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Abstract. Ordinary differential equations (ODESs) are a powerful tool for modeling dynamic processes
with wide applications in a variety of scientific fields. Over the last two decades, ODEs
have also emerged as a prevailing tool in various biomedical research fields, especially
in infectious disease modeling. In practice, it is important and necessary to determine
unknown parameters in ODE models based on experimental data. Identifiability analysis
is the first step in determining unknown parameters in ODE models and such analysis
techniques for nonlinear ODE models are still under development. In this article, we
review identifiability analysis methodologies for nonlinear ODE models developed in the
past couple of decades, including structural identifiability analysis, practical identifiability
analysis, and sensitivity-based identifiability analysis. Some advanced topics and ongoing
research are also briefly reviewed. Finally, some examples from modeling viral dynamics of
HIV and influenza viruses are given to illustrate how to apply these identifiability analysis
methods in practice.
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I. Introduction. Ordinary differential equation (ODE) models have been widely
used to model physical phenomena, engineering systems, economic behavior, and
biomedical processes. In particular, ODE models have recently played a prominent
role in describing both the within host dynamics and epidemics of infectious diseases
and other complex biomedical processes (e.g., [2, 15, 59, 74, 75, 77]). Great attention
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has been paid to the so-called forward problem or simulation problem, i.e., predicting
and simulating the results of measurements or output variables for a given system with
given parameters. However, less effort has been devoted to the inverse problem, i.e.,
using the measurements of some state or output variables to estimate the parameters
that characterize the system, especially for nonlinear ODE models without closed-
form solutions.

In reality, before rigorous parameter estimation methods can be applied to an
ODE model to formally estimate the model parameters based on experimental data,
a serious barrier to overcome is how to verify whether the model parameters are
identifiable based on the measurements of output variables or their functions when
the ODE model does not have a closed-form solution. If not all model parameters are
identifiable, is a subset of parameters identifiable? How many measurements, at which
time points, are necessary to identify the identifiable parameters? To answer these
questions, identifiability analysis should be done before tackling the inverse problem.

The literature on ODE identifiability analysis is found in journals from a variety of
scientific fields such as mathematics, biomedical modeling, engineering, and statistics;
in addition, various techniques and methodologies from these disciplines are employed
in ODE identifiability studies. Therefore, it is useful to have a comprehensive review
of these methods and approaches and their further applications, e.g., in experimental
design [32, 70, 71, 95]. In this paper, we review identifiability methods with a focus
on nonlinear ODE models for which closed-form solutions are not available. In section
2, we review various definitions related to identifiability analysis. We review various
techniques for structural identifiability analysis in section 3. In addition to theoreti-
cal (structural) identifiability, it is also important to evaluate practical identifiability
when experimental data are contaminated with measurement noise. This will be re-
viewed in section 4. Sensitivity analysis (SA) is widely used in mathematical modeling
to evaluate how sensitive output variables are to parameter values and input variables.
Some SA techniques can also be used to evaluate parameter identifiability in ODE
models, as will be reviewed in section 5. We illustrate identifiability techniques using
examples from infectious disease modeling in section 6. We conclude this paper with
some discussions and a summary in section 7.

2. Definitions. A general dynamic system can be expressed as follows:

(2.1) @(t) = f(t, ®(t), u(t), 0),
2.2 y(t) = h(z(t), u(t),0),

where x(t) € R™ is a vector of state variables (or dependent variables), y(t) € R?
the measurement or output vector, u(t) € RP the known system input vector, and
6 € R? the parameter vector. The system given by (2.1) is an ODE model. For the
inverse problem, @ is unknown and has to be estimated based on experimental data.
There are three common scenarios for :
(i) constant parameters only;

(ii) time-varying parameters only;

(iii) a mixture of both constant and time-varying parameters.
Let 8 = (6., 0;), where 0. denotes the constant unknown parameters and 6, denotes
the time-varying unknown parameters. Now (2.1) and (2.2) can be rewritten in the
form

(2.3) &(t) = f(t,z(t),u(l), 0, 0:),
(2.4) y(t) = h(z(t), u(t), 0., 0;).
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Before we introduce definitions of identifiability, we review three important and useful
concepts developed in control theory: reachability, controllability, and observability
[60, 111].

DEFINITION 2.1. Reachability: For a certain initial state xo of interest, a state
@1 is said to be reachable if there exists a trajectory x(t) starting from xg which can
achieve x1 in a finite time given an admissible system input w(t).

Note that in the definition above, u(t) is called an admissible input (or admissible
control) if it satisfies all system constraints at any time of interest and a solution of
the dynamic system exists. The existence of such an admissible u(t) leads to the
definition of controllability.

DEFINITION 2.2. Controllability: If there exists an admissible w(t) which can
transfer an initial state of interest to a target state in a finite time, the dynamic
system is said to be controllable.

Controllability is an important property of a dynamic system since it indicates
whether a system will respond to a certain input and behave as expected. One im-
portant application of this concept is stabilization of dynamic systems. In biomedical
research, the dynamic system could be a virus, such as HIV, infecting a human and
the system input could be antiretroviral therapy; how to control or stabilize the virus
via intentionally designed intervention strategies is still an interesting and challenging
research topic [1, 22, 55, 58, 81, 80, 126].

To better understand dynamic system structure and behavior, it is also necessary
to obtain measurements of the system output variables. However, we may not be
able to directly measure the state variables; instead, we may be able to measure
output variables which are functions of system input and state variables, as specified
in (2.2) or (2.4). If it is possible to determine the system state from system output
measurements, the system is observable according to the following definition.

DEFINITION 2.3. Observability: Given an initial state xy and an admissible
control u(t), if the current system state x(t) can be determined only through the
system output y(t) in a finite time, the system is said to be observable.

In the definition above, it is usually assumed that the system output y(¢) can
be measured without error. The three definitions introduced so far describe the rela-
tionships among four basic factors of a dynamic system: initial state, input, current
state, and output. There are also other interesting concepts and definitions originat-
ing in control theory for connecting these four basic factors of dynamic systems (e.g.,
[23, 38, 50, 111]).

The concepts discussed above have been introduced for systems with known pa-
rameters. However, these concepts, especially controllability and observability, are
also directly related to system (parameter) identifiability. A system which is control-
lable and observable has strong connections among input, state, and output variables,
and such strong connections may indicate that the system is identifiable. The reader
is referred to [4, 21, 20, 98, 99, 101, 110, 123] for further discussions.

DEFINITION 2.4. Identifiability: The dynamic system given by (2.1) and (2.2) is
identifiable if @ can be uniquely determined from the given system input w(t) and the
measurable system output y(t); otherwise, it is said to be unidentifiable.

Limited system inputs may not result in system outputs with sufficient infor-
mation for uniquely determining system parameters. Thus, it is also necessary to
have informative input signals in order to identify system parameters. This idea was
formalized by introducing the concept of a persistently exciting input [63, 65, 64].
Simply speaking, an input is said to be persistently exciting if enough information on
the output variables can be generated from the input to identify system parameters
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in the sense that all estimates of system parameters converge to their true values in
a finite time [47]. The assumption of persistently exciting inputs is a prerequisite for
structural identifiability analysis [11], as will be discussed in the next section.

Ljung and Glad [65] introduced two important concepts, global identifiability and
local identifiability.

DEFINITION 2.5. Global identifiability: A system structure is said to be globally
identifiable if for any admissible input u(t) and any two parameter vectors @1 and O
in the parameter space ©, y(u,01) = y(u,02) holds if and only if 01 = 5.

DEFINITION 2.6. Local identifiability: A system structure is said to be locally
identifiable if for any @ within an open neighborhood of some point 8, in the parameter
space, y(u,01) = y(u, 02) holds if and only if 01 = 0.

Both definitions use the concept of one-to-one mapping between parameters and
system input/output. With the development of various identifiability analysis tech-
niques, more specific definitions of identifiability have been introduced by a number of
authors [7, 11, 19, 54, 65, 112, 119]. For instance, Tunali and Tarn [104] introduced a
definition of identifiability when an initial state is given, which was termed local strong
identifiability. A similar concept was introduced in [54], called xq-identifiability.

DEFINITION 2.7. Local strong identifiability (xq-identifiability): For an admissi-
ble input u(t) in the time range of interest [to, t1] and a given initial state o = x(to),
which is independent of @ and not an equilibrium point, if there exists an open set
O° within the parameter space © such that, for any two different parameter vectors
01,05 € O°, the solutions x(t,0,wu) exist on [to,to + €] (to < € < t1 — to) for both 01
and 63, and y(t, 01, o, u(t)) # y(t, 02, o, u(t)) on [to,to + €], the system structure
is said to be locally strongly identifiable (or xq-identifiable).

We notice that this definition is specific for differential equation systems, but it
is stringent with respect to the initial state. More generally, Xia and Moog [119]
introduced structural identifiability as follows.

DEFINITION 2.8. Structural identifiability: Let CX[to,t1] denote the function
space expanded by all input functions on [to,t1] which are differentiable up to the
order N, and let M denote an open set of initial system states. The system structure
is said to be structurally identifiable if there exist open and dense subsets M° C M,
0° C O, and U° C CNto,t1] such that the system is locally strongly identifiable at 0
given u for any xg € M°, 8 € ©°, and u € U°.

This definition is also interchangeably called geometrical identifiability [104, 54].
Besides these identifiability definitions based on one-to-one mappings between system
parameters and system input-output, Glad [37] and Ljung and Glad [65] introduced a
definition of identifiability based on the algebraic equations consisting of the system
input and output, which was called algebraic identifiability. This definition is directly
related to identifiability analysis techniques [29, 65, 118, 119].

DEFINITION 2.9. Algebraic identifiability: Based on algebraic equations of system
state, input, and output, if a meromorphic function

d=30,u,u,...,uP y gy . .. y"®) &cRY,

can be constructed after a finite number of steps of algebraic calculation or differ-
entiation such that ® = 0 and det‘g—z # 0 hold in the time range of interest [to,t1]
for any (6,x0,u) in an open and dense subset of © x M x CN[to,t1], where k is a
positive integer, w, ..., u®) the derivatives of w, and g, ...,y the derivatives of y,
the system structure is said to be algebraically identifiable.

Similarly, algebraic identifiability with known initial conditions can be defined as
follows [119].
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DEFINITION 2.10. Algebraic identifiability with known initial conditions: If a
meromorphic function ® = ®(0,xo, u(td), w(td),. .., uP ), yt), ytd),. ..,
y®) (tar)), ® € RY, can be constructed from algebraic equations of system state, in-
put, and output after a finite number of steps of algebraic calculation or differenti-
ation such that ® = 0 and det‘g—g # 0 hold for all (8,0, u(t]), w(td), ..., u® (t]),
y(t), ), ..., y®(td)), where k is a positive integer, (0,xo,u(ty),u(ty),...,
uF)(t5)) is an open and dense subset of © x M x U, and (u(ty),w(ty),...,u®(t))
and (y(t3), ytd),...,y® (td)) are the derivatives of w and y at time tJ, respec-
tively, the system structure is said to be algebraically identifiable with known initial
conditions.

