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Abstract

Modulated feedback control introduces periodicity. The global attracting property of the periodic points is established for a simple scalar
discrete-time system under �-modulated feedback. Attracting regions of the periodic points are also characterized. When the discretization
effects of the equivalent control-based sliding mode control systems are studied, we show that the zero-order-hold discretization gives rise
to �-modulation in the sliding mode direction. The global attracting property of �-modulated feedback offers a vivid illustration of the way
sliding is achieved. Interestingly, we find that a ZOH discretization scheme of the equivalent control-based sliding mode control system with
relative degree one results in only 2-periodic orbits.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Discrete sliding mode control (SMC) arises in two differ-
ent situations: one associated with SMC of discrete-time sys-
tems and the other resulting from discretization of the SMC of
continuous-time systems. Studies of both cases have been re-
ported in the literature (see Corradini & Orlando, 1998; Koshk-
ouei & Zinober, 2000; Wu, Drakunov, & Ozguner, 2000; Yu,
1998;Yu & Chen, 2003, and references therein). A different line
of research is sigma–delta (or �-) modulation and �-modulated
feedback of discrete signals and/or systems. Sigma–delta modu-
lation first appeared in electronic circuits as a method of analog-
to-digital conversion (Inose &Yasuda, 1963). More recent stud-
ies, motivated by the renewed interest in hybrid systems with
hard nonlinearities, include �-modulated feedback control sys-
tems and the associated complexities (Gai, Xia, & Chen, 2003;
Xia, Chen, Gai, & Zinober, 2004; Xia, Gai, & Chen, 2004; Xia
& Zinober, 2004).
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The link between SMC and �-modulated control was first
noted in Zinober and Xia (2004). This paper explores the con-
nection further. We show that the zero-order-hold (ZOH) dis-
cretization of the equivalent control-based SMC system gives
rise to �-modulation in the sliding mode direction. To illus-
trate vividly how sliding is achieved, we first present a de-
tailed investigation of the global attracting properties of a scalar
discrete-time system under �-modulated feedback. Global at-
tractiveness of equivalent control-based SMC is then realized
by the modulation in the sliding direction and followed by
the absorption of the stable zero dynamics of the system. An-
other interesting result is that a ZOH discretization scheme
of the equivalent control-based SMC system with relative de-
gree one produces only 2-periodic orbits, understandably due to
sampling.

Note that we are simply using the analogy of SMC, and we
assume that the system has a relative degree one with respect
to the sliding surface. ZOH discretization of classical SMC is
usually carefully avoided for its drawbacks, and higher-order
and dynamic SMC are used for design (Zinober, 1994). Our
method does not intend to add to SMC design theory, instead,
our interest here is in the discretization effect on a continuous-
time SMC system, as in Corradini and Orlando (1998) and Yu
and Chen (2003).
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The layout of the paper is as follows. In Section 2, we in-
vestigate the global attracting properties of a scalar discrete-
time system under �-modulated feedback. The study of the dis-
cretization of the equivalent control-based SMC system is in
Section 3. The last section contains some concluding remarks.

2. Delta-modulated control

In this section, we study the periodic orbits of the following
scalar, discrete-time linear system:

x+ = ax − � sgn(ax), (1)

where x ∈ R is the state variable, x+ denotes the system state
at the next discrete time, and a is a real number. � is a positive
real number and sgn(x) is the function defined by

sgn(x) =
{

1 when x�0,

−1 when x < 0.

Here, we will be concerned only with the case |a|�1. The
existence of periodic points for the case |a| > 1 has been dis-
cussed in Gai et al. (2003), Xia, Chen et al. (2004), and Xia,
Gai et al. (2004). It was found that any periods can happen
when |a|�2, and when 1 < |a| < 2, a period of a certain order
can happen if and only if |a| is greater than a certain value in
the interval (1, 2).

The case |a|�1 provides a relatively thorough investigation
of the periodicity and its attractiveness. A detailed analysis in
the next section gives a vivid illustration of SMC.

Theorem 1. (1) When |a|=1, �=[−�, �] is a global attractor
on (−∞, ∞);

(2) when |a| < 1, the global attractor is the following set of
two points:

{−�/(1 + |a|), �/(1 + |a|)}; (2)

(3) when 0�a < 1, the two points in (2) are 2-periodic
points; when −1 < a < 0, the two points in (2) are (1-periodic)
fixed points.

