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Abstract

This paper shows how well-established control system techniques can be introduced to formulate guidelines for clinical
testing and monitoring of HIV/AIDS disease and the estimation of HIV/AIDS parameters. It is assumed that the viral load
and healthy CD4+T cell in plasma are measured. The objective is to estimate all parameters in the basic three-dimensional
HIV/AIDS model. For this purpose, through an analysis of basic system properties, the minimal number of measurement
samples for the CD4+T cell and the viral load counts is 8rst obtained. The paper determines then the HIV progression
stages when an estimation of all parameters is impossible. Outside these stages, the paper proposes two on-line estimation
algorithms for all HIV parameters based on the well-known techniques of adaptive identi8ers and adaptive observers.
Conditions for parameter convergence are discussed. Simulation results are demonstrated for the parameter estimation using adaptive
observers.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Over the last two decades tremendous e=ort has been ap-
plied to the mathematical modeling of the epidemiology and
immunology dynamics of HIV (Perelson & Nelson, 1999;
Nowak & May, 2000; Covert & Kirschner, 2000). There
are several approaches to the modeling of the infectious dis-
eases at the cellular level to describe the immune system
and the host–pathogen interaction. These approaches give
profound insights to the dynamics of the disease (Ho et al.,
1995; Wei et al., 1995).
While many of the models have tended to focus on ex-

plaining the dynamics of CD4+T cells and viral load in
blood, model parameters were only estimated for the virus
clearance rate and the death rate of infected CD4+T cells
for a post-treatment period of very strong chemotherapy in
Ho et al. (1995), Wei et al. (1995), and later re-calibrated in
Perelson, Neumann, Markowitz, Leonard, and Ho (1996).
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These estimates are very rough, because, the key assump-
tion that inhibition is 100% e=ective has not been veri8ed
and is hardly practical. As for other parameters, very little
attention has been given to the estimation, except for an
analysis, based on the quasi-steady state or set point of the
asymptomatic period before it is disturbed by chemotherapy
(Wein, Zenios, & Nowak, 1997). Estimations of all these
parameter in the early infection stage are necessary to
predict the viral load set points, which are an important
indication of disease progression. Post-treatment estimates
are helpful in determining the drug eKcacy.
The objective of this paper is to estimate all the parame-

ters in the basic three-dimensional HIV/AIDS model. The
minimal number of measurement samples for the CD4+T
cell and the viral load counts is 8rst obtained in Section
2. The paper determines then the HIV progression stages
when an estimation of all parameters is impossible. Out-
side these stages, the paper proposes in Section 3 and
Section 4 two on-line estimation algorithms based on the
well-known techniques of adaptive identi8ers and adaptive
observers. Conditions for parameter convergence are dis-
cussed. Simulation results are demonstrated in Section 5
for adaptive observers. In Section 6, some conclusions are
drawn.
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2. HIV/AIDS model and its properties

Consider the following three-dimensional model of
HIV/AIDS:

ẋ1 = s − dx1 − �x1x3;

ẋ2 = �x1x3 − �1x2;

ẋ3 = kx2 − �2x3:

(1)

A description of the model follows:
The 8rst equation is the population dynamics of the unin-

fected CD4+T cells. Since it is a one-compartment model, x1
is identi8ed with the CD4+T cell counts in blood per cubic
millimeter. s represents the rate at which new CD4+T cells
are created from sources within the body, such as the thy-
mus. T cells can also be created by proliferation of existing T
cells. A proliferation term can be added to the right-hand side
(Perelson, Kirschner, & De Boer, 1993; Kirschner, Lenhart,
& Serbin, 1997; Perelson &Nelson, 1999; Alvarez-Ramirez,
Meraz, & Velasco-Hernandez, 2000). Some authors assume,
however, that the source term s is constant, and the prolifera-
tion e=ect may be lumped into the constant d (see Nowak &
May, 2000 and references therein). In this paper, the prolif-
eration term is not considered separately for simplicity rea-
sons. In the presence of HIV, T cells become infected. This
infection is represented by a “mass-action” term in which
the rate of infection is given by �x1x3, with � being the in-
fection rate constant. x3 is explained below.
The second equation is the population dynamics of the

infected cells. Infected cells are produced at a rate of �x1x3
from the infection of healthy cells by HIV. �1x2 is the death
rate of infected cells.
The last equation represents the dynamics of the concen-

tration of free virions. The free virions are produced by the
infected CD4+T cells at a rate constant k, and �2x3 is the
death rate of free virions. In this equation, the loss of virus
due to infection of a cell is ignored.
This basic model has been considered in Nowak and

Bangham (1996), Nowak and May (2000), Perelson and
Nelson (1999). To reveal more detailed progression of the
disease, the model has also been extended to higher di-
mensions in Perelson et al. (1993), Kirschner et al. (1997),
Perelson and Nelson (1999), Alvarez-Ramirez et al. (2000),
Nowak and May (2000). The identi8ability properties of
some higher dimensional models will be discussed
elsewhere.
Clinically, all the above three variables can be measured.

