
Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

Measurement uncertainty in energy monitoring: Present state of the art

Herman Carstensa,⁎, Xiaohua Xiaa, Sarma Yadavallib

a Centre for New Energy Systems (CNES), Department of Electrical, Electronic, and Computer Engineering, University of Pretoria, South Africa
b Department of Industrial and Systems Engineering, University of Pretoria, South Africa

A R T I C L E I N F O

Keywords:
Measurement and verification
Energy metering
Project risk
Measurement error models
Calibration
Metrology
Mismeasurement
Errors-in-variables

A B S T R A C T

Measurement uncertainty is a key component in the overall uncertainty calculation for Measurement and
Verification (M& V) projects. However, in some cases, it is reduced to outlier detection or basic uncertainty
propagation calculations. In other cases, funds are spent on determining uncertainties that have little effect on
project decisions. Therefore a need exists for a fuller treatment of the subject in the light of literature from M&V
and other fields. This paper surveys general M &V literature, as well as relevant research from metrology,
electrical engineering, economics, decision analysis, and statistics. Electrical metering and sub-metering un-
certainty is investigated, as well as often-overlooked considerations such as power quality and the cost of ca-
libration. The effect of mismeasurement on energy models and practical techniques for mitigating such effects
are assessed. Last, research on building simulation and project decisions in the light of measurement error is
surveyed. Bayesian methods are found to be a recurring theme in much of the research being conducted on all of
these aspects. Power quality and mismeasurement effects have also been found to make a material difference in
project evaluation. The survey is concluded with recommendations for further research in the light of current
trends in data analysis and energy evaluation.

1. Introduction

The International Performance Measurement and Verification
Protocol (IPMVP) [1] notes that three forms of uncertainty arise in
energy Measurement and Verification (M&V): measurement un-
certainty, sampling uncertainty, and modelling uncertainty [1]. Al-
though research on combining sampling and modelling uncertainty has
been done by Ye et al. [2,3] and Carstens et al. [4] on lighting projects,
and Sun on building energy performance [5], measurement uncertainty
is usually assumed to be negligible. Nevertheless, the cost-effective al-
location of measurement resources continues to be a pertinent question
for decision makers. The aim of this survey is to introduce M&V pro-
fessionals and researchers to the salient literature on various topics
related to measurement uncertainty in energy monitoring.

While one usually associates measurement in M&V with electricity
meters, instruments measuring with error also include surveys and

questionnaires [6], tracking databases, non-intrusive load monitoring,
and inspection reports [7]. These instruments may measure or record
any number of variables such as occupancy [8], floor area, schedules,
income, the proportion of Miscellaneous Electrical Loads (MELs)
[9,10], etc. Sometimes data such as plug load energy use are used as a
proxy to measure occupancy [11]. More about this in Section 3.5.

Are cheaper, smarter meters and the big data revolution not going to
render measurement uncertainty concerns obsolete? Advanced
Metering Infrastructure (AMI) is being rolled out in the United Kingdom
(UK) and Europe, although state regulation is more fractured in the US
[12]. Although these regions represent only 12.4% of the world popu-
lation, they consume 66.2% of the world's electricity.1 The nature of
M&V in these regions is changing, with promising results for M&V 2.0
already being published [13]. On the other hand (or hemisphere), 17%
of the world population still have no access to electricity, and 38% still
cook using biomass [14]. Many of these live in sub-Saharan Africa, and
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for the companies serving these billion people, the big data revolution is
still some way off.

We should also note that AMI improves sampling rather than
measurement uncertainties. Even so, investigations into big data in
energy monitoring [13,15,16] are welcome, although bigger data are
no remedy if it is still measured with error. Although the tools and
methods are improving and becoming automated, measurement error
will continue to be relevant to M& V professionals. However, it does not
seem to be discussed directly in most M&V literature, and we hope that
this work goes some way in addressing this gap.

This survey is structured around the following questions:

• What does current literature say about measurement uncertainty?
How is it addressed in metrology?

• What are the sources of electrical metering uncertainty? What are
the effects of mismeasurement, has it been documented in energy
monitoring, and how can it be mitigated?

• How does measurement uncertainty affect project decisions?

2. Background

2.1. Measurement uncertainty in M&V literature

Measurement uncertainty is acknowledged in M&V literature, al-
though firm guidance is seldom given. A summary of guideline char-
acteristics in this respect can be found in Table 1. The American Society
of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE's)
Guideline 14-2002 [17,18] (henceforth referred to as G14) is the
foremost technical resource for M&V. It provides comprehensive gui-
dance on instrumentation, data-handling, uncertainty calculations, as
well as a catalogue of uncertainties for a wide variety of energy-related
measurement instruments. It has recently been updated to a 2014
version [19], although the original remains useful. ‘G14’ will refer to
both, unless stated otherwise. G14 and the California Commissioning
Collective [20] (CCC) adopt Reddy and Claridge's alternative fractional-
savings parametrisation of measurement uncertainty [21]. The IPMVP
[1,22] provides general guidance on uncertainty but does not address
measurement uncertainty in much detail. The National Renewable
Energy Laboratory (NREL's) Uniform Methods Project (UMP) [23] es-
tablishes best practices for energy data collection and is the only
guideline to discuss mismeasurement at all. ASHRAE Guideline RA96:

Engineering Analysis of Experimental Data [24] also deserves mention. It
is a general quantitative introduction to handling measurement un-
certainty in engineering measurements and could be applied to some
M&V cases. The State and Local Energy Efficiency (SEE) Action group's
Energy Efficiency Programme Impact Evaluation Guide [25] (hereafter
referred to as the SEE Action Guide) is also notable and does give
practical guidance on uncertainty. Finally, some preliminary work on
the relative contributions of measurement and sampling uncertainty in
M&V has also been presented by Carstens, Xia, and Yadavalli [26], and
a method for low cost calibration of energy meters proposed [27].
Recently, Ligier et al. [28] proposed a method for accounting for M&V
uncertainty alongside building simulation, and did consider measure-
ment uncertainty in the model.

Greenhouse Gas reduction programmes often require M& V. Vine
et al. reported on different options considered for dealing with mea-
surement uncertainty in such cases [29]. Although this was a work in
progress in 2002, it is still relevant, since the debate around the ad-
vantages and disadvantages of different measurement approaches is
explained well. Discount factors to compensate for the uncertainty of
various methods are also listed. The scale of the United Nations Fra-
mework Convention for Climate Change's Clean Development Me-
chanism (UNFCCC CDM) methodology specifications dwarfs other
M&V documentation. It contains over two hundred methodologies for
different project scales and applications. Accuracy requirements vary,
but the 90/10 criterion is most common, although Sonnenblick and Eto
[30] have shown that this precision level is only necessary for projects
where the savings to cost ratio to be verified is small. In many cases,
90/50 is adequate for identifying project cost-effectiveness, that is,
whether or not a project saved energy.

Shishlov and Belassen [31] provided a useful review of how mon-
itoring uncertainty is approached in the CDM. For example, CDM
AM0046 requires Compact Fluorescent Lamp Retrofit programmes to
be monitored very stringently at the insistence of regulators, even re-
quiring custom-made meters. Michaelowa, Hayashi, and Marr [32] who
developed the methodology noted that no projects were completed
under AM0046 until the alternative AMS II.C [33] was adopted. Later
AMS II.J [34] was also adopted. In it, every CFL is deemed to operate
for 3.5 h/day, eliminating the need for measurement. Even so, they
assert that there are still projects that would reduce emissions but are
ineligible. These difficulties illustrate that measurement goals should
always be construed in the larger project and social context. Achieving

Table 1
The treatment of measurement uncertainty in leading M&V guidelines.