A number of studies have considered system identifiability given initial conditions
[27, 37, 65, 83, 104, 119] and reported that known initial conditions can help to
identify more parameters. In particular, the work of Wu et al. [117] clarified that
giving initial conditions is equivalent to having more observations on system output
such that parameter estimation reliability can be improved, especially for dynamic
systems sensitive to initial conditions.

3. Structural ldentifiability Analysis. In this section, we will review structural
identifiability methods in detail. We will also discuss the advantages and disadvan-
tages of these methods in practical applications in order to help practitioners choose
the appropriate approach for specific problems. Furthermore, we will discuss the
minimum number of observations obtained via structural identifiability analysis to
uniquely determine all identifiable parameters, keeping in mind that this number
could be much higher for real problems due to the presence of measurement error or
model uncertainty.

The concept of structural identifiability was first introduced by Bellman and
Astrom [11]. As suggested by its name, the corresponding techniques verify sys-
tem identifiability by exploring the system structure (that is, the model itself). Early
structural identifiability analysis techniques were developed from control theories in
the 1970s for linear models, especially compartmental models. For instance, Bellman
and Astrom [11] proposed an analysis technique for linear ODE models based on
Laplace transforms. Later, the method of power series expansion was proposed by
Pohjanpalo [84], and the similarity transformation method was proposed by Walter
and Lecourtier [114] for linear ODE models. These methods have been well summa-
rized in [3] and [51]. In this paper, we focus on identifiability methods for nonlinear
ODE models instead of linear models.

Some of the approaches for linear ODE models such as the similarity transfor-
mation method have been extended by Vajda and Rabitz [107], Vajda, Godfrey, and
Rabitz [106], and Chappel and Godfrey [16] to nonlinear ODE models. However,
the extension works only for a limited number of simple nonlinear problems [7]. For
general nonlinear models, new techniques are needed. A simple approach for this pur-
pose, called the direct test, was proposed by Denis-Vidal and Joly-Blanchard [26] and
Walter et al. [113]. The basic idea of this approach is to use directly the identifiabil-
ity definition to verify parameter identifiability, either analytically [26] or numerically
[113]. However, the analytical direct test is not suitable for high-dimensional problems
and the numerical direct test also has some limitations due to the use of a cut-off value.

Under the framework of differential algebra [91], new methods and algorithms
have also been developed to target identifiability of general nonlinear models [14, 65,
78]. The differential algebra approach can utilize the power of symbolic computations,
which requires much less human intervention. Since the differential algebra method
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was introduced to investigate the structural identifiability problem [65, 78] in the
early 1990s, it has been successfully applied to nonlinear differential equation models,
including models with time-varying parameters [7]. Ljung and Glad [65] summarized
three conditions under which the system structure is globally identifiable, locally
identifiable, or not identifiable, respectively; however, to verify the three conditions,
rigorous mathematical theories need to be further developed.

Xia and Moog [119] proposed another method based on the implicit function theo-
rem. By taking derivatives of observable system outputs with respect to independent
variables (e.g., time), all latent variables (unobservable system state variables) can
be eliminated after algebraic calculations and a finite number of equations consisting
of known system inputs, observable system outputs, and unknown parameters can
be formed. Then a matrix (called the identification matrix) consisting of the partial
derivatives of these equations with respect to unknown parameters (and usually their
derivatives with respect to independent variables) can be formed. If the identification
matrix is nonsingular, this system is identifiable. This method has the advantages of
theoretical and practical simplicity and has been successfully applied to HIV dynamic
models of up to six dimensions [70, 119]. However, it requires high-order derivatives;
thus the matrix can easily become very complicated and the singularity of the matrix
becomes difficult to verify. Wu et al. [117] further extended this method by considering
multiple time points instead of high-order derivatives to overcome the disadvantages
of Xia’s method. The methods based on the implicit function theorem can be ap-
plied alone to verify system identifiability and they can also be employed to verify the
three conditions in the differential algebra approach. However, for dynamic models
with time-varying parameters, the singularity of the identification matrix is difficult
to evaluate and no reliable conclusion can be easily drawn. Therefore, in practice, the
differential algebra approach and the implicit function theorem approach may have
to be combined to solve a problem. In addition, if initial conditions are unknown, the
correlation between unknown initial conditions and other model parameters cannot
be verified by structural identifiability analysis unless such unknown initial conditions
explicitly appear on the right-hand side of (2.1).

Before moving onto the technical details, it is also helpful to mention here that
structural identifiability analysis methods are not yet widely used in practice due to
either the computational complexity or the lack of mature computer implementations.

3.1. Power Series Expansion and Similarity Transformation. In [39] Grewal
and Glover studied the identifiability problem for nonlinear ODE models by consid-
ering local linearization of nonlinear systems. However, “the linearized system being
identifiable” is only a necessary condition for “the nonlinear system being identi-
fiable” instead of a sufficient condition. Therefore, the local linear approximation
cannot answer the question completely. Pohjanpalo [84] proposed another approach
called power series expansion to better handle nonlinear problems.

For the power series expansion method, the function f in (2.3) is assumed to
be infinitely differentiable with respect to time ¢, w, and x in the time range of
interest [to, t1]; the same assumption is needed for x, y, and u with respect to time,
and for h with respect to . Such assumptions are necessary because the power series
expansion may require derivatives of arbitrary order. The nonlinear system considered
by Pohjanpalo [84] is of the following form:

(3.1) &=A(tz,0.)r + u,
y = C(HC)wa
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IDENTIFIABILITY OF ODE MODELS 9

which is very restrictive. Consider the derivatives of system output y at time ¢,
ar(to) = y™® (to),

where k£ denotes the kth derivative of y. Therefore, the system input and output can
be connected by their derivatives with respect to time at t:

(3.3) Czx(to) = ao(to),
S (k1)
3.4 C — 2 AR (g E=D ()| = arlto),
(3.4) ;(k—i)!(i—l)! (to)x™ ™" (to) + u*(to) | = ax(to)
where k = 1,...,00. Since the derivatives of y are theoretically observable, they are

considered to be known. Therefore, an infinite number of equations can be obtained
from (3.3) and (3.4) to solve for 8. simultaneously. If the solution is unique, then the
system structure is (locally) identifiable.

In nature, the power series expansion method is an approach to verify the xq
identifiability (or local strong identifiability). However, this method has a serious
drawback: high-order derivatives are needed for a high-dimensional problem and the
resulting equations can easily become too complicated to solve. This disadvantage
has prevented this method from becoming popular in practice.

Walter and Lecourtier [114] initially proposed the similarity transformation method
for linear ODE models. The system concerned here is in the form

(3.5) T = Az + Bu,
y = Cuz,

where A, B, and C are matrices of constant coefficients. The basic idea of this method
is to find the similar matrix S = P 'AP of A such that

(3.7) &= (P 'AP) z + Bu,
(3.8) y = Cuz,

where P is a nonsingular matrix. It is straightforward to show that if the only
possible similarity transformation of A is P = I, the system is uniquely and globally
identifiable; if a finite number of P # I can be found, the system is locally identifiable
(or nonuniquely identifiable); otherwise, the system is unidentifiable.

Vajda, Godfrey, and Rabitz [106] and Vajda and Rabitz [107] extended the work
of Walter and Lecourtier [114] and proposed the similarity transformation method to
tackle nonlinear ODE systems by making use of the local state isomorphism theorem
[44, 50]. The nonlinear system considered in Vajda, Godfrey, and Rabitz [106] is of
the following form:

(3.9) T = f(x(t,0),0) +u(t)g (x(t,0),0),
(3.10) y = h(xz(t,0),0).

Note that although this system is a single-input system, the conclusion based on this
system can be generalized to multiple-input systems. It is necessary to introduce the
definition of structural equivalence before we further introduce the similarity trans-
formation method.

DEFINITION 3.1. Structural equivalence: Given two systems of the family in (3.9)
and (3.10), if there exist two parameters 61,04 € O such that, for the same admissible
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input u(t), the solution of the two systems exists for 01 and 04, respectively, and the
corresponding system outputs are the same, the system with parameter 61 is said to
be equivalent to the system with parameter @2, denoted by 61 ~ 05.

Under the similarity transformation framework, the identifiability problem be-
comes a system equivalence problem: a system structure is identifiable if no equivalent
systems exist for 81,02 € © and 8 # 03 [106].

Knowledge about Lie algebra is needed to better understand the similarity trans-
formation method; however, Lie algebra itself is a very rich topic which will not be
introduced in detail here. The interested reader is referred to [36]. Based on the work
of Hermann and Krener [44], Vajda, Godfrey, and Rabitz [106] eventually proposed
the similarity transformation approach to verify global identifiability, for which a set
of partial differential equations (PDEs) needs to be formed and solved.

In summary, before the similarity transformation method can be applied, it is
required that the system be both controllable and observable. Furthermore, a set of
PDEs needs to be generated and solved [106] to verify system identifiability. These
two disadvantages make the similarity transformation method infeasible for general
nonlinear systems in practice.

3.2. Direct Test. Recalling the definition of global (or local) identifiability, the
key is to verify whether the same system output will result in a unique set of parameter
values. That is,

yY(u,01) =y(u,0) = 0, =0,

should be satisfied either globally or locally if the model is identifiable. Based on
this sufficient condition, Denis-Vidal and Joly-Blanchard [26] proposed to verify the
identifiability of uncontrolled and autonomous systems by directly comparing the
right-hand side function f in (2.1). Note that here f = f(x(t),0) does not explic-
itly depend on ¢ and wu(t) for uncontrolled and autonomous systems. Therefore, the
problem becomes whether

f(xz,01) = f(x,02) = 0, =0,

can hold globally or locally. Denis-Vidal and Joly-Blanchard [26] used the following
model for quantifying microbial growth [46] to illustrate the basic idea:

(3.11) d(t) = %27((:)) — Kqz(t),
i)t
(3.13) 2(0) = 0,1(0) = 1.

Therefore, the right-hand-side function vector is

pmblx K
f(x7170) = < KSerl/tmlz & ) )

T Y (Ks+0bl)

and from f(z,l,01) = f(x,l,02) we have

Hm, b1l o, bl
3.14 — —Kjo=—+—"—-K
(314 Ko +bil T Kbl TR
(3.15) o mlr Ayl

Yl(Ksl —l—bll) }/Q(KSQ +b2l)
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Solving the two equations above, we have

by K, Ys
Kg, = Kay,  fmy = [y E:Klzﬁ’
s2

which indicates that parameters (K, i) are identifiable but the rest are not.
Although the analytical direct test approach described above is conceptually sim-
ple, it usually requires advanced mathematical skills to obtain analytic solutions and
hence is difficult to apply in practice. If a certain number of state variables are not
measured, such latent variables have to be eliminated first (e.g., by taking higher-order
derivatives) in order to use the analytical direct test approach. It may be necessary to
employ computer algebra tools, instead of algebraic manipulations by hand, for com-
plicated models, as suggested by Raksanyi et al. [87]. However, computer algebraic
computation can easily become unfeasible for complicated nonlinear ODE models and
Walter et al. [113] illustrated that the conclusions drawn from the analytical direct test
approach can be misleading for certain types of models. Instead, Walter et al. [113]
proposed the numerical direct test approach. For a model to be identifiable, Walter
et al. [113] considered the following conditions which should be satisfied in practice:

A(61,05) € R? x R such that y(u,01) = y(u,03) and || 01 — 03 ||> 0,

where ¢ is a positive cut-off value chosen by the user. Techniques such as the algorithm
SIVIA and forward-backward contractor for constraint satisfaction problems (CSPs)
were employed to find the inner and outer approximations of the solution set S, that is,

ScScSs.

