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a b s t r a c t

This paper is concerned with the finite-time consensus problem of distributed agents having non-
identical unknown nonlinear dynamics, to a leader agent that also has unknown nonlinear control input
signal. By parameterization of unknown nonlinear dynamics, a Lyapunov technique in conjunction with
homogeneity technique is presented for designing a decentralized adaptive finite-time consensus control
protocol in undirected networks. Homogeneous Lyapunov functions and homogeneous vector fields are
introduced in the stability analysis although the whole system is not homogeneous. Theoretical analysis
shows that leader-following consensus can be achieved in finite-time, meanwhile, finite-time parameter
convergence can be also guaranteed under the proposed control scheme. An example is given to validate
the theoretical results.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, studies on the distributed coordination ofmulti-
agent systems have attracted a lot of attention in control and
robotics. Its broad applications can be found in diverse areas,
including multi-vehicle rendezvous, formation control of multi-
robots, flocking, swarming, distributed sensor fusion, attitude
alignment, and congestion control in communication networks.
One of the main challenges in cooperative control is to design
decentralized control schemes such that some group objective can
be achieved in a distributed fashion. A particularly interesting topic
in cooperative control is the consensus problemofmulti-agent sys-
tems. Early well-knownworks on the consensus problem ofmulti-
agent systems can be found in [1–5], to name just a few.

An interesting topic in multi-agent systems is the finite-time
consensus problem, which is extensively studied in the litera-
tures [6–14] formulti-agent systemswith single or double integra-
tor dynamics. Two finite-time consensus protocols are proposed
in [6] for continuous-time systems, under either of which, the
differential equations of the overall systems have discontinuous
right-hand sides by nonsmooth stability analysis. In [7], the results
on finite-time semistability are applied to developing finite-time
consensus protocols in nonlinear dynamical networks. The termi-
nal sliding mode technique is used in [8] to design finite-time con-
sensus algorithms. A finite-time formation control framework for
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multi-agent systems with a large population of members is devel-
oped in [9]. In [10], the finite-time consensus problem is studied
in both cases of the bidirectional interaction and the unidirectional
interaction, and it was proven that if the sum of time intervals, in
which the interaction topology is connected, is sufficiently large,
the proposed protocols will solve the finite-time consensus prob-
lems. Both first-order and second-order decentralized finite-time
sliding mode estimators are proposed in [11] and employed to
achieve decentralized formation tracking of multiple autonomous
vehicles. The finite-time consensus algorithms for leaderless and
leader–follower second-order multi-agent systems with external
disturbances are addressed in [12]. A binary finite-time consen-
sus protocol is proposed in [13], which only requires the sign in-
formation of relative measurement signals between neighboring
agents’ states. Finite-time weighted average consensus with re-
spect to amonotonic function is studied in [14] for a group of kine-
matic agents with time-varying topology. Asmentioned above, the
finite-time consensus problem of multi-agent systems has been
extensively studied for systems with single or double integrator
dynamics using Lyapunov, homogeneity [7], nonsmooth analy-
sis [6,13], and sliding mode techniques [8,11].

Recently, the consensus problem of multi-agent systems with
unknown nonlinear dynamics [15–21] has drawn the attention of
many researchers. In [15,16], the authors studied a coordination
problem steering a group of agents to a formation that translates
with a prescribed reference velocity. Decentralized adaptive de-
signs are proposed for reference velocity recovery using relative
position feedback in [15] and tracking of the reference velocity
by incorporating relative velocity feedback in addition to relative
position feedback in [16]. In [17], the authors proposed a robust
decentralized adaptive control approach using a neural network
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to solve the consensus problem of multi-agents with uncertain-
ties and external disturbances in undirected networks. In [18], the
authors presented a design method for adaptive synchronization
controllers for distributed systems having non-identical unknown
nonlinear dynamics, and for a target dynamics to be tracked that
is also nonlinear and unknown. Under some assumptions, the au-
thors proved that the overall local cooperative error vector and the
neural network weight estimation errors are both uniformly ul-
timately bounded. In [19], an adaptive consensus design method
is presented for multi-agent systems with non-identical unknown
nonlinear dynamics, and for a leader to be followed that is also non-
linear and unknown in networks with jointly connected topolo-
gies. Both consensus stability and parameter convergence are
analyzed. In [20,21], the consensus problem of high order multi-
agent systems with unknown nonlinear dynamics is considered
using an adaptive design method. It is noted that a linear param-
eterization approach has been taken in [15,16,19] to deal with the
unknown and complex nonlinear dynamics, and examples of ap-
plications are included in these papers.

However, when unknown nonlinear dynamics exist in the sys-
tem, few works consider the finite-time consensus problem of
multi-agent systems. In [15–21], only asymptotical stability is con-
sidered using the adaptive design method. To the best knowledge
of the authors, for networks ofmultiple agentswith unknown non-
linear dynamics, it is still an open problem to design decentralized
control laws such that the whole system reaches consensus in fi-
nite time. Moreover, for an adaptive design by parameterizations
of the unknown nonlinear dynamics, it is another problem to guar-
antee finite-time parameters converge in the meantime.

In this paper, we consider the finite-time consensus problem of
leader-following multi-agent systems, in which the leader’s con-
trol input signal is unknown and nonlinear, the followers have un-
known, non-identical, nonlinear dynamics. By parameterization of
unknown nonlinear dynamics, under the assumption of connectiv-
ity of multi-agent networks and the persistent excitation assump-
tion of the regressor matrix, a decentralized adaptive finite-time
control scheme is proposed for the consideredmulti-agent systems
to reach consensus with parameter convergence in finite-time via
relative states and local consensus error feedback of neighboring
agents. The stability analysis is conducted based on Lyapunov tech-
niques and homogeneity of partial terms of vector fields. A homo-
geneous Lyapunov function is constructed in the stability analysis.
However, the whole system is not homogeneous, in which only
partial terms of the vector field hold homogeneity, so the finite-
time stability theory of homogeneous systems cannot be applied
directly. We use Lyapunov techniques and homogeneity, in con-
junction with some inequality techniques to derive our stability
results, such that finite-time consensus and finite-time parameter
convergence are both achieved globally. The connectivity of multi-
agent networks and the persistent excitation condition are crucial
in finite-time consensus and finite-time parameter convergence,
respectively.

The contributions of this paper are in three aspects. Firstly, a
novel type of decentralized adaptive finite-time consensus algo-
rithm is proposed for leader-following multi-agent systems with
unknown nonlinear dynamics; secondly, homogeneous Lyapunov
function and homogeneous vector fields are introduced in the
finite-time stability analysis of multi-agent systems although the
whole system is not homogeneous; finally, under the PE condition,
finite-time parameter convergence is also guaranteed.

This paper is organized as follows. In Section 2, we establish the
notation and formally state the problem. We present our main re-
sults in Section 3, the simulation results supporting the objectives
of the paper in Section 4 and the concluding remarks in Section 5.