Name Year Level of detail Features Reference

G14 2002, 2014 10 • Most comprehensive treatment of M&V uncertainty [18,19]

• Excellent methods

• Instrument uncertainty database

• Itemized measurement costs

• Technology slightly dated in 2002 version
IPMVP 2012 5 • Introductory treatment [1,22]

• Sensitivity and Uncertainty Analysis worked examples [1]
CDM 2015 8 • Approach varies between methodologies [41,31]

• Emphasis on being conservative [32]

• Discount factors used for >95/5 measurement error [35]

• 95/10 assumed for unknown measurement error [35]

• Deemed Savings also used [34]

• MC recommended for complex cases
UMP 2014 6 • Varies with authors of chapters [23]

• Errors-in-variables discussed in Chapters 13, 23 [43,44]

• Metering error discussed in Chapter 9 [45]

• Survey error discussed in Chapter 11 [46]
SEE Action Guide 2012 4 • Practical guidance [25]

• Discussion of uncertainty and project risk
CCC 2012 6 • Appendix on uncertainty analysis [20]

• Adopts and simplifies fractional savings approach

Abbreviations: CCC, California Commissioning Collective; CDM, Clean Development Mechanism; G14, ASHRAE Guideline 14-2002 and 14-2014; IPMVP, International Performance
Measurement and Verification Protocol; SEE Action Guide: State and Local Energy Efficiency Programme Impact Evaluation Guide; UMP, Uniform Methods Project.
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important individual statistical outcomes is never an end in itself. It
may even hinder meeting overarching programme goals such as emis-
sions reduction or development. Research on efficient sampling designs
has been conducted to reduce the sampling burden as much as possible
[2–4], although this is still much scope in this field. The CDM board is
also working towards a stringency/cost trade-off system to replace the
current system [35]. We discuss such approaches in Section 6.

2.2. Measurement uncertainty in metrology

Metrology is the science of measurement, and its guiding document
is the ISO Guide to the Expression of Uncertainty in Measurement, also
known as the GUM [36]. The GUM has standardised the expression of
uncertainty across most quantitative scientific disciplines and is also
applied to energy monitoring. Instructive tutorials have been written,
most notably by the British [37,38] and European [39] accreditation
agencies. ISO/IEC 17025 [40] General requirements for the competence of
testing and calibration laboratories has contributed to the GUM's popu-
larity by stipulating that complying laboratories apply a procedure to
estimate uncertainty in measurement.

The GUM distinguishes between measurement uncertainty calcu-
lated by statistical methods from measured data (Type A), and those
measured or stipulated from prior information or judgement (Type B).
It also standardised the expression of uncertainty as a coverage interval,
also known as an expanded uncertainty. This is the confidence/precision
format of expressing uncertainty, which should be familiar to most
M&V professionals and is used in the IPMVP [1], RA96 [24], and CDM
[41] documents. For example, when a measurement is expressed as

±10 1, the precision range (or semi-range) is =p 1. We expect the in-
terval from nine to eleven to correspond to the 95% confidence interval
if no more information is given [37,24]. Since the standard score of the
normal distribution = ≈z 1.96 295% , we say that the coverage factor is 2.
The rectangular/uniform distribution is recommended rather than the
Normal distribution for digital volt meters and instruments where un-
certainties are not stated [37]. Although this is conservative, it is not a
realistic assumption for M&V. Energy data are usually aggregated or
integrated over a time interval such as 30 min, and such errors would
then be normally distributed. If an M&V practitioner opts for the
uniform distribution assumption, and later convolves it with a normal
distribution for sampling error, for example, the resultant coverage
interval will be a statement about uncertainties, not probability density
intervals [42]. We recommend Monte Carlo (MC) convolution to obtain
the probability distribution in such a case.

M &V professionals should also be aware of the concept of dominant
uncertainty components. As a rule of thumb, if one uncertainty com-
ponent is two to three times larger than the next highest one, it may be
considered to be the sole contributor to the overall uncertainty [37,
p.17]. This is because of the sum-of-squares approach to adding stan-
dard deviations together allows larger standard deviations to dominate
the final result. Commenting on the efficient allocation of measurement
resources between Type A and Type B measurements, Birch, therefore,
remarks that the “quantification of uncertainties in testing normally
involves a large element of estimation of…uncertainty components.
Consequently, it is seldom justifiable to expend undue effort in at-
tempting to be precise in the evaluation of uncertainty for testing” [37,
p.15].

2.2.1. New directions in metrology
Although acknowledged as very helpful, the GUM has drawn criti-

cism, most notably from Bayesian statisticians [42]. One point of con-
tention relevant to M&V is that the propagation of errors calculation is
defined as a first-order Taylor series approximation, which does not
always hold.

Some physicists and statisticians are also uncomfortable with the
frequentist approach to how confidence intervals are calculated in the
GUM. It has been shown from first principles that this approach is

invalid in many measurement cases [42]. The standard (frequentist)
confidence interval, for example ‘90%’, is a product of a process that
produces an interval containing the true value 90% of the time [47]. It
is not an expression of certainty or degree of belief, as 10% of the time
the interval will not contain the true value at all. The Bayesian credible
interval can claim this, however. For many cases the distinction is
academic, as these intervals may agree [48], frequentists may borrow
Bayesian language [42]. For other situations, however, standard con-
fidence intervals are inappropriate for risk calculations, and credible
intervals are recommended.

In reaction to the criticisms above, the GUM was updated, and a
supplement describing a Monte Carlo (MC) alternative was published
[49]. It is especially useful for non-linear cases, where any distribution
other than the Gaussian or scaled-and-shifted T is used, or where the error
propagation function is complex. It also delivers the final error estimation
as a probability distribution rather than an uncertainty interval. Therefore
it is all but recommended as the de facto method for uncertainty propa-
gation calculation by the supplement. MC can be too computationally
expensive for high-dimensional problems and approaches such as MC-
Latin Hypercube Sampling or Sobol’ Sequences [50]. Respected Bayesian
metrologists such as Lira have advocated analytical calculus-based ap-
proaches over MC methods where possible [51]. However, we do not see
this as a viable alternative in the energy M&V industry.

A second, useful approach is the Mellin Transform Moment
Calculation (MTMC) method [52,53], which has a free online toolbox
for calculation [54]. The method has been developed as an analytical
alternative to MC and allows the moments of a distribution resulting
from a polynomial function of constituent distributions to be expressed
exactly. Once mean, variance, skewness, kurtosis, and higher order
moments are obtained, these can be used to calculate the shape of the
resultant distribution in a more computationally efficient and consistent
manner than MC. This has been used in M&V [55] by fitting a Johnson
SB [56] distribution using Hill's algorithm [57]. Rajan et. al [58] pro-
vided more information on moment-based distribution fitting.

Regarding the Bayesian approach, the UK Accreditation Service
(UKAS) noted that “Bayesian statistics is becoming recognised as being
particularly useful in certain areas of testing” [38], and as of 2016 the
GUM itself is also in the process of being extensively revised to ac-
commodate the Bayesian paradigm [59]. This signals an interesting
shift in metrology and the way in which uncertainty is viewed and
calculated, and M&V professionals would do well to take notice. (Some
already have, as will be seen in Section 6.) For those seeking an in-
troduction, Estler [60] provides a comprehensive tutorial of Bayesian
theory in the context of measurement and the GUM, while shorter
theoretical Bayesian frameworks for metrology have also been written
[61,62]. Although M&V practitioners should be cognizant of the un-
derlying theory at the level presented in these papers, the specific
mathematics in these sources are replaced by MC methods implemented
in software. Rossi developed domain-specific MC software for calcu-
lating measurement error by Bayesian methods [63], although general-
purpose software may be preferable by most M&V professionals, as
discussed in Section 5.2.2.

In a recent study, Carstens et. al. [27] used a Simulation Extra-
polation (SIMEX, see Section 5.2.2) [64] method enhanced by a Baye-
sian approach to calibrate energy meters in-situ while controlling for
uncertainty.