For details of the algorithms for solving CSPs (called interval arithmetic), see [53].

Walter et al. [113] thought that if S is empty, the model is identifiable; if S is not
empty, then the model is not identifiable. However, the choice of the cut-off value
0 is arbitrary, which seriously restricts the application of the numerical direct test
method. In the parameter space of some models, there may exist a continuous and
flat hypersurface on which the objective function (a function to be minimized for an
optimization problem which evaluates how good a solution is, e.g., the residual sum
of squares) has the same minimum value, which suggests the unidentifiability of the
model. Under such circumstances, the numerical direct test approach, however, may
still misleadingly conclude that the model is identifiable. In addition, it is difficult
to verify which parameters are identifiable and which are not by using the numerical
direct test method. Therefore, no useful information can be derived from S to help to
improve mathematical models by reparameterizing unidentifiable parameters. Thus,
the application of the direct test approach is very limited in practice.

3.3. Differential Algebra. The methods discussed in the previous subsections
are difficult to apply to general nonlinear systems due to difficulties in developing
sufficient or necessary conditions for system identifiability and solving the resulting
equations corresponding to such conditions. Also, rigorous training and advanced
mathematical skills are required to use these methods. Is it possible to leave such
tedious algebraic calculations to a computer instead of a human? The idea has mo-
tivated the development of methods under the framework of differential algebra [91]
and has yielded some promising results [7, 14, 65].

Compared to other methods, the differential algebra approach has the following
advantages: well-established theories, feasibility for general nonlinear dynamic sys-
tems, and availability of several computational algorithms (e.g., [14, 49, 57, 91]) and
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software packages (e.g., diffalg in Maple by Hubert [49] and DAISY by Bellu et al.
[12]). Theories and algorithms developed in abstract algebra and computer algebra
are very helpful in understanding differential algebra. For details of abstract algebra
and computer algebra, the interested reader is referred to [28] and [72]. For details of
differential algebra, the interested reader is referred to [14, 57, 65, 78, 91]. Here we
only review some important concepts, theories, and algorithms of differential algebra.

The first important concept is that of a differential polynomial. Here we give the
definition for general dynamic systems.

DEFINITION 3.2. Differential polynomial: If an expression is constructed from
variables t, x, w, and y, parameter 8 = (0.,60;), and constants using only the op-
erations of addition, subtraction, multiplication, constant positive whole number ez-
ponents, and constant positive whole number derivatives, it is called a differential
polynomial.

For example,

(3.16) 193 — b3l — 301y1y2u1 + 2y2§°

is a valid differential polynomial. Note that for the problems considered in this paper,
the derivatives in the definition above are with respect to time ¢ only.
Now the dynamic system in (2.1) and (2.2) can be rewritten as

(3.17) &(t) — F(t,z(t), u(t),6)
(3.18) y(t) — h(z(t),u(t),0) =

0,
0.

If the left-hand sides of (3.17) and (3.18) are in the form of a differential polynomial
after necessary algebraic computation or transformation, the structural identifiability
of this system can be investigated in the differential algebra framework.

Clearly, an infinite number of differential polynomial equations can be formed
by adding, scaling, multiplying, and differentiating both sides of (3.17) and (3.18).
It can be easily proved that the solution to (3.17) and (3.18) is also the solution to
all those generated equations. Therefore, the structure identifiability of (3.17) and
(3.18) can be investigated from that infinite number of generated equations. Let
R{v1,va,...,v,} denote the differential polynomial ring with the differential indeter-
minates v1,vz,...,v, [91]. For the dynamic systems under consideration, v; € V,
i=1,2,...,r, can be any component of &, y, u, and 6, and R{v1,vs,...,v,} is the
set of the infinite number of generated differential polynomials. As mentioned above,
the derivative on the ring R{vy,va,..., v, } is with respect to time ¢ only; such a ring
is called an ordinary differential ring.

Before we introduce more properties of ${v1,va,...,v,}, some definitions and
concepts of differential indeterminates and polynomials need to be described. First,
the order of a differential indeterminate is defined as the order of the derivative of that
indeterminate and the degree of a differential indeterminate is defined as the exponent
of that indeterminate. For example, in the first term ;93 in (3.16), the order of ys is
one and the degree of ¢ is two. To compare multiple differential polynomials, ranking
needs to be defined [65, 91].

DEFINITION 3.3. Ranking: A total ordering of all the indeterminates and their
derivatives is called a ranking if

v=<0 (MveV), v <v<=1d <02 (Vv,v2€V),

where < means “ranks lower than.”
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Note that for the same indeterminate v € V', the item with a higher degree ranks
higher, e.g., v < v2. The following are two examples of ranking:

(3.19) U<SU< <Y <Y<-<0<O0<- << E<-,

(3.20) U<Yy<0<c<u<y<0<i<- .

For a given ranking over a differential polynomial ring ${v1, va,...,v.}, the highest
ranking derivative in a differential polynomial P € R{vy, va, ..., v, } is called the leader

of P. Therefore, to rank two differential polynomials P, and P», the leaders of P; and
P are compared first, then the second highest ranked derivatives are compared if the
leaders of P; and P, rank the same, and so on. To generalize this ranking concept
to differential polynomials, the concepts of partially reduced and reduced were also
introduced [65, 91].

DEFINITION 3.4. Partially reduced: For two differential polynomials Py, Py € R,
letting vp, denote the leader of Py, Py is said to be partially reduced with respect to
P, if there exists no proper derivative of vp, in Ps.

DEFINITION 3.5. Reduced: For two differential polynomials Py, P, € R, letting
vp, denote the leader of P, P is said to be reduced with respect to Py if Py is partially
reduced with respect to Py and the degree of vp, in Ps is less than the degree of vp, in
P

With the definitions above, an autoreduced set can be introduced as follows.

DEFINITION 3.6. Autoreduced set: A differential polynomial set is said to be an
autoreduced set if any two differential polynomials in this set are reduced with respect
to each other.

Autoreduced sets can also be ranked [65]. For two autoreduced sets A = {A;, As,
..., A} and B = {By, Ba,..., By}, A ranks lower than B if there exists an integer
k, 1 <k <min(r,s), such that rank A; = rank B; (i =1,2,...,k — 1) and Ay < By.
Consider (3.17) and (3.18) again; since an infinite number of differential polynomials
can be generated with admissible operations, an infinite number of autoreduced sets
can also be generated. Among these autoreduced sets, the set ranking the lowest is
the most important and is called the characteristic set.

DEFINITION 3.7. Characteristic set: Among all the autoreduced sets formed from
a finite number of differential polynomials, the set ranking the lowest is called a char-
acteristic set.

We now explain the relationship between the characteristic set and structure iden-
tifiability. The identifiability problem is to verify whether € can be uniquely deter-
mined from differential polynomials with indeterminates u, y, and 8 only. Obviously,
there exists an infinite number of sets of differential polynomials that can be employed
to perform the identifiability analysis. However, the characteristic set has been proved
to be the “best” set among all such sets [91], where the word “best” means the lowest
rank. In summary, the characteristic set has the following properties:

(i) Differential polynomials in the characteristic set satisfy (3.17) and (3.18).
(ii) Differential polynomials in the characteristic set are in the simplest form
possible.

(iii) Differential polynomials in the characteristic set have the exact information
as in (3.17) and (3.18) to verify system identifiability.

A number of algorithms have been developed to find the characteristic set, e.g.,
the Ritt algorithm [91], the Ritt—Kolchin algorithm [57], and the improved Ritt—
Kolchin algorithm [14]. The implementation of such algorithms can be found in the
diffgrob2 package [67] or the diffalg package [49]. The basic idea of these algorithms
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is to eliminate the higher ranking variables such as « so that differential polynomials
with indeterminates u, y, and @ can be obtained via symbolic computations. The key
operation in the elimination process is called pseudodivision. Before we discuss the
details of pseudodivision, more definitions and notations need to be introduced. First,
we call the coefficient of the highest power of the leader the initial . In addition, for
a differential polynomial P and its leader vp, we call the initial of P the separant of
P, denoted by Sp. For example, using the ranking (3.19) combined with 1 < &1 <
oo < X9 < &g < ---, the initial of (3.16) is (—5Z1%2) and the separant is (—10&12292).

Considering two differential polynomials P; and Ps, assume that the leader of Py
is vp, and there exists a proper derivative of vp,, e.g., vgz) for K > 1in P;; then P;
can be partially reduced by P, as follows [49]. First, take derivatives of P; up to the
kth order,

PQ = szf)Pz + Ry,
P, = Sp,iip, + Ro,

P = el + R

where Sp, is the separant of P» and R; (i = 1,...,k) the rest of the terms. Second,

from the last equation above, vgz)

. . k
none of which contains U;;z).

then P; can be rewritten as

can be expressed in terms of PQ(k), Sp,, and Ry,

Finally, substitute the expression of UJ(DIZ) into P; and

Sy, P =QPM + P,

where r is an integer and @) and P are differential polynomials. Furthermore, ) can be
called a pseudoguotient, and P contains no proper derivatives of v;’? and can be called
a pseudoremainder. The procedure described above is called pseudodivision. In this
way, a set of differential polynomials can be reduced to generate an autoreduced set
and, eventually, the characteristic set. More details of these computational algorithms
can be found in [14, 49, 57]. However, we notice that the algorithms to find the
characteristic set are still under development and the existing software packages do
not always work well.

Ljung and Glad [65] concluded that each differential polynomial in the character-
istic set can be in one of the following three forms if the ranking (3.19) is employed:

Al(“’?y)) s 7Am(u7y)a
Bl(uayvol))BQ(uayvolaHQ)v .. '7Bn(u7y5017 .. '79(1)7
Cl(u’yvavm)v .- '7Cl(u7ya0aw)a

where A, B, and C are differential polynomials and the subindices m, n, and I denote
the number of differential polynomials. Ljung and Glad [65] proved the following
theorem about {Bj, Bs, ..., B,} to verify structural identifiability.
THEOREM 3.8. Assume that no separant or initial of {B1, Ba, ..., Bn} is zero.

(i) If, for some B;, 1 < i < mn, in the characteristic set, one has B; = 0;, then
the model structure is not identifiable.

(ii) If all B;, 1 < i < n, in the characteristic set are of order zero and degree
one in 0;, and there exists nondegenerate solution (y,u, 0., x) for some 0., the model
structure is globally identifiable at 0.
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(iii) If all B;, 1 < i < m, in the characteristic set are of order zero in 8;, some B;
is of degree greater than one in 6, and there exists nondegenerate solution (y,u, 0., x)
for some 8., the model structure is locally identifiable at @.,.