2. Problem statement

Consider a multi-agent system consisting of N agents and a
leader. The dynamics of the ith (i = 1, 2, . . . ,N) agent is

described by

ẋi(t) = A0xi(t) + b̄[fi(xi(t), t) + ui(t)], (1)

where A0 =


0 1 · · · 0 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 · · · 0 1
0 0 · · · 0 0

, b̄ =


0
.
.
.
0
1

, xi(t) =

(ξ
(0)
i , ξ

(1)
i , . . . , ξ

(l−1)
i )T , ξ (k)

i (t) ∈ R, k = 0, 1, . . . , l − 1, denoting
the kth derivative of ξi with ξ

(0)
i = ξi, are the states of the ith agent,

ui(t) ∈ R is the control input of the ith agent, and smooth function
fi(xi(t), t) is the nonlinear dynamics of agent i, which is assumed
to be unknown. Standard assumptions for the existence of unique
solutions are made, i.e., fi(xi(t), t), i = 1, 2, . . . ,N , is continuous
in t and Lipschitz in xi(t). We assume that the leader’s dynamics of
the considered multi-agent system is as follows:

ẋ0(t) = A0x0(t) + b̄u0(t), (2)

where x0(t) = (ξ
(0)
0 , ξ

(1)
0 , . . . , ξ

(l−1)
0 )T , ξ (k)

0 (t) ∈ R, k = 0, 1, . . . ,
l−1 are the states of the leader, the control input u0(t) of the leader
agent is also assumed to be unknown.

With regarding the N agents as the nodes in V = {1, 2, . . . ,N},
the relationships between N agents can be described by a simple
and undirected graph G(V, E) [22] consisting of a node set V and
an edge set E ⊂ V × V of unordered pair (i, j) ∈ E . The set of
neighbors of node i is denoted by Ni = {j ∈ V|(i, j) ∈ E, j ≠ i}.
A path is a sequence of connected edges in a graph. If there is a
path between any two nodes of a graph G, then G is said to be
connected, otherwise disconnected. To describe the information
transmission between N agents and the leader, we need to define
another graph Ḡ on nodes 0, 1, 2, . . . ,N , which consists of graph
G, node 0 representing the leader agent and edges between the
leader and its neighbors [23]. The adjacency matrix of graph G is
denoted by A = [aij] ∈ RN×N , whose (ij)th entry is 1 if (i, j) is
an edge of graph G and 0 if it is not. The index number between
agent i, i = 1, 2, . . . ,N , and the leader is denoted by bi, which is
defined to be 1whenever the leader agent is agent i’s neighbor and
0 otherwise. The degree matrix D ∈ RN×N of graph G is a diagonal
matrix with the ith diagonal element being |Ni|. The Laplacian of
graph G is defined as L = D − A, which is symmetric and has the
following well-known result in algebraic graph theory [22].

Lemma 1. The Laplacian L of graphG has at least one zero eigenvalue
with 1N = (1, 1, . . . , 1)T ∈ RN as its eigenvector, and all the non-
zero eigenvalues of L are positive. Laplacian L has a simple zero eigen-
value if and only if graph G is connected.

The following lemma is also needed in deriving our main
results.

Lemma 2 ([24]). Consider the system ẋ(t) = f (x(t)), f (0) = 0, x ∈

Rn, x(0) = x0. Suppose that there exist a positive definite continu-
ous function V (x) : D → R, real numbers cα > 0 and α ∈ (0, 1),
and an open neighborhood H ⊂ D of the origin such that V̇ (x) ≤

−cαV (x)α , x ∈ H \ {0}. Then the origin is a finite-time stable equilib-
rium of the system. In addition, the settling time T satisfies that T ≤

1
cα(1−α)

V (x)1−α .

Suppose that the unknown nonlinear dynamics fi(xi(t), t), are
parameterized as

fi(xi(t), t) = φT
i (xi(t), t)θi, i = 1, 2, . . . ,N, (3)

and the leader’s unknown control input signal is parameterized as
u0(t) = φT

0 (t)θ0, where φ0(t), φi(xi(t), t) ∈ Rm are basis function
column vectors and θ0, θi ∈ Rm are constant true parameter
column vectors to be estimated.

Because θ0 is unavailable to each agent, for the purpose of
designing a decentralized controller, the ith agent estimates the
unknownparameter vector θ0 by θ̂0i and u0(t) by ûi(t) respectively.
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We have

ûi(t) = φT
0 (t)θ̂0i, i = 1, 2, . . . ,N. (4)

Similarly, the estimate of fi(xi(t), t) is expressed as

f̂i(xi(t), t) = φT
i (xi(t), t)θ̂i, i = 1, 2, . . . ,N. (5)

Remark 1. The unknown nonlinear dynamics of all agents are
assumed to be linearly parameterized. The linearly parameterized
models have been studiedwidely in classical adaptive control [25].
The examples of a linearly parameterized model of multi-agent
systems can be found in [15,16,19,21].

Let x(t) = col(x1, . . . , xN) be the stack column vector of x1,
. . . , xN , the objectives of this work are to design a decentralized
adaptive finite-time consensus scheme such that leader-following
consensus can be reached in finite time and finite-time parameter
convergence can be guaranteed in the meantime, that is

lim
t→Ts

∥xi(t) − x0(t)∥ = 0, lim
t→Ts

∥θ̂0i − θ0∥ = 0,

lim
t→Ts

∥θ̂i − θi∥ = 0,
(6)

for any initial condition x0(0), x(0), where Ts > 0 is the settling
time.

3. Main results

Define local neighborhood consensus error [8] for agent i as

ζ
(k)
i (t) =


j∈Ni

aij(ξ
(k)
i − ξ

(k)
j ) + bi(ξ

(k)
i − ξ

(k)
0 ), (7)

where k = 0, 1, . . . , l− 1, i = 1, 2, . . . ,N . For agent i, we propose
the following lth-order consensus control algorithm:

ui(t) = −c̄T ei(t) − (1 − ρ)

l−1
k=0

ckc(1−αk)(1−µ)
⌈ζ

(k)
i ⌋

αk
+ ΦT

i Θ̂i,

(8)
and

˙̂
θ0i = −c−1γφ0(t)c̄T


j∈Ni

aij(ei − ej) + biei


,

˙̂
θ i = −c−1γφi(xi, t)c̄T


j∈Ni

aij(ei − ej) + biei


,

(9)

where ei(t) = (ζ
(0)
i , ζ

(1)
i , . . . , ζ

(l−1)
i )T , ⌈ζ (k)

i ⌋
αk

= |ζ
(k)
i |

αksgn(ζ
(k)
i ),

sgn(·) is the sign function, Φi = col(φ0, −φi), Θ̂i = col(θ̂0i, θ̂i),
0 < ρ < 1, 0 < µ < 1, c ≥ 1, αk > 0 are positive constant
numbers, c̄ = (c0, . . . , cl−1)

T is a constant vector to be designed.