3. Metering uncertainty

Metering uncertainty can be dominated by other uncertainties such
as sampling or modelling [26], but can nonetheless be significant de-
pending on the application. Below we will consider five cases: general
energy metering uncertainty, sub-metering and its contribution to
measurement uncertainty, how power quality affects metering un-
certainty, virtual instrumentation, and the possibility of in-situ meter
calibration.
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Regarding metering uncertainty, static (solid-state) electrical energy
meters used for reporting purposes have to be qualified to standards set
by the International Electro-technical Commission (IEC), or its
equivalents, such as ANSI C 12–20 [65] in the US. Metering classes
indicate maximum allowable percentage errors over the majority of the
measurement range, so that a Class 1 m is 1% accurate, for example.
IEC 62053-21 [66] refers to Class 1 and 2 (active), 62053-22 [67] to
class 0.2S and 0.5S (active), and 62053-23 [68] to class 2 and 3 (re-
active) meters. A graphic illustration of the accuracy requirements is
shown in Fig. 1. Close attention should be paid when acquiring meters,
as accuracy class (mis)specification has also been abused as a marketing
tool, as catalogued by Irwin [69]. M &V professionals should also note
that influence quantities such as harmonics are tested for, but in a one-
at-a-time fashion, with all other quantities held at default levels.

A distinction between calibrated and qualified meters should be
drawn at this point. A qualified meter model range conforms to the IEC
standards (called ‘type conformity’ by the European Measurement
Instrument Directive (MID) [71]). Models of this type have undergone
many different tests to prove that their results are stable within certain
specified operating ranges for factors such as temperature, power
factor, and humidity. Thus qualification is a matter of the quality of a
given meter model. An individual meter, although qualified as a unit in
a model range, may still give incorrect readings because it is not cali-
brated. This may occur when internal conversion factors have drifted
over time, for example.

Even when meters are qualified to these standards, errors or bias
can be introduced by environmental conditions. For example, even
though temperatures in Saudi Arabia still fall within IEC specifications,
systematic bias is introduced due to consistently abnormal values [72].
Even such small biases on revenue meters metering large installations
can lead to significant billing errors.

The discussion above applies to the meter itself, but not to the
current transformer (CT) often used to measure the current. In many
cases, CT accuracies are lower than the meter accuracies. An example of
CT accuracy specifications can be found in Fig. 2. They need to be
considered separately from metering uncertainty and added using the
sum-squared error method. In many situations, the accuracy class of the
CT and meter, together with their rated currents will suffice to de-
termine the overall accuracy of the measuring system.

Although accuracy influences meter prices, the communication
protocol used by the meter is also significant, as shown by Ahmad et al.
in their review of energy and related sensors [73].

3.1. Sub-metering

Sub-metering an installation often provides valuable insight into the
main load drivers but can be expensive if revenue-accuracy meters are

used. One can consider less accurate and costly options in these ap-
plications.

Plug-through meters are popular for metering MELs. Polese et al.
provided a comprehensive case study detailing the challenges in im-
plementing such a solution at a large retailer, for an NREL study [74].
The study demonstrates the inaccuracy of such meters, as well as other
factors that contribute to general measurement uncertainty. In this
study, 41% of the meters had significant portions of the data series that
were erroneous. Errors of 20% in the range 0–20 W were common, and
6% in the range 25–100 W. Given that 40% of the MELs operated below
the 60 W level, these errors are significant.

Stick-on Electricity Meters (SEMs) represent an exciting new low-
cost measurement or logging option [75]. These sensors are placed on
the circuit breaker in the distribution board, and senses when current is
drawn on the circuit. Tests indicate an accuracy of 5% or less. It is
important to note that these do not work where relays are present.

Current-only meters are becoming a popular option for residential
metering. They usually use split-core CTs and are much more affordable
than revenue energy meters, but are not as accurate, or even qualified.
In personal correspondence with a popular meter manufacturer based
in the UK, the accuracy was quoted as 10% [76]. Given that they op-
erate in a narrow environmental and electric range, this is usually not of
great concern, provided that they can be verified in some way. How-
ever, they can not be recommended as the sole meters used for projects.
The voltage may vary due to supply-side fluctuations, or due to facility-
level demand factors. On the demand side, current-only meters multiply
their readings by a nominal voltage. The resultant power measurement

Fig. 1. Comparison of different IEC accuracy class
meters [66–68] for transformer-connected single or
polyphase meters with balanced loads under sinu-
soidal conditions.

Fig. 2. Instrument Current Transformer accuracies according to IEC 60044-8 [70]. For
Class 3 and Class 5, the limits are flat at 3% and 5% respectively.
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is in Volt-Ampéres: apparent power, not true power in Watts. The
power factor is thus assumed to be unity. Inductive power electronic
equipment found in most households will decrease the power factor to
below one, biasing the measurement by this power factor. On the
supply side, the utility voltage is seldom at the nominal level. It is
regulated to be in a certain range [77]. In Europe, utility supply voltage
is determined to be 230 V ± 10% [78], and in the United States, 120 V
± 5% [65]. However, certain asymmetrical tolerances may also hold.
For ANSI C84.1 Range B [79], these tolerances are − 13% and + 6%.
These asymmetrical tolerances may skew the calculation since under-
voltages are higher and possibly more likely than over-voltages.

For the symmetrical tolerance case, it may be argued that un-
measured variations would cancel out over time. However, a constant
voltage offset may also apply. The supply voltage at a facility such as a
house varies with a number of factors. These include the distance of its
distribution transformer from the substation on the primary feeder, the
distance between this house and the transformer on the secondary
feeder, the number of facilities on the secondary feeder, and the load on
the feeders. The average incomer voltage at a house on the edge of a
distribution network may be at the lower end of the specification in-
terval, while a facility closer to a transformer may be at the upper end
of the interval. Therefore the distribution of voltage for a single facility
may not be symmetric around the country's nominal voltage, biasing
the measurements for which a nominal voltage was specified.

3.2. Power quality

Power Quality is an important consideration in metering un-
certainty calculation, although M&V does not discuss it very much.
The IEC standards qualify meters only for sinusoidal conditions, but on
networks with modern power electronic equipment, this assumption is
usually invalid [80]. The harmonics which cause the non-sinusoidal
condition may originate from some modern power electronics sources,
such as Variable Speed Drives (VSDs), fluorescent lamps with electro-
nics ballasts, switching power supplies, or controlled rectifiers [81].
These harmonics are generated by loads on the network but are ob-
served as a supply quality problem when measured. For certain cases
where the customer pollutes the power network with large harmonic
power flows, the presence of harmonics may skew the reactive energy
measurement to such an extent that a power factor greater than unity is
indicated, even if this is not the case at all [81].

These conditions then lead to mismeasurement in static energy
meters, especially when a non-unity power factor is present [82], and
verification of meters for such cases have been proposed [83,84]. We
note that this does not apply to older electromechanical induction
meters, but only to solid-state (static) smart meters [85]. Berrisford
provides an accessible and practical introduction to this problem [86].
Literature reviews of this field have been conducted [87] and updated
[88], and readers are encouraged to consult them for more technical
details, as we will focus on the M&V implications.

The problem with measuring non-sinusoidal loads is that reactive
power is calculated and defined in numerous ways [84]. Although the
different formulas give the same result under sinusoidal conditions,
they differ when harmonics are present. Current magnitude and power
factor are the main uncertainty drivers [81]. An example of this in-
accuracy has been documented in the field [86]: an approved Canadian
meter using Budeanu's power definition [89] was replaced by an ap-
proved Canadian meter using Fryze's power definition [90]. This re-
sulted in a power factor penalty being added to the customer's bill when
the meter was changed, even though the energy use did not change.
Further investigation revealed non-sinusoidal conditions due to the
harmonics generated by the client's VSDs, which the meters measured
in different ways. We wonder whether some of the inaccuracy noted by
Polese et al. [74] in their metering of a retailer with many MELs may
not be due to such effects.