Although the results in Ljung and Glad [65] are for time-invariant parameters,
they can be easily extended to time-varying parameter cases by treating 6; as state
variables or system inputs [7].

3.4. Implicit Function Theorem. Another approach based on the implicit func-
tion theorem was proposed by Xia and Moog [119]. For a general introduction to the
implicit function theorem, the reader is referred to [73]. The theorem for identifiability
analysis based on the implicit function theorem is given as follows [119].

THEOREM 3.9. Let ® : R“PHe — RY denote a function of model parameter
0 € R, system input u € R", system output y € R?, and their derivatives, that is,

(p = (p(o’u?u?"'7u(k)7y)y7"'7y(k)))

where k is a nonnegative integer. Assume that ® has continuous partial derivatives
with respect to 8. The system structure is said to be locally identifiable at 0. if there

exists a point (O, U, Us, . . . ,u&k), TR TR ,yik)) € RI*P+a sych that
0
q)(e*au*a’u*v"'7u£k)7y*ay*7"'7y£k)):0 and ‘80 #O

We can easily prove this theorem by considering the Taylor expansion of ® at 0.,

0P
b~ d(0,)+ (0 0*)80*’
since ®(0.) = 0 and (g—gi)fl exists (i.e.,
the system is locally identifiable at 6.,.

Carefully examining this theorem, we find that it is the same as the algebraic iden-
tifiability definition (Definition 2.9). The implicit function theorem method can be
employed alone to verify system identifiability, and it can also be used as a supplement
to the differential algebra method. Theorem 3.8 suggests verifying system identifiabil-
ity by examining specific forms of differential polynomials B = {By, Ba, ..., B, } in the
characteristic set. However, a more rigorous approach is to verify whether |g—§| # 0,
as suggested by the implicit function theorem method, where ® is generated from
B={B;,Bs,...,B,}.

Xia and Moog [119] and Jeffrey and Xia [54] proposed a method to generate
the function ® by taking higher-order derivatives of system output y to eliminate all
latent (unobservable) state variables. For example, consider the following HIV model
[80]:

%{” # 0), a unique solution of @ exists and

dr

(3.21) — =A=pT =TV, T(0) =T,
dT*

(3.22) o = ATV =17, T*(0) =Tg,
d

(3.23) d—‘t/ = N&T* — ¢V, V(0) =V,

where T' is the number of uninfected T cells susceptible to infection (target cells), T*
the number of infected T cells, and V the viral load. Using the method of Xia and

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



16 H. MIAO, X. XIA, A. S. PERELSON, AND H. WU

Moog [119], we can take the third-order derivative of V' to obtain
(3.24) VO = <V —p— mf) [V + (0 +c)V +30cV]+ NXBV — 8¢V — (5 +¢)V.

Therefore, we can define

%
+ NXSBV — 8¢V — (6 + )V =V,

v . .
f= (— —p—ﬁV) [V +(0+ )V +6cV]
(3.25)
(3.26) o=[f fO f& & 57
such that ® = 0 is automatically satisfied. If g—‘g # 0, then 6 = (8, p,v, 1,m) can be

identified according to the implicit function theorem, where v = éc, 4 = d + ¢, and
n = NABS. That is, if

rof of of of af 7
op dp on I ov
8f(1) 8f(1) 8f(1) 8f(1) Bf(l)
0P 8(52) a(pm 8?2) 8?2) 8?2)
a0 Rak| G| < Rank | 2 251 22 ofL ofl ) s
8f(3) 8f(3) 8f(3) 8f(3) 3f(3)
op dp on op ov
8f(4) 8f(4) 8f(4) 8f(4) 3f(4)
L 0p8 op on o ov

we can identify the five parameters (0, p, v, p,7) in the model; furthermore, in the
original model, N and A cannot be identified separately. The identification function ®
involves the seventh-order derivative of V', which requires at least eight measurements
of V to evaluate. Such information, a by-product of identifiability analysis, is useful
to design new experiments.

Note that with a high-dimensional parameter space, as in the example we are
considering here, the matrix %—? can become very complicated to derive and its rank

difficult to evaluate. For example, one element in the matrix (3.27) is

=VEIBYOVE L 10V VEVE 458V VOV 4 pv Oy 4y @5
N A R A1 A T VA ) 4 VACHA VRN ) e A JNUPV R 7 VA TS Ve
+ V2V WYS _ 781212y 2 — 32V3V V2 L gaviAV Y — 24V9].

of ™
0

Thus, it is not easy to evaluate the rank of the above matrix. To avoid such com-
plexity in evaluation of the high-order derivatives, an alternative method for formu-
lating the identification functions ®(-) was proposed by Wu et al. [117]. Suppose
we have the quantities (V, V,V, V®)) at five distinct time points t1,...,t5. De-
note the values of (V,V,V, V)Y att =t; as (W,V},%,‘Qw)) fori=1,...,5. Let
fi= f(tl,ﬁ*,Vl,Vl,“)'l,V'l@)),...,f5 = f(t5,9*,‘/:-3,"/5,%,v5(3)), where f is specified
in (3.25). Then we have

(3.28) * = [f1, fa, f3, fa, f5)7 = 0.
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If
Onh  9fi Of Ofi BN
B op on o ov
Ofs  8fe Ofs Ofe Of2
w00 ST
3 3 3 3 3
(3.29) ‘39 =\ %% B o o o |70
Ofs  Ofs Ofs Ofs Ofa
op dp on M ov
Ofs  Ofs Ofs Ofs Ofs
op dp on M ov

by the implicit function theorem, there exists a unique solution of #. Assuming that
(B # 0, some algebra shows that the rank of (88%) is equal to the rank of

( ) VitpVi Vi VP ViV Vi p— Vi) =V

Va( ) Vet+puVe Vo Vi T /

(330) L= | Va(Vs+puVs) Va+uls Vi V& V4
Vi(V ) Vid+pVa Vi VOV

( ) Ve+uVs Vs V2 Vs

As long as det(X) # 0, we have det(aa;{;;) # 0. Note that in (3.30), the matrix ¥
also involves unknown parameters (u, p, 3); thus, to numerically determine X’s rank,
nominal values of these parameters (i.e., obtained from literature) are needed.

Note that although V) is not involved in the matrix ¥, V) should exist at any
time point. For evaluating V() at one time point, at least four measurements of V are
needed. In order to form the five identification equations, at least eight measurements
of V' are necessary. This conclusion is consistent with that of the method proposed by
Xia and Moog [119]. Note that this model is more likely to be locally identifiable than
globally identifiable, since ¥ also contains unknown parameters. Compared to the
method of Xia and Moog [119], the method of Wu et al. [117] is less computationally
intensive and easier to implement, since only the lower-order derivatives (the third-
or lower-order derivatives in our case) of V need to be evaluated.

In this section, as a by-product of structural identifiability analysis, we illustrate
how to calculate the minimum number of observation points for parameter identifi-
ability, which is an important issue in experimental design. Thorough and in-depth
discussions of experimental design for dynamic systems are beyond the scope of this
document, so we only briefly discuss the influence of the observation timing on iden-
tifiability here. Sontag [100] reported a very general and simple conclusion: for any
ODE model with ¢ unknown constant parameters, 2¢g + 1 experimental observations
are sufficient for identification of the ¢ parameters if measurements are absolutely
accurate. Sontag [100] explained that the number 2¢ + 1 is frequently met in ge-
ometry and dynamical system theory and it is both the embedding dimension in
Whitney’s theorem [115, 116] for abstract manifolds and the embedding dimension of
g-dimensional attractors [102]. However, an intuitive explanation for the number 2¢
is that each parameter in the right-hand side of an ODE model is used to quantify
the change of the state variables (like a slope) and at least two data points are needed
to determine a slope. As to the influence of the observation times on identifiability,
the work of Sontag [100] indicated that increasing the number of data points will not
help to identify more parameters of a dynamic model once the model enters its steady
state and produces only flat responses all the time. In principle, data points collected
to capture violent nonlinear behavior of the dynamic system will be more informative
for determining parameter values, as suggested in [103].
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4. Practical ldentifiability Analysis. Before we introduce various techniques of
practical identifiability analysis, note that structural identifiability analysis provides
a theoretical ground for practical identifiability analysis. If the structural analysis
suggests that a model is not theoretically identifiable, the practical analysis is not nec-
essary since theoretical unidentifiability must imply practical unidentifiability. Thus,
only theoretically identifiable models need further practical identifiability analysis.

Structural identifiability analysis can be done without any actual experimental ob-
servation, so it is also called prior identifiability analysis. There are two basic assump-
tions upon which structural identifiability analysis heavily relies: model structures are
absolutely accurate and measurements are exact (no measurement errors). However,
these two assumptions are clearly not valid in practice. For instance, in biomedical
research, both model uncertainty and measurement error are usually large. Therefore,
even when structural identifiability analysis suggests that model parameters can be
uniquely identified, the estimates of model parameters may still be unreliable. Thus,
it is necessary to evaluate whether structurally identifiable parameters can be reliably
estimated with acceptable accuracy from noisy data. This is so-called practical iden-
tifiability analysis or posterior identifiability analysis. It is strongly recommended
to perform both structural and practical identifiability analyses in practice to ensure
the reliability of parameter estimation. For the rest of this section, we assume our
measurement or output model to have measurement errors as follows:

(4.1) y(t) = h(z(t), u(t),0) + e(t),
where €(t) is measurement error with mean 0 and variance o2(t).

4.1. Monte Carlo Simulation. The history of Monte Carlo simulations can be
traced back to the work of Metropolis and Ulam [69]. As implied by its name, this
method is a sampling technique using random numbers and probability distributions.
More specifically, the Monte Carlo simulation method defines possible inputs first
(e.g., measurement noise level), then randomly generates inputs according to certain
probability distributions (e.g., normal distribution with zero mean), then uses the
inputs to do certain calculations (e.g., add random errors to data and fit the model to
the simulated noisy data), and finally aggregates individual computation results (e.g.,
the average error in parameter estimates). It is not only useful for practical identifi-
ability analysis but also helpful for experimental design. Monte Carlo simulation is
very popular and is widely used to assess the performance of statistical estimation
methods in the statistical literature.

Once parameters or a subset of parameters of a model are determined to be
theoretically (structurally) identifiable, one can use Monte Carlo simulations to eval-
uate whether the theoretically identifiable parameters can be reliably estimated with
acceptable accuracy from noisy data. Obviously, in order to evaluate the practical
(statistical) identifiability, statistical estimation methods, such as the least squares
approach, need to be readily available. However, statistical parameter estimation
for nonlinear ODE models is beyond the scope of this review paper and will not be
reviewed here.

Monte Carlo simulations allow us to simulate various scenarios with different
numbers of observations at different levels of noise or measurement error for different
experimental designs, although such designs may not be feasible for practical exper-
iments. The simulated data can be used to evaluate whether model parameters or a
subset of parameters can be reliably estimated under different conditions. In general,
a Monte Carlo simulation procedure can be outlined as follows:
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(i) Determine the nominal parameter values 6y for simulation studies, which
can be obtained by fitting the model to experimental data if available. Otherwise,
they can be obtained from the literature or other resources.

