparisons of different
disturbances (α = 0)

The better results obtained
are highlighted as bold

Random Impulse Sine-wave

MPC Open-loop MPC Open-loop MPC Open-loop

Maximal swing (rad) 0.0097 0.0203 0.0141 0.0413 0.0513 0.0610

Residual swing (rad) 0.0056 0.0084 0.0068 0.0238 0.0148 0.0245

Average (rad) 0.0077 0.0131 0.0104 0.0326 0.0330 0.0427

Fig. 9 State variables of the
MPC and the open-loop
with the random disturbance
(α = 0)
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For the three kinds of disturbances, we have com-
pared the MPC with the open-loop control on the same
crane system. Table 2 gives their results in terms of
objective value, energy consumption, maximal swing
and residual swing. For the random, impulse and sine-
wave disturbances, it can be noticed that the MPC per-
forms much better than the open-loop control in terms
of energy consumption and swing; especially, the MPC
is suitable to reduce the residual swing. Figures 12, 13
and 14 are the profiles of displacement, velocity and
swing between 5 and 7 s when each kind of disturbances
exist. As shown in figures, the open-loop control can-
not ensure all practical constraints satisfied, but results
obtained in the MPC can satisfy all constraints.

In addition, to validate the robustness of the pro-
posed MPC approach against parameter variations, we

examine the following two extreme cases during the
transportation process.
(1) The rope length is changed from 0.75 to 1 m abruptly
at t = 1s.
(2) The payload mass is increased from 1.025 to 1.2 kg
abruptly at t = 4s.

Note that abrupt changes of parameter are much
tougher situations than time variation of parameter. In
these two cases, the crane can be controlled to arrive the
end without violation of terminate constraints. In Case
1, the energy consumption is 2.6488 J and the maximal
swing is 0.0060 rad. In Case 2, the energy consump-
tion will be increased due to the payload mass change.
The energy consumption is 2.6494 J, and the maximal
swing is 0.0060 rad. The profiles resulted from constant
parameters and changed parameters have been given in
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Fig. 10 State variables of
the MPC and the open-loop
control with the impulse
disturbance (α = 0)
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Fig. 11 State variables of
the MPC and the open-loop
control with the sine-wave
disturbance (α = 0)
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Table 2 General
comparisons of different
disturbance (α = 0.01)

The better results obtained
are highlighted as bold

Random Impulse Sine-wave

MPC Open-loop MPC Open-loop MPC Open-loop

Objective value 0.0364 0.0787 0.0400 0.0698 0.0793 0.0946

Energy consumption (J) 2.6839 5.8530 2.6818 2.8920 2.8483 3.4267

Maximal swing (rad) 0.0096 0.0204 0.0133 0.0413 0.0513 0.0610

Residual swing (rad) 0.0057 0.0085 0.0068 0.0238 0.0148 0.0245

Fig. 12 State variables of
the MPC and open-loop
approaches with the random
disturbance (α = 0.01)
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Figs. 15 and 16. In Case 1, the acceleration profile has
been adapted according to the change of rope length
after 1 s. In Case 2, the acceleration profile has been
adapted according to the change of mass after 4 s. It can
be concluded that under different situations of varied
parameters, the MPC approach is useful to achieve the
transportation task with good operational performance.
The trolley accurately reaches the destination with zero
final swing. During the transportation, the energy con-
sumption is optimized and the maximal swing as well
as the residual swing has been suppressed within an
acceptable range.

It can be concluded that the MPC can minimize the
energy consumption and maximize the operation safety

at the same time in our proposed approach. Whether
disturbances exist or not, the MPC can be used to find
the close optimal results. The practical constraints are
reliably satisfied over the control horizon.

5.4 Comparison with other control methods

To validate whether the performance improvement of
the proposed approach is significant, some commonly
used crane control methods have been selected in the
comparison study. They all belong to energy-based
feedback control, in which the highly coupled and com-
plicated underactuated system dynamics can be con-
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Fig. 13 State variables of
the MPC and open-loop
approaches with the impluse
disturbance (α = 0.01)
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Fig. 14 State variables of
the MPC and open-loop
approaches with the
sine-wave disturbance
(α = 0.01)
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Fig. 15 Case 1: profiles
obtained in the MPC when
the rope length is changed
in comparison with constant
length
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ventional analyzed via the system energy to achieve
satisfactory control performances. A series of energy-
based controller, including E2 controller [10], trol-
ley/gantry kinetic energy (TKE) controller [9] and end-
effect motion (EEM)-based controller [21], have been
proposed with similar forms of proportional-derivative
(PD) control. The expressions of these controllers are
simply illustrated as follows. More details can be
referred from their original publications.