Because of these different definitions and different calculation

methodologies among different meters, Cataliotti et al. [91,92] re-
commend that when calibrating a meter in-situ, a reference meter im-
plementing the same metric as the Unit Under Test (UUT) should be
selected, so as not to compound the errors. If the manufacturer does not
state the metric used, methods for determining it experimentally have
been devised. However, it was found that in such a case, the UUT only
adheres to the accuracy limits set in the standard when compared with
the reference meter adopting the same power definition, not with the
true energy value.

There is, however, a course charted through the reactive power-
definition confusion. The IEEE Standard 1459 (2010) [93] gives gui-
dance on how reactive power should be defined and calculated. The
consensus among most of the papers cited here is that this definition
should be adopted. It is also endorsed by the IEC. Berrisford has de-
monstrated that reprogramming certain kinds of digital watt meters in
minor ways can lead to calculation according to the IEEE 1459 defi-
nition [86]. Although utilities do not itemise harmonic distortion on the
bill, preliminary work has been done to prepare the way for future
considerations [94,95].

We recommended that M&V professionals use meters measuring
so-called ‘fundamental’ quantities, from which to calculate the true
reactive power according to the IEEE 1459. Meters with sampling rates
adequate for including relevant harmonics should be selected, although
increasing the sampling rate increases the price of the meter sig-
nificantly in the range 0–80 sμ [96].

3.3. Analog to Digital Conversion (ADC) and virtual instrument
measurement uncertainties

Most modern static meters employ ADC (also known as Digital
Signal Processing). ADC is also used in Virtual Instrumentation (VI),
where a transducer is connected to a personal computer via a Data
Acquisition (DAQ) board, for user-built DSP software to process [97].
Note that VIs can measure any analog signal on which to perform ADC
and that the general uncertainty principles remain the same. This field
shows great promise for lower cost calibration and measurement of
electrical signals for M& V purposes.

ADC technology is useful in electrical measurements as it has the
potential for measuring true reactive non-sinusoidal power accurately,
as discussed in Section 3.2. However, various standards specifying
different parameters for ADC exist. Spataro [98] notes that ADC un-
certainty has been quantified by the ISO GUM uncertainty propagation
law (through a Fast Fourier Transform) [99], random-fuzzy variables
[100], and MC approaches [97]. Due to the difficulty of convolving
different uncertainty distributions analytically, such numerical methods
make sense. These require any number of different variables, depending
on the standard and method employed. Spataro identifies that only
offset (bias), gain, Total Harmonic Distortion (THD), spurious tones,
and the Signal to Noise Ratio (SNR) are needed to quantify power
quality. The details of such errors depend on the electronic components
of the DAQ itself, but such systems can reach standard-level accuracies
at a fraction of the cost [101]. They are thus expected to increase in
popularity as they become commercialised [99]. In any event, the un-
certainties introduced by ADC is usually much smaller than those of the
transducers themselves [97]. The most recent results in this field
comprise a detailed theoretical model with experimental results for a
DAQ-based sampling watt meter, based on the definitions set out in
IEEE 1459 [88].

3.4. In-situ meter calibration

Due to the MID ratified by the European parliament in 2004 [71],
European meters (gas, water, electricity, etc.) need to be calibrated
under actual conditions, interpreted as the actual meter installation
location [102]. This has lead to various studies of how such a calibra-
tion may be achieved. Femine et al. [102] have devised a scheme for a
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field laboratory with a travelling standard. Power generated by the
laboratory then allows a set of tests to be conducted at the facility. The
directive has been viewed as impractical since not all plants can be shut
down for such a procedure, metering cost increases drastically with a
call-out for a portable metrology laboratory, and man-hours needed to
test all Italian meters twice-yearly is unrealistic [103]. To offset this
burden, Amicone et al. proposed a low cost, stable, ‘add-on’ calibrator
that can be activated twice yearly to perform the necessary calibration
[103]. Crenna et al. [104] considered the MID as a step toward the
modernization of legal metrology. They considered water meters and
proposed an MC approach based on statistical metrology and risk
techniques, similar to Pendrill and Källgren's work on CO2 meters [105]
discussed in Section 6. This seems by far to be the simplest and most
affordable proposal, although it relies on large quantities of manu-
facturer data and does not address all the concerns raised by the other
authors. Meter ageing and water temperature are considered as influ-
ence factors similar to power factor and harmonic distortion for energy
meters, although the analogy is not close enough to use the method as-
is in electric applications.

Measurement accuracy and its place in the smart grid are being
investigated [106] and was proposed in rudimentary form a decade ago
[107]. As smart meters become more common and interconnected,
network cross-calibration to relieve the burden of calibrating every
single meter may become a possibility, and represents an opportunity
for future research.

3.5. Measurement uncertainty for non-electrical parameters

Often, non-electrical variables are also included in the energy
model. Table 2 details typical errors for such cases. This is especially
common when whole-facility regression models are constructed using
measurements of variables such as temperature [108], occupancy
[11,8] or flow rate [104]. Besides the error in the meter itself, poor
meter selection, placement, or misestimation of independent variables
may also contribute to unquantifiable errors in this case [22]. For ex-
ample, the flow rate and temperature in a duct vary between the edge
and the centre and features such as elbows impact flow and heat
transfer characteristics for a non-negligible downstream portion of the
duct. Because of these complex interactions, it is useful to work with
general error estimates such as those found in G14 [18]. However, even
these values should be used with caution. For example, CO2 sensor
accuracy was investigated [109] and the authors found that only seven
of the eighteen sensors had errors of less than 20% at standard CO2
levels for classrooms - a much higher value than that specified by G14.

Occupancy is a key factor in building energy use but is notoriously
difficult to measure and model. Combinations of reed switches and
passive infra-red (PIR) sensors seem to work well for offices [110], but
these are very simple environments with single occupants per room. For
more complex situations, proxies such as blind, fan, light, thermostat,
door, or other sensors are used, although these are imperfect [111,112].
We note that recently Wang et al. [8] have shown in a sophisticated
study that occupancy was not a significant energy use factor for their
case study building. However, the building in question used a centrally
controlled independent HVAC system, and this result is to be expected.

Occupancy models usually compare forecasts to data measured with
error. However, as long as the measured variable predicts energy use
well, the measurement error or true occupancy is not significant for
energy models, unless occupant behaviour is being investigated.

4. Meter uncertainty as a component of M&V uncertainty

In South Africa, measured and verified energy savings achieved by
businesses are eligible for tax deductions according to the 12L tax in-
centive [116]. However, measurement devices used for such projects
need to be calibrated by accredited laboratories. This is a sound prin-
ciple and has been adopted by many other agencies as listed by Ahmad

et al. [73]. However, it greatly increases measurement costs, which can
make M&V be prohibitively expensive and reduce the number of fea-
sible projects significantly, as in the CDM case [32,31]. Given the small
contribution to overall uncertainty made by electrical meters, especially
when sampling is done [26], such requirements may be counter-pro-
ductive. Overall accuracy requirements could be better served by
spending the funds on obtaining a larger or more detailed sample, or
measuring independent variables more accurately.

DAQ-based meter calibration discussed in Section 3.3 presents an
interesting opportunity in this regard. We recognise that calibration is
about more than having access to an accurate reference instrument and
that quality and traceability procedures as set out in ISO 17025 [40]
should also be in place. However, even energy meters calibrated to
lower accuracies than the current classes should be sufficient for most
M&V applications, where uncertainties are dominated by other factors
(cf. Section 2.2).

One should also use these techniques when one measures in-
dependent explanatory variables such as temperature or occupancy
with error. We now turn our attention to this topic.