(ii) Use the nominal parameter values to numerically solve the ODE model to
get the solution of the output or measurement variables at the experimental design
time points.

(iii) Generate N sets (e.g., 1000) of simulated data from the output or measure-
ment model (4.1) with a given measurement error level.

(iv) Fit the ODE model to each of the N simulated data sets to obtain parameter
estimate éi, i=1,2,...,N.

(v) Calculate the average relative estimation error (ARE) for each element of 8
as
i)

1
i= 0

where Hék) is the kth element of 8y and éfk) is the kth element of ;.

The ARE can be used to assess whether or not each of the parameter estimates is
acceptable. For a very small measurement error, the parameter estimates should be
close to the true values and the ARE should be close to 0. When the measurement
error increases, the ARE of the parameter estimates will also increase. However, the
ARE for some of the parameter estimates may increase significantly and some others
may just increase a little. However, for a reasonable or practical level of measurement
error, if the ARE of a parameter estimate is unacceptably high, we claim that this
parameter is not practically or statistically identifiable. In practical applications,
some parameters may not be sensitive to measurement errors and can always be well
estimated, some other parameters may be quite sensitive to measurement errors and
their AREs are large even for a small measurement error, and, at the same time, some
parameters may lie in the middle ground [70]. In addition, there is no clear cut rule
on how high the AREs need to be before they are claimed to be “unacceptable” for
a particular problem. Thus, practical identifiability relies on the underlying problem
and judgment of the investigators. Also, notice that various statistical estimation
approaches can be employed to obtain the parameter estimates, and the ARE may
depend on the estimation methods.

Monte Carlo simulations can also be used to design better practical experiments.
Different designs for different sample sizes under different conditions can be evaluated
using the AREs. The best design and the necessary sample size can be determined
based on the Monte Carlo simulation results. We will illustrate the application of this
method in section 6.1.

4.2. Correlation Matrix. Although the Monte Carlo simulation approach is easy
to understand and simple to implement, the associated computational cost is high
since a large number of model fits to data need to be performed. Rodriguez-Fernandez
et al. [92, 93] proposed an alternative approach for practical identifiability analysis
of ODE models by examining the correlations between model parameters. This re-
quires much less computation and is relatively simple if measurement errors follow an
identical and independent distribution (i.i.d.).

The idea behind this approach is straightforward. Assume that the parameter
estimate 8 = [él, 92, - ,éq]T has been obtained after fitting a model to experimental
data. The correlation matriz of the parameter estimates can then be calculated based
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on the Fisher information matriz (FIM) [33, 109] in the following form:

7’11(‘?1,‘?1) 7"12(9:1,‘?2) qu(élvéq)
721 (02,0 r99(02, 0 <o 1r14(02,0
(4.3) - 21 ( 2 1) 7T22(02,02) 14(02,04) 7
Tq1 (éq’ él) Tq?(éqv 92) T qu(éqv éq)
where 7;; (4,5 = 1,2,...,¢q and —1 < r;; < 1) is the correlation coefficient between

parameter estimates 6; and éj. If there exists a strong positive correlation between
parameter estimates 91 and éj, that is, the correlation coefficient 7;; is close to 1,
parameters 0; and 0; are said to be practically indistinguishable. A strong correlation
between two parameters indicates that one parameter depends strongly on the other
parameter and these two parameters cannot be separately estimated.

A derivation of the expression for the correlation matrix was provided by Rodri-
guez-Fernandez, Egea, and Banga [92]. For simplicity, the measurement errors were
assumed to be uncorrelated and follow an identical normal distribution with mean
zero, that is, N(0,02). In this case, for a general dynamic system (2.1) and (2.2), the
FIM can be given as

N ~
(4.4) FIM =" <5
i=1

) v (3).

00 00

where the subscript ¢ denotes the ith time point of experimental observation, N the
total number of observations, 4, the model approximation of observation, 0 the model
parameter estimate, and V a known positive definite matrix of weights on variances.
It can be proved that the covariance matrix C is equal to the inverse of the FIM

according to the Crameér—Rao theorem [89], that is,

(4.5) C=FIM.

Finally, the element r;; of the correlation matrix can be defined as
C..

4.6 Tij = et i # ],

( ) J m 7& J

(4.7) rij =1, i=].

Guedj, Thiébaut, and Commenges [40] tackled the practical identifiability prob-
lem of HIV dynamic models. They developed their approach under the framework of
maximum likelihood estimation instead of least squares estimation, but their results
are still based on the FIM and the idea is similar to that in [92].

A limitation of the correlation matrix approach is that it requires not only the
parameters but also their correlation matrix to be reliably estimated. This may be a
problem for a model with most parameters unidentifiable since the correlation matrix
estimate may depend strongly on the parameter estimates. If any two parameters
are not distinguishable, the parameter estimates and their correlation matrix esti-
mate may be poor. In addition, the correlation matrix approach allows one only to
check whether or not any pair of parameters is distinguishable; to evaluate correla-
tions between more than two parameters, the sensitivity-based identifiability analysis
techniques (e.g., eigendecomposition of the sensitivity matrix) should be considered,
as described in the next section.

5. Sensitivity-Based ldentifiability Analysis. Sensitivity analysis (SA) itself is a
rich topic. The interested reader is referred to the comprehensive survey by Saltelli,
Chan, and Scott [94] and Cacuci [13]. SA is often used to assess the variation of
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system output induced by different input factors including model parameters. The
SA idea can also be used to evaluate the identifiability of unknown parameters.

Sensitivity-based identifiability analysis is similar to the structural analysis ap-
proach in the sense that neither approach requires actual experimental data (although
the sensitivity-based method could require the number and locations of measurement
time points; see details below), and both approaches assume that measurements are
precise without error. However, the sensitivity-based method does not directly use
the model structure information, which is a critical difference between the structural
and sensitivity-based approaches. The sensitivity-based method is similar to the prac-
tical analysis approach in the sense that both methods require prespecified parameter
values (either nominal or actual estimates), and both need to know the number and
locations of measurement time points. However, the sensitivity-based method is dif-
ferent from the practical analysis approach in the sense that the sensitivity-based
method does not take measurement error into account. Thus, the sensitivity-based
method is a technique between structural (theoretical) identifiability and practical
identifiability analyses. We review such methods in this section.

A nominal parameter value is required for the sensitivity-based approach. Thus,
parameter identifiability is evaluated with respect to a specific point in the parameter
space by sensitivity-based methods. For this reason, the concept of at-a-point iden-
tifiability was introduced by Ljung and Glad [65] and Quaiser and Ménnigmann [86]
as follows.

DEFINITION 5.1. Globally at-a-point identifiable: Let 8™ denote a fized point in
the parameter space ©. A system is said to be globally at-a-point identifiable if, for
any admissible input u(t) and any parameter vector 6 € O, y(u, 0) = y(u, 0™) implies
0=0".

DEFINITION 5.2. Locally at-a-point identifiable: Let 6 denote a fized point in
the parameter space ©. A system is said to be locally at-a-point identifiable if, for any
admissible input u(t) and any parameter vector @ within an open neighborhood of 8™,
y(u, 0) = y(u,0%) implies = 6*.

The sensitivity-based identifiability analysis techniques reviewed in this section
examine at-a-point identifiability only. The sensitivity of measurable system responses
with respect to parameter values is used to assess the identifiability of unknown param-
eters by these methods. More specifically, assume that the locations and the number
of time points at which the system responses or state variables will be measured have
been given, denoted by t; < to < --- < ty; then the sensitivity coefficient at each

time point t; (kK =1,2,...,N) for a given nominal parameter vector 8 is defined as
8yi (tk, 0*)
5.1 lty) = 22 2

where y; (i = 1,2,...,d) denotes the ith component of y (y € R?) and 6; the jth
(j =1,2,...,q) component of 8 (8 € R?). Thus, the sensitivity matriz for all time
points is defined as

[ os1(t1) -+ sig(t1) T
Sd-ll(%l) - Sd-q.({h)
(5.2) Sanxq = : : }
si(tn) -+ sie(tn)
L SdlétN) qu(.tN) J
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A number of identifiability analysis techniques have been developed based on
this sensitivity matrix. Simply speaking, the larger the sensitivity coefficients, the
more notable the system responses or measurable state variables are with respect
to the changes of parameters. In that sense, a parameter is likely to be identifiable
if the system output is highly sensitive to a small perturbation of that parameter;
otherwise, the parameter is likely to be unidentifiable. In addition, if there exists a
strong correlation between any two parameters, those two parameters are very likely
to be indistinguishable from each other. Such parameter dependence can also be
evaluated by examining the dependence of the sensitivity matrix columns. We review
four typical methods along this line in detail: the correlation method [51, 93, 122],
the principal component analysis (PCA) method [24, 34, 56], the orthogonal method
[35, 120, 121], and the eigenvalue method [85, 86, 95, 108].

5.1. Correlation Method. The correlation method was first proposed by Jacquez
and Greif [52]. The method was originally developed to study identifiability for linear
compartment models and the derivation was given for a single output system only
(that is, y € R). However, this method is not limited to linear models and single
output systems.

Consider the first-order Taylor expansion of the system output near the pre-
specified nominal parameter vector 8,

Y5,(0) = y(x(lr), u(ly), 0)

o Oy(x(ty),u(ty), 0 N
53) ~ y(a(t),ult),07) + ZELLUL.O| gy,
00 0—0"
where £ = 1,2,..., N denotes the index of the measurement time points. Let 7

denote the measurement at t; without errors and A@ = 6 — 0*; then the residual sum
of squares between the exact measurements and the linear approximation is

al 2
RSS(10) =Y [rk (6" — ay(m(tk)a,ou(tk), 0| M]
k=1 0—6"
N 2
(5.4) -y [5y(w(tkg0u(tk),o) By _M] |

k=1

where 7, — y,(0%) = 0 based on our assumptions. Finally, we can rewrite (5.4) in
terms of the sensitivity matrix,

(5.5) RSS(A0) = (SAO)T - S8,

where S is the sensitivity matrix defined in (5.2). Obviously, the minimum of RSS(AB)
is reached at S”S-A@ = 0. If S”'S is of full rank, the unique solution of S™S- A8 =0
is @ = 0*, which indicates that the model parameters 6 are locally identifiable at
0*. 1f STS is singular, then there exists at least one nontrivial solution 0 #+ 0" such
that the model parameters are not identifiable at 8*. Two important issues should be
noticed: first, a similar expression can be derived under the framework of maximum
likelihood estimation [40], so the derivation is not limited to ordinary least squares;
second, only local identifiability can be inferred based on the rank of ST'S since the
linear approximation (5.3) is used [86].