The cost of quantifying the infected cells is much higher.
In this paper, it is assumed that the measurement of the
viral load and the healthy CD4+T cell counts in plasma
is available. That is, the measured outputs are y1 = x1 and
y2=x3. It will be shown that the measurement of the infected
CD4+T cells is unnecessary to estimate the parameters of
the model. A variance of 20 copies per cubic millimeter for
T cell counts and a log-variance of 0.2 for viral load are

normal measurement variance as described in CDCWorking
Group (2003).
Observability (identi8ability) is a basic system property

of whether all state variables (all parameters) can be calcu-
lated from the measured output. In this paper, the precise
meaning of observability and identi8ability is understood
as in Conte, Moog, and Perdon (1999), Ljung and Glad
(1994). System (1) is both observable and identi8able, as
was shown in Xia and Moog (2003).
Identi8ability means that all parameters can be deter-

mined from the measured output. To 8nd the conditions
under which parameters can actually be determined, higher-
order di=erential equations of the output can be calculated
as

ẏ 1 = 
1 + 
2y1 + 
3y1y2; (2)

Fy 2 = 
4ẏ 2 + 
5y2 + 
6y1y2; (3)

where
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� de8nes a one-to-one map for � �= 0 and �1 �= �2. It
is known that for most HIV patients, � �= 0 and �2¿�1
(Nowak & May, 2000). In this case, it has the following
inverse map:
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: (4)

From Eq. (4), the identi8cation of the original parameters
of (1) is equivalent to that of �.
Therefore, it is necessary to generate a minimum of six

equations based on (2) and (3), three from each equation.
This will be achieved by di=erentiating (2) and (3) two
more times, resulting derivatives of y1 and y2 up to the
order of 3 and 4, respectively. To cope with these order of
derivatives, one concludes that at least four measurements
of the CD4+T cell count y1 and 8ve measurements of the
viral load are needed for a complete determination of all the
HIV/AIDS parameters in the 3-dimensional model (1).
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For simplicity, assume that the following measurements
are available:

y01 = y1(t0); y11 = y1(t0 + d1);

y21 = y1(t0 + d1 + d2); y31 = y1(t0 + d1 + d2 + d3);

y02 = y2(t0); y12 = y2(t0 + d1);

y22 = y2(t0 + d1 + d2); y32 = y2(t0 + d1 + d2 + d3);

y42 = y2(t0 + d1 + d2 + d3 + d4):

From these measurements, the following three equations can
be generated based on (2), in which the derivative of y1 is
approximated by Ry1=Rt.

A
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:

If the matrix A is non-singular, then there is a unique
solution for 
1; 
2 and 
3, and hence estimates for s; d and
�. These are essentially least-square (LSQ) estimates.
On the other hand, when either y1 or y2 is constant, then

A can never be non-singular for any choice of measurement
interval. In the long asymptomatic stage, the viral load y2
remains constant, and in the short period after chemother-
apy treatment, the CD4+T cell count does not change much
(see the assumption made in Ho et al. (1995), Wei et al.
(1995)). Therefore during these two time periods, a
complete determination of s; d and � is impossible.
Similar conclusions can be drawn from (3) for the

estimates of �1; �2 and k.
Of course, this orthodox pure LSQ would fail with noisy

measurement. One way to overcome this is to use improved
versions of LSQ method. Another way is to use adaptive
algorithms.

3. Estimation using adaptive identi�ers

It is a standard practice in adaptive estimation to design
a suitable 8lter for the available signals (Sastry & Bodson,
1989).
Let

�1(s) = s+ �11;

�2(s) = s2 + �22s+ �21;

be two Hurwitz polynomials, i.e., �11; �21 and �22 are all
positive. Denote the Laplace transforms of y1(t); y2(t)
and y1(t)y2(t) as y1(s); y2(s) and y1y2(s), respectively.