Table 2
Instrument uncertainties for M&V Applications. Note that many of these values come
from ASHRAE Guideline 14-2002 Appendix A5.6 [18], and are quoted at the 68% con-
fidence level for this source. Guideline 14-2014 values are unchanged unless otherwise
noted. Furthermore, Guideline 14-2014 stipulates these as minimum requirements, rather
than typical values, but also recommends that they be used if no other values are avail-
able (Section 4.2.11.2). The confidence level for the other sources is unspecified or
complex, and readers are referred to the original documents for more complete descrip-
tions. FS denotes a percentage of full-scale.

Quantity Type Guideline 14 Other Source

Temperature Ambient outdoor portable
electronic

2–5%

Domestic water portable
electronic

2%

Air ducts 5%
Pipes and ducts 2–5%

Air velocity Indoor: non-mechanical or
blower door

5% 2–5% [73]

Handheld anemometer 10%
Recording anemometer 5%
Meteorological grade
anemometer

2%

Air ducts: array 2–5%
Pressure Gauge 0.25–2%

Ducts 1–5%
Pressurization/
depressurization

3–5%

Energy Electrical Energy meter 1% 0.2–0.5%
[66–68]

Current Transformer 2–3% 0.2–3% [70]
Portable Watt meter 1–5%
Current: low cost home
energy

>10% [76]

Stick-on Meter 5% [75]
Plug-through meter 20% [74]
Relative humidity 2–5% 4.5% [73]
Energy meter (gas) 1%

Flow rate Bucket and stopwatch,
portable meter/probe

5% < 1–5% [1]

Domestic, accumulating 1–2%
HVAC inline or insertion
meters

2% < 1% [1]

Ultrasonic, flare 2.5–5% [113]
Smokestack gas 5–20% [114]

Run-time Permanent 1–5%
Portable 2–5%

Light Sensor / logger 8–10% [73]
Other Pyranometer 2–5% >10% [115]

Door position 2%
RPM 1%
CO2 > 20% [109], 4%

FS [73]
Combustion 2% ∼ 0.5% [105]
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5. Mismeasurement

The measurement errors discussed thus far are mostly harmless. If
random, mismeasurement of the dependent variable (usually energy)
widens the confidence interval around the estimate but does not add
bias to the parameter estimates. However, this is not the case when
these noisy measurements are used as independent variables in a re-
gression analysis. This errors-in-variables effect is seen in energy re-
gression models when a covariate such as temperature or occupancy is
measured with error, and may also occur when one calibrates an in-
strument against a standard with some error. In such cases, the random
variation is no longer in y , but in x . Random errors in x have two
effects. First, all the regression parameters become biased due to the
“flattening out” of the data points as they spread out on the x-axis. This
is called attenuation. Second, the confidence intervals on these estimates
are narrower than they should be, giving misleadingly high confidence
in biased values, also manifesting as a loss of statistical power [64].
This is because as the measurement error (variance) increases, it be-
comes increasingly difficult to distinguish it from the process variance.
This lack of power may then be misinterpreted as a lack of effect when
pre- and post-retrofit measurements are compared [64]. To regain this
power, much larger sample sizes are then required. Table 3 summarises
the effect of mismeasurement on various statistics, but we should note
that effects vary with error type and regression model type.

To illustrate attenuation, consider attempting to use one unbiased
meter to calibrate another when the reference meter reading contains
random error. Let the reference meter be x, and the UUT be y . If both
the reference and the UUT are perfectly accurate, a regression line with
a gradient of one should be drawn on the xy plane:

= +a by x , (1)

where =a 1 and =b 0.
If only the UUT has an error (thus an error in the response or de-

pendent variable measurement), the dependent variable = + ϵy y* will
be measured by the UUT, where the y* indicates the surrogate reading
and ϵ the error. We thus observe y* in lieu of y , where:

∼ Normal τy y y* ( , ) (2)

The error will add noise, but will not bias the result, as illustrated in the
left-hand graphs of Fig. 3. These are Ordinary Least Squares (OLS) re-
gression estimates for increasing values of the standard deviation
multiplier τ . We observe that increasing error does not bias the esti-
mates. However, this does not hold for errors in x of the form

∼ Normal τx x x* ( , ), (3)

As can be seen on the right-hand side of Fig. 3. For a further graphical
illustration, see the UMP Chapter 13 [43], Section 3.2.

We note that mismeasurement is less of a problem for prediction,
which is often the goal of M&V models. If you infer some function

= θy x* * * based on measurements of x made with random error, that

relationship defined by θ* will continue to hold as long as you forecast
and measure using x* in lieu of x. In such a case a Measurement Error
Model (MEM) is unnecessary. This is part of the reason that measure-
ment error is not a greater problem in M&V: often the baseline and
reporting period measurements are made with the same instruments,
and so the attenuation effect may ‘cancel out’, as long as inference
about the physical meaning of the parameters (e.g. kWh/Heating
Degree Day) is not attempted. Consider the ‘time-of-week and tem-
perature’ M&V regression model [117] in a situation where the tem-
perature is measured with error because the weather station is in a
different microclimate to the facility [118]. The relationship between
energy use and temperature would be attenuated. This would cause
certain elements of the time-of-week parameter vector to seem more
influential than they actually are. But this may not be a problem.
Suppose that HVAC-related Energy Conservation Measure (ECM) is
installed and the model is used for M&V. The forecast (adjusted
baseline) energy use in the post-retrofit period will have the same at-
tenuation as the baseline. It would, therefore, be accurate, assuming a
calibrated model and same temperature data source. Therefore the total
savings estimation will have a similar Normalised Mean Bias Error
(NMBE) to the case with no measurement error, although the added
noise may lead to a higher Coefficient of Variation on the Mean Squared
Error (CVRMSE) on the training set. This being said, one cannot regress
energy use against temperature to infer the effectiveness of the ECM,
nor can such a regression be transported for project decisions in other
places. Furthermore, the confidence interval around the reported sav-
ings will also be too narrow.

5.1. Mismeasurement in M& V literature

Although attenuation bias due to mismeasurement has been docu-
mented in M&V, the effect is not well-known. Except for the UMP
Chapters 13 and 23 [43,44], all M &V guidelines discussed so far, as
well as M&V regression guides [121] do not mention attenuation, even
when measurement errors are discussed. The UMP Chapters 11 and 12
(Sample and Survey Design) [46,6] state that random measurement
error does not lead to bias, even though survey measurement error is
one of the most common MEM test cases [122]. G14-2014 stipulates
that the total span of the extra uncertainty created by errors in in-
dependent variables shall be determined by biasing the variables to
their maximum and minimum values [19]. Attenuation is unaccounted
for.

Regarding literature, an MC analysis was done by Sonnenblick and
Eto from Lawrence Berkeley in 1995. They found this bias effect for
measurement precision of energy programmes [30], Fig. EX-2, and
identified it as the errors in variables effect. The measurement of op-
erating hours was considered to be the most sensitive to this effect.

Ridge [123] presented an informative paper on mismeasurement in
M&V in 1997. He relates how the Californian utility Pacific Gas and
Electric's 1992–1993 Commercial New Construction Program and the
1994 Commercial HVAC program realisation rate estimates were un-
reasonably low. The realisation rate is the ratio of expected to actual
savings. He traced the problem back to random errors in independent
(explanatory) variables that led to attenuated estimates. This was cor-
rected for in subsequent studies by the use of dummy variables.

A more recent example of mismeasurement is found in the case
where Canadian economists Rivers and Jaccard published a study
which found that Demand Side Management (DSM) interventions made
no statistically significant impact on energy demand when viewed at a
national level [124]. This generated some controversy. Rivers and
Jaccard proposed that measurement error in the independent variable
(DSM spending proportion vs. EE spending proportion) may have
played a role in attenuating the DSM-effect parameter estimate. How-
ever, although Violette et al. [125] also acknowledged this errors-in-
variables possibility, they proposed that other features of the original
Rivers and Jaccard model were more influential.