Proof. The proof of the cases |a| = 1 and a = 0 are straight-
forward and omitted. Denote the closed-loop system as

x+ = ax − � sgn(ax)
def= fc(x). (3)

Denote D=(−�/|a|, �/|a|). Let x(0)=x0 be the initial condi-
tion. It can be easily checked that when x0 ∈ D, x(k) satisfies
the relation: sgn(ax(k)) = sgn(ax0)(−sgn(a))k , for all k�1.
In this case, Eq. (3) transforms as follows:

x+ = ax − � sgn(ax0)(−sgn(a))k . (4)

Applying the Z-transformation to Eq. (4) one obtains

zX(z) − zx0 = aX(z) − � sgn(ax0)
z

z + sgn(a)
.

Solving with respect to X(z) one obtains:

X(z) = z

(z − a)
x0 − � sgn(ax0)

z

(z − 1)(z + sgn(a))

= z

(z − a)
x0 − � sgn(x0)

(1 + |a|)
[

z

(z − a)
− z

(z + sgn(a))

]
,

from which

x(k) = x0a
k − �a sgn(x0)(a

k − (−sgn(a))k), (5)

where �a = �/(1 + |a|). From this, it follows that when x0 =
±�a(∈ D):

x(k) = ± �aa
k ∓ �a(a

k − (−sgn(a))k)

= ± �a(−sgn(a))k .

This proves that the two points −�a and �a are 2-periodic
points when 0�a < 1, and 1-periodic points when −1 < a < 0.

Since |a| < 1, ak → 0, and from (5), when k → ∞, the
trajectory x(k) tends to

x(k) � �a sgn(x0)(−sgn(a))k ,

i.e., the set {−�a, �a} is a global attractor for the domain D.
Let us now consider the case x0 /∈D, and let us suppose that

x(k) /∈D. Then it can easily be verified that

|x(k + 1)| = |a||x(k)| − �,

and therefore

|x(k + 1)| < |x(k)| − �.

This proves that |x(k)| is strictly decreasing (with a step size
greater than �) outside D. Hence, for any x0 /∈D, there exists
a finite instant k such that x(k) ∈ D. �

Since the periodic points are globally attractive, it is inter-
esting to find out the attracting region for each of the periodic
points.

First, we introduce a new concept. For any real number x
and a �= 0 (the case a = 0 is trivial), the characteristic index �
is defined as the following non-negative integer:

� =
⌊

log|a|
(

�

� + (1 − |a|)|x|
)⌋

,

where �∗	 denotes the floor, i.e., the maximal integer bounded
above by the real number *.

Lemma 1. (i) For any x, the characteristic index � is the small-
est non-negative integer m such that

|f (m)
c | < �

|a| .

(iia) For −1 < a < 0, � is the smallest non-negative integer
m such that f

(m)
c and f

(m+1)
c have the same sign.

(iib) For 0 < a < 1, � is the smallest non-negative integer m
such thatf (m)

c and f
(m+1)
c have opposite signs.

Proof. We prove the result only for the case 0 < a < 1. Proofs
for other cases can be worked out along similar lines, and are
therefore omitted.
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If 0 < a < 1, it follows that

f (m+1)
c = af (m)

c − sgn(f (m)
c )�

=
{

af(m)
c − �, f

(m)
c �0,

af(m)
c + �, f

(m)
c < 0.

(6)

It is easy to see that |f (m)
c | < �/a if and only if f

(m)
c and f

(m+1)
c

have different signs.
Note that for m��, it is easy to obtain that for x > 0,

f
(m)
c (x)=am|x|−((1−am)/(1−a))�, and for x�0, f (m)

c (x)=
−am|x| + ((1 − am)/(1 − a))�.

It is then straightforward to verify that the real number s =
loga�/(� + (1 − a)|x|) satisfies

as |x| − (1 − as)

(1 − a)
� = 0.

Therefore, �=�s	 is the smallest integer such that f
(m)
c changes

sign.
This completes the proof of the lemma. �

The analysis given in the proof can be useful in finding
the limiting periodic points. We will carry this out separately
for the two types of systems with −1 < a < 0 and 0 < a < 1,
respectively.

If −1 < a < 0, then we have

f (m+1)
c (x) = fc(f

(m)
c )(x) = af (m)

c (x) + sgn(f (m)
c (x))�.

By (iia) of Lemma 1, f (m)
c has the same sign as f

(�)
c , for m��.

Therefore, we have, for m��,

f (m+1)
c (x) = af(m)

c (x) + sgn(f (�)
c (x))�.

Hence, by denoting the limit of f
(m)
c by x∗, we can solve for

x∗ from x∗ = ax∗ + sgn (f
(�)
c )�, to obtain

x∗ = sgn(f
(�)
c )�

1 − a
.

If 0 < a < 1, then first let �e be the next even integer (or zero)
greater than � (i.e., �e = � if � is even or zero, and �e = � + 1
if � is odd). Then, from (iib) of Lemma 1, f

(2m)
c has the same

sign as f
(�e)
c , for m��e/2. Therefore, we have, for 2m��e,

f (2(m+1))
c = a2f (m)

c − a sgn(f (�e)
c )� + sgn(f (�e)

c )�.