Remark 2. Note that controller ui(t) defined in (8) and the adap-
tive laws defined in (9) are decentralized. For control purposes, we
assume that the information of local consensus error vector ei(t) of
agent i is calculated in real-time and saved in its memory at each
time instant by each agent and is available for its neighbors. Con-
troller ui(t) and the adaptive laws defined in (9) only depend on the
information of relative position measurements and local consen-
sus errors feedback from its neighboring agents. A similar method
of information transmission can be found, for instance, in the liter-
atures [8,19,26,27].

Let ⌈ei⌋ᾱ
= col(c(1−α0)(1−µ)

⌈ζ
(0)
i ⌋

α0
, . . . , c(1−αl−1)(1−µ)

⌈ζ
(l−1)
i ⌋

αl−1
), ⌈e⌋ᾱ

= col(⌈e1⌋ᾱ, . . . , ⌈eN⌋
ᾱ), Θ̂ = col(Θ̂1, Θ̂2, . . . ,

Θ̂N), Φ = diag{Φ1, Φ2, . . . , ΦN}, ᾱ = (α0, α1, . . . , αl−1)
T , e(t) =

col(e1, . . . , eN), u = col(u1, . . . , uN), we have

u = −(IN ⊗ c̄T )e − (1 − ρ)(IN ⊗ c̄T )⌈e⌋ᾱ
+ ΦT Θ̂, (10)

where IN is the N × N identity matrix.

With (10), letting Θi = col(θ0, θi), Θ = col(Θ1, Θ2, . . . , ΘN),
Θ̄ = Θ̂ − Θ , f = col(f1, f2, . . . , fN), x̄(t) = x(t) − 1N ⊗ x0(t), and
noting that e(t) = (H ⊗ Il)x̄(t) and ẋ(t) = (IN ⊗ A0)x(t) + (IN ⊗

b̄)(f + u), we have

ė(t) = (H ⊗ Il)(ẋ(t) − 1N ⊗ ẋ0(t))
= (H ⊗ Il)[(IN ⊗ A0)x(t) + (IN ⊗ b̄)(f + u)

− 1N ⊗ (A0x0(t) + b̄u0(t))]
= (H ⊗ Il)[(IN ⊗ A0)x̄(t) + (IN ⊗ b̄)(f + u) − 1N ⊗ b̄u0(t)]
= (H ⊗ Il){(IN ⊗ A0)x̄(t) + (IN ⊗ b̄)[−(IN ⊗ c̄T )e

− (1 − ρ)(IN ⊗ c̄T )⌈e⌋ᾱ
+ ΦT Θ̄]}

= (IN ⊗ A0)e(t) − (H ⊗ b̄c̄T )e(t) − (1 − ρ)(H ⊗ b̄c̄T )⌈e⌋ᾱ

+ (H ⊗ b̄)ΦT Θ̄

where H = L + B, B = diag(b1, b2, . . . , bN), matrix H satisfied the
following well-known lemma [28]:

Lemma 3. (i) Matrix H has nonnegative eigenvalues; (ii) Matrix H
is positive definite if and only if graph Ḡ is connected.

We obtain the following error system:

ė(t) = (IN ⊗ A0)e(t) − (H ⊗ b̄c̄T )e(t)

− (1 − ρ)(H ⊗ b̄c̄T )⌈e⌋ᾱ
+ (H ⊗ b̄)ΦT Θ̄ (11)

and

˙̄Θ = −c−1γΦ(H ⊗ c̄T )e. (12)

Let ε(t) = c−1e(t), the system (11)–(12) can be rewritten as

ε̇(t) = (IN ⊗ A0)ε(t) − (H ⊗ b̄c̄T )ε(t)

− (1 − ρ)(H ⊗ b̄c̄T )⌈ε⌋ᾱ
+ c−1(H ⊗ b̄)ΦT Θ̄, (13)

and

˙̄Θ = −γΦ(H ⊗ c̄T )ε, (14)

where ⌈εi⌋
ᾱ

= col(c(α0−1)µ
⌈ε

(0)
i ⌋

α0
, c(α1−1)µ

⌈ε
(1)
i ⌋

α1
, . . . ,

c(αl−1−1)µ
⌈ε

(l−1)
i ⌋

αl−1
), i = 1, 2, . . . ,N , ⌈ε⌋ᾱ

= col(⌈ε1⌋ᾱ, ⌈ε2⌋
ᾱ,

. . . , ⌈εN⌋
ᾱ).

Assumption 1. Graph Ḡ is connected.

For a symmetric matrix P , by P > 0 we mean that P is posi-
tive definite. Under Assumption 1 and from Lemma 3, H is sym-
metric positive definite and all of eigenvalues of H are positive. Let
λmin, λmax > 0 and λ, λ̄ > be the smallest, largest eigenvalue of H
and P , respectively. Since (A0, b̄) is stabilizable, there exists a posi-
tive definite matrix P = (pij)l×l > 0 such that the following Riccati
inequality

AT
0P + PA0 − 2λminPb̄b̄TP < −λminIl (15)

holds with the constant vector c̄ in (10) being designed as c̄T =

b̄TP . There also exists 0 < ρ1 < 1 such that ρ1 < ρ < 1, (15) and

AT
0P + PA0 −

2
ρ

λminPb̄b̄TP < −
1
2
λminIl (16)

hold with c̄T = b̄TP .

3.1. Finite-time stability of homogeneous system

In this subsection, we firstly consider the homogeneous part of
the error system (13)–(14). The following definitions are needed in
the theoretical analysis.
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Definition 1 ([29]). A function V : Rn
→ R is homogeneous of

degree d ∈ R with respect to weights (r1, . . . , rn) ∈ Rn
+
if

V (λr1x1, . . . , λrnxn) = λdV (x1, . . . , xn), ∀λ > 0. (17)

Definition 2 ([29]). A vector field g is homogeneous of degree d ∈

Rwith respect to theweights (r1, . . . , rn) ∈ Rn
+
if for all 1 ≤ i ≤ n,

the ith component gi of g is homogeneous function of degree ri +d,
i.e.,

gi(λr1x1, . . . , λrnxn) = λri+dgi(x1, . . . , xn), ∀λ > 0. (18)

For the homogeneous part of the error system (13)–(14), we
give the following lemma.

Lemma 4. Under Assumption 1 and (15) with c̄T = b̄TP, consider
system

ε̇(t) = (IN ⊗ A0)ε(t) − (H ⊗ b̄c̄T )⌈ε⌋ᾱ. (19)

There exists ϵ0 ∈ (0, 1) such that, for every α ∈ (1−ϵ0, 1), the origin
is a globally finite-time stable equilibrium for system (19), where
α0, α1, . . . , αl−1 satisfy

αk−1 =
αkαk+1

2αk+1 − αk
, k = 1, . . . , l − 1, (20)

with αl = 1 and αl−1 = α.