Table 3
Spurious effect of mismeasurement in x on various statistics assuming classical additive
errors, summarised from Carroll et al. [64], Gustafson [119], and Ree et al. [120].

Statistic Effect

Mean None
Variance Increases
Covariance None
Regression, single predictor, slope Decreases
Regression, single predictor, intercept Increases
Regression, multiple predictors Complex
Confidence on regression coefficients Increases
Statistical power for detecting relationships Decreases
Correlation Decreases
Partial correlation Increases
Non-linear features (such as = siny x) Masked
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5.2. MEM and calibration techniques

There are two main bodies of research addressing measurement
errors relevant to energy models. First, commercial electrical me-
trological techniques have been honed over the last half century. These
methods usually employ Test Uncertainty Ratios (TURs), which is the
ratio of the precision of the calibrator to that of the UUT. They have had
to be revised recently as the accuracy of calibrators and digital multi-
meters (DMMs) has converged to 8.5 digits (one part in 108). Second,
trans-disciplinary academic investigations have been conducted using a
variety of approaches. These have advanced significantly in response to
the stringent and complex requirements of medical fields such as epi-
demiology, coupled with the relatively poor accuracy of the instru-
ments measuring certain human epidemiological variables.

5.2.1. Electrical calibration techniques
These techniques are applicable mainly to calibration. They are

commercial techniques usually using indirect, empirical, conservative
methods, and cannot be classified as true MEMs. A TUR of 4:1 is gen-
erally required. This means that an instrument accurate to p% may be
used to calibrate an instrument accurate to p4 % (called the Unit Under
Test, UUT). This may reflect the other rule of thumb proposed in
Section 2.2. However, since DMMs such as the 8.5-digit Fluke 8508A do
not allow for a TUR >4 between the UUT and the calibrator, other
techniques had to be developed. The simplest and most accurate is to
characterize the long-term drift of the instrument by plotting the
change in measurement errors over time, and then drawing a regression
line through the successive measurement points [126,127]. This re-
gression line has been shown to be more accurate than the individual
calibrations [128]. Within limits, and with a large enough calibration

history, this technique may be used to accurately quantify an in-
strument's error without recent calibration. This technique has also
been proposed for characterising the stability of a calibrator that may
not meet the TUR >4 nominally, but does meet it practically. This is
possible as the calibrator's stability specifications are usually lower than
what an individual instrument's stability may be, when measured with a
more accurate DMM.

On the other hand, if one wants to test an instrument with no his-
tory, and one can not achieve the required TURs, alternative methods
also exist [129]. For true calibration, the only option is “disciplining”
the calibrator by using an additional, more accurate DMM to measure
the calibrator output in real time [127].

In cases where an accept/reject decision has to be made rather than
full calibration, there are three options: lower the confidence level of
the test, invest in a more accurate standard, or analyse and document
the measurement points for which inadequate TURs exist. The first
option (lowering the confidence level) is called guard banding, and is
popular in metrology [130–132]. A guard band is a test limit stricter
than the instrument specification limit [133]. In other words, by em-
ploying guard bands, we can use a calibrator with a TUR of 2 instead of
4. The price we pay is that the UUT may still be rejected, even if the test
result falls between the Lower Confidence Limit and the Upper Con-
fidence Limit of the calibrator. This is because to compensate for our
lower TUR, the test limits are narrower than the instrument specifica-
tion limits. Thus guard banding keeps the consumer's risk constant even
though a less accurate calibrator is used, but increases the producer's
risk for such a case. When considering this approach, one must re-
member that at a certain level, testing becomes uneconomical. For
example, for a TUR of 2 and specification limit of 2 σ , the consumer's
risk is as large as it would be if no testing at all took place, and the

Fig. 3. OLS parameter estimates for y=ax+b, where
a=1 and b=0, given measurement error τ in the
form (2) and (3).
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consumer simply accepted the probability of the unit being outside of
specification (probability=1.2%) [129]. In such scenarios the expected
value of the test, or the cost/benefit trade-off between testing and not
testing, should be considered.

Rossi and Crenna [134] provided a good example of setting test
limits lower than specification limits for in-house testing at the pro-
ducer side to minimise risk, which they applied to water meters [104].
To this end, they have developed a software package called UNCERT -
essentially an automated MC approach. Researchers from the US Na-
tional Institute for Standards and Technology (NIST) have also shown
that a Bayesian approach to the accept/reject decision rule of ISO
14253-1 (inspection of work pieces) [135] delivers superior results in
cases where it is applicable [136].

5.2.2. Transdisciplinary techniques
Not all uncertainty analysis models (also known as uncertainty

quantification models) considering measurement error are MEMs. On
the other hand, some probabilistic models using MC methods could well
be incorporated into MEMs, although their function in most literature is
exploratory what-if analysis, sensitivity analysis, or forecasting (see
Section 6). Other methods are simply robust: insensitive to outliers.

There is a notable amount of literature on MEMs, although much of
it is too technical to be useful to the M&V practitioner without a strong
background in statistics. For linear problems Fuller [137] is popular,
and his method-of-moments is straightforward and recommended for
OLS regression with additive measurement errors (cf. Carroll et al.
[64]). The non-linear case presents a greater challenge, but may also be
more relevant to M&V and instrument calibrations as shown by Car-
obbi et al. [138]. The most appropriate (and readable) treatments are
by Carroll et al. [64], and Gustafson [119].

MEMs can be divided into functional and structural approaches.
Functional approaches make no assumptions about underlying dis-
tributions (thus avoiding model misspecification) and include
Regression Calibration and simulated extrapolation (SIMEX). Structural
approaches make assumptions about the underlying distributions and
relations governing the measurement system and include Maximum
Likelihood Estimation (MLE) and Bayesian Markov Chain Monte Carlo
(MCMC) techniques. All four of these techniques are powerful and can
yield useful results if applied well. The choice of method depends on its
appropriateness to the data and ease of implementation.

The SIMEX concept is simple and powerful. Suppose we know that
our variance = τx xVAR( *| ) . We also know our current parameter es-
timate θ x*| *, that is, θ τ*| 0

2. We want to know our true parameters θ x| . If
we now increase the error τ in the dataset, the parameter estimates will
start drifting away from their true values due to attenuation. In this
way, we can obtain values for …θ θ θτ τ τ*| , *| , *| ,1

2
2
2

3
2 We will observe a

trend, and can fit a curve to these points. Extrapolating backwards will
then yield =θ τ*|( 0), which is θ x| . The disadvantage is that SIMEX is
difficult for cases where there are combined multiplicative and additive
errors and that it can be expensive for non-linear higher dimensional
models. It has also been found that in certain cases MLE methods yield
considerable smaller variances [139], although for most applications
SIMEX is simple and effective.

Regression Calibration methods essentially trade an exposure
model for a validation (calibration) sample: a sub-sample measured
without error, using a ‘gold standard’. From the information gleaned
from the sub sample, values for x are imputed instead of the x* values
measured. Repeated measurements may also be used. It is not suscep-
tible to bias due to model misspecification since the exposure models do
not need to be specified. Regression Calibration is useful for trials
where extensive, precise, or repeated testing is only feasible for a small
sub-sample.

One potential weakness of the Regression Calibration method is that
it maps x* onto x in a one-to-one fashion, where methods such as Bayes-
MCMC consider all reasonable values for x given the data. Therefore
the uncertainty is specified as fully as possible. This avoids the effect of

not considering the uncertainty contribution of imputing x values for
the first step of the Regression Calibration procedure.

Maximum Likelihood Estimation has become a very powerful
structural approach in many areas of statistics. MLE techniques have
the potential of producing better estimates than functional approaches
if the model is well specified, although this is often difficult [64].