Hence, if we denote the limit of f
(2m)
c by x∗, then

x∗ = a2x∗ − a sgn(f (�e)
c )� + sgn(f (�e)

c )�,

and

x∗ = sgn(f
(�e)
c )�

1 + a
.

Summarizing the above, we have the following characteri-
zation of the attracting region of a periodic point.

Theorem 2. For any x, denote its characteristic index as �. (i)
For −1 < a < 0, x belongs to the attracting region of �/(1−a)

(−�/(1 −a)) if and only if sgn(x(�))= 1 (sgn(x(�))=−1). (ii)
For 0�a < 1, x belongs to the attracting region of �/(1 + a)

(−�/(1 + a)) if and only if sgn(x(�)) = (−1)� (sgn(x(�)) =
(−1)�+1).

3. Application to discretized SMC systems

Consider a continuous time system

ẋ = Ax + bu, (7)

where x ∈ Rn, A is an n × n matrix, and b is an n-dimensional
vector. A basic SMC design (Zinober, 1994) is to seek a sliding
mode defined by s = cTx, where c is an n-dimensional vector,
such that cTx has relative degree 1 with respect to system (7),
i.e., cTb �= 0.

In this case, a sliding mode controller is obtained as

u = −�cTx − 1

cTb
cTAx − �

cTb
sgn(cTx), (8)

in which ��0 and � > 0 are tuning parameters. There are three
parts:

ur = −�cTx,

ueq = − 1

cTb
cTAx,

us = − �

cTb
sgn(cTx).

The equivalent control ueq (Zinober, 1994) is derived by solving
ṡ = 0, where ṡ = cT(Ax + bu) is the derivative of s along the
dynamics of (7). The switching control us is designed to satisfy
the sliding condition sṡ�0.

The reaching control ur adds some reaching manipulability
to avoid the chattering problem (Gao & Hung, 1993).

The SMC design is applicable to system (7) when it is min-
imal phase, with cTx as an output (Byrnes & Isidori, 1988).

To study the discretization effects on the SMC, we assume
that the controller u is digitized through a ZOH at the sampling
moments:

u(t) = uk
def= u(kh)

= − �cTx(kh) − 1

cTb
cTAx(kh) − �

cTb
sgn(cTx(kh))

� − �cTx(k) − 1

cTb
cTAx(k) − �

cTb
sgn(cTx(k)), (9)

for all t ∈ [kh, (k + 1)h), where h > 0 is the sampling period.
A discrete-time conversion of the system (7) under ZOH is
obtained as

x(k + 1) = eAhx(k) +
∫ h

0
eA�b d�uk , (10)

where uk is given in (9).
To reveal the special structure of the discretization of the

system, let us first make the coordinate transformation on the
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original (closed-loop) system (7) under feedback (8):

z1 = cTx,

and choose c2, c3, . . . , cn ∈ Rn satisfying cT
i b = 0, for i =

2, 3, . . . , n, and {c, c2, c3, . . . , cn} is a linearly independent set.
This is always possible due to cTb �= 0.

Hence, let zi = cT
i x, for i = 2, 3, . . . , n. It is easily seen that

system (7) under SMC is written in the new coordinates as

ż1 = −�z1 − � sgn(z1),
˙̃z = �z̃ + pz1,

in which we denote z̃ = (z2, z3, . . . , zn)
T, � ∈ R(n−1)×(n−1)

is a stable matrix, due to the assumption that the system is
minimal phase, and p ∈ Rn−1.

Applying a zero-order hold discretization to the system in
coordinates z, we obtain

z+
1 = �z1 − � sgn(z1), (11)

z̃+ = �z̃ + 	z1, (12)

in which

� = e−�h, � = e�h,

� =
{

�(1 − e−�h)/�, when � �= 0,

�h when � = 0,

	 = (−�hIn−1 − �h)−1(e−�hIn−1 − e�h)p,

and h > 0 is the sampling period. These equations are read-
ily derived by applying (10). As a matter of fact, the system
(11)–(12) is the transformed version of (10) under the same
coordinate transformation.

We note that the dynamics of z1 is decoupled from that of z̃.
It is exactly in a form that has been considered in the previous
section. Since 0 < ��1, we know from Theorem 1 that when
0 < � < 1, {±�/(1 + �)} is the only (2-) periodic orbit, and it
is globally attracting; when � = 1, every point in (−�, �] is
2-periodic, any point is attracted to one pair of these 2-periodic
points.

The following result concerning periodic orbits from exter-
nally asymptotically periodic excitation is an easy generaliza-
tion of a well-known result (see also Xia & Zinober, 2004) and
the proof is omitted.