(1) E2 control law:

FE2 =−(kpe + kd ẋ)m(θ) − kvm sin θ(l θ̇2 + g cos θ)

kEm(θ)E(t) + kv
,

(33)

where e = p − pd is the displacement error, E(t) is the
system mechanical energy and m(θ) = M + m sin2 θ .
kp, kd, kE, kv are control gains of the E2 controller.

(2) TKE control law:

FTKE =−kpe − kd ẋ + kv
[
ζ(θ, θ̇ ) − m sin θ cos θ θ̇ ẋ

]
kE + kv

,

(34)

where ζ(θ, θ̇ ) = −m sin θ(l θ̇2 + g cos θ) and kp,

kd, kE, kv are control gains of the TKE controller.
(3) EEM control law:

FEEM = −kp(e − ka sin θ) − kd(ė − ka θ̇ cos θ), (35)

where kp, kd, ka are control gains of the EEM con-
troller.

These three controllers are implemented on the same
crane system mentioned before. For these controllers,
parameter settings are following the settings given in
[21]. The proposed MPC controller has been compared
with the three controllers. For each controller, the per-
formance is evaluated in terms of the final displacement
pf , the maximal swing θs, the residual swing θres, the

123



Model predictive control for improving operational efficiency 2655

Fig. 16 Case 2: profiles
obtained in the MPC when
the payload mass is changed
in comparison with the
constant mass
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Table 3 Control performance comparison

Controllers p f (m) θs(
◦) θres(

◦) ts (s) Fmax
a (N)

E2 controller 0.601 4.86 1.59 14.10 23.10

TKE controller 0.597 3.70 1.40 11.68 14.67

EEM controller 0.599 3.19 0.25 4.18 11.32

MPC controller 0.6 0.344 0 7 1.363

arriving time ts and the maximal actuating force Fmax
a .

Table 3 lists experimental results of E2, TKE, EEM and
the proposed MPC approaches for crane control. In the
MPC, a constraint optimization problem is solved in
each receding horizon. Therefore, more terminal con-
straints can be satisfied in the MPC approach than in
the compared control methods. For example, the final
displacement obtained in the MPC is pd = 0.6 and
the residential swing in the MPC is zero. As shown in
the table, the MPC performs the best in terms of zero

residual swing, the smallest maximum swing and the
smallest actuating force. Although the EEM controller
can achieve the shortest arriving time with great time
efficiency, it cannot strictly follow constants considered
in this paper, such as constraints of maximal swing,
maximal acceleration and velocity. When the maximal
actuating force is small, the actuating motor works with
smoothly accelerating or decelerating, which means
that motor oscillation as well as energy consumption
can be reduced. The smallest actuating force obtained
in the MPC indicates some reason of the resulted energy
efficiency.

6 Conclusion

For overhead cranes, energy consumption and safety
have been modeled to achieve the control perfor-
mance improvement. Using the model predictive con-
trol (MPC) approach, the crane can be controlled to
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arrive the destination with good performance of energy
efficiency and safety, because energy consumption and
maximal swing angle have been minimized during the
horizontal transportation. To simulate real world appli-
cations with disturbances, three kinds of disturbances
(random, impulse and sine wave) have been tested in
the proposed MPC approach. From numerical results
obtained, it has been shown that the MPC approach
is stable and robust to find the close optimal solutions
when disturbances exist.

The MPC approach is suitable to solve the process
control of transportation systems. For crane control, the
MPC utilizes the information of current displacement,
velocity and swing angle for predicting the following
control sequence (acceleration or force). As only the
first sample of the sequence is applied, any disturbance
that occurred in the system can be detected before the
next control period. The MPC can correct the control
variable accordingly for the next period. This is why
the MPC can obtain accurate and robust results in crane
control.

In this paper, the crane system is simplified as a
deterministic model without consideration of system
uncertainties, such as bridge deformation, time-varying
rope length and payload weight. For complicated sys-
tem with such uncertainties, the proposed approach still
can be employed to pursuit minimal energy consump-
tion and maximal safety if some stochastic MPC is cho-
sen instead of the standard MPC and uncertainties can
be detected or approximated. Due to the length limi-
tation of this paper, the stochastic model has not been
included in the proposed approach. Future work may
evaluate the stochastic or nonlinear MPC on compli-
cated crane systems with uncertainties.
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