Then from (2) and (3),

y1(s) =
1

�1(s)
�11 +

y1(s)
�1(s)

�21 +
y1y2(s)
�1(s)

�31;

y2(s) =
sy2(s)
�2(s)

�12 +
y2(s)
�2(s)

�22 +
y1y2(s)
�2(s)

�32;

where the new parameterization is
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De8ne the following time-domain realizations:

�̇1 =−�11�1 + 1;

�̇2 =−�11�2 + y1;

�̇3 =−�11�3 + y1y2;

�̇21 = �22;

�̇22 =−�21�21 − �22�22 + y2;

�̇31 = �32;

�̇32 =−�21�31 − �22�32 + y1y2

and denote

W =




w11 w12

w21 w22

w31 w32


=




�1 �22

�2 �21

�3 �31


 ;

and one can de8ne the following identi8er output:

Yi(t) =

[
yi1(t)

yi2(t)

]
= �TW (t); (5)

and the identi8er error

E(t) =

[
e1(t)

e2(t)

]
= Yi(t)− Y (t); (6)

in which

Y (t) =

[
y1(t)

y2(t)

]
:

Then the parameter updating law is given by the following
standard gradient algorithm:

�̇=−[g1e1(t)W1(t) g2e2(t)W2(t)] (7)

in which, g1¿ 0 and g2¿ 0.
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An alternative is the normalized gradient algorithm

�̇=−
[
g1e1(t)W1(t)
1 + �1W T

1 W1

g2e2(t)W2(t)
1 + �2W T

2 W2

]
; (8)

in which W1(t); W2(t) are the columns of W (t), and �1¿ 0
and �2¿ 0.
In any case, Yi(t) approaches Y (t). In order for the param-

eters to converge (Sastry & Bodson, 1989), it is necessary
for the vector VW (t) = (w11(t); w21(t); w31(t); w12(t); w22(t);
w32(t))T to be persistently exciting (PE). Note that the
transfer function from Vu = (1; y1(t), y2(t), y1(t)y2(t))T

to VW (t) is

H (s) =




1
�1(s)

0 0 0

0
1

�1(s)
0 0

0 0 0
1

�1(s)

0 0
s

�2(s)
0

0 0
1

�2(s)
0

0 0 0
1

�2(s)




: (9)

Decomposing VW (t) into VW 1(t) + VW 2(t) such that

VW (s) def= VW 1(s) + VW 2(s)

def= H 1(s) Vu(s) + (0; 0; 0; y2(s); 0; 0)T:

The following two assumptions are made:

Assumption 1. Vu(t) = (1; y1(t); y2(t); y1(t)y2(t))T satisfy∫ t+T

t
Vu(�) Vu(�)T d�¿ k ¿ 0;

i.e., the persistent excitation condition is satis-ed for some
T¿ 0, and every t¿ 0.

Assumption 2. y2(t)∈L2, that is, the viral load is a square
integrable function of time.

SinceH 1(s) is stable, minimum phase and rational, by As-
sumption 1 and Lemma 2.6.7 of Sastry and Bodson (1989),
VW 1(t) is PE. By Assumption 2 and Lemma 2.6.6 of Sastry
and Bodson (1989), VW (t) is PE.
The technical Assumptions 1 and 2 may not be easily

met in practice (for every t ¿ 0), but it helps to indicate the
most likely period for a complete estimation of parameters.
An intuitive interpretation of the above analysis is that when
the curve of y1 and y2 are bent enough and “the cumulated
strength of the virus” (y2) is bounded, all six parameters can
be estimated with con8dence of accuracy. Two such typical
phases in HIV/AIDS progression are the primary infection

stage and the period after chemotherapy treatment, when-
both the viral load and CD4+T cell counts are changing.
Coincidentally, one notices that all previous estimations

of the virus clearance rate (�2) and the death rate of infected
cell (�1) were made for a post-treatment period of very
strong chemotherapy using reverse transcriptor inhibitors
and protease inhibitors (Ho et al., 1995; Wei et al., 1995;
Perelson et al., 1996). This choice becomes obvious from
the above analysis of parameter convergence.

4. Estimation using adaptive observers

It will be shown in this section that adaptive observers
of the Marino–Tomei type (Marino & Tomei, 1995)
provide another globally convergent parameter estimator.
Refer to Marino and Tomei (1995, 2000), Xia (2000) for
details of the design and some recent applications of adaptive
observers.
The procedures for designing adaptive observer

estimators is described as follows:
For system (1), let z1 = x1; z2 = kx2 +�1x3; z3 = x3, when

k �= 0, this transformation is invertible, and system (1) can
be transformed into the following observer form:

ż1 = 
1 + 
2y1 + 
3y1y2;

ż2 = 
6y1y2 + 
5y2;

ż3 = z2 + 
4y2;

y1 = z1;

y2 = z3:

(10)

De8ne the 8ltered transformation

!1 = z1;

!2 = z2 − 
6�1 − 
5�2 − 
4�3;

!3 = z3

in which

�̇1 =−b�1 + y1y2;

�̇2 =−b�2 + y2;

�3 =−b�2;

with b¿ 0, then the system can be transformed into an
adaptive observer form:

!̇1 = 
1 + 
2y1 + 
3y1y2;

!̇2 = b[
6�1 + 
5�2 + 
4(�3 + y2)];

!̇3 = !2 + [
6�1 + 
5�2 + 
4(�3 + y2)];

y1 = !1;

y2 = !3:

(11)
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An adaptive observer can then be designed as the
following:

˙̂!1 = k1!̂1 + 
̂1 + 
̂2y1 + 
̂3y1y2 − k1y1;

˙̂!2 = k2!̂3 + b[
̂6�1 + 
̂5�2 + 
̂4(�3 + y2)]− k2y2;

˙̂!3 = k3!̂3 + !̂2 + [
̂6�1 + 
̂5�2 + 
̂4(�3 − y2)]− k3y2;
(12)



˙̂
1

˙̂
2

˙̂
3


= #1




1

y1

y1y2


 (y1 − !̂1); (13)



˙̂
4

˙̂
5

˙̂
6


= #2




y2 + �3

�2

�1


 (y2 − !̂3); (14)

where #1; #2 are symmetric positive de8nite matrices, k1 is
any negative number, k2 =−b and k3 =−b− � for �¿ 0.
The estimation of the original parameters can be deter-

mined by the estimation of 
 through (4).
The convergence of parameters using adaptive observers

can be discussed along similar lines as for adaptive iden-
ti8ers, and it is omitted due to space limitation. It can be
noted that the parameter convergence conditions for adap-
tive observers are the same as for adaptive identi8ers.

5. Simulation

The simulation is carried out in the Matlab/Simulink en-
vironment. Results are shown only for parameter estimation
using adaptive observers.
Assume that the model has the following parameters: s=

7, d = 0:007, � = 0:00000042163, �1 = 0:0999, �2 = 0:2,
k = 90:67.
Using these parameters, the HIV progression is depicted

in Fig. 1. It can be noted that this set of parameters corre-
sponds to a typical HIV infection and progression over four
years. After the initial infection, the healthy CD4+T cell
drops from the usual 1000 per cubic millimeter to less than
four hundred in about four months’ time. The viral load in-
creases dramatically in the acute infection stage and peaks
at about three months after infection. A set point is reached
after about 8ve hundred days.
Since the numerical values of the CD4+T count and the

virus load are not in the same order of magnitude, the vari-
ables are 8rst normalized in the simulation. The adaptive
observer is chosen to start from day 225 after infection.
This choice is arbitrary subject to the condition that the sig-
nals are suKciently excited. To test the algorithm against
measurement noise, zero mean random signals with vari-
ance of 20 and log variance of 0.2 are added to y1 and y2,
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Fig. 1. Typical HIV infection and progression.
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Fig. 2. Estimation HIV/AIDS parameters, solid: without measurement
noise; dash: with measurement noise.

respectively. The results are demonstrated in Fig. 2. It can be
found from these results that very good estimations can be
obtained using about 3 months’ data. It can also be found
that the estimates of s; d; � and k are relatively smooth, while
the estimations of �1 and �2 undergo some Zuctuations. This
phenomenon is in accordance with the fact that virus and
infected cells have a very rapid turnover (Ho et al., 1995;
Wei et al., 1995).
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6. Conclusion

In this paper, the problem of estimating all parameters
in the basic HIV/AIDS model is studied by making use
of well-established control system techniques. Through an
analysis of basic system properties, the minimal number of
sample measurement for the CD4+T cell and the viral load
was obtained for a complete model parameter estimation.
The HIV progression stages, when an estimation of all
parameters is impossible, were then determined. Outside
these stages, on-line estimations of all parameters were
given based on two well-known techniques in control the-
ory: adaptive identi8ers and adaptive observers. Conditions
for parameter convergence were discussed. Simulation
results were shown for the adaptive observers.
This study enables one to formulate the following guide-

lines for the clinical testing and monitoring, as far as the
estimation of all six HIV/AIDS parameters in the basic
model is concerned:

(1) At least four measurements of CD4+T cell count and
8ve measurements of viral load are needed for a com-
plete determination of all the HIV/AIDS parameters;

(2) In the asymptomatic stage of HIV, a complete determi-
nation of all parameters is impossible;

(3) In the short period after chemotherapy treatment when
the CD4+T cell count does not change much, a com-
plete determination of all parameters is impossible;

(4) It is most probable to determine all parameters in the
early infection stage;

(5) All parameters can be estimated by suKciently disturb-
ing the set point in the asymptomatic stage of HIV using
e=ective anti-retrovirus drugs.

Remaining issues to be investigated include the clinical
data veri8cation. For this purpose, the assumption that daily
blood samples are available is of course not very practical.
Interpolation must be implemented. In practice, samples are
sometimes taken more frequently, e.g., hourly (Perelson &
Nelson, 1999), especially after treatment. This will certainly
improve the eKciency of the estimation.
Estimation algorithms will be useful in the study of clin-

ical drug resistance, since resistance can be represented by
the fact that the parameters � and/or k become smaller. A
quantitative study about resistance can be given by detect-
ing the changes of the estimates of � and k.
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