Proof. Let H = (hij)N×N , we have

(H ⊗ b̄c̄T )⌈ε⌋ᾱ
=

H ⊗


0 0 · · · 0
...

...
. . .

...
0 0 · · · 0
c0 c1 · · · cl−1


 ⌈ε⌋ᾱ

=


F1(ε)
F2(ε)

...
FN(ε)

 ,

where Fi(ε) = (0, . . . , 0,
N

j=1 hij
l−1

k=0 ckc
(αk−1)µ

⌈ε
(k)
j ⌋

αk
)T , i =

1, 2, . . . ,N .
Let f α denote the closed-loop vector field of system (19). From

Proposition 8.1 of [29], it is easy to verify that, for each α > 0,
the vector field f α is continuous, homogeneous of degree α−1

α
with

respect to the weights
1
α0

,
1
α1

, . . . ,
1

αl−1  , . . . ,
1
α0

,
1
α1

, . . . ,
1

αl−1    
N


, (21)

where α0, α1, . . . , αl−1 satisfy (20) with αl = 1 and αl−1 = α.
Moreover, noting that α0 = α1 = · · · = αl−1 = 1 as α = 1, the
vector field f 1 corresponds to the system

ε̇(t) = (IN ⊗ A0)ε(t) − (H ⊗ b̄c̄T )ε(t). (22)

Let Λ = diag(λ1, λ2, . . . , λN) with λ1, λ2, . . . , λN being eigen-
values of matrixH . BecauseH is symmetric, there exists an orthog-
onal matrix U such that UHUT

= Λ. Setting ε̃(t) = (U ⊗ Il)ε(t) for
the system (22), one has

˙̃ε(t) = (IN ⊗ A0)ε̃(t) − (Λ ⊗ b̄c̄T )ε̃(t). (23)

Consider Lyapunov function candidate W0(ε̃) = ε̃T (IN ⊗ P)ε̃,
where P > 0 is given in (15). Calculating the derivative along the

solution of the system (23), we have

dW0

dt


(23)

= ε̃T
[IN ⊗ (AT

0P + PA0) − Λ ⊗ (2Pb̄b̄TP)]ε̃

=

N
i=1

ε̃T
i (A

T
0P + PA0 − 2λiPb̄b̄TP)ε̃i

≤

N
i=1

ε̃T
i (A

T
0P + PA0 − 2λminPb̄b̄TP)ε̃i

< −λmin

N
i=1

ε̃T
i ε̃i = −λminε̃

T ε̃ < 0, ∀ε̃ ≠ 0.

Therefore, the origin of the system (23) is an asymptotically sta-
ble equilibrium. By Theorem 6.2 of [29], there exists a positive-
definite, radially unbounded, Lyapunov functionW (ε(t)) such that
dW
dt is continuous and negative definite. Let A = W−1([0, 1]) and
the boundary of setA beS = W−1({1}). ThenA andS are compact
since W is proper and 0 ∉ S since W is positive definite. Define
ϕ : (0, 1] × S → R by ϕ(α, z) = Lf αW (z), where Lf αW (z) is the
Lie-derivativewith respect to f α . Then ϕ is continuous and satisfies
ϕ(1, z) < 0 for all z ∈ S, that is, ϕ({1} × S) ⊂ (−∞, 0). Since S
is compact, there exists ϵ0 > 0 such that ϕ((1 − ϵ0, 1] × S) ⊂

(−∞, 0). It follows that for α ∈ (1 − ϵ0, 1], Lf αW takes neg-
ative values on S. Thus, A is strictly positively invariant under
f α for every α ∈ (1 − ϵ0, 1]. By Theorem 6.1 of [29] the origin
is globally asymptotically stable equilibrium under f α for every
α ∈ (1− ϵ0, 1]. The result now follows from Theorems 7.1 and 7.3
of [29] by noting that, for every α ∈ (1 − ϵ0, 1), the degree of ho-
mogeneity of f α with respect to the weights (21) is negative. �

Remark 3. Similar to [29], the uniqueness of solutions of system
(19) is based on forward uniqueness. The vector fields considered
in (19) are locally Lipschitz everywhere except on a finite collection
of submanifolds. Moreover, the vector field is transverse to each
such submanifold everywhere except at the origin. Hence forward
uniqueness for all initial conditions except the origin follows
from Remark 8.1 of [29] and references therein, while forward
uniqueness at the origin follows from Lyapunov stability.

As in [30], for system (19), we construct the following homoge-
neous Lyapunov function

Vα(ε) =




∞

0

1
λd+1

(a ◦ W0)

× (λ
1
α0 ε

(0)
1 , . . . , λ

1
αl−1 ε

(l−1)
1 , . . . ,

λ
1
α0 ε

(0)
N , . . . , λ

1
αl−1 ε

(l−1)
N )dλ, ε ∈ RNl

\ {0}
0, ε = 0,

(24)

where d > p > 2, d, p are positive integers, α ∈ (1 − ϵ1, 1)
with ϵ1 =

p−2
2l+p−2 , W0(ε) = εT (IN ⊗ P)ε, in which P satisfies (15),

and a(s) ∈ C∞(R, R) is such that a(s) =


0, s ∈ (−∞, 1],
1, s ∈ [2, +∞),and its-

derivative satisfies a′(s) ≥ 0 on R.
An example of function a(s) can be constructed as:

a(s) =



0, s ∈ (−∞, 1],

2(s − 1)2, s ∈


1,

3
2


,

1 − 2(s − 2)2, s ∈


3
2
, 2


,

1, s ∈ (2, ∞).

(25)
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Then, the derivative of function a(s) is

a′(s) =



0, s ∈ (−∞, 1],

4(s − 1), s ∈


1,

3
2


,

−4(s − 2), s ∈


3
2
, 2


0, s ∈ (2, ∞).

(26)

Remark 4. Choosing different values of p provides flexibility for
the lower bound of α. Large values of p result in the lower bound
of α close to 0, otherwise 1.

Lemma 5. If d > p > 2, d, p are positive integers, α ∈ (1 −

ϵ1, 1) with ϵ1 =
p−2

2l+p−2 , then, (i) min0≤k≤l−1{pαk} > 2, (ii) d >

max0≤k≤l−1{
1
αk

}, and (iii) 0 < αd+α−1
αd < 1 hold, where αk is defined

in (20).
Proof. From (20), it is easy to verify that

0 < α0 =
α

l − (l − 1)α
< α1 < · · · < αl−1 = α < 1. (27)

To prove (i),we only need to prove pα0−2 > 0due to (27). Since
pα0 − 2 = (α −

2l
p−2+2l )

p−2+2l
l−(l−1)α = (α − 1+ ϵ0)

p−2+2l
l−(l−1)α > 0, there-

fore, (i) holds. To prove (ii), we only need to prove dα0 > 1 due to
(27). It obviously holds due to d > p > 2 and (i). To prove (iii), we
only need to prove d > 1

α
− 1 >

p−2
2l , which is always true. �

Lemma 6. (i)Vα(ε) is C1 onRNl, positive definite, and homogeneous
of degree d with respect to the weights defined in (21); (ii) ∀ε ≠ 0,
dVα(ε)

dt |(19) < 0; (iii) Homogeneous Lyapunov function Vα(ε) satisfies
dVα(ε)

dt


(19)

≤ −κ1V
αd+α−1

αd
α , ε ∈ RNl, where κ1 > 0 is some positive

constant number, α ∈ (1 − ϵ2, 1) with ϵ2 = min{ϵ0, ϵ1}.
Proof. (i) From Lemma 5 and similar to the proof of Theorem 2
in [30], we can prove (i) and (ii) easily.