It is also desirable to determine which parameters are not identifiable if S”'S is not
of full rank. For this purpose, the correlations between parameters can be calculated
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based on the sensitivity matrix. More specifically, if we examine the columns of the
sensitivity matrix defined in (5.2), it is clear that each column is the sensitivity of the
system responses at all time points with respect to one particular parameter. Thus,
the sample correlation of two columns is an estimate of the correlation between two
parameters that can be calculated as

cov(S.;,S.5)
(5.6) corr(S.;,S.;) 7(8.00(8,)"
where S.; (or S.;) denotes the ith (or jth) column of the sensitivity matrix S,
cov(S.;, S.;) the sample covariance between S.; and S.;, and o(S.;) and o(S.;) the
sample standard deviations of S.; and S.j, respectively. If the calculated correlation
coefficient between any two parameters is close to 1, these two parameters are not
distinguishable. However, such a decision always involves a pair of parameters. Is it
possible to determine which parameter in this pair is more problematic and should
be fixed or removed from the model? Quaiser and Ménnigmann [86] proposed the
concept of total correlation for this question,

q
(5.7) ot = " Jeorr(S.i,8.)| - I(|corr(S.:,8.5)| > 1 - ),
J=1,j#1

where I denotes the indicator function and § € (0,1) the cut-off value specified by
the user. The parameter with the highest total correlation is the first candidate to be
fixed or removed from the model.

If we compare the correlation method with the correlation matrix method for
practical identifiability analysis described in the previous section [92], we find that the
FIM and the sensitivity matrix are somehow similar; however, the ways of calculating
correlations are different.

5.2. Tuning Importance Method and PCA. This category of methods, such
as the tuning importance method [24, 96, 105] and PCA [24, 34, 56], has been de-
veloped to reduce model complexity by discarding nonsignificant parameters. More
specifically, both methods rank all parameters first and then these parameters are
determined as identifiable or unidentifiable according to their ranks.

One important and interesting feature of the tuning importance and PCA meth-
ods is that they are based on the normalized sensitivity matrix, which is different
from the sensitivity matrix defined in (5.2). To construct the normalized sensitivity
matrix, the dimensionless sensitivity coefficient was defined as [24, 30]

i _ Hj 8yi(tk,0) _ alnyi(tk,O)
(5.8) ki = Yi (%j o Jln ej ’

where ¢ € {1,2,...,d} denotes the index of system outputs, j € {1,2,..., ¢} the index
of parameters, and k € {1,2,..., N} the index of measurement time points. Then the
normalized sensitivity matrix for each y; is defined as

i i
51 1 517q

(5.9) Nxg =

i
SN,l SN,q
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For the tuning importance method, the following objective function was intro-
duced by Seigneur, Stephanopoulos, and Carr [96] and Turdnyi [105]:

N d 2
itvaf'ae’ NG;) — lt,@
(5.10) e(Aej):ZZ[y(k 5bi ¥ i)~ ilte 0)]"
k=11i=1 yi(tr, 0)

where 6_; denotes the parameter vector with the jth component removed. By follow-
ing the same procedure as the correlation method in the last subsection, the overall
sensitivity can be obtained and expressed in terms of the dimensionless sensitivity
coefficients,

Oe N [0y, ,0)]° a i \2
(5.11) os(aj)zm:ZZ{ayl#fz)] :ZZ(Sk,j) :

k=11i=1

Thus, the larger the overall sensitivity of one parameter, the more sensitive the system
response is with respect to small perturbations of this parameter. Since all the pa-
rameters can be ranked according to their overall sensitivities, the parameters ranking
the lowest are candidates to be unidentifiable and to be discarded. .

For the PCA method, the eigenvalues and eigenvectors of the matrix S*” S* are
calculated to provide information for model reduction. Let /\§ denote the eigenvalues
which are ordered nondecreasingly,

(5.12) XL < N < <AL

Also, let the corresponding eigenvectors be denoted by

7{,1 ’Y{,q
T = (1,79 Y = | 1 :
Va1 T Vag

Three strategies examining the eigenvalues and eigenvectors were proposed by Jolliffe
[56] to rank all the parameters:

(i) Starting with the eigenvector corresponding to the smallest absolute eigen-
value, loop over each eigenvector to locate the component with the maximum absolute
value and mark the corresponding parameter at the maximum component location as
unidentifiable and to be removed if it has not been marked before. This procedure is
summarized as follows:

my = arg (ggjagq Iw,1|> ,
(5.13)
m; = arg max |yl | for{>1.

1<j<gq
JFEML,. M1

(ii) Starting with the eigenvector corresponding to the smallest absolute eigen-
value again, loop over each row of matrix I'? and calculate the sum of squares of all
components in each row. The parameter corresponding to the location of the row with
the largest sum of squares is determined as unidentifiable for removal. This procedure
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is summarized as follows:

q
2
my1 = ar max :
1 g <1§j§‘1h PY],h) )

(5.14) :
m; = arg max Zﬁ,h for I > 1.

(iii) Starting with the eigenvector corresponding to the largest absolute eigen-
value, loop over each eigenvector component to locate the largest one and mark the
parameter if it has not been marked before. The marked parameter is not selected as
an unidentifiable parameter immediately; instead, a rank is assigned to this parame-
ter. Eventually, all parameters are ranked and the parameters ranking the lowest are
determined to be unidentifiable. This procedure is summarized as follows:

mo = arg (gj@ |7j,q|) ,
(5.15)

m; = arg max |Vj,q—1] | fori>0.
J#EMO,. M1

Froemel [34] proposed a simple strategy to integrate the rankings from all three
strategies described above. Further details are given in [34] and [86].

5.3. Orthogonal Method. The orthogonal method was proposed by Yao et al.
[120]. The basic idea of this approach is to examine the (nearly) linear dependencies
of columns of the sensitivity matrix S defined in (5.2). Thus, both the sensitivity
of system response with respect to parameter values and the dependency between
parameters regarding their effects on the system responses can be simultaneously
evaluated to determine a set of identifiable parameters.

Unlike the correlation method, the orthogonal method does not calculate the cor-
relation between different columns of S. Instead, the perpendicular distance of one
column to the vector space spanned by the other columns is calculated as a measure-
ment of the linear dependency. This is an iterative procedure. More specifically, at the
first iteration, the column of S with the largest sum of squares is removed from S and
selected as the first element of an empty set S;. At the (j+ 1)th (j € {1,...,¢—1})
iteration, j columns have been removed from S and selected into S;, and a vector
space spanned by all the columns in St is denoted by Vs,. For column S} still in S,
the orthogonal projection 87" of this column on the vector space Vg, is calculated
and the perpendicular is then obtained as

(5.16) Si- = S), — 8.

In the work of Yao et al. [120], the norm || S;-|| was proposed as the measurement of
nearly linear dependency between the vector Sj and the vector space Vg, , since the
shorter the distance, the larger the dependence. For a norm | S| which is nearly
zero, the corresponding column S}, is thought to be nearly linearly dependent and
thus is not identifiable. At the first iteration, the column of S with the largest norm is

selected into S;. However, another reasonable alternative criterion is to consider the
Sh VS}p;'rOJ

angle between S, and S2"% (that is, arccos (W

)), since this criterion can
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select the best candidate even if the norms of different columns are orders of magnitude
different. Finally, at each iteration, a prespecified cut-off value ¢ will be used for the
perpendicular distance or the angle of all columns in S. Once the distance or angle
of one column is smaller than ¢, this column is thought to be linearly dependent
on Vg,; therefore, the column with the largest ||Si-|| and is removed from S and
selected into the set Sy. This procedure is repeated until S becomes empty. The
vectors in Sy determine which parameters are identifiable, which is the primary goal
of the orthogonal method (i.e., find the identifiable rather than the unidentifiable
parameters).

Since the cut-off value ¢ in this method is an arbitrary value specified by users,
the number of unidentifiable parameters strongly depends on the selection of §. Due
to this problem, Quaiser and Ménnigmann [86] proposed to rank all the parameters
based on the values of norms or angles instead of simply dividing them into identifiable
or unidentifiable groups.

5.4. Eigenvalue Method. The eigenvalue method was first proposed by Vajda et
al. [108] and then further developed by Quaiser, Marquardt, and Ménnigmann [85],
Schittkowski [95], and Quaiser and Monnigmann [86]. This approach is based on the
properties of eigenvalues and eigenvectors of ST'S, where S is the sensitivity matrix
defined in (5.2). To illustrate this method, consider the residual sum of squares (RSS)
between system outputs and experimental measurements,

N
(5.17) RSS(0) = [ri —y(0),

k=1
and let Ay < Ay < .-+ < A, denote the eigenvalues of S”S in a nondecreasing order
and (v1,%a;---,7,) the corresponding normalized eigenvectors. Note that since sTs

is symmetric and positive semidefinite, all its eigenvalues are real and nonnegative.
Given a nominal parameter vector 8%, the Taylor expansion of the RSS at 8" along
an eigenvector is approximately

1 T

(5.18) RSS(6" + av;) = RSS(6") + VRSS(0") - a~y; + Eaz'y? -S7S v,
where « is an arbitrary small constant and VRSS(0”) is the gradient of RSS at 6™.
Although VRSS(0) is not necessarily zero if 7 is not an exact measurement, since
0" is a nominal parameter vector that may not minimize RSS, the second-order term
1, 2.7 QT . . ' . .
za77v; +S78 -, can become zero if the eigenvalue )\; corresponding to v; is equal
to zero, since sTs. v, = Aj7v; and 'y?ﬂyj = 1. That is, along the direction of v, with
Aj = 0, the change of RSS is expected to be nearly zero. The selection criterion for
unidentifiable parameters is given by

(5.19) m = arg <1gl}?%(q(|7j,h|)) :

In practice, \; is usually not exactly zero; therefore, a cut-off value J needs to be
specified. For a detailed implementation algorithm, the interested reader is referred
to [86].

The four sensitivity-based identifiability analysis methods described above were
also reviewed and compared in Quaiser and Ménnigmann [86]. In general, all four
approaches are applicable to general ODE models; however, the eigenvalue method
and the orthogonal method are better designed to globally evaluate and compare the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



IDENTIFIABILITY OF ODE MODELS 27

influences of parameter values on system outputs so that these two methods outper-
form the correlation method and the PCA method. In addition, both the eigenvalue
method and the orthogonal method are easy to implement. Note that the method pro-
posed in [86] made the assumption that the nominal parameter vector 8 minimizes
the objective function, which should be interpreted as ry = y,(0") as in (5.4) for
the correlation method. In addition, it should be mentioned that, in practice, if the
sensitivity matrix is of full rank but with eigenvalues of different orders of magnitude,
the parameters corresponding to the smallest eigenvalues are theoretically identifiable
but likely to be practically unidentifiable. Under such a circumstance, the sensitivity-
based approaches are still useful in the sense of determining practically unidentifiable
parameters.

Finally, it is also interesting to combine the sensitivity-based approaches with the
practical identifiability methods introduced in section 4 to study the identifiability
of a dynamic system. Notice that the sensitivity-based approaches do not require
statistical estimation of unknown parameters, which can be done before the practical
identifiability analysis.

6. Application Examples. In this section, we illustrate the applications of both
structural and practical identifiability analysis techniques through examples in mod-
eling viral dynamics. We summarize the identifiability analysis results for popular
models of HIV and influenza infection.