Kennedy and O'Hagan presented a seminal paper on which much of
the current Gaussian Process (GP) energy MLE research is based [140].
The short discussion below will focus on this method, which may be
classified as Bayesian or quasi-MLE, depending on your preference.
Purer MLE MEMs are also used [64]. GPs are popular because they are a
generic, convenient and accurate. In a GP, every data point is assumed
to be normally distributed, with the dataset then assumed to have a
multivariate normal distribution. The GP kernel is a function that de-
scribes how the covariance matrix between the data points behaves,
and the parameters of the kernel function are determined using an MLE
technique with a two-step Expectation Maximisation algorithm. In the
E-step the algorithm averages over the unknown explanatory variable x
based on the observations of the response y to x*, and updates the
expected log-likelihood. It uses numerical integration as the expressions
may not be closed-form. The M-step maximises the log-likelihood of x,
after which the algorithm returns to the E-step and iterates until
maxima are found. Recently Burkhart et al. have applied this success-
fully in the energy monitoring and evaluation field [141]. They found
that adding MC Expectation Maximisation to a Gaussian Process to
account for uncertainty in input data makes parameter estimates more
robust, and requires fewer data. They then propose trading GUM Type
A uncertainties for Type B uncertainties to minimise cost.

Methods such as GP regression present advantages over full
Bayesian methods in that model misspecification and computational
expense becomes less of a concern. However, MLE methods are ad-
vanced empirical Bayesian methods. Full Bayesian methods provide
some advantage since the models are easily specified and solved, no
approximations are necessary, and standard errors on the estimates are
more easily calculated [119]. Stopping or convergence criteria are a
concern for both approaches [141]. Gelman [142] also notes that EM
algorithms with multivariate normal approximations are not ideal for
small data sets as convergence is only asymptotic, and the normal
distribution not ideal for describing such cases.

Much literature on the technical merits and application of Bayesian
methods exists, as it is the natural structural MEM approach [64]. It is
more than a machine learning algorithm: it is rather a branch of sta-
tistics derived from conditional probability logic. Very briefly, Baye-
sianism can be explained as follows. The unknown parameters θ are
viewed as random variables defined by ‘prior’ probability distributions.
With the data D, they are solved for as θπ D( | ). Bayesianism is different
to frequentism, which sees the parameters as fixed and the data as
random realisations which will even out to the parameters in the long
run. This distinction is often quoted, but remains obscure to someone
without Bayesian modelling experience. As an explanatory example,
consider the = +a by x linear regression case discussed in Section 5.
We define a and b as

∼ = =a b Normal μ σ, ( 0, 10 ).5 (4)

These are the priors: they define the information we have about the
system that is not present in the data itself. In the case above, the priors
are vague because we presume to know little about the system. Bayes
theorem states that

=θ θ θπ π π
π

D D
D

( | ) ( | ) ( )
( )

,
(5)

and allows us to invert our priors θπ ( ) and data θπ D( | ) to find what we
are interested in: the probability distributions of the unknown para-
meters, given the data: θπ D( | ). This usually requires intractable in-
tegration and the specification of the probability of our data π D( ).
However, the MCMC numerical algorithm circumvents this difficulty by
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generating a Markov process whose stationary distribution is the pos-
terior θπ D( | ). By sampling in Monte Carlo fashion from this distribu-
tion, parameter distributions are found numerically.

Bayesian approaches with non-informative priors provide MLE es-
timates of data [142]. However, they are more flexible since they do not
require ad hoc techniques dealing with special cases, as with most
frequentist statistics. This allows rapid model development and less
time spent on building complex, realistic models. Mathieu et al. also
recommend this approach for error analysis of energy measurement and
verification, especially for cases where errors are financially significant
[143]. For the reader unfamiliar with Bayesian techniques, Kruschke
[144] and Gelman et al. [142] are recommended; Kruschke being more
practically oriented and Gelman et al. more advanced.

The disadvantages of the Bayesian-MCMC techniques are that they can
be computationally expensive, susceptible to model misspecification, and
requires more thinking on the part of the practitioner. The computational
expense becomes a problem when many variables (or data points) have
uncertainties in them which need to be modelled using MCMC. The model
then suffers from the curse of dimensionality. Thus, for problems such as
the real-time calibration of thermal network parameters is needed,
Bayesian techniques have been found to be too computationally expensive
even though they are more robust than lightweight ‘gray-box’ techniques
[145]. Variational inference may alleviate this concern, and although the
technique is relatively new it has been implemented in popular software
[146]. Model misspecification arises when the true error structure is dif-
ferent from the one specified in the model. Investigating the robustness or
sensitivity of the model to such assumptions becomes necessary. Last,
there are few simple ‘recipes’ in Bayesian statistics. There is no t-test or F-
test blanket equivalent, although Kruschke provides alternatives [144].
Generally, however, Bayesian solutions are more problem-specific than
popular frequentist tests.

Several non-technical reasons for the application of Bayesian ap-
proaches to M&V should be noted. First, a Bayesian MEM is similar to a
standard, well-specified Bayesian model. The model's ability to deal
with measurement errors follows from the nature of the Bayesian
mathematics itself. Second, the development of Markov Chain Monte
Carlo (MCMC) techniques has allowed for the previously intractable
integration involved in most non-trivial Bayesian calculations to be
done efficiently and accurately. The numerical MCMC model converges
reliably on the analytical solution [147]. Third, as noted in the GUM
Supplement [49], the MC approach is not distribution dependent and is,
therefore, more flexible. Fourth, intuitive and powerful open-source
software libraries have become available by which Bayesian models
specified and solved. Scaling to more complex models is straightfor-
ward. Although BUGS and JAGS have been the mainstay software
packages in the past, Stan [148] probably leads at the moment. It can be
implemented in various languages such as Python, R, Matlab, Julia, or
C++. PyMC3 [149] is also worth mentioning. It is written in and for
the Python environment and is gaining popularity due to its simple
interface, discrete variable and missing value support, and ease of in-
tegration into the popular scientific Python environment. Both
packages are being developed actively.

6. Project decisions under measurement uncertainty

Pendrill [105] rightly observed that measurements are seldom made
for their own sake, but rather in support of a financial decision. Indeed,
decision maker uncertainty about cost-effectiveness is the most fre-
quently-cited barrier to the commissioning of energy projects [150].
However, the contribution of technical uncertainty in the performance of
the ECM is usually smaller than economic uncertainty contributions, as
noted by Rysanek en Choudhary [151] and Friege and Chappin [152].

Regarding the M&V literature on the subject, project risk associated
with measurement uncertainty has been identified by both researchers
[143,153] and practitioners [154], but little M&V literature addresses
this topic directly. Ligier et al.'s recent contribution [28] on decision

support explicitly in the context of building simulation and M&V
comes very close, and Boxer et al.'s method for self-benchmarking can
also be viewed as an M&V and decision support tool [155]. We will
consider four aspects below. First, M & V guides on risk or its compo-
nents namely cost and uncertainty. Second, M&V research related to
the aforementioned topics. Third, financial energy project decision
support literature. Fourth, metrological decision support literature.
Since building energy simulation is a subject on its own, that will be
dealt with in Section 6.1.

Sonnenblick and Eto [30] investigated expected monitoring project
value as a function of measurement precision in 1995 already. In that
case, it was applied to overall DSM project cost-effectiveness: levelized
project cost vs. levelized savings. Probably the most notable measure-
ment/cost treatment is ASHRAE Guideline 14–2002 [18], which supplies
elaborate tables for determining measurement costs for different in-
struments in various project scenarios. However, it does not calculate
risk adequately [156]. The SEE Action Guide [25] also provides an in-
troductory overview of measuring budgets in the context of project risk.