(iii) For each α > 0, the vector field f α is continuous, homo-
geneous of degree α−1

α
with respect to the weights defined in (21).

From (i), Vα is C1 onRNl and homogeneous of degree dwith respect
to the weights defined in (21). It follows that dVα

dt is continuous on
RNl and homogeneous of degree d+ 1−

1
α
. Lemma 4.2 of [29] and

(ii) imply that there exists a constant number κ1 > 0 such that
dVα(ε)

dt


(19)

≤ −κ1V
αd+α−1

αd
α , ε ∈ RNl. �

3.2. Adaptive finite-time consensus

In this subsection, we give a theoretical analysis for adaptive
finite-time consensus achievement of the system (1)–(2). To derive
our main result, the following persistent excitation [25] assump-
tion is needed to guarantee finite-time parameter convergence.

Assumption 2. The regressor matrix Φ = diag{Φ1, Φ2, . . . , ΦN}

is persistently exciting (PE) [25], that is there exist two positive real
ν and κ0 such that t+ν

t
ΦΦTdτ ≥ κ0I > 0, ∀t ≥ 0. (28)

Remark 5. The PE condition is standard in classical adaptive con-
trol [31] and crucial for ensuring parameter convergence. The ex-
amples of multi-agent system can be found in [15,16,19]. The PE
condition ensures the information richness of the time varying re-
gressor matrixΦ throughout time, and guarantees parameter con-
vergence. An intuitive interpretation of the PE condition is that

when φi, i = 0, 1, . . . ,N , rotate sufficiently in space, all param-
eters can be estimated with confidence of accuracy. The technical
assumptionmay not be easilymet in practice (for every t > 0), but
it helps to indicate themost likely period for a complete estimation
of parameters.

The following theorem is our main result:

Theorem 1. Consider the multi-agent system (1)–(2). Suppose As-
sumptions 1 and 2 are satisfied and φi, i = 0, 1, . . . ,N, are con-
tinuous and uniformly bounded. Then, there exist ϵ ∈ (0, 1) and
0 < ρ < 1, such that, for every α ∈ (1 − ϵ, 1), under con-
trol law (8) and parameter adaptive law (9), (i) the system (1)–(2)
reaches consensus in finite-time; (ii) finite-time parameter conver-
gence is guaranteed in the sense of (6); (iii) the settling time Ts <

15 3√5αλ̄
3√16(

√
6−1−

√
2)(1−ρ)(1−α)λmin

.

Before proving Theorem 1, we firstly prove two lemmas for the
system (13)–(14).

Let Ωσ , {ε : W0(ε) ≤ σ }, Ωc
σ , {ε : W0(ε) > σ }, Ωα,σ , {ε :

Vα(ε) ≤ σ }, Ωc
α,σ , {ε : Vα(ε) > σ }, Bσ , {ε : εTε ≤ σ } and

Bc
σ , {ε : εTε > σ }.

Lemma 7. Under Assumption 1 and choosing c̄T = b̄TP satisfying
(15), there exists ϵ ∈ (0, 1), ρ ∈ (0, 1), such that, for every α ∈ (1−

ϵ, 1), (i) the system (13)–(14) is uniformly stable; (ii) the solutions
ε(t) and Θ̄(t) of the system (13)–(14) are uniformly bounded for
∀t ≥ t0, ∀ε0 ∈ RNl, Θ̄0 ∈ R2Nm, where ε0 = ε(t0), Θ̄0 =

Θ̄(t0); (iii) limt→∞ ∥ε(t)∥ = 0,∀ε0 ∈ RNl, ∀Θ̄0 ∈ R2Nm
; (iv) there

exists t∗1 such that ε(t) ∈ Ωα,1, for any t ≥ t∗1 .

Proof. Consider the following Lyapunov candidate function

W1(ε, Θ̄) = εT (IN ⊗ P)ε +
1
cγ

Θ̄T Θ̄, (29)

where P > 0 is given by (15). Calculating the derivative with
respect to time t along the solution of the system (13)–(14), we
have
dW1

dt
= εT

[IN ⊗ (AT
0P + PA0) − H ⊗ (2Pb̄b̄TP)]ε

− 2(1 − ρ)εT (H ⊗ Pb̄b̄TP)⌈ε⌋ᾱ. (30)

Setting ε̃(t) = (U ⊗ Il)ε(t), applying (15) and noting that
ε̃T ε̃ = εTε, one has

dW1

dt
≤ −λminε

Tε + 2(1 − ρ)|εT (H ⊗ Pb̄b̄TP)⌈ε⌋ᾱ
|. (31)

If ε ∈ Bc
1 , then we have

|εT (H ⊗ Pb̄b̄TP)⌈ε⌋ᾱ
|

< [εT (H ⊗ Pb̄b̄TP)ε]
1
2 [(⌈ε⌋ᾱ)T (H ⊗ Pb̄b̄TP)⌈ε⌋ᾱ

]
1
2

< λF (ε
Tε)

1
2 [(⌈ε⌋ᾱ)T⌈ε⌋ᾱ

]
1
2

≤ λF (ε
Tε)

1
2


N
i=1

l−1
k=0

|ε
(k)
i |

2αk

 1
2

≤ λF (ε
Tε)

1
2


N
i=1

l−1
k=0

|ε
(k)
i |

2

 1
2

≤ λFε
Tε,

where 0 ≤ H ⊗ Pb̄b̄TP < λF INl. Then, from (31), there exists
0 < ρ2 < 1, such that when max{ρ1, ρ2} < ρ < 1, we have

dW1

dt
≤ −λminε

Tε + 2(1 − ρ)λFε
Tε

< −
1
2
λminε

Tε, ε ∈ Bc
1. (32)



Author's personal copy

H. Yu et al. / Systems & Control Letters 62 (2013) 880–889 885

If ε ∈ B1, then

dW1

dt
= (1 − ρ)εT

[IN ⊗ (AT
0P + PA0)ε − 2(H ⊗ Pb̄b̄TP)⌈ε⌋ᾱ

]

+ ρεT

IN ⊗ (AT

0P + PA0) −
1
ρ
H ⊗ (2Pb̄b̄TP)


ε. (33)

Setting ε̃(t) = (U ⊗ Il)ε(t), and applying (15), we have

lim
α→1

εT
[IN ⊗ (AT

0P + PA0)ε − 2(H ⊗ Pb̄b̄TP)⌈ε⌋ᾱ
]

< −λminε
Tε.