6.1. HIV Model with Constant Parameters. Miao et al. [70] proposed the fol-
lowing model to describe a growth competition assay to quantify HIV replication
fitness:

dr
(61) % = (p — kT — kwTw — kRme)T,
dTy,
dTy
(6.3) = (bt kT = quT) Ty + 025kR T T,
AT

where T, T,,, Ty, and T,,, are the numbers of uninfected cells, cells infected by
mutant viruses, cells infected by wild-type viruses, and cells infected by both mutant
and wild-type viruses (dual-infection). Let (A, Am, Aw, Amw) represent the prolifer-
ation rates of T, T, Ty, and Ty and (8, 0y, G, Omew) the death rates of T, T,
Ty, and Ty, respectively. Then p = XA =9, pp = A — Omy, Pw = Aw — O, and
Pmw = Amw — Omw are the net growth rates of T, T;,, Ty, and T, which are the
differences between the corresponding proliferation rates and death rates. Parameters
(K, kw, kr) are infection rates of a mutant virus, a wild-type virus, and a recombinant
virus, respectively, and ¢, and ¢, are dual infection rates.

For this example, the implicit function method of Xia and Moog [119] is employed
to investigate the structural identifiability. Since all state variables (7', Th, T, Trnw)
are experimentally measurable, the outputs of the system are

(65) y1 = Ta Y2 = Tma Yys = Twa Yqg = me~

By taking derivatives of one of the four equations in this HIV viral fitness model, the
structural identifiability of the model can be evaluated. To demonstrate this, here we
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start with the first equation,

(6.6) U1 = py1 — km¥1¥2 — kw¥1y3 — KRY1Y4.

By taking higher orders (up to the fourth order) of derivatives on both sides of (6.6),
we get

(6.7) i1 = pin — km(y192) Y — kw(y1y3) Y — kr(y1ya) Y,
(6.8) 2153) = pij1 — km (Y192)® — kw (11y3)® — kr(y1ya)®,
(6.9) v = oyt — ki (192)® — ko (1193)® — kr(y190)®.

When (6.7)—(6.9) are written in matrix form, we find that the parameters are identi-
fiable if

U1 —Y1Y2 —Y1Y3 —Y1Y4

o —(y2) =y —(yrya) Y
g1 —(y2)®  —(ys)®  —(yaya)®
v )@ —(1ys)®  —(y1y)®

(6.10) Rank = 4.

Note that the rank of this matrix can be evaluated numerically if the analytical form
is not available, and nominal parameter values are not needed for this case since the
matrix above involves no parameters. Since the left-hand side of (6.9) has a derivative
of order 4, at least five measurements of y; = T are needed to evaluate y§4), and at
least four measurements of yo = T}, ys = Ty, and y4 = Ty are needed to evaluate
their derivatives of order 3. Since k,, and kg can be identified from (6.7)-(6.9) if

(6.10) holds, (6.2) can be rewritten as

(6.11) U2 — kmy1y2 — 0.25kRY1Y4 = pmY2 — GmY2Yys-

Similarly, by taking the higher derivatives of (6.11), the parameters (p.,,qm) are
identifiable if

[ 2 —wyoys |
6.12 Rank | 7 = 2.
(6.12) o g2 —(yays)P |

By the same token, the parameters (p, qw) are identifiable if

[ Ys —Y2Ys3 ]
6.13 Rank | 7 = 2.
(6.13) " g3 —(yoys)® |

Finally, pm. is identifiable if
(6.14) Rank [y4] = 1.

In summary, all parameters (p, Pm, Pw, Pmws Em, kw, KR, Gm, qw) are structurally
identifiable if at least five measurements of y; = 7" and four measurements of yo = T}y,
ys = Tw, and ys = Ty, are available and if all coefficient matrices (6.10), (6.12),
(6.13), and (6.14) are of full rank at least for some local time points.

Monte Carlo simulations were also performed to evaluate the practical identifiabil-
ity of this HIV viral fitness model by Miao et al. [70]. The AREs of all nine parameters
for three measurement error levels (0%, 5%, and 30%) are duplicated in Table 6.1.
Note that in this simulation study, we assumed that there were 1000 replicates of
data at each time point, although this may not be feasible in practical experiments.
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Table 6.1 Practical identifiability analysis by Monte Carlo simulations. The ARE is calculated
based on 1000 simulation runs; 1000 replicates at each time point are generated for each
stmulated data set (Table 6 in Miao et al. [70]).

Error p Pm Pw Pmw km kaw kr qm qu
level (%) | (%) (%) (%) (%) (%) (%) (%) (%) (%)
0 0.002 0.017 | 0.034 | 0.400 | 0.003 0.004 | 0.026 0.003 0.009
5 1.1 10.8 39.0 555.7 2.9 4.6 28.3 4.2 12.0
30 6.5 49.1 201.4 2062 12.7 23.1 106 21.3 59.1

Table 6.2 Practical identifiability analysis using Monte Carlo simulations based on 1000 simulation
runs with the measurement error level o = 1.5% (Table 7 in Miao et al. [70]).

Time | Replicate P Pm Pw Prmaw km kw kr qm qu

point ) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%)
5 3 6.28 | 52.7 187 2130 | 13.5 | 22.0 108 21.1 | 54.9
5 6 3.91 | 34.7 142 1402 | 8.99 | 16.8 | 775 14.4 | 37.5
5 9 3.15 | 30.0 133 1396 | 8.18 | 15.3 | 73.9 13.7 | 32.3
5 100 1.01 | 8.11 | 40.1 | 459.8 | 2.32 | 4.70 | 25.2 | 3.72 | 10.3
9 3 4.10 | 37.9 146 1786 | 10.1 | 16.8 | 88.6 16.1 | 36.7
9 6 3.10 | 27.9 118 1301 7.2 13.1 | 66.7 | 10.3 | 29.5
9 9 2.72 | 21.5 | 85.6 1190 | 5.84 | 10.1 | 61.5 | 9.24 | 26.1
9 100 0.76 | 6.94 | 28.74 410 1.79 | 3.43 | 22.26 | 2.98 | 7.71

But this will help us to evaluate whether the unknown parameters are practically
identifiable when the sample size of the data (with noise) is large enough. We can
see that when there is no measurement error (¢ = 0%), all nine parameters can be
well identified (the maximum ARE is 0.4%), which confirms our theoretical identifi-
ability analysis results. This also indicates that the parameter estimation method is
good and the parameter estimates converges to the true parameter values when the
sample size is large enough and the measurement error is small enough. However,
when the measurement error increases to 5% and 30%, the ARE of parameter p,,q.
rapidly increases to 556% and 2062%, respectively. The ARE of p, also increases
to 39% and 201%, while the ARE of kg increases to 28% and 106%, respectively.
The AREs of parameters (g, pm) are reasonable for the case of small measurement
error (o = 5%), but increase to 49% and 59% for the large measurement error case
(o = 30%), respectively. The AREs for the other four parameters (p, k., kw, gm) are
reasonable for all cases.

To further investigate the practical identifiability of unknown parameters un-
der practical experimental conditions, we performed more simulations for different
numbers of time points and different numbers of replicates at each time point. The
simulation results are given in Table 6.2. One can see that the ARE of parameter
Pmw Tanges from 410% to 2130%. This, combined with the results in Table 6.1, in-
dicates that the p,, is practically unidentifiable. Considering the practical case of
nine time points and nine replicates for each time point, the ARE of parameter p,, is
86%, which indicates that it may be difficult to accurately identify the parameter p,,
unless the sample size is unrealistically large (say, 100 replicates for each time point).
For parameter kg, the AREs are also large (ranging from 62% to 108%) for practical
cases (the number of replicates is 3, 6, or 9). For parameters (p.,, qw), the AREs are
reasonable (ranging from 22% to 38%) for most reasonable sample sizes; thus (pm, quw)
can be considered to be reasonably identifiable. The parameters (p, kp,, kw, gm) are
very well identified (the AREs ranging from 3% to 22%) in all cases.
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6.2. HIV Model with Constant and Time-Varying Parameters. In this section,
we consider another dynamic system that is widely used to describe HIV dynamics in
HIV-infected patients with antiretroviral treatment [17, 48, 82]:

(6.15) STu(t) = A~ pTult) — n(OTu (V1)
(6.16) LT1(t) = n(0)To (V1) — T3 ),
(6.17) %V(t) — NOTy(t) — eV (t),

where Ty is the concentration of uninfected target cells, 77 the concentration of
infected cells, V' (¢) the viral load, A the source rate of uninfected T cells, p the death
rate of uninfected T cells, n(t) the time-varying infection rate, which is a function
antiviral treatment efficacy, § the death rate of infected cells, ¢ the clearance rate of
free virions, and N the average number of virions produced by a single infected cell
over its lifetime. Ty (t), T7(t), and V (t) are state variables and (), p, N, d, ¢, n(t))" are
unknown dynamic parameters.

The differential algebra approach for structural identifiability analysis (section
3.3) requires one to eliminate the latent (unobservable) state variables from the dy-
namic equation in order to evaluate the identifiability. The concept of ranking is
introduced such that computer algorithms can be designed to eliminate variables or
their derivatives with higher rank. For notation simplicity, let x1, z2, and z3 denote
Ty, T, and V, respectively. In the dynamic model (6.15)—(6.17), we can measure
viral load (z3 = V') and total CD4+ T cell counts (x1 +x2 = Ty +T7). Let y1 and ys
denote the measurable variables x; + zo and x3, respectively. We adopt the ranking

(6.18) N=<y2 <y2 <0 < w3 <22 < 7Y,

where 6 = [\, p,N,d,c|T is the vector of constant unknown parameters. We can
eliminate x1, 2, and x3 using the ranking (6.18) to obtain

(6.19) 1+ (p+0)i1 +0py1 — AN+ n(t)y2(g1 +0y1 — A) =0,

(6.20) 2 + (6 + )2 + dey2 — n()y2(Ndyr — g2 — cy2) = 0.

Note 7(t) can be expressed in terms of measurable state variables and other unknown
constant parameters either from (6.19) as
_ i+ (p+0)gr +bpyr — OA

—y2(41 + 6y1 — A)

(6.21) n(t)

or from (6.20) as

2+ (6 +c)P2 + deys

(6.22) n(t) = Y2(Noyr — g2 — cia)

Thus, the time-varying parameter 7n(t) is identifiable if all the constant parameters
are identifiable.

To verify the identifiability of constant parameters 6, (6.21) and (6.22) can be
combined to obtain

H1y292 — Y292 — 0y1y28i2 + Ay2dz — (0 + ¢)y1y292
+ (P8 + p 46— 8% = de)yryata + cyatz + petny2”® + (pde — 62c)yry2”
— Néyrijiyz + ciiy2” — N6(p + 0)y1tnye
(6.23) — N&%py12y2 + N6*Ay1y2 = 0.
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The above equation involves just measurable state variables and constant parameters.
Equation (6.23) is of order 0 and of degree > 1 in 6, so it satisfies the third situation in
Theorem 3.8 (see [65]) in section 3.3, and thus 6 = (A, p, N, d,¢)T is locally identifiable.
Consequently, 7(t) is also locally identifiable. In addition, the identifiability of
can also be easily verified using the implicit function method based on (6.23). The
identifiability of other similar HIV dynamic models has been studied in [54, 117, 119].