Theorem 3. Consider a discrete-time system of order n,

x+ = Ax + bu, (13)

where x ∈ Rn is the state, x+ denotes the system state at
the next discrete-time step, u ∈ R is the scalar input, A is an
n × n matrix of real numbers, and b is a column vector of n
real numbers. A is a stable matrix, i.e., the eigenvalues of A
lie within the unit circle. (i) For an asymptotically L-periodic
input sequence, there is a periodic orbit of period L for system
(13). (ii) This periodic orbit is globally attracting.

To find the periodic points of (11) and (12), first of all we
note that z1 can only be 2-periodic. Therefore, z1 in (12) can be
regarded as a 2-periodic (modulated) orbit, in order to find the

periodic orbit for the overall system. Since z1 is asymptotically
2-periodic and � is stable, we can apply Theorem 3 to conclude
that there is/are only 2-periodic orbit(s) arising from discretiza-
tion of SMC. These are summarized in the following theorem.

Theorem 4. Discretization of SMC results in only 2-periodic
orbits. When � > 0, there is a unique 2-periodic orbit deter-
mined by (in z coordinates): {P, −P }, in which

P = �/(1 + �)

[ −1
(In−1 + �)−1	

]
. (14)

This pair is globally attracting.
When � = 0, each pair of points of the following form (in z

coordinates) is a 2-periodic orbit, for 
 ∈ [−�, �):{



[ −1
(In−1 + �)−1	

]
, −


[ −1
(In−1 + �)−1	

]}
.

Proof. When � �= 0, by Theorem 1, z1 is globally attracted to
two periodic points ±�/(1+�). It is easily verified that the two
points in (14) are the only 2-periodic points for the system. The
z̃ part in (12) has exactly the structure discussed in Theorem
3, therefore, these two points are globally attracting. Similar
arguments apply to the case when � = 0. �

This result clearly indicates how sliding mode is achieved:
first of all the system is dragged towards the sliding mode
(z1) by a �-modulation mechanism, then it is absorbed by
its stable zero dynamics (the matrix � is stable). From the
expressions given in the theorem, the two periodic points are
on two different sides of the sliding mode hyperplane (defined
by z1 =0). It is noticed that the component-wise distance of the
two periodic points is ordered at O(�). And from the expression
of � following (12), in both situations � = 0 and � �= 0, � ∼
2h. So eventually, we conclude that the distance of any two
corresponding components of the two periodic points is ordered
at O(h). Hence, the chattering of SMC still exists in its ZOH
sampling implementation, but it is regulated by the sampling
period h. When h is very small, chattering becomes “invisible”.

Note that a crucial assumption in arriving at Theorem 4 is
that system (1) has relative degree one taking the sliding surface
as an output. If this is not the case, much more complicated
situations can arise (Yu, 1998).

Suppose there are matched uncertainties in system (7). Using
well-known SMC invariance results (see, e.g., Zinober, 1994),
we can establish the attractiveness of trajectories to the neigh-
borhood of the 2-periodic points, for systems with matched
perturbations and uncertainties because of the global attractive-
ness of these 2-periodic points. The robustness is demonstrated
in the following example illustrating our result in Theorem 4.

Consider the system (7), A = A0 + �A, where A0 is the
nominal known system matrix and �A is an unknown structural
disturbance

A0 =
[ 0 1 0

0 0 1
20 −14 4

]
, �A =

[ 0 0 0
0 0 0

−0.12 −0.3 0.22

]
,

and b = (0 0 1)T, c = (1 1 1)T.
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Fig. 1. Discretized SMC, with h = 0.1.

The SMC is based upon (8) and is designed for the nominal
system A0, with � = 1 and � = 1. The sampling period is
chosen as h=0.1, and the initial condition is x(0)= (−2, 1, 1).
The simulation is done for N = 150 steps, and the graph in
Fig. 1 shows the iterations after step 15. It can be seen from
the graph that the orbit first approaches the sliding surface and
then slides within a “band” of the sliding surface and towards
the two periodic points. The width of the band is about 0.2, two
times the sampling period. �

4. Concluding remarks

It has been shown that global attractiveness of equiva-
lent control-based SMC is realized by the modulation in the
sliding direction and followed by the absorption of the sta-
ble zero dynamics of the system. Another interesting result
we have found in the paper is that a ZOH discretization
scheme of the equivalent control-based SMC system with
relative degree one results in only 2-periodic orbits, due to
sampling. The periodic orbits are regulated by the sampling
period to move in the close vicinity of the sliding mode
hyperplane.

Preliminary research indicates that the approach is extend-
able to a class of multi-input multi-output systems with a uni-
form relative degree one for each output and with a nonsin-
gular Falb–Wolovich matrix. After further research we intend
publishing these results.
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