Noting that B1 is a compact set, there exists ϵ3 ∈ (0, 1) such that
for α ∈ (1− ϵ3, 1), εT

[IN ⊗ (AT
0P + PA0)ε − 2(H ⊗ Pb̄b̄TP)⌈ε⌋ᾱ

] <

−λminε
Tε.

On the other hand, applying (16), there exists ρ, max{ρ1, ρ2} <
ρ < 1 such that εT

[IN ⊗ (AT
0P + PA0) −

1
ρ
H ⊗ (2Pb̄b̄TP)]ε <

−
1
2λminε

Tε.
Therefore,

dW1

dt
< −

1
2
λminε

Tε, ε ∈ B1. (34)

By the same arguments as in [25], and choosing ϵ =

min{ϵ2, ϵ3}, max{ρ1, ρ2} < ρ < 1, we obtain (i) and (ii).
From (32) and (34), we have limt→∞ W1(ε(t), Θ̄(t)) = W1|t=∞

and

1
2
λmin lim

t→∞

 t

t0
ε(τ )Tε(τ )dτ < W1|t=t0 − W1|t=∞.

By Barbalat’s Lemma [25], we have limt→∞ ∥ε(t)∥ = 0. Thus (iii)
is proved.

Construct a homogeneous function Uα(ε) =
N

i=1
l−1

k=0

(ε
(k)
i )pαk . Since Uα(ε) and Vα(ε) are homogeneous of degree p and

d with respect to the weights defined in (21), respectively. Then,
Lemma 4.2 in [29] ensures that there exists a constant κ2 > 0 such
that Vα(ε) < κ2(Uα(ε))

d
p .

Note that Uα(ε) < εTε < 1
λ
εT (IN ⊗ P)ε due to pαk > 2, k =

0, 1, . . . , l − 1, as ε ∈ B1. It follows that Vα(ε) < 1
2 as ε ∈ Ωσ1

with σ1 = min{λ(
min{κ2,

1
2 }

κ2
)p/d, 1}, due to d ≥ p.

On the other hand, from (32) and (34), and c ≥ 1, it follows that

λεTε < εT (IN ⊗ P)ε < W1(ε, Θ̄)

< εT
0 (IN ⊗ P)ε0 + γ −1Θ̄T

0 Θ̄0

−
λminσ1

2λ̄
(t − t0), ε ∈ RNl

\ Ωσ1 . (35)

Then, from (35), we can obtain that there exists t∗1 > 0,

t∗1 =

t0 +
2λ̄∆

λminσ1
, if ∆ > 0,

t0, otherwise,
(36)

which is independent of c such that ε ∈ Ωα,1 when t ≥ t∗1 , where
∆ = εT

0 (IN ⊗ P)ε0 + γ −1Θ̄T
0 Θ̄0 − σ2, σ2 = min{λ(

min{κ2,1}
κ2

)p/d, 1}.
We also have

Θ̄T (t)Θ̄(t) < cγ σ2, t ≥ t∗1 . (37)

This completes the proof of (iv). �

Lemma 8. Under Assumptions 1 and 2, choose c̄T = b̄TP satisfying
(15) and assume that Φ is continuous and uniformly bounded, there
exists ρ ∈ (0, 1) and ϵ ∈ (0, 1), for every α ∈ (1 − ϵ, 1), such that
the system (13)–(14) is locally finite-time stable on set Ωα,1.

Proof. Calculating the derivative of Vα(ε) defined in (24) along the
solution of the system (13), we have

dVα(ε)

dt


(13)

= (1 − ρ)


∂Vα(ε)

∂ε

T

[(IN ⊗ A0)ε − (H ⊗ b̄c̄T )⌈ε⌋ᾱ
]

+ ρ


∂Vα(ε)

∂ε

T 
(IN ⊗ A0) −

1
ρ

(H ⊗ b̄c̄T )


ε

+
1
c


∂Vα(ε)

∂ε

T

(H ⊗ b̄)ΦT Θ̄, ε ∈ Ωα,1

< −κ1(1 − ρ)V
αd+α−1

αd
α +

1
c


∂Vα(ε)

∂ε

T

(H ⊗ b̄)ΦT Θ̄

+ ρ


∂Vα(ε)

∂ε

T 
(IN ⊗ A0)−

1
ρ

(H ⊗ b̄c̄T )


ε, ε∈Ωα,1.(38)

Since limα→1(
∂Vα(ε)

∂ε
)T [(IN ⊗ A0) −

1
ρ
(H ⊗ b̄c̄T )]ε < 0, there

exists ϵ4 ∈ (0, 1) such that, for every α ∈ (1 − min{ϵ2, ϵ3, ϵ4}, 1),
( ∂Vα(ε)

∂ε
)T [(IN ⊗ A0) −

1
ρ
(H ⊗ b̄c̄T )]ε < 0, and then, for ε ∈ Ωα,1,

dVα(ε)

dt


(13)

< −κ1(1 − ρ)V
αd+α−1

αd
α +

1
c


∂Vα(ε)

∂ε

T

× (H ⊗ b̄)ΦT Θ̄. (39)

From Lemma 7, there exists t∗1 such that ε ∈ Ωα,1, for any
t ≥ t∗1 . Let ε(t, t0, ε0) be the non-trivial solution of (13). In the
following, we consider three cases.

Case 1: There exists an interval [t1, t2] ⊂ [t∗1 , t
∗

1 +T2](t2 > t1, T2 =
2αd

κ1(1−ρ)(1−α)
) such that ε(t, t0, ε0) = 0 for any t ∈ [t1, t2].

It follows from (13) and (14) that Θ̄(t) is a constant vector for
t ∈ [t1, t2]. Therefore, in this case, ε(t) ≡ 0 and then ˙̄Θ ≡ 0 for
any t > t1. It follows that Θ̄ is a constant vector for any t > t1.