6.3. Influenza A Virus Infection. The purpose of this section is to illustrate
possible problems if identifiability analysis is ignored by considering influenza infection
in humans, an important infectious disease. Baccam et al. [8] proposed a target cell-
limited model for influenza A virus infection:

dr

(6.24) = = BTV,

(6.25) % — BTV — 41,
dav

(6.26) T pl —cV,

where T is the number of uninfected target cells (epithelial cells), I is the number of
productively infected cells, and V' is the infectious viral titer expressed in TCID5q/ml
and is the only state variable to be measured. Since this is a low-dimension nonlinear
dynamic system, the implicit function method can be employed.

Considering the case that only V' can be measured (and thus, for example, the
initial number of target cells T'(0) is not known), we can derive the following equation
from (6.24)—(6.26) by eliminating the unmeasurable state variables:

(6.27) Ve = [V LV 4 (5 4+ V]| (VI = BV) — beV — (5 + o)V

Obviously, only the parameters (3,0, c) can be identified and the minimum number
of required measurements of V' is 6, and the parameter p is not identifiable in this
case. Similarly, we consider the cases in which both I and V are measured, both
T and V are measured, or all three state variables are measured. For the cases
that any two or more state variables are measured, all four parameters (3, d, ¢, p) are
structurally (theoretically) identifiable. We summarize the structural identifiability
analysis results for all cases in Table 6.3.

Baccam et al. [8] further proposed another target cell-limited influenza model
with delayed virus production as follows:

(6.28) C;—f — _BTV,
(6.29) % =0TV — kI,
(6.30) % =kl — 1y,
(6.31) Cii_‘t/ =ply — cV,

where I; is the number of latent infected epithelial cells that are not yet producing
virus and I the number of productively infected epithelial cells. Again, we can
use the implicit function theorem method to investigate the structural (theoretical)
identifiability of this model. We summarize the identifiability analysis results in Table
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Table 6.3 Structural identifiability of the target cell-limited influenza model in Baccam et al. [8].

H. MIAG, X. XIA, A. S. PERELSON, AND H. WU

Measured variables | Identifiable parameters | Minimum number of measurements
\% (8,6,¢) 6 of V
V and I (B,6,¢,p) 3of V,4of I
Vand T (B,6,¢,p) 50fV,20f T
V,I,and T (B,6,¢,p) 3of V,20f I,20f T

Table 6.4 Structural identifiability of the target cell-limited influenza model with delayed virus pro-
duction in Baccam et al. [8].

Measured variables | Identifiable parameters | Minimum number of measurements
\% (B,9,c, k) 8of V
Vand T (B,6,¢,k,p) Tof V,20of T
V and I1 (B,6,¢,k,p) 50f V, 4 of I1
V and I (B,6,¢,k,p) 2 of V, 6 of I
V, I, and I (B,6,¢,k,p) 3of V, I, and I
V, T, I, and I (B,6,¢,k,p) 3of V,20f T, Iy, and Io

6.4. For this model, if only V' is measured, four parameters (3, d, ¢, k) are identifiable
and parameter p is not identifiable. However, if any two or more of the four state
variables (T, I1, I, V') are measured, all five parameters (53,9, ¢, k, p) are theoretically
identifiable. We also summarize the minimum number of required measurements for
each of the state variables in Table 6.4.

In the paper by Baccam et al. [§], only the virus titers were measured at eight time
points during days 1-8 of infection for six patients, but some of these measurements
were below detection. According to the identifiability analysis in Tables 6.3 and 6.4,
p is not identifiable. To fit the four-dimensional model (6.28)-(6.31), all eight data
points need to be used; otherwise more parameters may be unidentifiable. However,
since the identification equation (6.27) does not involve the unidentifiable parameter
p, one may fix p, which does not affect the estimates of other parameters. Since
the identifiability analysis was not considered, the estimates of kinetic parameters in
Baccam et al. [8] should be interpreted with caution since the authors [8] fixed T'(0)
to avoid the identifiability problem and T'(0)’s value was not taken directly from data.

Influenza infection in humans is a very complex problem, and so much more com-
plicated models have been proposed; however, the problem is that such work usually
overparameterizes the model and ignores parameter identifiability, which makes it
difficult to directly fit such models to data. For example, Hancioglu, Swigon, and
Clermont [43] proposed a ten-equation model for influenza A virus infection (details
not shown). We can show that, to verify the identifiability of all the 27 parameters
in that model, almost all the ten state variables need to be measured, which is nearly
impossible to do in practice due to technical and ethical limitations. In summary,
when fitting a model to data, models with parameter identifiability verified should be
considered.

7. Discussion and Conclusion. ODEs are an important tool for quantifying a
dynamic process in many scientific fields, and recently they have been widely used
in modeling biomedical processes, in particular for modeling infectious diseases and
viral dynamics. It is critical to estimate the unknown kinetic parameters in ODE
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models from experimental data in biomedical applications. However, it is not trivial
and not apparent whether the unknown parameters in general nonlinear ODE models
are identifiable based on the experimental data. Thus, an identifiability analysis
is a prerequisite before any statistical method is applied to estimate the unknown
parameters from the experimental data.

Three main categories of identifiability techniques have been developed for gen-
eral ODE models. The first is structural (theoretical) identifiability analysis, which
can be used to evaluate whether all parameters can be theoretically identified by
manipulating the model structure. Two assumptions are needed for such analysis:
(1) the model structure is absolutely accurate; and (2) measurement is exact (no
measurement error). Although these two assumptions are not realistic in practice, it
is still necessary to study theoretical identifiability. The second type of identifiabil-
ity analysis is practical identifiability analysis, in which both model uncertainty and
practical measurement errors are considered. Structural identifiability analysis can
be done before experiments for data collection are designed. In fact, the structural
identifiability analysis can provide useful information, such as the minimum number
of measurements at distinct time points, for experimental design. If an ODE model
turns out to be unidentifiable or only a subset of model parameters are identifiable via
structural identifiability analysis, the model may need to be modified or some of the
parameters may need to be fixed before statistical methods are applied to estimate
the unknown parameters. Otherwise, statistical estimates may not be reliable. Even
though some parameter estimates can be obtained from an unidentifiable model, the
estimates may be local or form an arbitrary set of estimates that can overfit the ob-
servation data. If the structural identifiability analysis confirms that an ODE model
is globally or locally identifiable, practical identifiability analysis should be done to
check the reliability and sensitivity of estimates to measurement errors and model
uncertainty. Based on the results of practical identifiability analysis, a model can be
further refined by model selection techniques [71]. Practical identifiability analysis
can also be used to better design future experiments. The third type of identifiability
analysis technique is based on the sensitivity matrix. Similar to structural identifiabil-
ity analysis, sensitivity-based methods do not require experimental observations and
cannot account for model uncertainty and measurement errors. Like practical iden-
tifiability analysis, sensitivity-based methods also require at least one nominal value
of each parameter. Note that so far it is still difficult to do structural identifiability
analysis for high-dimensional ODEs or complicated ODEs. In this case, the practical
identifiability analysis may not be reliable since the structural (theoretical) identifi-
ability of the model is unknown. The class of sensitivity-based methods, which is a
technique between structural (theoretical) identifiability and practical identifiability
analyses, can be used in such cases.

Besides the identifiability analysis techniques for ODEs, the identifiability analysis
of delay differential equation (DDE) models should also be discussed. A general form
of a DDE system is given as follows:

(7.1) Mi(t) = f(t,z(t), z[T(t,x)], £(t), [T(t, x)], u(t),0),
(7.2) y(t) = h(z(t), z[r(t, )], u(t),0),
(73) :B(to) = ilt(t(), ’u(to), 0),

where ¢y is the starting value of the independent variable, x(t) € R™ is a vector
of state variables, y(t) € R? is the measurable system output vector, u(t) € RP is
the known system input vector, 8 € RY is the parameter vector, M is a constant
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coefficient matrix (or mass matrix), and 7(¢,x) is a vector of delay functions. It is
required that

(7.4) T(t,x) <t,

that is, the value of delay functions should always be smaller than or equal to the
current time, which is reasonable since the future value is yet unknown. Another
important assumption is that

oh
7.5 rank | — | =d,
(75) (5)
which implies that none of the d system outputs is trivial (e.g., a linear combination
of other outputs). Since 7(¢,x) < t, it is necessary to know the value of () when
t < tg, i.e., the history function,

(7.6) 2(t) = g(t,0) if ¢ < to,

where x(t),t < to, is a function only of time and parameters. It is obvious that
the DDE system described here is much more complicated than an ODE system,
and currently it is still impossible to numerically solve a very general DDE model.
However, for some relatively simple DDE models, a number of numerical methods have
been proposed and implemented. For details of such algorithms, the reader is referred
to the work by Ascher and Petzold [6], Bellen and Zennaro [10], Guglielmi and Hairer
[41, 42], and Shampine and Thompson [97]. In particular, Guglielmi and Hairer [41,
42] proposed and implemented a comparatively general solver (called Radau ITA) for
DDE models, which is recommended for practical applications due to its efficiency and
stability. For examples of DDE modeling of HIV infection, the reader is referred to [90]
and [76]. A number of independent studies have tackled the identifiability problem for
DDE models [4, 5, 25, 31, 66, 68, 79, 125, 124]. However, most of these previous works
deal with very simple and specific DDE models (e.g., [68]), and the generalizability
of these results is limited due to a lack of understanding of the important feature
of DDE models: the propagation of a discontinuity at ¢g or in the history functions
from lower- to higher-order derivatives of state variables, if there is any. Such a
feature means that DDE models easily become bifurcated or just unsolvable [10, 41,
42]. The identifiability conclusions based on model structure manipulation are not
reliable unless analytical solutions of DDE models can be obtained and analyzed.
However, it is surprising that almost all the existing work has attempted to tackle
the identifiability problem by manipulating model structures (e.g., [5]). Generally, for
complicated systems as described in (7.1)—(7.3), it is extremely difficult to manipulate
the model structures to study identifiability problems. Thus, the methodologies for
DDE model identifiability are still in their infancy, and promising approaches are
likely to be numerical methods such as the practical or sensitivity-based methods
(e.g., [9]), although this may require development and reliable realization of DDE
numerical algorithms.

In addition, it should be mentioned that some of the identifiability techniques
such as the differential algebra method can be extended to study the identifiability of
PDE models (e.g., [49]), but the identifiability analysis for more complicated models
such as PDEs or stochastic differential equations is beyond the scope of this paper.

Finally, after the identifiability analysis is done, statistical estimation methods
should be used to estimate the unknown parameters in the model. The practical
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identifiability analysis also requires that reliable parameter estimation methods be
available. Recently statistical estimation methods for ODE models have attracted a
great deal of attention from statisticians. Some novel and efficient estimation methods
particularly for nonlinear ODE models have been published in the statistical litera-
ture [17, 18, 40, 48, 61, 62, 88]. Besides the standard least squares approach [70, 71],
more reliable and computationally efficient estimation methods and their theoretical
foundations have been developed [17, 18, 62, 88]. However, the topic of statistical es-
timation methods for ODE, DDE, and PDE models is beyond the scope of this paper.
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