Regarding research, a foundational mathematical description of
M&V has been compiled [157], and a useful theoretical summary of
different uncertainty approaches in power systems given [158]. M&V
sampling, metering have been traded off to minimise project cost [2–4],
and modelling uncertainty was added later [159], although risk was not
treated explicitly. These designs were extended to a Bayesian frame-
work where risk could be incorporated [55,160], although the research
did not focus on risk. An insightful cost-benefit trade-off for chilled-
water system design in the context of uncertainty [161] influenced the
G14 [18] approach. Preliminary work on decisions in Energy Perfor-
mance Contracts (EPCs) under measurement uncertainty has also been
presented [26]. It is noted that attempts have been made to quantify the
risk due to energy meter measurement uncertainty [69,162]. However,
this calculation was much too simplistic, and was presented by a
marketing manager of a meter manufacturer calling for even-more-
stringent standards to which the latest meters could be qualified. This
standard is unnecessary since the current Class 0.2S energy meters are
the smallest uncertainty sources in almost any conceivable project, and
their uncertainties can already be neglected for risk calculation pur-
poses in many cases [26].

Research on financial decision support related to EPC, project un-
certainty and risk have been conducted from an economic perspective
using MC analysis [163] and other techniques [164]. The US Depart-
ment of Energy's EnergyPlus software is usually used [165]. Deng et al.
[166] provided a useful summary of the design of EPCs under un-
certainty and presented a relatively sophisticated EPC decision model
[167]. Measurement uncertainty is not considered explicitly in these
cases, although it can be incorporated without much extension.

Focusing now on measurement, relevant research on this topic has also
been conducted from a legal metrological perspective. Here measurement
uncertainty and cost are traded off in a decision support framework.
Crenna [104] and Pendrill [168,105] used an MC method, while Fearn
[169] used a more cumbersome analytical approach. However, the focus
of these studies is accept/reject decisions based on a standard, rather than
the verification of individual measurements. Risk was viewed from a
government perspective as a function of the cost of emissions to society.
Sonnenblick and Eto also used this cost function in their report on the cost-
effectiveness estimates of energy projects in the context of measurement
precision [30], and Rysanek and Choudhary [151] used the marginal
abatement cost: the ratio of net present value to GHG units saved. These
metrics seem more rational than short-term financial risk measures when
one considers the broader goals of energy research.

6.1. Measurement uncertainty in building simulation

Research into uncertainty in building energy modelling (BEM) has
increased dramatically in the last ten years. This is because it has been
recognised that considering model input uncertainty is essential to
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identifying which ECMs should be implemented.
A full review of building simulation calibration literature is beyond

the scope of this survey, and we will focus on cases where measurement
uncertainty could be considered. For a broader view, a useful starting
point is Reddy et al.'s research series forming part of ASHRAE's in-
vestigation of calibrated simulation in RP-1051 [170–173], and
Coakley, Raftery, and Keane's more up-to-date review, considering
uncertainty in detail as well [174]. Heo's PhD thesis also provided an in-
depth discussion and case study of one approach [156].

Databases of parameter uncertainties have been compiled [175],
and these, or results from the literature, are used for uncertainty ana-
lysis or quantification. The key problem, however, is that doing an MC
simulation considering all parameters simultaneously is infeasible due
to the curse of dimensionality. Sensitivity analysis methods are thus
needed to reduce the number of parameters to a feasible figure. Sun
et al. provided one of the better discussions on this topic [118], and
Tian also wrote an informative review [176]. Several excellent ex-
amples of this process have been published, and are summarised in
Table 4.

Most building simulation research accounts for varying input para-
meters through uncertainty and sensitivity analysis. However, much of
this research concerns itself with how varying the input parameters
changes the output, but not how variance in the input parameters affects
the output. In other words, it does not ask how noisy input may at-
tenuate the output, but how biased input will bias the output. It is
possible that this is accounted for in GPs, although it is uncertain.

Two related studies deserve mention. To alleviate the burden of MC
computation for building simulation studies with large uncertainties
and many options and combinations, Rysanek and Choudhary proposed
a lightweight non-probabilistic decision approach [151]. These sce-
narios apply more to simulation (modelling) uncertainty rather than
measurement uncertainty. On the other side of the spectrum, Sanyal
et al. reported a machine learning and supercomputer-based method to
alleviate the modelling burden by pre-tuning simulation inputs to ex-
tant data for standard US buildings [177]. This speeds up model
building significantly.

In what seems to be a recurring theme, the Bayesian approach is
becoming increasingly popular because of its uncertainty quantification
features. Riddle and Muehleisen provided a useful introduction to
building calibration with such models [178], and Heo has recently
presented an overview of building simulation models under uncertainty,
as well as an introduction to the Bayesian approach [179]. Note that in a
Bayesian framework measurement, sampling, and modelling errors are
considered simultaneously, although they remain distinct [180].

Heo and Augenbroe have built up a noteworthy body of work on
building simulation covariate calibration and uncertainty analysis using
(Bayesian) Gaussian Process methods [181,182]. Quantitative risk
analysis for decision support in retrofit project planning was then ex-
plored with a focus on the accuracy of the simulation rather than me-
tering decision making [183]. Their latest research incorporates this
into a scalable methodology whereby more optimal retrofit decisions
can be made, given uncertainty in input parameters [184]. Along si-
milar lines, a lightweight and reasonably accurate alternative to the GP
has been proposed [185]. Another notable contribution has been made
by Tian et al. who used sophisticated data analysis and Bayesian
methods to show the relative importance of different data on building
calibration, and the robustness of the Bayesian method to missing input
data [186]. Bayesian methods have therefore been demonstrated to
deliver very good estimates, but Heo notes that even if this were not the
case, they could still be superior to deterministic models since they
quantify model prediction uncertainty distributions [181].

7. Recommendations

In the light of the literature on measurement uncertainty and M&V,
several recommendations can be made. Regarding M&V reporting,

1. The effect of power quality on M&V studies should be noted in
M& V reports. Stating the meter type and meter calculation method
should be standard.

2. The sensitivity to mismeasurement should at least be investigated
for M&V regression models. In some cases it may be necessary to
use MEMs to compensate for measurement error effects such as bias
and unrealistically high statistical power.

Regarding further research,

1. Input uncertainty quantification is a now firmly established in the
building simulation field. However, it is unclear whether the effect
of mismeasurement on building energy simulation calibration is
accounted for. Attenuation bias may produce incorrect results in the
parameter screening phase by lowering the apparent influence
coefficients of certain mismeasured, influential variables. A study on
this phenomenon is therefore warranted.

2. The in-situ calibration of smart meters through the smart grid is an
interesting and potentially revolutionary possibility. Instead of ca-
librating meters in a laboratory using reference instruments, other
techniques could be used. For example, by cross-referencing meters
in a network, or utilising smart devices acting as loads one could
reduce calibration costs significantly.

3. Although risk-conscious capital expenditure decisions in energy
projects have been investigated, the same depth of treatment has not
been given to energy monitoring. By utilising metrics such as those
found in Table 4, monitoring costs may be optimised, leading to
risk-optimal measurement and sampling designs.

8. Conclusion

Measurement uncertainty remains an important consideration in
energy M&V. Not only does this apply to electrical meter measure-
ments, but also to the quantification of uncertainty in covariate speci-
fication. Even unbiased random error in covariate measurement may
lead to biased parameter estimates. However, the contribution of in-
dividual measurement uncertainties, and the cost and effort expended
to quantify or mitigate them should be considered carefully to allocate
resources efficiently. In some cases, more accurate quantification or
calibration of instruments may make little difference to the project
decisions.

Many techniques are used for uncertainty quantification, but
Bayesian methods are notable for their support in almost all related
fields, from general metrology to Measurement Error Methods and
decision support. However, these techniques are still new and represent
a growing field in energy research.
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