Now we prove Θ̄(t) ≡ 0 for any t > t1 by contradiction.
Construct function Ψ (Θ̄(t), t) =

1
2 [Θ̄

T (t + T1)Θ̄(t + T1) − Θ̄T (t)
Θ̄(t)] with T1 > 0. It is obvious that Ψ (Θ̄(t), t) ≡ 0, ∀t > t1,
due to the fact that Θ̄(t) is constant, then dΨ (Θ̄(t),t)

dt ≡ 0, ∀t > t1.
Supposing Θ̄(t) ≠ 0 and calculating the derivative of function
Ψ (Θ̄(t), t) with respect to time, we have

dΨ (Θ̄(t), t)
dt

= Θ̄T (t + T1) ˙̄Θ(t + T1) − Θ̄T (t) ˙̄Θ(t)

=

 t+T1

t

d
dτ

(Θ̄T (τ ) ˙̄Θ(τ ))dτ

= −γ

 t+T1

t

d
dτ

[Θ̄T (τ )Φ(H ⊗ c̄T )ε]dτ

= −γ

 t+T1

t
Θ̄TΦ(H2

⊗ c̄T b̄)ΦT Θ̄dτ

= −γ

 t+T1

t
Θ̄TΦ(H2

⊗ pll)ΦT Θ̄dτ

≤ −γ pllλ2
max

 t+T1

t
Θ̄TΦΦT Θ̄dτ

= −γ pllλ2
maxΘ̄

T
 t+T1

t
ΦΦTdτ


Θ̄, (40)

where pll > 0 is the ll-th entry of positive definite matrix P =

(pij)l×l. Applying the PE condition defined in (28) to the last
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equation in (40), we have

dΨ (Θ̄(t), t)
dt

< −γ pllκ0λ
2
max∥Θ̄∥

2 < 0, ∀t > t1, (41)

which contradicts that dΨ (Θ̄(t),t)
dt ≡ 0, ∀t > t1. Therefore, Θ̄ ≡ 0,

∀t > t1. In this case, the system (13) and (14) is finite-time stable.
Case 2: ε(t, t0, ε0) only passes through 0 and do not stay on 0 as
t ∈ [t∗1 , t

∗

1 + T2].
Let {ti : i ∈ I} ⊂ [t∗1 , t

∗

1 +T2] be a time sequence that ε(t, t0, ε0)
passes through 0 at each ti, where I is an index set. Without loss
of generality, we suppose that ti < ti+1, i, i + 1 ∈ I. We firstly
illustrate that {ti : i ∈ I} must be a finite set. Otherwise, there ex-
ists a infinite subsequence {tik : ik ∈ I} of {ti : i ∈ I} such that
limk→∞ tik = t∗, t∗ ∈ [t∗1 , t

∗

1 + T2]. Then, for any δ > 0, there ex-
ists k∗ > 0 such that as k > k∗, |tik − t∗| < δ. Since ε(t, t0, ε0) and
ε̇(t, t0, ε0) are continuous, then for any t ∈ (t∗ − δ, t∗), we have
ε(t, t0, ε0) ≡ 0. This contradicts our assumption. Let {ti}ni=1 be a
finite set that ε(t, t0, ε0) passes through 0 at each ti. There exists
δ1 > 0 such that set T = ∪

n
i=1(ti − δ0, ti + δ0) is nonempty open

set for any δ0 > 0, 0 < δ0 < δ1. Then, ε(t, t0, ε0) ≠ 0 on the
compact set [t∗1 , t

∗

1 + T2] \ T . Note that ε(t, t0, ε0) is continuous
on [t∗1 , t

∗

1 + T2] \ T , therefore, there exists a constant κ3 > 0 such
that, Uα(ε) =

N
i=1
l−1

k=0(ε
(k)
i )pαk ≥ κ3, ∀t ∈ [t∗1 , t

∗

1 + T2] \ T .
It follows from (37) that there exists c̃ > 1, 0 < µ < 1 such

that for c > c̃ ,

1
c2−2µ

Θ̄T Θ̄ < κ3 ≤ Uα(ε), ∀t ∈ [t∗1 , t
∗

1 + T2] \ T , (42)

and

cµκ1(1 − ρ)

λθκ4Nl
> 1, (43)

where κ4 will be given later, λθ > 0 is given such that Φ(H2
⊗

b̄T b̄)ΦT < λ2
θ I due to Φ being uniformly bounded. It follows from

(39) and (42) that

dVα(ε)

dt


(13)

< −κ1(1 − ρ)V
αd+α−1

αd
α +

λθ

c


∂V T

α

∂ε

∂Vα

∂ε

 1
2

(Θ̄T Θ̄)
1
2

< −κ1(1 − ρ)V
αd+α−1

αd
α +

λθ

cµ


∂V T

α

∂ε

∂Vα

∂ε

 1
2

(Uα)
1
2 ,

∀t ∈ [t∗1 , t
∗

1 + T2] \ T . (44)

Note that ( ∂Vα

∂ε
(k)
i

)2Uα(ε) is homogeneous of degree 2(d−
1
αk

)+p

and
d− 1

αk
+

p
2

d > 1, then, there exists κ4 > 0 [29] such that
N
i=1

l−1
k=0


∂Vα

∂ε
(k)
i

2

· Uα(ε)

 <

N
i=1

l−1
k=0

κ2
4V

2(d− 1
αk

+
p
2 )

d
α

< κ2
4N

2l2V 2
α . (45)

Therefore, from (43)–(45), it follows that

dVα(ε)

dt


(13)

< −κ1(1 − ρ)V
αd+α−1

αd
α +

λθκ4Nl
cµ

Vα

< −
1
2
κ1(1 − ρ)V

αd+α−1
αd

α ,

∀t ∈ [t∗1 , t
∗

1 + T2] \ T . (46)

Since dVα(ε)

dt


(13)

is continuous on [t∗1 , t
∗

1+T2], there exists δ2 > 0

such that, for 0 < δ0 < δ2, we have

dVα(ε)

dt


(13)

< −
1
2
κ1(1 − ρ)V

αd+α−1
αd

α , ∀t ∈ [t∗1 , t
∗

1 + T2]. (47)

By Lemma 2, the system (13)–(14) is finite-time convergent with
settling time

Ts <
2αdVα(t∗1 )

1−α
αd

κ1(1 − ρ)(1 − α)
<

2αd
κ1(1 − ρ)(1 − α)

. (48)

This implies ε(t, t0, ε0) = 0 for any t ∈ [t∗1 + T0, t∗1 + T2], which
contradicts our assumption. Therefore, the second case does not
happen.

Case 3: ε(t, t0, ε0) ≠ 0 for any t ∈ [t∗1 , t
∗

1 + T2].
Using the same method, we can derive that the third case does

not happen either.
In the following, we give one of explicit estimation of the bound

of Ts. From (48), the bound of the setting time Ts is dependent on
κ1. Once the lower bound of κ1 is given, then, the bound of Ts can
be obtained. By Lemma 4.2 of [29], we have

dVα(ε)

dε


(19)

<


max

{ε:Vα(ε)=1}

dVα(ε)

dε


(19)


Vα(ε)

αd+α−1
αd .

Using the same method as in [32], we have

lim
α→1


max

{ε:Vα(ε)=1}

dVα(ε)

dε


(19)


= max

{ε:V1(ε)=1}

dV1(ε)

dε


(22)

≤ max
{ε:V1(ε)=1}


∞

0

1
λd−1

a′(λ2εT (IN ⊗ P)ε)(−λminε
Tε)dλ

≤ − min
{ε:V1(ε)=1}


∞

0

1
λd−1

a′(λ2εT (IN ⊗ P)ε)λminε
Tεdλ,

where V1(ε) = Vα(ε)|α=1 =


∞

0
1
λ4
a(λ2εT (IN ⊗ P)ε)dλ.

Then, there exists 0 < ϵ5 < 1 such that when α ∈ (1 − ϵ5, 1),
we have

κ1 >
1
2

min
{ε:V1(ε)=1}


∞

0

1
λd−1

a′(λ2εT (IN ⊗ P)ε)λminε
Tεdλ. (49)

Moreover, we can select that d = 3 and a(s) as constructed in
(25) and consider the set {ε : εT (IN ⊗ P)ε = r2, r > 0}. We will
determine the value of r such that V1(ε) = 1. Then,

1 =


∞

0

1
λ4

a(λ2r2)dλ

=

 
3
2

1
r

1
r

2
λ4

(λ2r2 − 1)2dλ

+

 √
2
r
3
2

1
r

1
λ4

(1 − 2(λ2r2 − 2)2)dλ +


∞

√
2
r

1
λ4

dλ.

By simple computation, we have

16
3

(
√
6 − 1 −

√
2)r3 = 1.

Then,

r =
161/3

31/3(
√
6 − 1 −

√
2)1/3

.

Note that {ε : εT (I ⊗ P)ε = r20 } ⊂ {ε : V1(ε) = 1}. On the other
hand, for any 0 ≠ ε ∈ {ε : V1(ε) = 1}, there exists r ′ > 0 such
that εT (IN ⊗ P)ε = (r ′)2. Then, we have r = r ′. Therefore,

{ε : V1(ε) = 1} = {ε : εT (IN ⊗ P)ε = r2}.
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Now,wewill give the lower bound of κ1. From (26) and (49), we
have

κ1 >
1
2

min
{ε:V1(ε)=1}


∞

0

1
λ2

a′(λ2εT (IN ⊗ P)ε)λminε
Tεdλ

>
1
2


∞

0

1
λ2

a′(λ2r2)
λmin

λ̄
rdλ

=
1
2

 
3
2

1
r

1
r


4r2 −

1
λ2


dλ −

 √
2
r
3
2

1
r


4r2 −

2
λ2


dλ

=
5
2


16
5

1/3

(
√
6 − 1 −

√
2)

λmin

λ̄
.

In conclusion, we can select c > c̃ , max{ρ1, ρ2} < ρ < 1,
0 < δ0 < min{δ1, δ2}, ϵ = min{ϵ2, ϵ3, ϵ4, ϵ5}, such that, for every
α ∈ (1 − ϵ, 1), the system (13)–(14) is finite-time stable on Ωα,1
and the settling time Ts is given by

Ts <
15 3√5αλ̄

3√16(
√
6 − 1 −

√
2)(1 − ρ)(1 − α)λmin

. � (50)

In summary, we give a flow chart in Fig. 1 to show how to
decompose the original problem. In Section 3.1, we obtain the
finite-time stability of the homogeneous system (19). Then, by con-
structing a homogeneous Lyapunov function (24), we obtain an
important inequality in Lemma 6. In Section 3.2, based on the ho-
mogeneous Lyapunov function (24) and the important inequality
obtained in Lemma 6, we prove that the state of the nonhomoge-
neous system (13)–(14) can enter into the set Ωα,1 in finite-time
for any initial state ε(t0) in Lemma7 and the nonhomogeneous sys-
tem (13)–(14) is locally finite-time stable on set Ωα,1 in Lemma 8.
Therefore, the result of Theorem 1 follows from Lemmas 7 and 8
directly.

4. Simulations

In this section, we give an example to validate our theoretical
results. Consider amulti-agent system consisting of a leader driven
by control input u0(t) =

√
2
2 sin t = φ0(t)T θ0, where φ0(t) = sin t ,

θ0 =

√
2
2 , and four follower agents with nonlinear dynamics

fi(xi(t), t) =
i
3
cos t + exp(ξ (0)

i + ξ
(1)
i + ξ

(2)
i + ξ

(3)
i )

= (cos t, exp(ξ (0)
i + ξ

(1)
i + ξ

(2)
i + ξ

(3)
i ))

 i
3
1


= φi(xi(t), t)T θi, i = 1, 2, 3, 4,

where φi =


cos t

exp(ξ (0)
i + ξ

(1)
i + ξ

(2)
i + ξ

(3)
i )


, θi =


i
3
1


, i = 1, 2, 3, 4.

Let λPE(t) be the minimum eigenvalue of
 t+ν

t ΦΦTdτ . Choosing
ν = 5, Fig. 2 shows that λPE(t) > 0 for all t ≥ 0. Therefore, the
PE condition (28) is satisfied with κ0 = 0.0047. Suppose that the
interconnected topology is described as in Fig. 3. We obtain that
the smallest nonzero eigenvalue of H = L+ B is λmin = 0.382 by a
straightforward calculation. Solving the Riccati inequality (15), we
get a solution P > 0 and the largest eigenvalue of P is λ̄ = 13.86.
By simple computation, we get Ts < 75543 s.

For the system (13)–(14), we choose the initial consensus error
vector as x̄(0) = (−5.7, 7.0, 0, −0.7, −9.8, 11.7, −2.9, −0.6,
−6.1, 1.2, −2.7, −3.7, −8.2, −0.6, −1.9, −7.8)T and the initial
parameter estimate error vector as Θ̄(0) = (0.2, −0.9, 1.4, −1.7,
0.5, −0.5, −1.7, 0.4, 1.6, −1.8, 0.4, −0.4)T . Under the control
law (8) and the adaptive update law (9) with α = 0.85, ρ = 0.7,

Fig. 1. Problem decomposition.

Fig. 2. The PE condition is satisfied.

Fig. 3. Connected graph.

µ = 0.1, γ = 0.2, c = 1 and α0 = 0.5862, α1 = 0.6538,
α2 = 0.7391, α3 = α according to (20), simulation is conducted in
150 s time. Fig. 4 shows sixteen components of the consensus error
vector x̄(t) = x(t) − 1N ⊗ x0(t). Figs. 5 and 6 show the parameter
estimate errors θ̂0i − θ0 and θ̂i − θi, i = 1, 2, 3, 4, respectively.
From the simulation, we see that all agents follow the leader with
parameter convergence within simulation time duration.
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Fig. 4. Sixteen components of consensus error vector x̄(t).

Fig. 5. Parameter estimate errors θ̂0i − θ0 , for i = 1, 2, 3, 4.

Fig. 6. Parameter estimate errors θ̂i − θi , for i = 1, 2, 3, 4.

5. Conclusions

In this paper, we consider the leader-following finite-time con-
sensus problem of multi-agent systems with unknown nonlinear
dynamics. A framework for designing adaptive finite-time consen-
sus protocols, that guarantee finite-time consensus with finite-
time parameter convergence, is presented. Lyapunov techniques,
Riccati inequalities, homogeneous Lyapunov function, and homo-
geneity of vector field are applied in the control design and stability
analysis. The connectivity of graph and the PE condition are the key
to ensure finite-time consensus and finite-time parameter conver-
gence, respectively.
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